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Abstract

In this project, a joint source-channel coding technique involving arithmetic coding

is implemented. The maximum a posteriori (MAP) estimation approach developed

by M. Grangetto et al. is implemented and analysed. In this approach, a forbidden

symbol is introduced into the arithmetic coder to improve the error-correction per-

formance. According to Grangetto, the error-correction performance obtained is bet-

ter than a separated source and channel coding approach based on arithmetic codes

without forbidden gaps and rate-compatible punctured convolutional (RCPC) codes.

The placement of the forbidden symbol was investigated and modified to de-

crease the delay from the introduction of an error to the detection of the error. The

arithmetic decoder was also modified for quicker detection of introduced errors. An-

other improvement was obtained by changing the way the prior probability compo-

nent of the MAP metric is calculated.

The improvements in the system are simulated for both hard and soft decoding.

An improvement of up to 0.4 dB for soft decoding and 0.6 dB for hard decoding over

the scheme by Grangetto can be seen.
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Chapter 1

Introduction

Digital communications [1] refers to the transmission of digital information from a

source to one or more destinations. Figure 1.1 shows the basic elements of a digital

communication system.

The source encoder converts the source information into digital data, in as few

bits as possible. The source encoder compresses the data to remove unwanted re-

dundancy in order to make efficient use of the transmission channel.

The channel encoder introduces redundancy in a controlled manner into the bit

sequence. This redundancy can be used later on by the channel decoder to overcome

the effects of noise and interference in the transmission of the data. Thus, the redun-

dancy increases the reliability of the system.

The digital modulator and demodulator serve as an interface to the communi-

cation channel. The modulator converts the binary data received from the channel

encoder into signals which are transmitted over the channel.

The communication channel is the physical medium over which the signals are

transmitted. There are many kinds of physical channels, including wire lines, optical

fibre cables, and wireless channels. On the channel, the transmitted signal may be

Information
Source

Source
Encoder

Channel
Encoder

Digital
Modulator

Channel

Digital
Demodulator

Channel
Decoder

Source
Decoder

Information
Sink

Figure 1.1: Elements of a digital communication system.

1



CHAPTER 1. INTRODUCTION 2

corrupted by noise and interference.

At the receiving end, the demodulator converts the signal received from the chan-

nel into numbers, which will be passed to the channel decoder.

The channel decoder uses these numbers to reconstruct the original data encoded

by the channel encoder. To do its job, the decoder has to know the scheme used by the

encoder. The effectiveness of the channel code is measured by the number of errors

that occur in the decoded sequence.

The source decoder then converts the digital data decoded by the channel decoder

into the form required by the target.

Arithmetic coding [2] is a source coding method for lossless data compression. It

is a variable-length coding scheme, which means that the length of the bit sequence

produced by the arithmetic encoder depends on which particular source symbols are

passed to the encoder. Arithmetic coding performs better than Huffman codes [3],

another kind of variable-length coding scheme, in almost every aspect. It represents

data more compactly and adapts better to adaptive models.

Arithmetic codes were introduced by Rissanen [2] in 1976 as an alternative to Huff-

man codes. In the 1980’s, practical implementation techniques were presented, and

the popularity of arithmetic codes began to grow. Their adoption was somehow ham-

pered by patent protection of practical implementations. Since then, key patents have

expired.

Thus, the use of arithmetic codes is increasing once more, especially in multime-

dia applications, where the high data rates make the high compression performance

of arithmetic codes very desirable. Multimedia compression usually employs several

stages. In the first stages, lossy compression schemes are used. These schemes are

dependent on the medium and remove nonessential features from the source. Af-

ter this, the data is quantized, and finally the quantized data is passed to an entropy

encoder. Entropy encoding is a lossless compression scheme which is independent

of the characteristics of the medium. New multimedia compression schemes are in-

creasingly using arithmetic coding as this final stage of the source coding system.

Multimedia data is transmitted over different channels. Transmission of multime-

dia over wireless channels is increasing. The wireless medium is susceptible to noise

and interference, and needs powerful channel coding techniques to be useful in digi-

tal communication systems. If the bit sequence generated by the arithmetic encoder

is not protected by a suitable channel code, the arithmetic decoder will not be able to

reconstruct the original data. Hence, suitable channel coding techniques are essential

for arithmetic codes to be transmitted over channels such as the wireless channel.

Data transmission requires both source coding and channel coding. Source cod-

ing is required for efficient use of the channel, and channel coding is required for
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reliable transmission of data. Joint source-channel coding techniques are emerging

as a good choice to transmit digital data over wireless channels.

Shannon’s source-channel separation theorem suggests that reliable data trans-

mission can be accomplished by separate source and channel coding schemes, where

the source encoder does not need to take the channel characteristics into account,

and the channel encoder does not need to take the source characteristics into ac-

count. Vembu et al. [4] point out shortcomings of the separation theorem when deal-

ing with non-stationary probabilistic channels. The bandwidth limitations of the

wireless channels, and the stringent demands of multimedia transmission systems

are emphasizing the practical shortcomings of the separation theorem. In practical

cases, the source encoder is not able to remove all the redundancy from the source.

Joint source-channel coding techniques can exploit this redundancy to improve the

reliability of the transmitted data.

Joint schemes can also provide implementation advantages. For example, Boyd et

al. [5] proposes a joint source-channel coding technique using arithmetic codes, and

mentions several advantages, including (a) saving on software, hardware, or compu-

tation time by having a single engine that performs both source and channel coding,

(b) the ability to control the amount of redundancy easily to accommodate prevail-

ing channel conditions, and (c) the ability to perform error checking continuously as

each bit is processed.

1.1 Objectives

Joint source-channel codes using arithmetic codes have been receiving more atten-

tion, so a review of the current research was in order.

The aim of this project was to implement a joint source-channel coding scheme

that uses arithmetic codes, to check that the implemented scheme performs as shown

in published results, and to possibly improve the scheme.

1.2 Organization

In Chapter 2, arithmetic coding and common implementation techniques are re-

viewed. The forbidden symbol technique used for error detection is reviewed in this

chapter as well.

In Chapter 3, joint source-channel coding is discussed. The chapter deals with the

decoding problem and MAP decoding, and decoding metrics for both hard and soft

decoding are reviewed. The sequential search technique used is also described.
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In Chapter 4, some improvements of error correction of arithmetic codes are pre-

sented. The placement of the forbidden symbol in the forbidden symbol technique

is discussed. A modification to the decoder that allows for earlier detection of errors

by looking ahead is presented in this chapter as well. Finally, an improvement in the

continuous calculation of the MAP decoding metric for MAP decoding is presented.

The implementation of the joint source-channel coding system is presented in

Chapter 5. The results are then presented in Chapter 6.

Finally, Chapter 7 draws some conclusions and mentions some directions for fu-

ture work.

An overview of the project source code is available in Appendix A. An attached CD

contains the source code.



Chapter 2

Arithmetic Coding

Arithmetic coding is a method for compressing a message u consisting of a sequence

of L symbols u1, u2, · · · , uL with different probability of occurrence. This method re-

quires that we have a good source model. The model gives us the distribution of prob-

abilities for the next input symbol. The encoder and decoder must have access to the

same source model.

The model can be a static model, that is, the distribution of probabilities does

not change from symbol to symbol. Alternatively, the model can be adaptive, where

the distribution of probabilities for each symbol can be different. In this case, the

encoder’s model will change with each encoded symbol. The decoder’s model will be

updated similarly with each decoded symbol.

The compression performance of arithmetic coding depends on the accuracy of

the source model. More complex models can provide better accuracy, which leads to

greater compression. Given a perfect source model, arithmetic coding is optimal. The

better the model is, the more optimal the arithmetic code is.

2.1 Representing a message as an interval

In arithmetic coding, a message is represented by an interval of real numbers between

0 and 1. For each source symbol, the encoder needs to know the current interval

and the probability of each possible source symbol. The current interval is split into

a number of parts, one for each symbol. The length of each part of the interval is

proportional to the probability of the symbol it represents. Thus, encoding a likely

symbol will reduce the interval by a small factor, and encoding an unlikely symbol

will reduce the interval by a large factor.

At the start of the encoding process, the interval is the half-open interval [0, 1),

that is, 0 ≤ x < 1. The encoding process that reduces this interval to the final interval

is illustrated in Example 2.1 below.

5
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Table 2.1: Symbol interval ranges for Example 2.1.

Symbol Probability Range

a 0.3 [0, 0.3)
b 0.5 [0.3, 0.8)
c 0.2 [0.8, 1)

Table 2.2: Steps for finding the interval for Example 2.1.

Step Symbol Interval Before Interval After

1 b [0, 1) [0.3, 0.8)
2 a [0.3, 0.8) [0.3, 0.45)
3 c [0.3, 0.45) [0.42, 0.45)
4 b [0.42, 0.45) [0.429, 0.444)
5 b [0.429, 0.444) [0.4335, 0.441)
6 a [0.4335, 0.441) [0.4335, 0.43575)

Example 2.1. Suppose we have a symbol source with an alphabet consisting of three

symbols, a, b, and c. We are required to find the interval that represents the input

sequence bacbba. The source model is a static model. The probabilities and interval

ranges can be seen in Table 2.1.

Since we have six input symbols, the process requires six steps. We start with the

interval [0, 1). To encode the first symbol in the sequence, the encoder splits the inter-

val into three sub-intervals. Symbol a gets [0, 0.3), symbol b gets [0.3, 0.8), and symbol

c gets [0.8, 1). The first symbol to encode is b, so the sub-interval chosen is [0.3, 0.8).

To encode the second symbol, the interval [0.3, 0.8) is split into three sub-intervals.

Since this interval is not [0, 1), we have to scale the sub-intervals to fit into our interval.

If the current interval is [low, high), each endpoint x will be scaled as

xscaled = low+ (high− low)x.

In our case, low = 0.3 and high = 0.8. Scaling the endpoints of the three sub-intervals,

symbol a gets the sub-interval [0.3, 0.45), symbol b gets [0.45, 0.7), and symbol c gets

[0.7, 0.8). The second symbol in our example is a, so the interval chosen is [0.3, 0.45).

This process has to be repeated for each symbol. Table 2.2 shows each step in the

process. Figure 2.1 shows a graphical representation of the whole process. After each

symbol, the interval in the figure is scaled up, so that we can see the smaller intervals.

The final interval is [0.4335, 0.43575). The width of this interval is

Interval width = 0.43575−0.4335

= 0.00225.
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a b c

c

c

c

c

c

a b

a b

a b

a b

a b

0 0.3 0.8 1

0.3 0.45 0.7 0.8

0.3 0.345 0.42 0.45

0.42 0.429 0.444 0.45

0.429 0.4335 0.441 0.444

0.4335 0.43575 0.4395 0.441

Figure 2.1: Finding the interval for Example 2.1.
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Alternatively, the interval width can be obtained by multiplying the probability of

each encoded symbol.

Interval width = P (b) ·P (a) ·P (c) ·P (b) ·P (b) ·P (a)

= 0.5×0.3×0.2×0.5×0.5×0.3

= 0.00225

2.2 Incremental encoding

The encoder’s job is to convert a sequence of symbols into an interval, and to output

a binary sequence which specifies the interval.

As the interval gets smaller, more precision is needed to specify it. Consequently,

as more symbols are encoded, more bits are required to specify the interval. It also

follows that encoding a likely symbol will result in less output bits than encoding an

unlikely symbol, because encoding a likely symbol reduces the interval less.

As more symbols are encoded, the interval gets smaller and smaller, that is, the

difference between the lower and upper endpoints becomes very small. Owing to the

limited precision used for computations, a very small interval will case the process

to fail. This makes it clear that we cannot find the interval corresponding to a whole

sequence of symbols in a very long message.

To solve this problem, we use incremental encoding as shown by Witten et al. [6].

If the upper endpoint is less than or equal to 1/2, we can output a 0 and double the

endpoints. Doubling the endpoints with the transformation x → 2x scales the range

[0, 1/2) to the range [0, 1). For example, if the interval is [0.1, 0.4), we can output a 0

and change the interval to [0.2, 0.8).

Similarly, if the lower endpoint is greater than or equal to 1/2, we can output a 1

and scale the range [1/2, 1) to the range [0, 1) with the transformation x → 2x −1. For

example, if the interval is [0.5, 0.85), we can output a 1 and change the interval to [0,

0.7).

This solves only a part of the precision problem. If the endpoints are very close

and straddle 1/2, for example, if the interval is [0.49, 0.51), we can neither output a 0

nor a 1. We solve this problem using another technique presented in [6].

Suppose the lower endpoint low and the upper endpoint high of the interval [low,

high) lie in the range

1/4 ≤ low < 1/2 < high ≤ 3/4.

Then, the next two bits will be different, that is, they will be either 01 or 10. If the

first bit turns out to be 0, that is, high descends below 1/2, then the range [0, 1/2) is
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Table 2.3: Steps for Example 2.2.

Step Action Interval follow

1 Encode b [0.3, 0.8) 0
2 Encode a [0.3, 0.45) 0
3 Output 0 [0.6, 0.9) 0
4 Output 1 [0.2, 0.8) 0
5 Encode c [0.68, 0.8) 0
6 Output 1 [0.36, 0.6) 0
7 Increment follow [0.22, 0.7) 1
8 Encode b [0.364, 0.604) 1
9 Increment follow [0.228, 0.708) 2

10 Encode b [0.372, 0.612) 2
11 Increment follow [0.244, 0.724) 3
12 Encode a [0.244, 0.388) 3
13 Output 0111 [0.488, 0.776) 0

expanded to the range [0, 1). But before the expansion, low ≥ 1/4, so that after the

expansion, low ≥ 1/2. This means that the second bit will be 1. Similarly, if the first

bit turns out to be1, the second bit will be0. Thus, we can remember this and expand

the range [1/4, 3/4) to the range [0, 1) with the transformation x → 2x −1/2. If after

the expansion, we find ourselves in the same situation, but before outputting the two

opposite bits, that is,

1/4 ≤ low < 1/2 < high ≤ 3/4

once more, we simply perform another expansion and keep a count of the number of

expansions performed. This count is called the follow count. When we finally find a

bit to output, a number equal to follow of bits opposite to the found bit are outputted.

For example, if follow = 3 and we can output a 0, we follow this bit by three 1s.

Example 2.2. For the input sequence bacbba of Example 2.1, we need to output all

the bits that we can.

Table 2.3 shows the whole process for the six symbols. In Step 1, we start with the

interval [0, 1) and encode the symbol b. The interval becomes [0.3, 0.8). We cannot

output any bits yet.

In Step 2, we encode the second symbol, a, and the interval becomes [0.3, 0.45).

We can see that high ≤ 1/2, so in Step 3 we can output a 0 and expand the interval to

[0.6, 0.9). Now low ≥ 1/2, so in Step 4 we can output a 1 and expand the interval to

[0.2, 0.8).

Now let us move to Step 7. Here, 1/4 ≤ low < 1/2 < high ≤ 3/4, so we increment the

follow count so that follow = 1 and expand the interval to [0.22, 0.7). In Step 9, once

again we have 1/4 ≤ low < 1/2 < high ≤ 3/4. We increment the follow count again so
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that follow = 2 and expand the interval to [0.228, 0.708).

The follow count is reset to 0 after outputting a 0 or 1. This happens in Step 13.

Here, since high ≤ 1/2, we can output a 0. But since follow 6= 0, we cannot output just

a 0; we output a 0 followed by three 1s and reset follow to 0.

After this process, we have outputted seven bits, 0110111. The width of the re-

maining interval is

Interval width = 0.776−0.488

= 0.288.

This is larger than the width of the final interval in Example 2.1 by a factor of 27 = 128.

In Example 2.2 above, the interval was prevented from getting too narrow using

incremental encoding. This enables us to use arithmetic coding when we have limited

precision in our computation. During the calculation of the interval, seven bits were

output. However, the encoding process is not ready yet; we still need to terminate the

output bit sequence.

2.3 Termination

When all symbols are encoded, we need to terminate the output bit sequence. If the

input source has a fixed number of symbols, no extra symbol is required. However,

if the number of symbols is not fixed, an end-of-sequence (EOS) symbol is required.

This can be achieved by allocating a tiny part of the interval for an EOS symbol.

After the EOS symbol is encoded, we need to make sure that the interval speci-

fied by the transmitted bit sequence falls completely within the interval of the input

symbols. The decoder does not need to know the upper and lower endpoints of the

interval exactly; it is enough to pass a sub-interval which lies between the two end-

points. Two additional bits are enough to ensure this.

Incremental encoding ensures that during encoding, the current interval either

includes the range [1/4, 1/2), or includes the range [1/2, 3/4). In the former case,

outputting the bits 0 and 1will be enough for the decoder to be able to decode all the

symbols; in the latter case, the bits 1 and 0 can be used. Note that if the follow count

is not zero, when we output the first of these two termination bits we must follow it

by a number of opposite bits.

In Example 2.2, after encoding six symbols, the interval was [0.488, 0.776). This

interval does not include the range [1/4, 1/2), but it does include the range [1/2, 3/4).
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So if we need to terminate this sequence (assuming that the number of symbols is

fixed at six), all we need to do is to output 10. Thus, the whole sequence of Example

2.2 can be encoded using the bit sequence 011011110.

2.4 Achievable compression

Consider a source U with an alphabet consisting of K symbols U1, U2, · · · , UK . The

information content of each symbol Uk measured in bits is

I (Uk ) =− log2 P (Uk )

where P (Uk ) is the probability that U =Uk .

The entropy of the source U is the expected value of I (U ), that is, the entropy is

H(U ) = E(I (U ))

=−
K∑

k=1
P (Uk ) log2 P (Uk ).

We can think of the entropy as a measure of uncertainty for the source; the maximum

entropy is when the symbols in the source are equally probable.

The minimum number of bits per symbol required to encode a source is equal

to the entropy of the source [2]. If the source model available is accurate, arithmetic

coding can represent a source sequence u1, u2, · · · , uL optimally, in an average of L ·
H(U ) bits. The maximum achievable compression using arithmetic codes is

Maximum achievable compression = Source entropy

Average number of bits per source symbol
.

This is illustrated in Example 2.3 below.

Example 2.3. Suppose we have a source with an alphabet consisting of four symbols,

a, b, c and d . The probabilities of the symbols are P (a) = 0.2, P (b) = 0.7, P (c) = 0.05

and P (d) = 0.05. We are required to find how much arithmetic coding can compress

this source.

Since the source has four symbols, the number of bits required per symbol for the

uncompressed source is 2. We represent a as 00, b as 01, c as 10, and d as 11.
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The entropy of this source is

H(U ) =−
4∑

k=1
P (Uk ) log2 P (Uk )

=−0.2log2 0.2−0.7log2 0.7−0.05log2 0.05−0.05log2 0.05

= 1.26.

If we encode the source using arithmetic coding, each symbol will need an average of

1.26 bits.

The compression ratio achieved in this case is

Compression = 1.26

2

= 0.63.

2.5 Decoding

The decoding process is similar to the encoding process. We start with the half-open

interval [0, 1). This interval is split into a number of sub-intervals, one for each possi-

ble source symbol, in exactly the same way as in the encoder.

Then, we start looking at the bit sequence being decoded. We shall call the interval

specified by the bit sequence the input interval. The input interval starts as [0, 1) too.

For each bit we decode, we can reduce the input interval by half. If the bit is 0, we

keep the lower half; if the bit is 1, we keep the higher half.

If the input interval lies completely in one of the sub-intervals, the sub-interval

which encloses the input interval is chosen. The symbol corresponding to the chosen

sub-interval can be decoded immediately.

When the symbol is decoded, the chosen sub-interval becomes the new decoding

interval. The decoding interval can be expanded as shown in § 2.2. The expansions

should be identical to the expansions used during encoding so as not to introduce

any error while rounding. Any expansion applied to the decoding interval should also

be applied to the input interval, which always lies within the decoding interval. There

is no need to keep a follow count while decoding.

Example 2.4. For the source model of Example 2.1 shown in Table 2.1, we need to

decode six symbols from the bit sequence 011011110.

Table 2.4 shows the whole decoding process.

In Step 1, we initialize the decoder. In Steps 2–4, we use the first three bits, which
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Table 2.4: Steps for Example 2.2.

Step Action Input interval a sub-interval b c

1 Initialize decoder [0, 1) [0, 0.3) 0.8) 1)
2 Use 1st bit, 0 [0, 0.5) [0, 0.3) 0.8) 1)
3 Use 2nd bit, 1 [0.25, 0.5) [0, 0.3) 0.8) 1)
4 Use 3rd bit, 1 [0.375, 0.5) [0, 0.3) 0.8) 1)
5 Decode symbol b [0.375, 0.5) [0.3, 0.45) 0.7) 0.8)
6 Use 4th bit, 0 [0.375, 0.4375) [0.3, 0.45) 0.7) 0.8)
7 Decode symbol a [0.375, 0.4375) [0.3, 0.345) 0.42) 0.45)
8 Expand, x → 2x [0.75, 0.875) [0.6, 0.69) 0.84) 0.9)
9 Expand, x → 2x −1 [0.5, 0.75) [0.2, 0.38) 0.68) 0.8)

10 Use 5th bit, 1 [0.625, 0.75) [0.2, 0.38) 0.68) 0.8)
11 Use 6th bit, 1 [0.6875, 0.75) [0.2, 0.38) 0.68) 0.8)
12 Decode symbol c [0.6875, 0.75) [0.68, 0.716) 0.776) 0.8)
13 Expand, x → 2x −1 [0.375, 0.5) [0.36, 0.432) 0.552) 0.6)
13 Expand, x → 2x −1/2 [0.25, 0.5) [0.22, 0.364) 0.604) 0.7)
14 Use 7th bit, 1 [0.375, 0.5) [0.22, 0.364) 0.604) 0.7)
15 Decode symbol b [0.375, 0.5) [0.364, 0.436) 0.556) 0.604)
16 Expand, x → 2x −1/2 [0.25, 0.5) [0.228, 0.372) 0.612) 0.708)
17 Use 8th bit, 1 [0.375, 0.5) [0.228, 0.372) 0.612) 0.708)
18 Decode symbol b [0.375, 0.5) [0.372, 0.444) 0.564) 0.612)
19 Expand, x → 2x −1/2 [0.25, 0.5) [0.244, 0.388) 0.628) 0.724)
20 Use 9th bit, 0 [0.25, 0.375) [0.244, 0.388) 0.628) 0.724)
21 Decode symbol a
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narrows the interval. Now, the input interval lies within the sub-interval for symbol b;

in Step 5 we decode the first symbol in the sequence, b.

Similarly, in Steps 6–7 we decode the second symbol in the sequence, a. After we

decode this symbol, the three sub-intervals lie in the interval [0.3, 0.45), which can be

expanded. In Steps 8–9, we perform the required expansion, taking care to expand

the input interval as well.

This process goes on until we decode all the six symbols, bacbba. These are the

same symbols used in Example 2.2, demonstrating that decoding a bit sequence will

give us the original source sequence.

2.6 Integrating error detection

Arithmetic coding can compress data optimally when the source can be modelled ac-

curately. However, arithmetic codes are extremely vulnerable to any errors that occur.

Huffman codes [3] tend to be self-synchronizing [7], that is, errors tend not to propa-

gate very far. When an error occurs in transmission, several codewords are misinter-

preted, but before too long, the decoder is back in synchronization with the encoder.

Arithmetic coding, on the other hand, has no ability to withstand errors. Arith-

metic coding does not use a codeword for each symbol like Huffman coding; the

arithmetic encoder is a continuous encoder that updates the interval for every sym-

bol. Hence, there are no points at which the arithmetic encoder can regain synchro-

nization. If a bit is in error in the bit sequence, from then on, instead of the correct

interval we get an incorrect interval. This is illustrated in Example 2.5 below.

Example 2.5. Suppose we want to decode the same bit sequence shown in Example

2.4, but our bit sequence is corrupted by a bit error in the second bit. So the bit se-

quence we have is 001011110.

Table 2.5 shows the whole decoding process for this sequence.

The correct symbol sequence should have been bacbba. However, because of the

bit error in the second bit, we decoded abbbb. Synchronization with the encoder is

lost, and the arithmetic decoder will go on decoding incorrect symbols.

2.6.1 Reducing the interval on doubling

Boyd et al. [5] propose the introduction of some redundancy. This is done by forbid-

ding a range from the interval. To do this, [5] suggests that the interval be reduced by a

factor each time the interval is doubled. As we have seen in § 2.2 above, each interval



CHAPTER 2. ARITHMETIC CODING 15

Table 2.5: Steps for Example 2.5.

Step Action Input interval a sub-interval b c

1 Initialize decoder [0, 1) [0, 0.3) 0.8) 1)
2 Use 1st bit, 0 [0, 0.5) [0, 0.3) 0.8) 1)
3 Use 2nd bit, 0 [0, 0.25) [0, 0.3) 0.8) 1)
4 Decode symbol a [0, 0.25) [0, 0.09) 0.24) 0.3)
5 Expand, x → 2x [0, 0.5) [0, 0.18) 0.48) 0.6)
6 Use 3rd bit, 1 [0.25, 0.5) [0, 0.18) 0.48) 0.6)
7 Use 4th bit, 0 [0.25, 0.375) [0, 0.18) 0.48) 0.6)
8 Decode symbol b [0.25, 0.375) [0.18, 0.27) 0.42) 0.48)
9 Expand, x → 2x [0.5, 0.75) [0.36, 0.54) 0.84) 0.96)

10 Use 5th bit, 1 [0.625, 0.75) [0.36, 0.54) 0.84) 0.96)
11 Decode symbol b [0.625, 0.75) [0.54, 0.63) 0.78) 0.84)
12 Expand, x → 2x −1 [0.25, 0.5) [0.08, 0.26) 0.56) 0.68)
13 Use 6th bit, 1 [0.375, 0.5) [0.08, 0.26) 0.56) 0.68)
14 Decode symbol b [0.375, 0.5) [0.26, 0.35) 0.5) 0.56)
15 Expand, x → 2x −1/2 [0.25, 0.5) [0.02, 0.2) 0.5) 0.62)
16 Decode symbol b [0.25, 0.5) [0.2, 0.29) 0.44) 0.5)
17 Expand, x → 2x [0.5, 1) [0.4, 0.58) 0.88) 1)
18 Use 7th bit, 1 [0.75, 1) [0.4, 0.58) 0.88) 1)
19 Use 8th bit, 1 [0.875, 1) [0.4, 0.58) 0.88) 1)
20 Use 9th bit, 0 [0.875, 0.9375) [0.4, 0.58) 0.88) 1)

doubling denotes the processing of an output bit.

So in effect, for every output bit, some redundancy is introduced into the arith-

metic code. This scheme uses a reduction factor R, which is chosen beforehand.

Whenever the interval is expanded, the lower endpoint low is retained, but the up-

per endpoint high is changed such that the interval width high−low is reduced by the

reduction factor R. The reduced higher endpoint is highreduced = low+R(high− low).

The new interval is [low, highreduced). The other part of the interval, [highreduced, high),

is forbidden; if a bit sequence leads the decoder into that part of the interval, an error

is detected. This will be illustrated using an example.

Example 2.6. During encoding, the current interval becomes [0.68, 0.8). We need to

expand this interval. For each doubling of the interval, we need to reduce the interval

by a reduction factor R = 0.99.

The starting interval is [low, high) = [0.68, 0.8). Since low ≥ 1/2, we double the

interval with the transformation x → 2x − 1. The interval becomes [0.36, 0.6). The

interval width is 0.6−0.36 = 0.24. We need to reduce this width by the factor R, so the

new width is 0.99×0.24 = 0.2376. We obtain this by setting high = 0.5976. The reduced

interval becomes [0.36, 0.5976).
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Now, 1/4 ≤ low < 1/2 < high ≤ 3/4, so we need to double the interval using the

transformation x → 2x −0.5. The interval becomes [0.22, 0.6952). Again, the interval

width has to be reduced to 0.99× (0.6952−0.22) = 0.4704. We obtain this by setting

high = 0.6904, with the final interval becoming [0.22, 0.6904).

This scheme is a joint source-channel coding method, as it combines source cod-

ing used for compression with channel coding used to protect from errors.

When this redundancy is introduced, we will be able to detect errors in the de-

coder. The decoder will reduce its interval in exactly the same way as the encoder.

Eventually, if an error is present in the bit sequence passed to the decoder, the inter-

val specified by the bit sequence will fall into a forbidden part of the interval. This will

not happen immediately, but after some delay. The delay from the bit in error till the

detection of the error is shown to be about 1/(1−R) in [5].

2.6.2 Introducing a forbidden symbol

Instead of rescaling the interval for every output bit, Sayir [8] suggests introducing

forbidden gaps in the interval for each source symbol. After each symbol is encoded,

the source probabilities are rescaled by a factor γ. On average, for every symbol en-

coded, − log2γ bits of redundancy are added. So for a source U with entropy H(U ),

the code rate R can be expressed as

R = H(U )

H(U )− log2γ
.

Instead of working with the rescaling factor γ, we can work with the gap factor

ε= 1−γ.

Example 2.7. Suppose we have to find the interval for the input sequence bacbba

of Example 2.1, but this time we want to introduce some redundancy. We need to

introduce a gap after each symbol, with ε= 0.1.

To do this, we can modify the table of interval ranges. The modified ranges can be

seen in Table 2.6.

We start with the interval [0, 1). To encode the first symbol in the sequence, b,

the encoder narrows the interval to [0.27, 0.72). To encode the second symbol, a, the

encoder narrows the interval to [0.27, 0.3915).

Table 2.7 shows the encoding steps. Figure 2.2 shows a graphical representation of

the process. The final interval is [0.3660, 0.3672). The width of the interval is 0.0012.

In Example 2.1, the width was 0.00225, which is larger. The width of the interval in
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Table 2.6: Symbol interval ranges for Example 2.7.

Symbol Probability Range Scaled Probability Scaled Range

a 0.3 [0, 0.3) 0.27 [0, 0.27)
b 0.5 [0.3, 0.8) 0.45 [0.27, 0.72)
c 0.2 [0.8, 1) 0.18 [0.72, 0.9)

Forbidden 0 0.1 [0.9, 1)

Table 2.7: Steps for finding the interval for Example 2.7.

Step Symbol Interval Before Interval After

1 b [0, 1) [0.27, 0.72)
2 a [0.27, 0.72) [0.27, 0.3915)
3 c [0.27, 0.3915) [0.3575, 0.3794)
4 b [0.3575, 0.3794) [0.3634, 0.3732)
5 b [0.3634, 0.3732) [0.3660, 0.3705)
6 a [0.3660, 0.3705) [0.3660, 0.3672)

a b c

c

c

c

c

c

a b

a b

a b

a b

a b

0 0.27 0.72 1

0.27 0.3915 0.594 0.72

0.27 0.3028 0.3575 0.3915

0.3575 0.3634 0.3732 0.3794

0.3634 0.3660 0.3705 0.3732

0.3660 0.3672 0.3692 0.3705

0.9

0.675

0.3794

0.3772

0.3722

0.3700

Figure 2.2: Finding the interval for Example 2.7.
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this case is smaller by a factor of 0.96 owing to the forbidden gap. We need −6log2 0.9

more bits to encode this interval.

Similar to the scheme in § 2.6.1, when a bit sequence with an error is passed to a

decoder the decoder may not detect an error immediately. However, eventually, the

interval specified by the bit sequence with errors will fall into one of the forbidden

gaps. When this happens, the decoder detects that an error has occurred. It is impor-

tant to note that there is some delay before error detection.

2.7 Termination and error detection

The forbidden symbol used will detect errors only after some delay. As a consequence,

an error near the end of the output bit sequence may remain undetected.

To allay this problem, a termination strategy is used by the arithmetic coder. After

all symbols (including an EOS symbol if required) are encoded, the arithmetic en-

coder will encode a termination symbol. The termination symbol has some small

probability ω, and on average will add −log2ω bits to the encoded bit sequence.

If the input sequence contains L symbols, the termination symbol will be encoded

after symbol uL . Care has to be taken where to place this termination symbol. If

we place it at the beginning or at the end of the interval, it may interfere with the

decoding of symbol uL .

Consider Figure 2.3. In part (a), uL is b and the termination symbol is placed at the

beginning of the interval for symbol b. During decoding, the decoding interval may

include a part of the termination symbol and a part of the symbol uL = a. Hence, the

decoding of symbol uL = b will be delayed unnecessarily because the decoder cannot

discard the possibility that uL is a instead of b.

To solve this problem, the termination symbol can be placed in the middle of the

interval as shown in Figure 2.3 part (b). Since the interval for the termination symbol

is more removed from the interval for uL = a, the decoding of symbol uL = b is not

delayed.
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(a) a b

Termination symbol
Decoder interval

(b) a b

Termination symbol
Decoder interval

Figure 2.3: Placement of the end-of-sequence symbol (a) at the beginning of the in-
terval and (b) in the middle of the interval.



Chapter 3

Error Correction of Arithmetic Codes

3.1 The decoding problem

In § 2.6, we have already seen a joint source-channel method for detecting errors in

arithmetic codes. There is also work on correcting errors using joint source-channel

coding.

To perform error correction, we must first encode the symbols with an encoder

that introduces redundancy. Suppose we have a message u consisting of a sequence

of L symbols, u1, u2, · · · , uL . We encode this into a bit sequence t, which has N bits,

t1, t2, · · · , tN . The bit sequence t is then transmitted over a noisy channel, and the

received signal is y.

Figure 3.1 is a block diagram of the encoding and decoding process. The task of the

decoder is to infer the message û given the received signal y. If the inferred message

û is not identical to the source message u, a decoding error has occurred.

3.2 MAP decoding

Maximum a posteriori (MAP) decoding [9] is the identification of the most probable

message u given the received signal y.

Arithmetic
Encoder

u
Channel

t ûy Arithmetic
Decoder

Figure 3.1: Block diagram of the encoding and decoding process.

20



CHAPTER 3. ERROR CORRECTION OF ARITHMETIC CODES 21

By Bayes’ theorem, the a posteriori probability of a message u given the signal y is

P (u |y) = P (y |u)P (u)

P (y)
. (3.1)

Since u has L elements and the signal y has N elements, it can be convenient to

work in terms of the bit sequence t instead of the message u. Since there is a one-to-

one relationship between u and t, P (t) = P (u). Thus, we can rewrite (3.1) as

P (t |y) = P (y |t)P (t)

P (y)
. (3.2)

The right-hand side of this equation has three parts.

1. The first factor in the numerator, P (y |t), is the likelihood of the bit sequence

(which is equal to P (y |u)). For a memoryless channel, the likelihood may be

separated into a product of the likelihood of each bit, that is,

P (y |t) =
N∏

n=1
P (yn | tn). (3.3)

If we transmit +x for tn = 1 and −x for tn = 0 over a Gaussian channel with addi-

tive white noise of standard deviation σ, the probability density of the received

signal yn for both values of tn is

P (yn | tn = 1) = 1

σ
p

2π
exp

(
− (yn −x)2

2σ2

)
(3.4)

P (yn | tn = 0) = 1

σ
p

2π
exp

(
− (yn +x)2

2σ2

)
. (3.5)

2. The second factor in the numerator, P (t) is the prior probability of the bit se-

quence t. In our case, this probability is equal to P (u), so that

P (t) =
L∏

l=1
P (ul ). (3.6)

3. The denominator is the normalizing constant. The normalizing constant is the

sum of P (y |t)P (t) for all possible bit sequences t.

P (y) =∑
t

P (y |t)P (t) (3.7)

The normalizing constant has a value such that the sum of P (t |y) for all possible
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t becomes 1.

∑
t

P (t |y) =∑
t

P (y |t)P (t)

P (y)

=
∑

t P (y |t)P (t)

P (y)

=
∑

t P (y |t)P (t)∑
t P (y |t)P (t)

= 1

3.3 Decoding arithmetic codes using MAP decoding

We have already seen that MAP decoding is the identification of the message u with

the highest probability P (u |y) given the received signal y. So the problem of decoding

arithmetic codes using MAP decoding is a problem of searching for this best u from

all the possible sequences u.

To search for the required u, we build a decoding tree. The tree will consist of a

number of nodes (or states) and a number of edges connecting them. The state may

be either the bit state or the symbol state. If we are using the bit state, each edge will

represent one bit, and each node will have two child nodes, one corresponding to a 0,

and the other corresponding to a 1. When traversing this tree, going from one state to

the next (from one node to its child) happens every time we decode one bit.

If we are using the symbol state, the edges will represent symbols instead of bits,

and the number of child nodes depends on the number of possible symbols. This

time, going from one state to the next happens every time we decode one symbol.

For arithmetic codes, the size of the decoding tree increases exponentially with the

number of symbols in the input sequence. So we have to use techniques to limit our

search on some section of the tree; it is not feasible to compute P (u |y) for all possible

sequences u.

Guionnet and Guillemot [10] present a scheme that uses synchronization markers

in the arithmetic codes for error correction capabilities. Then they use estimation

algorithms to decode the received signals. They use two kinds of markers, bit markers

and symbol markers.

The idea in using bit markers is to insert a number of dummy bit patterns in the bit

sequence after encoding some known number of symbols. Since the number of bits

necessary to encode a number of symbols is not fixed, these bit patterns will occur at

random places in the output bit sequence. The decoder then expects to find these bit

patterns when decoding. If these patterns are not found, the path is pruned from the

decoding tree. This helps limit the complexity.
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Alternatively, symbol markers are used. This time, the idea is to insert a number

of dummy symbols in the input sequence. The dummy symbols are introduces after

encoding some known number of symbols. As for the bit markers, if the decoder does

not find these dummy symbols when decoding, the path is pruned from the decoding

tree.

Grangetto et al. [11] present another MAP estimation approach for error correc-

tion of arithmetic codes. Instead of bit markers or symbol markers, this approach

uses the forbidden gap technique mentioned in § 2.6.2. The decoding tree uses the

bit state, rather than the symbol state. Whenever an error is detected in a path of the

decoding tree, that path is pruned. The number of bits N is sent as side information.

If a path in the tree has N nodes but is not yet fully decoded, the detector prunes the

path.

A comparison was made in [11] between this joint source-channel scheme and

a separated scheme. In the separated scheme, an arithmetic code with ε = 0 is pro-

tected by a rate-compatible punctured convolutional (RCPC) code. The RCPC code

used was of the family with memory ν = 6 and non-punctured rate 1/3, proposed

by Hagenauer [12]. The comparison indicated an improvement from the separated

scheme.

In another paper, Grangetto et al. [13] present an iterative decoding technique that

uses an adapted BCJR algorithm [14] for error correction of arithmetic codes.

In this dissertation, the ideas in [11] are implemented and some modifications

are introduced. Recall that in MAP decoding, the problem is to find the transmitted

sequence t which has the maximum probability P (t |y), and that this probability can

be written as

P (t |y) = P (y |t)P (t)

P (y)
. (3.2)

As we have already seen in § 3.2, the right-hand side of this equation has three parts,

the likelihood P (y |t), the prior probability P (t), and the normalizing constant P (y).

The a posteriori probability P (t |y) is the decoding metric used, that is, the decod-

ing algorithm tries to maximize this value. In the case of memoryless channels, we

can use an additive metric m by taking logs of the decoding metric.

m = logP (t |y)

m = logP (y |t)+ logP (t)− logP (y). (3.8)

The normalizing constant P (y) is difficult to evaluate; (3.7) indicates that this requires

knowledge of all possible bit sequences t, which is not feasible. In [11], an approxi-

mation by Park and Miller [15] is used to go around this problem. We have N bits in
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our bit sequence. If we assume that all 2N bit sequences are possible, then

P (y) ≈
N∏

n=1

P (yn | tn = 1)+P (yn | tn = 0)

2
. (3.9)

With this approximation, [11] claims that good results are obtained.

In § 3.3.1 and § 3.3.2 below, we will review the hard decoding and soft decoding

metrics for MAP decoding presented by [11].

3.3.1 Hard decoding

Suppose we have an additive white Gaussian noise (AWGN) channel using binary

phase-shift keying (BPSK) modulation with a signal to noise ratio Eb/N0. For hard

decoding the signal yn can be either 0 or 1. The channel transition probability is

P (yn | tn) =
{

1−p if yn = tn

p if yn 6= tn
(3.10)

where p is the probability that a bit is decoded in error, p = 1
2 erfc

√
Eb/N0.

We can split the additive decoding metric m into N parts,

m =
N∑

n=1
mn (3.11)

where mn is the part of m for the nth bit. This is convenient as it enables us to update

the metric m for each bit yn we try to decode. That is, after each bit, we can update

the metric m.

In the case of hard decoding, we can combine (3.8) and (3.11) to obtain

mn = logP (yn | tn)+ logP (tn)− logP (yn). (3.12)

Let us deal with the last component, logP (yn). Using (3.9),

logP (yn) = log[P (yn | tn = 1)+P (yn | tn = 0)]− log2.

Since yn = 1 or yn = 0, substituting (3.10) into this equation gives us

logP (yn) = log[1−p +p]− log2

=− log2.
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So we can rewrite (3.12) as

mn = logP (yn | tn)+ logP (tn)+ log2. (3.13)

Note that the second term on the right-hand side of (3.13), the prior probability, is

not very straightforward to evaluate. We know that P (t) = P (u), because the transmit-

ted bit sequence t has a one-to-one relationship with the input symbol sequence u.

When decoding a sequence t, for each bit, the decoder will either decode no symbols,

or it will decode one or more symbols. Suppose that after bit tn , the decoder decodes

the symbols un . un is a vector containing I symbols un,1, un,2, · · · , un,I y . If no symbols

are decoded after bit tn , I = 0 and un is an empty vector. In any case,

logP (un) =
I∑

i=1
logP (un,i ). (3.14)

We can rewrite (3.13) as

mn = logP (yn | tn)+ logP (un)+ log2. (3.15)

3.3.2 Soft decoding

For soft decoding, the metric can be found in a similar way. As in the case of hard

decoding in § 3.3.1, suppose we have an AWGN channel using BPSK modulation with

a signal to noise ratio Eb/N0. The additive metric for soft decoding is

mn = logP (yn | tn)+ logP (tn)− logP (yn).

For soft decoding, the signal yn will not be constrained to only two values, 0 and

1. The first component of the metric is logP (yn | tn). Recall that the probability distri-

bution for yn is

P (yn | tn = 1) = 1

σ
p

2π
exp

(
− (yn −x)2

2σ2

)
(3.4)

P (yn | tn = 0) = 1

σ
p

2π
exp

(
− (yn +x)2

2σ2

)
. (3.5)

For BPSK modulation and an AWGN channel, x =p
Eb and σ=p

N0/2.

The last component of the metric is − logP (yn). As we have done for the hard

decoding metric, we can approximate this component.

P (yn) = P (yn | tn = 1)+P (yn | tn = 0)

2
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It is more convenient to compute the value of P (yn | tn)/P (yn) directly instead of

computing the values of P (yn | tn) and P (yn) individually and dividing. It is trivial to

rewrite (3.4) and (3.5) as

P (yn | tn = 1) = cr (3.16)

P (yn | tn = 0) = c

r
(3.17)

where

c = 1

σ
p

2π
exp

(
− y2

n +x2

2σ2

)
and

r = exp

(
2x yn

2σ2

)
= exp

(
2

Eb

N0

ynp
Eb

)
.

Using these substitutions,

P (yn | tn = 1)

P (yn)
= cr

(cr + c/r )/2

= 2r 2

r 2 +1

=
2exp

(
4 Eb

N0

ynp
Eb

)
exp

(
4 Eb

N0

ynp
Eb

)
+1

log

[
P (yn | tn = 1)

P (yn)

]
= log2+

(
4

Eb

N0

ynp
Eb

)
− log

[
exp

(
4

Eb

N0

ynp
Eb

)
+1

]
. (3.18)

Similarly,

P (yn | tn = 0)

P (yn)
= c/r

(cr + c/r )/2

= 2

r 2 +1

= 2

exp

(
4 Eb

N0

ynp
Eb

)
+1

log

[
P (yn | tn = 0)

P (yn)

]
= log2− log

[
exp

(
4

Eb

N0

ynp
Eb

)
+1

]
. (3.19)

The metric mn for the soft decoding case can thus be written as

mn =


logP (un)+ log2+

(
4 Eb

N0

ynp
Eb

)
− log

[
exp

(
4 Eb

N0

ynp
Eb

)
+1

]
if tn = 1

logP (un)+ log2− log

[
exp

(
4 Eb

N0

ynp
Eb

)
+1

]
if tn = 0

. (3.20)
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3.4 Sequential decoding with the stack algorithm

Until now, we have seen the MAP decoding metrics used for hard decoding (3.15)

and for soft decoding (3.20). Direct evaluation of the MAP metric over all possible bit

sequences is not feasible. The size of the decoding tree would grow exponentially with

the number of symbols L. To prevent this problem, sequential search techniques are

used.

The decoder proposed in [11] uses a search algorithm along the branches of a bi-

nary tree. The sequential algorithm used is the stack algorithm [16]. The tree paths

are kept in a list ordered by their metric; the path with the best metric is kept at the

top of the list.

In each iteration, the best path is removed from the list and replaced by two paths;

one assuming tn = 0, and the other assuming tn = 1. These two new paths then have

their corresponding metrics updated, and are placed in their place in the ordered list.

The ordered list has a predefined maximum size M . When there are more then M

paths, the paths with the worst metric are removed from the list.

Although the algorithm is called a stack algorithm, because the concept of a stack

is useful for describing the algorithm, [16] suggests that storing the paths in a physical

stack is not optimal, and that it is preferable to store the paths in random access stor-

age. A physical stack would require a sequential comparison of the metric to insert

a path, and relocation of large amounts of data in the required stack position. As an

alternative method, [16] proposes splitting the stack into a number of buckets, each

containing metrics that are close in value.

The following example will illustrate the stack algorithm.

Example 3.1. Let us assume that we have a decoding tree, where we go from one

state to the next for every input bit. Every time we expand a node into two children,

the metric for each child is calculated. Let us assume that the maximum size of the

stack containing the nodes is M = 8.

Figure 3.2 shows a decoding tree as it evolves during the decoding process. Table

3.1 shows each step in the MAP decoding process.

In the beginning, we only have one node, node 0, with metric m0 = 0. In Step 1, we

expand this node into two child nodes, node 1 with metric m1 = 2.1 and node 2 with

metric m2 = 1.6. Node 1 corresponds to the bit sequence 0 and node 2 corresponds

to 1. Now, the stack contains the nodes 1 (2.1) and 2 (1.6), in that order.

In Step 2, we choose the best node, node 1, and expand it into two child nodes,

node 3, which corresponds to 00, with metric m3 = 1.9, and node 4, which corre-

sponds to 01, with metric m4 = 3.8. Node 1 is removed from the stack and nodes 3
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1.9 3.8 0.2 1.1
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121143

9 10 5 6 15 16

18178

13 14

7

Figure 3.2: Binary decoding tree for Example 3.1.

Table 3.1: MAP decoding steps for Example 3.1.

Step Action Ordered List After Action

1 Expand node 0 1, 2
2 Expand node 1 4, 3, 2
3 Expand node 4 5, 3, 2, 6
4 Expand node 5 3, 2, 8, 6, 7
5 Expand node 3, node 9 has error 2, 8, 6, 10, 7
6 Expand node 2 8, 12, 6, 10, 7, 11
7 Expand node 8 12, 14, 13, 6, 10, 7, 11
8 Expand node 12 15, 16, 14, 13, 6, 10, 7, 11
9 Expand node 15, remove worst node 18, 15, 17, 16, 14, 13, 6, 10, 7
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and 4 are inserted in their place so that the stack remains ordered. The stack contains

the nodes 4 (3.8), 3 (1.9), and 2 (1.6), in that order.

Steps 3–4 are similar to the first two steps. Then, in Step 5, we expand node 3 into

two nodes, node 9 and node 10. The bit sequence for node 9, 000, gives an error

when passed to the decoder, because the input interval falls within a forbidden gap.

So node 9 is pruned from the tree. Node 10, 001 has a metric m10 = 0.4, and it is

inserted in its place on the stack. Note that Step 5 does not increase the number of

nodes in the tree; before Step 5 there were five nodes and after Step 5 there are five

nodes.

Steps 6–8 continue to expand the tree until it contains eight nodes. Recall that the

maximum size of the stack is M = 8. In Step 9, node 15, 110, is expanded into two

child nodes: node 17, 1100, with metric m17 = 2.9, and node 18, 1101, with metric

m18 = 4.7. None of these are pruned, as the decoder detects no errors. If we keep all

the nodes, the size of the stack will exceed the maximum size, so the worst node in

the stack, node 11, with corresponding bit sequence 10, is pruned.

In Example 3.1 above, the path starting with the two bits10was pruned. Note that

we cannot be certain that the sequence t which will have the highest P (t |y) does not

start with these two bits. Since we have to remove some nodes from the stack, we run

the risk of losing the bit sequence we are searching for; and node 11 in the example

above might have been in the path of the best bit sequence.

The maximum number of nodes in the stack, M , determines the complexity of

the decoder. This parameter can be scaled according to processing and memory con-

straints. If the decoder has a large memory and a powerful processor, a large M can

be chosen. If the processing power or memory are limited, a smaller M is chosen.

Reducing M will reduce the complexity at the cost of error-correction performance.

This is a trade-off between performance and complexity. Another option to reduce

complexity is to increase the forbidden gap factor ε. If ε is large, errors are detected

earlier and error paths may be pruned from the tree. Thus, M can be smaller and

achieve the same PER if ε is increased.



Chapter 4

Improved Error Control for Arithmetic

Codes

In the previous chapters, we have reviewed arithmetic coding, integrated error detec-

tion in arithmetic coding, and error correction techniques using MAP decoding. The

MAP decoding scheme presented in [11] was implemented, and some modifications

were then introduced and tested.

To enable comparison, the data encoded in this dissertation is of the same form

as that used in [11]. In [11], a 256× 256 image is represented as a sequence of 256

9-bit codewords, which is equal to 2304 bits. The probability of a 0 is 0.8666 and the

probability of a1 is 0.1334. This packet can be considered as a packet of 2304 symbols,

with the source alphabet consisting of two symbols, one with a probability of 0.8666

and the other with a probability of 0.1334.

4.1 Placing the forbidden gap

In § 2.6, we have seen that a forbidden gap can be used to detect errors in arithmetic

codes. In [8], the gap is placed at the end of the interval, and in Example 2.7, the

gap was placed at the end of the interval too. Placing the forbidden gap at a different

location may reduce the error-detection delay.

To investigate this possibility, an arithmetic encoder was used on a binary source

with symbols a and b, with probabilities P (a) and P (b) respectively. The implemen-

tation details of the experiment will be discussed further on in § 5.3.

The results of the experiment indicated that if P (a) > P (b), the forbidden gap

should be placed before the symbols as shown in Figure 4.1 part (a). If P (a) and P (b)

are modified such that P (a) < P (b), the forbidden gap should be placed after the sym-

bols as shown in Figure 4.1 part (b).

30
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(a) a b

bbbaabaa

aaa aab aba baa

(b) b

abaa bbba

bba bbbabb bab

a

Figure 4.1: Forbidden gaps after three stages when placed to reduce error-detection
delay for (a) P (a) > P (b) and (b) P (a) < P (b).

If the probabilities of the two symbols are equal, this advantage is lost. If P (a) =
P (b), no advantage can be seen in placing the forbidden gap as shown.

Suppose the model is adaptive, and that sometimes P (a) > P (b) and sometimes

P (a) < P (b). This placement scheme needs some modification to work with such a

model.

When encoding a symbol, the first thing to do is to find the most probable symbol.

The sub-interval for this symbol is then swapped with the first sub-interval. Then,

the forbidden gap can be placed at the beginning of the interval. This ensures that

the sub-interval for the most probable symbol will be at the beginning of the interval.

The example below will illustrate this technique.

Example 4.1. Suppose we have to find the interval for the input sequence bacbba

of Example 2.7, with the same gap factor ε = 0.1. This time, we want to place the

forbidden gap as described in this section.

Since the probability of the second symbol, b, is the largest, our first step during

encoding is to swap the location of symbols a and b. We also place the forbidden gap

at the beginning of the interval. The modified interval ranges can be seen in Table 4.1.

Again, we start with the interval [0, 1). Encoding the first symbol, b, we get the

interval [0.1, 0.55). Encoding the second symbol, a, we get the interval [0.3475, 0.469).

Table 4.2 shows the six steps. Figure 4.2 shows a graphical representation of the

process. The final interval is [0.4527, 0.4539). The width of the interval is 0.0012,

which is exactly the same as the width of the final interval in Example 2.7. This is
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Table 4.1: Symbol interval ranges for Example 4.1.

Symbol Probability Range Scaled Probability Scaled Range

Forbidden 0 0.1 [0, 0.1)
b 0.5 [0, 0.5) 0.45 [0.1, 0.55)
a 0.3 [0.5, 0.8) 0.27 [0.55, 0.82)
c 0.2 [0.8, 1) 0.18 [0.82, 1)

Table 4.2: Steps for finding the interval for Example 4.1.

Step Symbol Interval Before Interval After

1 b [0, 1) [0.1, 0.55)
2 a [0.1, 0.55) [0.3475, 0.469)
3 c [0.3475, 0.469) [0.4471, 0.469)
4 b [0.4471, 0.469) [0.4493, 0.4592)
5 b [0.4493, 0.4592) [0.4503, 0.4547)
6 a [0.4503, 0.4547) [0.4527, 0.4539)

ab c

c

c

c

c

c

ab

ab

ab

ab

ab

0 0.1 0.55 1

0.1 0.145 0.3475 0.55

0.3475 0.3597 0.4143 0.469

0.4471 0.4493 0.4592 0.469

0.4493 0.4503 0.4547 0.4592

0.4503 0.4507 0.4527 0.4547

0.82

0.469

0.4471

0.4651

0.4574

0.4539

Figure 4.2: Finding the interval for Example 4.1.
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because we only shifted the symbols around. So any gain from this technique has no

space penalty; the only penalty is a slight increase in complexity.

4.2 Looking ahead during decoding

In § 2.5, we have seen that during decoding, we keep track of two different intervals.

One interval is the decoding interval, which changes when a symbol is decoded; the

other interval is the input interval, which depends on the bit sequence being decoded.

The decoding interval is split into a number of sub-intervals, one for each possible

symbol.

For a symbol to be decoded, the input interval has to lie within one of the sub-

intervals of the decoding interval. When we introduced the forbidden gap, we began

to detect errors when the input interval lies completely within the forbidden gap.

When decoding arithmetic codes with a forbidden gap, sometimes we can decode

a symbol when the input interval is not completely within the sub-interval corre-

sponding to the symbol. If the input interval is divided between one sub-interval and

the forbidden gap, there is only one symbol that can be decoded, the symbol corre-

sponding to that one sub-interval.

In this case, we can decode the symbol immediately and for the moment assume

that the bit sequence is not in error. We still need to keep track of the input interval.

When we look ahead in this way, we may be able to detect errors earlier as will be

illustrated in Example 4.2. Table 4.3 shows how the look-ahead decoder handles an

input bit.

Example 4.2. Let us assume that we have a source alphabet with two symbols a and

b having probabilities P (a) = 0.6 and P (b) = 0.4, and that we are using the forbidden

gap technique with ε= 0.2. We need to start decoding the bit sequence 0011. . . , first

without using look-ahead, then using look-ahead. The interval ranges can be seen in

Table 4.4.

Let us begin by not using look-ahead. We start with the input interval [0, 1) and

the decoding interval [0, 1). We split the decoding interval using Table 4.4 The initial

decoding interval is split into the forbidden sub-interval [0, 0.2), the sub-interval for

a [0.2, 0.68), and the sub-interval for b [0.68, 1).

The first bit is a 0, so our input interval becomes [0, 0.5), which does not lie within

any one sub-interval. With the second bit, a 0, our input interval becomes [0, 0.25),

which does not lie within any sub-interval. With the third bit, a 1, our input interval

becomes [0.125, 0.25), which again does not lie within any sub-interval. With the
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Table 4.3: Look-ahead decoding steps for each bit.

1: Initially, the input interval is [li , hi ),
the decoding interval is split into S sub-intervals [l1, h1), [l2, h2), · · · , [lS , hS), and
tn is the input bit.

2: if tn = 0 then
3: hi ⇐ (li +hi )/2
4: else
5: li ⇐ (li +hi )/2
6: end if
7: Search for symbols s with their corresponding sub-interval [ls , hs) overlapping the

input interval [li , hi ), that is, ls < hi and hs > li .
8: if no matching symbols are found then
9: Flag an error.

10: else if only one matching symbol is found then
11: Add found symbol s to the list of decoded symbols.
12: Scale the region [ls , hs) if necessary, scaling [li , hi ) in the same way.
13: Split the scaled [ls , hs) into S new sub-intervals [l ′1, h′

1), [l ′2, h′
2), · · · , [l ′S , h′

S).
14: l1 ⇐ l ′1, h1 ⇐ h′

1, l2 ⇐ l ′2, h2 ⇐ h′
2, · · · , lS ⇐ l ′S , hS ⇐ h′

S
15: Go to 7.
16: else {more than one matching symbol is found}
17: Go to 19.
18: end if
19: End.

Table 4.4: Symbol interval ranges for Example 4.2.

Symbol Probability Range Scaled Probability Scaled Range

Forbidden 0 0.2 [0, 0.2)
a 0.6 [0, 0.6) 0.48 [0.2, 0.68)
b 0.4 [0.6, 1) 0.32 [0.68, 1)
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fourth bit, a1, our input interval becomes [0.1875, 0.25), which still does not lie within

any one sub-interval. Thus, we are not yet able to do anything with the first four bits.

Let us now use look-ahead. We start with the same input interval [0, 1) and decod-

ing interval [0, 1). The initial decoding interval is split into the forbidden sub-interval

[0, 0.2), the sub-interval for a [0.2, 0.68), and the sub-interval for b [0.68, 1).

The first bit is 0, so our input interval becomes [0, 0.5), which does not lie within

any one sub-interval. However, it is split between the forbidden gap and only one

symbol sub-interval, a; the input interval has no overlap with the sub-interval for

symbol b. Thus, we can decode symbol a. When we decode symbol a, the decoding

interval becomes [0.2, 0.68), which is split into the forbidden sub-interval [0.2, 0.296),

the sub-interval for a [0.296, 0.5264), and the sub-interval for b [0.5264, 0.68).

The input interval is still [0, 0.5), which again is split between the forbidden gap

and only one symbol, a. We decode another a, and the decoding interval becomes

[0.296, 0.5264). Since 1/4 ≤ 0.296 < 1/2 < 0.5264 ≤ 3/4, we can expand using the trans-

formation x → 2x −0.5. The input interval becomes [−0.5, 0.5). Note that the lower

endpoint of the input interval is negative; we shall deal with this below. The decoding

interval becomes [0.092, 0.5528) which is again split into the forbidden sub-interval

[0.092, 0.18416), the sub-interval for a [0.18416, 0.405344), and the sub-interval for b

[0.405344, 0.5528). Now the input interval has parts in both the sub-intervals for a

and b, so we cannot decode further.

The second bit is0, so the input interval becomes [−0.5, 0). Now the input interval

does not have any overlap with either of the two source symbols a and b, so an error

is detected.

Using no look-ahead, four bits did not decode a single symbol; using look-ahead,

only two bits were necessary to detect an error.

When using look-ahead, the input interval does not need to lie completely within

the decoding interval, so care needs to be taken when we expand the intervals. Since

the input interval can be larger than the decoding interval, it is possible for the input

interval to extend out of the [0, 1) interval. This is what happened in the example

above. So in the implementation, we must make sure to cater for the possibility that

lowinput < 0 or that highinput > 1. This will be seen later on in § 5.2.

4.3 Updating the prior probability continuously

In § 3.3.1, we have seen how we can calculate the prior probability P (u). Suppose that

after bit tn , the decoder decodes the symbols un , where un is a vector containing I
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symbols, I ≥ 0. Recall that after each decoded bit tn , the additive MAP metric (3.15)

or (3.20) can be increased by

logP (un) =
I∑

i=1
logP (un,i ) (3.14)

to deal with the prior probability.

There is another way to calculate the prior probability. In arithmetic coding, the

width of the interval is directly related to the probability of the source symbols. For

the moment let us ignore the forbidden gaps; we can say that if we encode an input

sequence u1, u2, · · · , uL ,

Interval width = P (u) =
L∏

l=1
P (ul ).

Also, every time the encoder outputs a bit, the interval width is being halved. If we

ignore termination, we can say that

Interval width = 2−N

where N is the number of bits required to encode the source sequence.

Thus,

P (u) = 2−N .

Taking logs, this equation becomes

logP (u) =−N log2.

So all we have to do to the additive MAP metric to cater for the prior probability is to

subtract log2 for each decoded bit.

We have ignored the effect of forbidden gaps on the interval width. Compensat-

ing for forbidden gaps is not very difficult. Every time there is a forbidden gap, that

is, for each symbol encoded or decoded, the interval is reduced by a factor of (1−ε).

To compensate for this, for each decoded symbol we subtract log(1−ε) from the met-

ric. Note that (1−ε) < 1, so we are subtracting a negative number, and the metric is

increasing, not decreasing.

We have also ignored the effect of termination in our calculation. Compensating

for termination is not difficult either. After we decode the last symbol, uL , the decoder

is keeping track of two intervals; the input interval specified by the input bit sequence,

and the decoding interval.

If the input interval and the decoding interval have the same width, we do not
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need to compensate for termination. However, usually the input interval is narrower

than the decoding interval,

Input interval = f · (Decoding interval), f < 1.

This would mean that our 2−N is too small, and in effect, our logP (u) is too small. To

compensate for this we subtract log f from the metric. Remember that f < 1, so we

are subtracting a negative number and the metric is increasing.

After we decode the last symbol uL and compensate for termination, the MAP

metric includes the prior probability of the whole source sequence, P (u). After this,

any changes to the metric will have nothing to do with the prior probability, and will

only be related to the likelihood and the normalization factor.

4.4 Using a different decoding tree

In § 3.3, we mentioned that we may use two kinds of decoding tree; one in which each

edge represents a bit and the other in which each edge represents a symbol. The tree

used in [11] is the first kind, where each edge represents a bit.

An attempt to use the other kind of tree was made, where each edge represents a

symbol rather than a bit. Using this tree, there would be no need to prune incorrectly

decoded bit sequences, as these would not appear in the tree. This experiment did not

give satisfactory results; using this scheme, more packet errors occurred than when

using a tree with edges representing bits. So this modification was discarded.

The problem may be this scheme takes longer to account for the signal received,

y. When the edges represent bits, going from a node to its child always has a cor-

responding bit, thus we can update the likelihood component of the metric, P (y |t),

immediately. When the edges represent symbols, going from a node to its child will

take longer to handle this; the process of going down a path in this case is similar to

the arithmetic encoding process. An arithmetic encoder may output bits with some

delay, and this process will update the metric with some delay. So the effect of the

likelihood P (y |t) on the decoding metric is delayed.
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Implementation

The arithmetic encoder and decoder and the simulation were developed in C++ [17].

The GCC compiler version 4.3.0, http://gcc.gnu.org/gcc-4.3/, was used on

the Fedora 9 GNU/Linux operating system and an x86-32 architecture.

In the implementation, more emphasis was given to generality than to optimiza-

tion. This is because the aim was more to analyse different configurations and meth-

ods than to optimize a particular setup. When an implementation for a particular

setup is required, some functions can be optimized and some features can be re-

moved, leading to faster encoding and decoding.

To help ensure correctness, assertions were used throughout the source code.

Also, the Valgrind memory leak detector, available at http://valgrind.org/,

was used to ensure the program does not leak memory. These techniques are very

useful in ensuring the quality of the developed software.

5.1 Fixed-point arithmetic

The arithmetic encoder converts a sequence of symbols into a sequence of bits. To do

this, the encoder needs to handle fractions. The arithmetic decoder later converts the

sequence of bits back to a sequence of symbols. The decoder needs to handle frac-

tions as well. It is important that the fractions used by the encoder and the decoder

match exactly.

Floating-point numbers were avoided in the implementation of the arithmetic en-

coder and decoder. This is because floating-point numbers may be represented dif-

ferently on different architectures. A small change in representation can cause loss of

synchronization between the encoder and the decoder, which might be operating on

different machines.

Fixed-point numbers are different, because they are essentially represented as

integers. A C++ fixed-point class was to be used. After a short search, no available
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classes with the required flexibility were found, so a simple fixed-point class was de-

veloped. The developed class uses an integer for internal representation, and can

have any number of bits used for the integer part, and the remaining bits used for the

fraction part.

In arithmetic coding, the fractional numbers that are stored are probabilities, and

thus they cannot be less than 0 or greater than 1. The integer used was a 32-bit un-

signed integer. It was not desirable to have all 32 bits set aside for the fraction; con-

sider the case when we find the average of two fixed-point numbers.

x = (l + h) / 2;

The sum of the two numbers can exceed 1, so at least one bit should be left for the

integer part. So the fixed-point type used was a 32-bit unsigned integer split into one

integer bit and 31 fraction bits. This type can hold the numbers [0, 2).

Care has to be taken when transforming these fixed-point numbers using a trans-

formation such as x → 2x −1. This can be done in two ways:

1. x = 2 * x - 1;

2. x = (x - 0.5) * 2;

The first form has a problem; if we start with x = 1, we need to store the intermedi-

ate value x = 2, which cannot be represented in our fixed-point representation. The

second form does not have this problem, if x = 1 we first subtract 0.5 getting an inter-

mediate value x = 0.5, which we then multiply by 2 to get the final value x = 1.

When multiplying fixed-point numbers, one method is to cast the two multipli-

cands to 64-bit integers, multiply them to get one 64-bit integer, right-shift this inte-

ger by 31 bits, and cast the answer back to a 32-bit integer. However this can take a

lot of time considering that multiplication is a very common operation and is used

extensively in arithmetic coding.

This problem can be solved easily for the x86-32 architecture, where multiplying

two 32-bit integers will give a 64-bit answer inside the processor. The problem is that

C++ does not have access to this 64-bit integer. So the multiplication of two fixed-

point numbers was implemented in assembly as one 32-bit multiplication and one

right-shift operation. Note that portability was maintained when developing this op-

timization; the assembly code is compiled on condition that the architecture is the

x86-32 architecture. If the architecture is different, the compiler will use portable code

which, although slower, will have exactly the same effect.

The fractional part has 31 bits, so the resolution is 2−31, which is 4.7×10−10. The

width of the scaled encoding/decoding interval at any time is at least 1/4; this is guar-

anteed by the expansion process described in § 2.2. A factor of 1/4 is equivalent to a

loss of two bits of resolution. Thus, the decoding interval has a minimum resolution
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of 2−29, which is 1.9×10−9. Any sub-interval will have a maximum error of 1.9×10−9.

The probability of each symbol is usually much larger than this value, so the resolu-

tion of the fixed-point numbers used is adequate for arithmetic coding.

Note that the fixed-point numbers make the source code more readable than if

integers are used, and impose no runtime performance penalty whatsoever. The in-

ternal representation of a fixed-point number is that of a 32-bit integer. Thus, the

object code produced is identical to object code produced using integer arithmetic,

only the syntax is clearer.

5.2 Arithmetic coding

Arithmetic coding can have two kinds of models, a static model and an adaptive

model. The implementation in this work allows for both. An abstract base class

model was written with the following abstract virtual member functions.

• n_symbols() const returns the number of possible symbols.

• probability() const returns the probability of a specified source sym-

bol.

• symbol() informs the model that a particular symbol was encoded/decoded,

so that the model changes its state.

• fork() const creates a copy of the model.

For a static model, the derived class does not need to have any state, sosymbol()

has no effect, and fork() const just creates a new instance of the class. For an

adaptive model, the derived class needs to store some state information. In this case,

the symbol() function will update the state. The fork() const function creates

a new instance of the class having the same state.

The encoder and decoder support placing the gap at different locations in the in-

terval.

The decoder supports decoding both with and without the look-ahead feature

presented in § 4.2. Recall that when the look ahead feature is enabled, the input inter-

val does not need to lie within the decoding interval. So for the input interval, there

is a possibility that lowinput < 0 or that highinput > 1. To cater for this, lowinput and

highinput are split into an integer and a fixed-point number. Note that we still know

that lowinput < 1 and that highinput > 0.

The integer part of lowinput holds −blowinputc, which will always be ≥ 0 because

lowinput < 1. The fraction part will hold lowinput−blowinputc, which will be in the range

[0, 1).
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The integer part of highinput holds dhighinput−1e, which will always be ≥ 0 because

highinput > 0. The fraction part will hold highinput−dhighinput−1e, which will be in the

range (0, 1].

5.3 Placing the forbidden gap

In § 4.1, we mentioned an experiment to find the optimal location of the forbidden

gap in the interval. The experiment was performed on a source with a binary alphabet

containing two symbols, a and b.

The forbidden gap was placed in different parts of the interval. It was placed at the

beginning of the interval, in the middle of the interval, or at the end of the interval. A

simulation was performed to compare the detection delay for an error using each of

these schemes. For the simulation, the first symbol was assigned the probability P (a)

in the range 0.5 ≤ P (a) < 1 in steps of 0.025.

Note that because of symmetry, the performance of the code with P (a) = p and

with the forbidden gap placed at the beginning of the interval is equivalent to the

code with P (a) = 1−p and with the forbidden gap placed at the end of the interval.

Also, the performance of the code with P (a) = p and with the forbidden gap placed

in the middle of the interval, that is, between the sub-intervals for the two symbols,

is equivalent to the code with P (a) = 1−p and with the forbidden gap placed in the

middle of the interval.

To check the detection delay, a source message was generated with the required

source probability. Then, it was encoded using the required scheme. A random bit

from the first 100 bits was flipped, introducing an error. The error was constrained in

the first 100 bits to avoid termination from influencing the result of this experiment.

The bit sequence with the error was then passed into the decoder, and the number of

bits decoded until the error was detected was recorded. This was repeated for 100,000

times for each configuration.

Until now we have seen how to analyse the placement of the forbidden gap on a

source with a static model. To check the performance in a source with an adaptive

model, the source model was modified so that for odd symbols, that is, for u1, u3, · · · ,
P (a) = p and P (b) = 1− p, and for even symbols, that is, for u2, u4, · · · , P (a) = 1− p

and P (b) = p.

In this new setup, placing the forbidden gap at the beginning of the interval is

equivalent to placing the forbidden gap at the end of the interval. That is because on

alternating symbols, we get either P (a) > P (b) or P (a) < P (b). So a and b are not really

different. If we use the scheme presented in § 4.1, we swap the symbol sub-intervals

around so that the sub-interval for the most probable symbol, be it a or b, is at the
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beginning of the interval; then we place the forbidden gap at the beginning of the

interval. This is a different from just placing the forbidden gap at the beginning and

leaving the sub-intervals untouched.

The adaptive model was used in three different setups; the interval was placed at

the beginning of the interval, at the middle of the interval, and at the beginning with

the sub-intervals swapped as mentioned above.

Each of these setups was tested both with and without look-ahead as presented

in § 4.2. The results will be presented later in § 6.1. The smallest delay for the static

model with P (a) > P (b) was obtained by placing the interval at the beginning of the

interval. The smallest delay for the adaptive model was obtained by placing the for-

bidden gap at the beginning, followed by the sub-interval for the most probable sym-

bol. Hence, in the simulation of the MAP decoder, this scheme was used throughout.

Look-ahead reduced the delay for each case except when placing the forbidden gap

in the middle of the interval.

5.4 The MAP decoder metric

To implement the MAP decoder, the main task was to implement the decoding tree.

The implementation was split into a class for the node and a class for the tree itself.

The node class contains pointers to its parent and to its children, the decoding metric,

and a pointer to an arithmetic decoder.

The MAP decoder class keeps an ordered list of the nodes. In this project, the

ordered list was implemented using the set template class from the C++ standard

library.

The metric for both hard and soft decoding is updated after each bit tn by adding

two components; the likelihood divided by the normalizing factor P (yn | tn)/P (yn)

and the prior probability P (un).

At the beginning of the decoding process, we have the vector y which contains N

values. Each bit tn can be either 0 or 1. Before we start searching the decoding tree,

we create two vectors, one containing P (y |t = 1) and the other containing P (y |t = 0).

This way, we do not have to calculate the same numbers for different paths.

A look at the calculation of this part of the metric for soft decoding is in order.

Recall the two equations

log

[
P (yn | tn = 1)

P (yn)

]
= log2+

(
4

Eb

N0

ynp
Eb

)
− log

[
exp

(
4

Eb

N0

ynp
Eb

)
+1

]
(3.18)

log

[
P (yn | tn = 0)

P (yn)

]
= log2− log

[
exp

(
4

Eb

N0

ynp
Eb

)
+1

]
. (3.19)
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We can also write these in an equivalent alternative form

log

[
P (yn | tn = 1)

P (yn)

]
= log2− log

[
exp

(
−4

Eb

N0

ynp
Eb

)
+1

]
(5.1)

log

[
P (yn | tn = 0)

P (yn)

]
= log2−

(
4

Eb

N0

ynp
Eb

)
− log

[
exp

(
−4

Eb

N0

ynp
Eb

)
+1

]
. (5.2)

To calculate these two values, we first calculate the value

r = 4
Eb

N0

ynp
Eb

. (5.3)

Then we rewrite (3.18) and (3.19) as

log

[
P (yn | tn = 1)

P (yn)

]
= log2+ r − log(er +1) (5.4)

log

[
P (yn | tn = 0)

P (yn)

]
= log2− log(er +1). (5.5)

We also rewrite (5.1) and (5.2) as

log

[
P (yn | tn = 1)

P (yn)

]
= log2− log(e−r +1) (5.6)

log

[
P (yn | tn = 0)

P (yn)

]
= log2− r − log(e−r +1). (5.7)

Equations (5.4) and (5.6) are mathematically equivalent. However, during compu-

tation one may have an advantage over the other. If r < 0, e−r may become very large,

but er will not. So for r ≤ 0, we use equations (5.4) and (5.5). Also, if r < −40, er will

be very small, so the term log(er +1) becomes zero. For r > 0, we use equations (5.6)

and (5.7), and if r > 40, e−r will be very small and the term log(e−r +1) becomes zero.

The second part of the metric, the prior probability P (un), is calculated as de-

scribed in § 4.3.

For every iteration of the decoding process, the node with the highest metric is

removed from the ordered list and replaced by two child nodes.

5.5 The simulation

The scheme presented in [11] was implemented. As already mentioned previously,

the input symbols are grouped in packets of 256×9 = 2304 symbols. The source alpha-

bet consists of two symbols, a with probability P (a) = 0.8666 and b with probability

P (b) = 0.1334. Each packet is terminated using a termination symbol with ω= 10−5.
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The entropy H(U ) of the code is

H(U ) =−0.8666log2 0.8666−0.1334log2 0.1334

= 0.5667.

On average, 0.5667 bits will be needed to encode each source symbol. So on average,

the length N of the encoded bit sequence is

N = 2304H − log2ω

= 1322.27.

In the implementation, the length N of each encoded packet and the probability

P (a) are passed as side information. The decoder can use the length N to prune paths

that are fully decoded using less than N bits, or that are not fully decoded at bit N .

In practice, the packet length and the model probability would have to be passed

over the channel as well. They would be protected against errors using a more pow-

erful code, as errors in receiving the side information will compromise the whole

packet. There is still some probability that the side information is corrupted. Syn-

chronization schemes would then need to be set up to ensure that if the side informa-

tion of one packet is corrupted and the packet is lost, decoding of the other packets

can still be performed. These schemes are beyond the scope of this work.

In [11], the MAP decoding algorithm using the stack sequential search with a max-

imum of M = 4096 nodes is simulated for different values of ε. The source alphabet

contains two symbols a and b with probabilities P (a) = 0.8666 and P (b) = 0.1334. The

values of ε used are ε= 0.05, which corresponds to a code rate of 8/9, ε= 0.097, which

corresponds to a code rate of 4/5, and ε= 0.185, which corresponds to a code rate of

2/3. The results obtained can be used to plot the packet error ratio (PER) against the

signal-to-noise ratio Eb/N0.

The simulation for the above was done using both soft and hard decoding. Also,

two values of the maximum size of the stack M were used, 256 and 4096. The value

of M corresponds to a trade-off between complexity and performance as discussed

in § 3.4. When M = 256, the complexity is reduced and the error-correcting process is

faster, but the PER is higher.

In this project this simulation was repeated without look-ahead and with look-

ahead, and with the original method of calculating the prior probability P (un), and

with the continuous calculation of the prior probability. The results will be presented

in § 6.2.

The results obtained were similar to those in [11], and the modifications improved
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on the published results.

To check that the results are not limited to this model, a first-order Markov model

with three source symbols was also simulated. The probability of each symbol de-

pends on the last symbol. The model used has the following probabilities:

P (a |a) = 0.7 P (b |a) = 0.2 P (c |a) = 0.1

P (a |b) = 0.1 P (b |b) = 0.4 P (c |a) = 0.5

P (a |c) = 0.6 P (b |c) = 0.2 P (c |c) = 0.2

The probability of each symbol is P (a) = 0.5278, P (b) = 0.25, and P (c) = 0.2222. The

entropy of U conditional on each previous symbol can be calculated to be H(U |a) =
1.1568, H(U |b) = 1.3610, and H(U |c) = 1.3710.

The entropy H(U ) of this code is

H(U ) =−0.5278×1.1568−0.25×1.3610−0.2222×1.3710

= 1.2554.

For a code rate of 8/9, we need a forbidden gap factor ε such that

H

H − log2(1−ε)
= 8

9

log2(1−ε) =−H

8

ε= 0.12

So this code has the same code rate as the binary code with P (a) = 0.8666 and P (b) =
0.1334 protected by a forbidden gap with ε= 0.05. For the length of the bit packet to

be equal, we need N to be 1322.

N = LH − log2ω

L = N + log2ω

H

L = 889

This code was then tested without look-ahead and with look-ahead, and with the

original method of calculating the prior probability P (un), and with the continuous

calculation of the prior probability.

The results will be presented in § 6.2 and compared to the results for the other

scheme.
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5.5.1 Random numbers

For the simulation, a random number generator was written using ideas in [18], in-

cluding a method to generate Gaussian random numbers. Let x and y be two inde-

pendent random numbers distributed uniformly in [−1, 1]. Let r = √
x2 + y2, and

ensure that r lies in (0, 1). If r = 0 or r ≥ 1, get replacements for x and y and repeat.

Then let f =
√

−2loge r
r . To get two independent Gaussian random numbers with mean

0 and standard deviation 1, we calculate x · f and y · f . The Gaussian random numbers

were used in getting a signal vector y.

5.5.2 Confidence interval of results

For the simulation, the number of iterations for each point had to be decided. Using

too few iterations gives inaccurate results. Using too many iterations will take too

long.

Since the outcome of each iteration is either a correct packet or a bad packet, find-

ing the confidence interval for the PER is a binomial proportion confidence interval

problem.

The Wilson interval [19] is a good approximation of the confidence for such sys-

tems. The confidence is given by the formula

p̂ + z2
1−α/2
2n ± z1−α/2

√
p̂(1−p̂)

n + z2
1−α/2
4n2

1+ z2
1−α/2

n

where p̂ is the PER estimated from the simulation, n is the number of iterations per-

formed, and z1−α/2 is the 1−α/2 percentile of a standard normal distribution.

This interval extends by

z1−α/2

√
p̂(1−p̂)

n + z2
1−α/2
4n2

1+ z2
1−α/2

n

on each side of the centre.

In the simulation, we want to be 80 percent sure that our PER is within ±0.01 from

the centre of the confidence interval. The confidence is 0.8, and α= 1−confidence =
0.2, so 1−α/2 = 0.9. We find the percentile z1−α/2 using the function ltqnorm()

(see Appendix A).

If we have m packet errors from n runs, and the PER is p̂ = m/n, the expression for

the extension of the confidence interval on each side of the centre can be simplified
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to

z1−α/2

√
m(n−m)

n + z2
1−α/2

4

n + z2
1−α/2

. (5.8)

During the simulation, we monitor this score, and when this score is less than 0.01,

we are satisfied with the number of runs.

This is not enough when we need to draw a logarithmic plot. For example, if the

PER is about 10−4, an error of ±0.01 is very bad. In this case, we would need the error

to be proportional to the PER m/n, say, f m/n where f is a factor such as 0.1. Since n

is much larger than m, and much larger than z1−α/2, we can simplify as follows:

f m

n
=

z1−α/2

√
m(n−m)

n + z2
1−α/2

4

n + z2
1−α/2

f m = z1−α/2

√
m + z2

1−α/2

4

Solving for m we can easily obtain

m = 2z2
1−α/2

f 2

(
1+

√
1+ f 2

)
.

This results indicates that the error on a logarithmic plot can be controlled by en-

suring a minimum number of errors. In the implementation, a minimum of 50 errors

was required. The simulation goes on until there are 50 packet errors. However, to

avoid very large number of iterations when the PER is very small, a maximum of 106

iterations was set.

For large PER values, the number of iterations is determined using (5.8); the sim-

ulation stops when the value of the expression reaches 0.01. For small PER values, the

simulation stops when the number of errors reaches 50. For very small PER values,

when less than 50 errors are encountered in 106 iterations, the simulation stops after

106 iterations. This enables us to obtain smooth curves for the PER without taking too

long where it is not necessary.
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Results

6.1 Placing the forbidden gap

In § 5.3 an experiment to find the optimal location of the forbidden gap was pre-

sented. The test was performed for a binary source model with alphabet containing

symbols a and b in the following scenarios:

1. Fixed model, forbidden gap placed at the beginning of the interval.

2. Fixed model, forbidden gap placed at the beginning of the interval, look-ahead.

3. Fixed model, forbidden gap placed in the middle of the interval.

4. Fixed model, forbidden gap placed in the middle of the interval, look-ahead.

5. Fixed model, forbidden gap placed at the end of the interval.

6. Fixed model, forbidden gap placed at the end of the interval, look-ahead.

7. Adaptive model, forbidden gap placed at the beginning of the interval.

8. Adaptive model, forbidden gap placed at the beginning of the interval, look-

ahead.

9. Adaptive model, forbidden gap placed in the middle of the interval.

10. Adaptive model, forbidden gap placed in the middle of the interval, look-ahead

11. Adaptive model, forbidden gap placed in the beginning of the interval, with the

sub-interval for the most probable symbol moved towards the beginning of the

interval as described in § 4.1.

48
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Figure 6.1: Error-detection delay for static source model with a code rate of 8/9.

12. Adaptive model, forbidden gap placed in the beginning of the interval, with the

sub-interval for the most probable symbol moved towards the beginning of the

interval as described in § 4.1, look-ahead.

The error-detection delay was measured for different values of P (a), where P (a) is

the probability of the first symbol. Each test was performed using no look-ahead and

using look-ahead.

Figure 6.1 shows the results for a static source model with a code rate of 8/9 (sce-

narios 1–6). Without look-ahead, placing the forbidden gap at the beginning of the

interval suffers the largest delay, but with look-ahead, placing the forbidden gap at

the beginning of the interval achieves the smallest delay.

When the probability of the first symbol in the interval is larger than the proba-

bility of the second symbol, and the forbidden gap is placed at the beginning of the

interval, forbidden gaps tend to cluster together. Without look-ahead, this seems to

make the delay larger. This may be because concentrating the gaps at fewer places

makes it harder for a random interval to find one of the gaps. With look-ahead, the

situation is reversed, because of the situation illustrated in Example 4.2.

Figure 6.2 shows the results for an adaptive source model with a code rate of 8/9

(scenarios 7–11). As discussed above, the performance of scenarios 11 and 12 is simi-

lar to the performance of scenarios 1 and 2. Without look-ahead, this scheme suffers

the largest delay, and with look-ahead, it achieves the smallest delay.
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Figure 6.2: Error-detection delay for adaptive source model with a code rate of 8/9.

The results for scenarios 1, 2 and 11, 12 for P (a) ≥ 0.5 were equivalent. This is

because when P (a) ≥ 0.5, they are identical schemes.

The results for scenarios 3 and 4 are identical. This means that look-ahead does

not help when the forbidden gap is in the middle of the interval. This may be because

with this scheme, forbidden gaps are never next to each other. In the graphs, only one

of these scenarios is plotted. The same can be said for scenarios 9 and 10.

The simulation was performed for code rates of 4/5 and 2/3 as well. The results are

similar to those for a code rate of 8/9. Figure 6.3 shows the results for a static source

model with a code rate of 4/5 and Figure 6.4 shows the results for an adaptive source

model with the same code rate.
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Figure 6.3: Error-detection delay for static source model with a code rate of 4/5.
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Figure 6.4: Error-detection delay for adaptive source model with a code rate of 4/5.
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Figure 6.5: Performance for MAP decoder for static binary model with M = 256 and
ε= 0.05; without look-ahead (NLA) and with look-ahead (LA); and with P (t) adjusted
every symbol (PS) or every bit (PB).

6.2 MAP decoding

The results for the simulation described in § 5.4 are presented in this section.

6.2.1 The static binary model

Figure 6.5 shows the PER for the scheme of the static binary model with M = 256 and

ε= 0.05.

The performance is improved when the look-ahead technique is used. When this

technique is used, the decoder may detect errors earlier, and it can detect correct

symbols earlier as well. When errors are detected early, incorrect paths can be pruned

earlier from the decoding tree, reducing the chance that the correct path is removed

because of a stack overflow. Detecting symbols early will enable the MAP metric to

be updated earlier, which can lead to better decoding. The performance is also im-

proved with continuous updating of the prior probability P (t), that is, when P (t) is

adjusted every time we decode a bit rather than every time we decode a symbol. The

performance is improved most when the techniques are used together.

Figures 6.6 and 6.7 show the same results, but this time for ε= 0.097 and ε= 0.185

respectively. Notice that when ε is larger, the improvement becomes more noticeable.
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Figure 6.6: Performance for MAP decoder for static binary model with M = 256 and
ε= 0.097; without look-ahead (NLA) and with look-ahead (LA); and with P (t) adjusted
every symbol (PS) or every bit (PB).

A small code rate, and hence a large value of ε, is usually used when the signal-to-

noise ratio Eb/N0 is low. The improvements are therefore particularly effective for

poor channel conditions.

Finally, Figure 6.8 shows how the PER changes with εwhen Eb/N0 is fixed at 5.5 dB.

The improved schemes can achieve the error-correction performance of the original

scheme using less redundancy. For example, for a PER of 10−2, the hard decoder for

the original scheme needs ε = 0.19, which translates into a code rate of 0.65. For the

same PER, the hard decoder for the improved scheme needs ε= 0.13, which translates

into a code rate of 0.73.
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Figure 6.7: Performance for MAP decoder for static binary model with M = 256 and
ε= 0.185; without look-ahead (NLA) and with look-ahead (LA); and with P (t) adjusted
every symbol (PS) or every bit (PB).
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Figure 6.8: Performance for MAP decoder for static binary model with M = 256 and
Eb/N0 = 5.5 dB; without look-ahead (NLA) and with look-ahead (LA); and with P (t)
adjusted every symbol (PS) or every bit (PB).
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Figure 6.9: Performance for MAP decoder for static binary model with M = 4096 and
ε= 0.05; without look-ahead (NLA) and with look-ahead (LA); and with P (t) adjusted
every symbol (PS) or every bit (PB).

Figures 6.9, 6.10, 6.11, and 6.12 are similar to the figures mentioned before, but

with M = 4096. The complexity is higher, but the PER is lower. These curves can be

compared to the results presented in [11]. In all four graphs, the plot for the scheme

with no look-ahead and with P (t) updated every symbol is comparable to the plots

published in [11].

Notice the points at the bottom of the soft decoding plots in Figures 6.10 and 6.11;

some plots seem to be misplaced. In § 5.5.2 we have seen that we require a minimum

number of 50 errors to be reasonably confident of the location of a point in the loga-

rithmic plot. However, the maximum number of iterations per point is 106. For a PER

of around 10−5, we get only about 10 errors, so we cannot be confident of the exact

location of the points.

Once more, both look-ahead and adjusting the prior probability every time a bit is

decoded improve on the original scheme, and combining both techniques gives the

lowest PER.



CHAPTER 6. RESULTS 56

10-5

10-4

10-3

10-2

10-1

100

 2  2.5  3  3.5  4  4.5  5  5.5  6  6.5

P
E

R

Eb /N0 (dB)

NLA PS (hard)

NLA PS (soft)

LA PS (hard)

LA PS (soft)

NLA PB (hard)

NLA PB (soft)

LA PB (hard)

LA PB (soft)

Figure 6.10: Performance for MAP decoder for static binary model with M = 4096 and
ε= 0.097; without look-ahead (NLA) and with look-ahead (LA); and with P (t) adjusted
every symbol (PS) or every bit (PB).
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Figure 6.11: Performance for MAP decoder for static binary model with M = 4096 and
ε= 0.185; without look-ahead (NLA) and with look-ahead (LA); and with P (t) adjusted
every symbol (PS) or every bit (PB).
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Figure 6.12: Performance for MAP decoder for static binary model with M = 4096 and
Eb/N0 = 5.5 dB; without look-ahead (NLA) and with look-ahead (LA); and with P (t)
adjusted every symbol (PS) or every bit (PB).
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Figure 6.13: Performance for MAP decoder for adaptive ternary model with M = 256
and ε = 0.1; without look-ahead (NLA) and with look-ahead (LA); and with P (t) ad-
justed every symbol (PS) or every bit (PB).

6.2.2 The adaptive ternary model

This section deals with the scheme having an adaptive model with three symbols in

the source alphabet. Figure 6.13 shows the PER with M = 256 and ε = 0.1. The code

rate for this code is 8/9, as for the static binary model with ε= 0.05, which was shown

in Figure 6.5.

For hard decoding, the improvement in performance provided by the two men-

tioned techniques is very similar to that for the static binary model described before.

However, for soft decoding, the PER of the original scheme and the scheme with look-

ahead are very close, indicating that look-ahead does not improve the PER. When the

prior probability P (t) is adjusted every bit, the PER gets lower. When look-ahead is

combined with this technique, it gives a further enhancement to the PER. This is be-

cause look-ahead has two effects on the decoder; it may detect errors earlier, and it

may decode symbols earlier. Recall that the scheme with P (t) adjusted for every bit

corrects for the forbidden gap every time a symbol is decoded. This may be why look-

ahead improves the performance of this scheme; the correction for the forbidden gap

comes earlier, helping to improve the search in the decoding tree.

This indicates that the improvements are suitable for adaptive models as well as

for static models, and also when there are more than two symbols.
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Conclusion

In this project, a joint source-channel arithmetic coding scheme proposed by [11] for

decoding arithmetic codes with a forbidden symbol transmitted over an AWGN chan-

nel was analysed and implemented. The proposed scheme was a MAP decoder with

a novel MAP metric. The decoder uses the stack sequential search algorithm, with

maximum number of nodes M , to find the path with the best MAP metric. In [11],

this scheme was shown to have a better error-correction performance than a sepa-

rated scheme consisting of arithmetic coding with no forbidden gap, and a separate

channel coding scheme based on RCPC codes.

The decoding scheme was implemented in C++ and simulated for an AWGN chan-

nel with both hard and soft decoding for BPSK modulation. The results obtained from

the simulation conform to the results published in [11].

This joint source-channel arithmetic code has several advantages. The encoder

has the same complexity as an arithmetic encoder with a forbidden symbol. The

amount of redundancy in the encoded message can be controlled by tuning one pa-

rameter, the forbidden gap factor ε. This factor can be predetermined or varied adap-

tively according to channel conditions.

The decoder algorithm can be scaled according to complexity and memory con-

straints. If more memory and more processing power is available, the decoder can be

improved by increasing the number of nodes in the stack, M .

In this dissertation, new techniques were introduced in order to improve the error-

correction performance of the code. The decoder was improved with a look-ahead

technique that enables the decoder to decode symbols earlier, and to detect errors

earlier, in certain conditions. When used with the MAP decoder, this technique im-

proves the PER at the cost of a small increase in complexity.

The calculation of one component of the MAP metric, the prior probability P (t),

was improved as well. In [11] the prior probability component of the metric is up-

dated every time a symbol is decoded. A proposed improvement is to update the prior
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probability every time a bit is passed into the decoder, which leads to faster updating

of the metric and, consequently, to a better error-correction performance. This tech-

nique makes the MAP decoder faster as well; the decoding time of the MAP decoder

is decreased because the correct path in the decoding tree is found earlier.

Using these techniques, a coding gain of up to 0.4 dB for soft decoding and 0.6 dB

for hard decoding was observed for a code rate of 2/3 and M = 256.

When a channel has a low signal-to-noise ratio Eb/N0, a high code rate is used.

The improvements mentioned are more effective in such cases, and the performance

gain in terms of signal-to-noise ratio is higher. Also, the improvements are more ef-

fective when M = 256 than when M = 4096, indicating that they offer an advantage

when processing or memory capabilities are limited.

The system was simulated using a static source model having two symbols in its

alphabet, and using an adaptive source model having three symbols in its alpha-

bet. Similar results were obtained, indicating that the algorithms employed are ad-

equate for both static models and adaptive models, and for two or more symbols in

the source alphabet.

According to [11], the scheme proposed by [11] has been used profitably in im-

age transmission. A number of multimedia applications are using arithmetic coding

as a final lossless compression stage after a lossy compression stage. These applica-

tions then use a channel code to transmit multimedia data over wireless channels.

The scheme presented in this dissertation could be used to combine the arithmetic

compression stage and the channel coding stage. This would provide the benefits

mentioned above.

7.1 Future work

The forbidden gap used in this project was constant throughout the process, use of

adaptive gaps can be analysed. The gap can vary as the channel conditions vary, so the

gap width can be adapted between packets. Also, the gap within one packet can vary

from the beginning till the end of the packet and the effect analysed. Since an error at

the start of the packet has more chance of being detected then an error at the end of

the packet, adapting the gap within the same packet may improve performance.

When an error is detected in the implemented scheme, the whole packet is dis-

carded. If the error occurs late in the packet, it may be possible to salvage data at the

beginning of the packet, which may reduce the amount of retransmission necessary.

Joint source-channel coding for arithmetic codes was used in a sequential decod-

ing algorithm in this work. Joint coding using arithmetic coding in iterative decoding

techniques is an area of current research. Iterative joint source-channel coding using
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arithmetic codes could be developed using metrics similar to the metrics presented

in this dissertation.



Appendix A

Source Code Organization

The source code is split into several files. An overview of the file contents is given

below.

misc.hpp, misc.cpp define some utility functions.

Thenext_power_2_m1() template function takes an integer and returns the

minimum integer greater than or equal to the parameter which is of the form

2n −1, where n is an integer.

The next_power_2() template function takes an integer and returns the

minimum number greater than or equal to the parameter which is of the form

2n , where n is an integer.

The rnd class produces random numbers. It supports floating point random

numbers distributed linearly, integer random numbers distributed linearly, and

floating point random numbers with the Gaussian distribution. The ideas were

taken from [18].

The ltqnorm() function takes a parameter p and returns the lower tail quan-

tile for the standard normal distribution. That is, it returns z satisfying P (X <
z) = p, where X has a standard normal distribution. The algorithm used is pre-

sented in [20].

fix.hpp defines the fix template class, which is a generic implementation of fixed-

point arithmetic. The class supports arithmetic operations +, -, * and /; bit-

wise and shift operations ~, &, ^, |, << and >>; relational operations ==, !=,

<, <=, > and >=; and the logical operation !. It also allows explicit conver-

sion to/from double; to avoid difficult-to-find bugs, no implicit conversions

to/from double are provided by this class. The class also allows access to the

internal integer representation.
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coder.hpp, coder.cpp define some classes that are used for arithmetic encoding and

decoding.

The gap_place_t enum is used to choose where to place the forbidden gap.

It can take values gap_begin and gap_end for the gap to be at the beginning

or at the end of the interval, gap_mid for the gap to be distributed between the

symbols, and gap_begin_mod for the gap to be placed as the beginning of

the interval and for the sub-intervals to be swapped such that the sub-interval

for the most probable symbol is at the beginning, next to the forbidden gap (the

scheme described in § 4.1).

The coding_info struct holds information used to define an arithmetic en-

coder, the forbidden gap factor ε, the termination symbol probability ω, the

number of symbols in one packet L, and the placement of the forbidden gap.

The decoding_info struct inherits coding_info and adds information

used for the arithmetic decoder and for the MAP decoder.

Themodel abstract base class defines the interface required for a class that acts

as a source model.

The encoder class encodes a sequence of L symbols into a bit sequence. This

class works incrementally, and output bits can be read before all L symbols are

passed to the encoding instance.

The decoder class decodes a bit sequence into a sequence of symbols. This

class work incrementally, and output symbols can be read before all of the bit

sequence is passed to the decoding instance. Errors are detected, and the class

supports decoding with and without look-ahead (see § 4.2).

map.hpp, map.cpp define some functions and classes that are used for MAP decod-

ing.

The soft_signal_probs function takes Eb/N0 and the signal vector y as

inputs. It calculates P (yn | tn = 0)/P (yn) and P (yn | tn = 1)/P (yn) for each value

element yn of y, assuming a soft channel.

The hard_signal_probs function takes Eb/N0 and the signal vector y as

inputs. It calculates P (yn | tn = 0)/P (yn) and P (yn | tn = 1)/P (yn) for each value

element yn of y, assuming a hard channel.

The maps_decoder class performs MAP decoding using the stack sequential

search technique, where each edge of the decoding tree represents one bit.

Themapcs_decoder class performs MAP decoding using the stack sequential

search technique, where each edge of the decoding tree represents one symbol
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instead of one bit.

simulation.hpp, simulation.cpp define some functions and classes used in simulat-

ing the MAP decoder.

The generate_symbols function generates a symbol sequence u where the

probability of each symbol is taken from the source model.

The generate_bits function encodes a symbol sequence u into a bit se-

quence t given a source model.

The generate_signals function adds AWGN noise with the given signal to

noise ratio Eb/N0 to a bit sequence t, and returns the signal vector y.

The decode_signals function decodes a signal vector y using MAP decod-

ing.

The check_decode_signals function is given a signal vector y and the ac-

tual source sequence u and t. It uses MAP decoding to decode the signal vector,

checking continuously for an error in the decoding process. This is used to de-

tect failures in the decoding early in simulations.

The result struct is used to return the result of a simulation.

The simulator class performs a simulation with a specific configuration and

for a specific number of times.

detection_delay.cpp contains code to analyse the delay in detecting errors for arith-

metic codes with integrated error detection.

map_simulate.cpp contains code to find the packet error rate of specified MAP de-

coders by simulation.

Makefile is used to build the programs from the C++ source.
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