MATLAB Arrays and Matrices

Trevor Spiteri trevor.spiteri@um.edu.mt http://staff.um.edu.mt/trevor.spiteri

Department of Communications and Computer Engineering Faculty of Information and Communication Technology University of Malta

13 February, 2008

Outline

Creating and Editing Arrays

Creating Arrays Editing Arrays Special Matrices

Mathematical Operations

Element by Element Operations Functions on Many Values Matrix Operations

Polynomial Algebra

Structure Arrays

Creating Arrays Editing Arrays Special Matrices

Outline

Creating and Editing Arrays

Creating Arrays Editing Arrays Special Matrices

Mathematical Operations

Element by Element Operations Functions on Many Values Matrix Operations

Polynomial Algebra

Structure Arrays

• • • • • • •

Writing vectors inline

- ► We want to store a row vector $\mathbf{rv} = \begin{bmatrix} 11 & 12 & 13 \end{bmatrix}$ and a column vector $\mathbf{cv} = \begin{bmatrix} 11 \\ 21 \\ 31 \end{bmatrix}$.
- ► The row vector can be written as: >> rv = [11 12 13]
- It can also be written as: >> rv = [11, 12, 13]
- The column vector can be written as: >> cv = [11; 21; 31]
- Or we can use the transpose operator: >> cv = [11 21 31] '
- It can also be written as:
 >> cv = [11
 21
 - 31]

< ロ > < 同 > < 回 > < 回 > < 回 > <

Creating Arrays Editing Arrays Special Matrices

Regularly spaced elements

- The colon operator (:) generates regularly spaced elements. The expression is: >> r = [j:d:k]
- j is the first element.
- k is the last element.
- d is the spacing.
- ► For example, 1:2:9 gives us [1 3 5 7 9].
- If the d term is omitted, the spacing is presumed to be 1.
- For example, 1:5 gives us $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$.
- d can also be negative.
- ► For example, 0.5:-0.2:0.1 gives us [0.5 0.3 0.1].
- To find the length of a row vector we use the length function.
- For example, >> r = 1:4; length(r) returns 4.

Creating matrices

- When writing row and column numbers, the row always comes first.
- We want to store a matrix $m = \begin{bmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \end{bmatrix}$.
- This matrix has 2 rows and 3 columns.
- We say that this is a 2 by 3 matrix.
- A matrix can be written as:

>> m = [11 12 13; 21 22 23]

It can also be written as:

```
>> m = [11 12 13
21 22 23]
```

► The size of the matrix can be obtained using the size function. For example, size(m) returns [2 3], i.e., m is a 2 by 3 matrix.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Creating Arrays Editing Arrays Special Matrices

Accessing a single element

- We can refer to an element of the matrix using indexing.
- Suppose we have the matrix $m = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 4 & 9 \end{bmatrix}$ and we want to change the element in row 1, column 3.
- We write: >> m(1, 3) = 3
- Now, the matrix is $m = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$.

A (10) × A (10) × A (10)

Creating Arrays Editing Arrays Special Matrices

Accessing whole vectors

- Suppose we have the matrix $m = \begin{bmatrix} 1 & 2 & 4 & 4 \\ 1 & 4 & 16 & 16 \\ 1 & 4 & 16 & 16 \end{bmatrix}$ and we want to change all of row 3.
- We write: >> $m(3, :) = \begin{bmatrix} 1 & 8 & 64 & 64 \end{bmatrix}$ Now, the matrix is $m = \begin{bmatrix} 1 & 2 & 4 & 4 \\ 1 & 4 & 16 & 16 \\ 1 & 8 & 64 & 64 \end{bmatrix}$.
- ► To change column 3, we write: >> m(:, 3) = [3; 9; 27]
- The final matrix is $m = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 64 \end{bmatrix}$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Creating Arrays Editing Arrays Special Matrices

Accessing parts of a matrix

• Suppose we have the matrix $m = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 0 & 0 & 25 \\ 1 & 8 & 0 & 0 & 125 \end{bmatrix}$ and we

want to fill in values for the zeros.

- ▶ We can write: >> m(2:3, 3:4) = [9 16; 27 64]
- The matrix becomes $m = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 9 & 16 & 25 \\ 1 & 8 & 27 & 64 & 125 \end{bmatrix}$.
- Another way of doing this change is: >> m(2:end, 3:4) = [9 16; 27 64]
- 1 is index of the first element, and end is the index of the last element.

Creating Arrays Editing Arrays Special Matrices

Appending and prepending vectors

Start with the matrix
$$m = \begin{bmatrix} 11 & 12 \\ 21 & 22 \end{bmatrix}$$
.

► To append a column, we write: >> m = [m, [13; 23]]

▶ Now,
$$m = \begin{bmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \end{bmatrix}$$

► To add some rows, we write: >> m = [1 2 3; m; 31 32 33]

Now, m =
$$\begin{bmatrix} 1 & 2 & 3 \\ 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{bmatrix}$$
.

< ロ > < 同 > < 回 > < 三 > < 三 >

Creating Arrays Editing Arrays Special Matrices

Growing a matrix by indexing

- Start with the matrix $m = \begin{bmatrix} 11 & 12 \\ 21 & 22 \end{bmatrix}$.
- If we want to resize the array to be a 4 by 6 array, we write: >> m(4, 6) = 1
- The new elements are automatically filled with zeros.

Creating Arrays Editing Arrays Special Matrices

Deleting vectors from a matrix

- Start with the matrix $m = \begin{bmatrix} 11 & 12 & 13 & 14 & 15 \\ 21 & 22 & 23 & 24 & 25 \\ 31 & 32 & 33 & 34 & 35 \end{bmatrix}$.
- ► To delete the second row, we write: >> m(2, :) = []
- Now the matrix is $m = \begin{bmatrix} 11 & 12 & 13 & 14 & 15 \\ 31 & 32 & 33 & 34 & 35 \end{bmatrix}$.
- ► To delete the first column, we write: >> m(:, 1) = []
- Now the matrix is $m = \begin{bmatrix} 12 & 13 & 14 & 15 \\ 32 & 33 & 34 & 35 \end{bmatrix}$.
- To delete columns 3 onwards: >> m(:, 3:end) = []
- Now the matrix is $m = \begin{bmatrix} 12 & 13 \\ 32 & 33 \end{bmatrix}$.
- This works on whole rows or columns only.

Creating Arrays Editing Arrays Special Matrices

Creating special matrices

• The zeros function creates a matrix of zeros.

► zeros(2, 4) =
$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

• The ones function creates a matrix of ones.

• ones(2, 3) =
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

► The eye function creates an identity matrix (I).

• eye(3) =
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

► The rand function creates a matrix of random numbers in [0, 1).

▶ rand(2, 4) =
$$\begin{bmatrix} 0.1576 & 0.9572 & 0.8003 & 0.4218 \\ 0.9706 & 0.4854 & 0.1419 & 0.9157 \end{bmatrix}$$

Element by Element Operations Functions on Many Values Matrix Operations

Outline

Creating and Editing Arrays

Creating Arrays Editing Arrays Special Matrices

Mathematical Operations

Element by Element Operations Functions on Many Values Matrix Operations

Polynomial Algebra

Structure Arrays

→ < Ξ → <</p>

Element by Element Operations Functions on Many Values Matrix Operations

Adding and subtracting arrays

- We start with two matrices, $a = \begin{bmatrix} 15 & 52 \\ 23 & 23 \end{bmatrix}$ and $b = \begin{bmatrix} 52 & 15 \\ 61 & 12 \end{bmatrix}$.
- To add, we write: >> apb = a + b
- apb = $\begin{bmatrix} 67 & 67 \\ 84 & 35 \end{bmatrix}$
- To subtract, we write: >> amb = a b
- amb = $\begin{bmatrix} -37 & 37 \\ -38 & 11 \end{bmatrix}$
- Matrix addition is element-by-element addition.
- So array addition is matrix addition and array subtraction is matrix subtraction.

< ロ > < 同 > < 回 > < 三 > < 三 >

Multiplicating arrays

- Matrix multiplication is not element-by-element multiplication.
- ► For array multiplication, we have a special operator: .*

• We start with two matrices,
$$a = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $b = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$.

- To array-multiply, we write: >> m = a .* b
- ► To multiply by a scalar, we may use matrix multiplication (*) or array multiplication (.*).

▶ a * 2 = a .* 2 =
$$\begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$$

▶ 2 * a = 2 .* a = $\begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$

< ロ > < 同 > < 回 > < 三 > < 三 >

Dividing arrays

- Start with $a = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $b = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$.
- To perform array right division, we write: >> rd = a ./ b

▶
$$rd = \begin{bmatrix} 0.5 & 0.6667 \\ 3 & 2 \end{bmatrix}$$

To perform array left division, we write: >> ld = a . \ b

▶
$$1d = \begin{bmatrix} 2 & 1.5 \\ 0.3333 & 0.5 \end{bmatrix}$$

Scalar division can be performed as follows:

▶ a / 2 = a ./ 2 = 2 \ a = 2 .\ a =
$$\begin{bmatrix} 0.5 & 1 \\ 1.5 & 2 \end{bmatrix}$$

▶ 2 ./ a = a .\ 2 =
$$\begin{bmatrix} 2 & 1 \\ 0.6667 & 0.5 \end{bmatrix}$$

Array exponentiation

Start with
$$a = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
 and $b = \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix}$.

To perform element-by element exponentiation, we use the . ^ operator.

• a .
$$b = \begin{bmatrix} 1 & 2 \\ 0 & 81 \end{bmatrix}$$

• This can also be used with a scalar.

▶ 2 .
$$\hat{}$$
 a = $\begin{bmatrix} 2^1 & 2^2 \\ 2^0 & 2^3 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 1 & 8 \end{bmatrix}$
▶ a . $\hat{}$ 2 = $\begin{bmatrix} 1^2 & 2^2 \\ 0^2 & 3^2 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & 9 \end{bmatrix}$

The matrix exponentiation operator ^ cannot be used for element-by-element exponentiation, not even with a scalar.

• • = • • = •

Element by Element Operations Functions on Many Values Matrix Operations

Functions operating on all elements

 Some functions can be performed on a whole array with one command.

Start with angles =
$$\begin{bmatrix} 0 & \frac{\pi}{2} \\ \frac{\pi}{3} & \pi \end{bmatrix} = \begin{bmatrix} 0 & 1.5708 \\ 1.0472 & 3.1416 \end{bmatrix}$$
.

• We can find the sine of these values with one function call.

•
$$sin(angles) = \begin{bmatrix} 0 & 1 \\ 0.8660 & 0 \end{bmatrix}$$

Four-quadrant inverse tangent

Suppose we have some x and y coorinates.

• We have
$$\mathbf{x} = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$.

► To find the angles, we can try to use the atan function.

► atan(y ./ x) =
$$\begin{bmatrix} -0.7854 & 0.7854 \\ 0.7854 & -0.7854 \end{bmatrix} = \begin{bmatrix} -\frac{\pi}{4} & \frac{\pi}{4} \\ \frac{\pi}{4} & -\frac{\pi}{4} \end{bmatrix}$$

- The results are only in the two quadrants $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- The atan2 function gives the four-quadrant inverse tangent.

▶ atan2(y, x) =
$$\begin{bmatrix} 2.3562 & 0.7854 \\ -2.3562 & -0.7854 \end{bmatrix} = \begin{bmatrix} \frac{3\pi}{4} & \frac{\pi}{4} \\ -\frac{3\pi}{4} & -\frac{\pi}{4} \end{bmatrix}$$

• The results can be in the four quadrants $(-\pi, \pi)$.

• • • • • • • • • • • •

Element by Element Operations Functions on Many Values Matrix Operations

Multiplying matrices

• We have two matrices,
$$a = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $b = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$.

► Matrix multiplication can be performed with the * operator. ► a * b = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 10 & 13 \\ 22 & 29 \end{bmatrix}$ ► b * a = $\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 11 & 16 \\ 19 & 28 \end{bmatrix}$

< ロ > < 同 > < 回 > < 三 > < 三 >

Element by Element Operations Functions on Many Values Matrix Operations

Dividing matrices (inverse)

Start with
$$a = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $b = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$.

• Matrix division is equivalent to multiplying by the inverse.

< ロ > < 同 > < 回 > < 三 > < 三 >

Element by Element Operations Functions on Many Values Matrix Operations

Matrix exponentiation

- To multiply a square matrix by itself, we can use matrix exponentiation.
- For example, let us cube the matrix $a = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

▶ a
$$\widehat{}$$
 3 = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 37 & 54 \\ 81 & 118 \end{bmatrix}$

Element by Element Operations Functions on Many Values Matrix Operations

Matrix transposition

- ► To find the transpose of a matrix, we can use the ' operator.
- For example, let $a = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

$$\bullet \mathbf{a'} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

- The ' operator also performs the complex conjugate.
- Suppose that $z = \begin{bmatrix} 1+i & 2-i \\ 3+2i & 4 \end{bmatrix}$ $z' = \begin{bmatrix} 1+i & 2-i \\ 3+2i & 4 \end{bmatrix}^{T*} = \begin{bmatrix} 1-i & 3-2i \\ 2+i & 4 \end{bmatrix}$
- To perform transposition and no conjugation, use the . ' operator.

$$\blacktriangleright \mathbf{z} \cdot \mathbf{z} = \begin{bmatrix} 1+i & 2-i \\ 3+2i & 4 \end{bmatrix}^T = \begin{bmatrix} 1+i & 3+2i \\ 2-i & 4 \end{bmatrix}$$

< ロ > < 同 > < 回 > < 三 > < 三 >

Outline

Creating and Editing Arrays

Creating Arrays Editing Arrays Special Matrices

Mathematical Operations

Element by Element Operations Functions on Many Values Matrix Operations

Polynomial Algebra

Structure Arrays

Storing polynomials

- Polynomials are stored as vectors.
- ► The polynomial $f(x) = a_1 x^n + a_2 x^{n-1} + \ldots + a_n x + a_{n+1}$ can be stored as $f = \begin{bmatrix} a_1 & a_2 & \ldots & a_n & a_{n+1} \end{bmatrix}$
- The first element is the coefficient of the highest power.
- ► If a particular power of *x* is missing, we use 0.
- $f_1(x) = x^3 + 8x^2 + 1$
- The coefficient of x^1 is 0.
- We can write this as: f1 = [1 8 0 1]

Adding polynomials

► To add polynomials, make sure they have the same degree.

►
$$f_1(x) = x^3 + 8x^2 + 1$$

 $f_2(x) = 3x^2 + x + 4$
 $f_s(x) = f_1(x) + f_2(x)$

► Since *f*₁ has degree 3, all polynomials have to be of degree 3.

• This gives us $fs = \begin{bmatrix} 1 & 11 & 1 & 5 \end{bmatrix}$.

•
$$f_s(x) = x^3 + 11x^2 + x + 5$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Multiplying polynomials

► To multiply two polynomials, we use the conv function.

►
$$f_1(x) = x^2 + 1$$

 $f_2(x) = x^3 + 2x + 1$
 $f_p(x) = f_1(x)f_2(x)$

• This gives us $fp = \begin{bmatrix} 1 & 0 & 3 & 1 & 2 & 1 \end{bmatrix}$.

•
$$f_p(x) = x^5 + 3x^3 + x^2 + 2x + 1$$

< ロ > < 同 > < 三 > < 三 > .

Dividing polynomials

- ► To divide two polynomials, we use the deconv function.
- ► $num(x) = x^3 + 2x^2 x + 3$ $den(x) = x^2 + 2x + 1$
- ► We need to find the quotient q(x) and the remainder r(x), such that num(x) = q(x) den(x) + r(x)

- ► This gives us $q = \begin{bmatrix} 1 & 0 \end{bmatrix}$ and $r = \begin{bmatrix} 0 & 0 & -2 & 3 \end{bmatrix}$
- q(x) = xr(x) = -2x + 3
- To check the result, we write: >> conv(q, den) + r

• • = • • = •

Working with roots

- We can calculate a polynomial from the roots.
- f(x) = (x-1)(x+2)(x+5)
- The roots of f(x) are 1, -2 and -5.

$$>> f = poly(r)$$

- ► Now f is a row vector with the polynomial coefficients, f = [1 6 3 -10].
- $f(x) = x^3 + 6x^2 + 3x 10$
- To find the roots of a polynomial, we write >> r2 = roots(f)
- This gives us a column vector with the roots, $r^2 = \begin{bmatrix} -5 \\ -2 \\ -2 \end{bmatrix}$.

Evaluating polynomials

- Sometimes we need to evaluate a polynomial over a range of inputs.
- Suppose we want to evaluate $f(x) = x^3 9x + 1$ over a range of *x*.
- We can do this using the polyval function.

• • • • • • •

Outline

Creating and Editing Arrays

Creating Arrays Editing Arrays Special Matrices

Mathematical Operations

Element by Element Operations Functions on Many Values Matrix Operations

Polynomial Algebra

Structure Arrays

→

Creating structure arrays

- Structure arrays are suitable to hold data.
- For example, to hold strings and lengths:
 - >> s.string = 'Hello'
 - >> s.length = 5
- To add another structure to the array:

- >> s(2).length = 2
- Now s is a vector.

$$\mathbf{s} = \begin{bmatrix} \mathbf{s}(1) & \mathbf{s}(2) \end{bmatrix}$$

> < = > < =

Accessing structure data

- To access fields in the data structure, we use the . operator.
- s(1).string returns the string field of the first element.
- We can also use an expression after the . operator.
 - >> field_name = strcat('str', 'ing') % 'string'
 - >> field = s(1).(field_name)
- Now, field contains the string 'Hello'.
- If we try to access a new field, the field will be added to all the elements of the array.
- >> s(1).other = 34
- s(1) = string: 'Hello', length: 5, other: 34
 s(2) = string: 'Hi', length: 2, other: []
- Now, s(2).other contains an empty matrix, [].

< p