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ABSTRACT
This paper presents a reconfigurable motion estimation pro-
cessor suitable for high definition video coding. A toolset
for the design of a video coding system is presented as well.
The presented tools can be used in the design and configu-
ration of the reconfigurable processor itself. They can also
be used to design user-defined block-matching motion esti-
mation algorithms. Using the tools, the processor’s design
space may be explored in order to find configurations suit-
able for high definition video. The experiments presented
show the effect of modifying the processor configuration on
the performance obtained when coding high definition video
sequences, and the results indicate that for high definition
video, supporting sub-partitioning offers no gain for the in-
crease in complexity.

1. INTRODUCTION

Video compression is an integral part of many multimedia
applications, many of which require real-time operation and
a high compression performance. New advanced coding
standards, such as VC-1, AVS and H.264 [1], make use of
advanced techniques to achieve high compression. Previous
work [2] shows that motion estimation is the most expensive
operation in the H.264 encoder, representing up to 90% of
the total complexity. This makes it desirable to have special-
ized hardware for motion estimation.

Full search motion estimation algorithms have gained
popularity in hardware implementations owing to their regu-
larities, which make it possible to implement motion estima-
tion hardware using systolic arrays [3]. Other approaches,
such as the hexagonal search algorithm [4], the unsymmetri-
cal multi-hexagonal (UMH) search algorithm [5], and many
others, do not perform the search on full point regions. The
use of these block matching algorithms can make the esti-
mation process faster by requiring less computations than a
full search. Although the full search algorithm is usually
believed to yield optimal rate distortion performance, it has
been shown that a well-designed fast block matching algo-
rithm can provide better rate-distortion performance owing
to its ability to track real motion more accurately [6].

There are various hardware implementations of motion
estimation algorithms. Processors with instruction set ar-
chitectures (ISA) similar to the proposed work, tailored for
block-matching search algorithms, are presented in [7] and
[8]. Xilinx have a motion estimation engine [9] that com-
putes the sum of absolute differences (SAD) for a set of 120
search locations within a 112×128 search window in paral-
lel. None of these cores offer the possibility of matching the
hardware architecture and the search algorithm to optimize
performance as the presented work does.

The motion estimation process can be performed in var-
ious different ways, and it is up to the designer to choose the
strategy. Apart from the search strategy itself, other choices
include whether to use multiple motion vector candidates in
the search, the number of reference frames to which to com-
pare the macroblocks, whether the macroblocks are split into
partitions, whether to perform sub-pixel interpolation and
search, and whether to include the cost of encoding the mo-
tion vector itself during estimation. Because of the number
of design parameters and their complexity, the design space
can be very large, and exploring this design space to find
design parameters that are optimal can be complex and ulti-
mately application dependent.

A toolset has been developed for the optimization and
generation of configuration data for a high-performance mo-
tion estimation processor. The toolset makes the process
of finding the optimal hardware configuration and software
parameters faster. A cycle-accurate simulator is included,
making it possible to change the parameters and test the con-
figuration in a short time without requiring hardware access.
There is already similar work on configurable generic pro-
cessors, like the Xtensa configurable processor [10] from
Tensilica. Designers can choose configuration parameters
and generate a custom processor optimized for their needs.
The options include support for 16 × 16-bit multiplication,
a floating point unit, a barrel shifter, and others. Tensilica
also provides the XPRES compiler, a tool for design space
exploration.

The paper is organized as follows. Section 2 reviews the
hardware architecture of our configurable motion estimation
processor. Section 3 describes the integrated development
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Fig. 1. (a) Base configuration and (b) complex configuration of the motion core.

environment for the design of motion estimation algorithms.
Section 4 presents the cycle-accurate simulator and how it
can be used to analyse and optimize motion estimation al-
gorithms. Section 5 presents some experiments using HD
sequences. Finally, section 6 draws conclusions.

2. HARDWARE OVERVIEW

The LiquidMotion processor is a reconfigurable application-
specific instruction-set processor (ASIP) developed in our
group. It is designed to execute user-defined block-matching
motion estimation algorithms optimized for hybrid video
codecs such as MPEG-2, MPEG-4, H.264/AVC and Mi-
crosoft VC-1. The core offers scalable performance depen-
dent on the features of the chosen algorithm and the num-
ber and type of execution units implemented. Hardware
configuration can typically be achieved at compile time by
adapting the architecture to the chosen algorithm, and in a
field-programmable gate array (FPGA) implementation, it is
possible to pre-compile a range of hardware bitstreams with
different configurations from which one can be chosen to
match the current video processing requirements. The mi-
croarchitecture can be easily scaled to high definition (HD)
video even when using low cost FPGAs such as the Xilinx
Spartan-3. The ability to program the search algorithm to be
used, and the ability to reconfigure the underlying hardware

that it will execute on, combine to give an extremely flex-
ible video processing platform. A base configuration con-
sisting of a single 64-bit integer pipeline, capable of pro-
cessing a hexagonal motion estimation algorithm, such as
the one implemented in the x264 [11] video encoder, over
a search window of 112 × 128 pixels in real-time for high-
definition video, can be implemented in 2300 logic cells on
a Xilinx FPGA. In contrast, a complex configuration sup-
porting motion vector candidates, sub-blocks, motion vector
costing using Lagrangian optimization, 4 integer-pel execu-
tion units (IPEU) and 1 fractional-pel execution unit (FPEU)
plus sub-pel interpolator execution unit (SPIEU) will need
around 14, 600 logic cells. A simplified diagram compar-
ing these two configurations is shown in Fig. 1. At least 1
IPEU must always be present to generate a valid processor
configuration but the other units are optional, and are config-
ured at compile time. Each execution unit uses a 64-bit wide
word and a deep pipeline to achieve a high throughput. All
the accesses to reference and macroblock memory are done
through 64-bit wide data buses and the SAD engine also op-
erates on 64-bit data in parallel. The memory is organized in
64-bit words and typically all accesses are unaligned, since
they refer to macroblocks that start in any position inside
this word. By performing 64-bit read accesses in parallel
from two memory blocks, the desired 64 bits across the two
words can be selected inside the vector alignment unit.

The engine also supports half- and quarter-pel motion



Table 1. Comparison of different implementations for a di-
amond search pattern.

Processor Cycles FPGA Virtex-II Memory
impl. per MB slices clock (BRAMS)

Intel P4 ∼ 3000 N/A N/A N/A
assembly
Dias et al. 4532 2052 67 MHz 4 (external
[7] reference area)
Babionitakis 660 2127 50 MHz 11 (1 ref. area,
et al. [8] 48× 48 pixels)
Proposed, 510 1231 125 MHz 21 (2 ref. areas,
1 IPEU 112× 128 pixels)
Proposed, 287 2051 125 MHz 38 (2 ref. areas,
2 IPEUs 112× 128 pixels)

estimation, owing to an SPIEU and specifically designed
FPEUs. The number of SPIEUs execution units is limited
to 1 but the number of FPEUs can be configured at compile
time. The SPIEU interpolates the 20×20 pixel area that con-
tains the 16× 16 macroblock corresponding to the winning
integer motion vector. The interpolation hardware is cycled
3 times to calculate first the horizontal pixels, then the ver-
tical pixels, and finally the diagonal pixels. The SPIEU cal-
culates the half pels through a 6-tap Wiener filter as defined
in the H.264 standard. The SPIEU has a total of 8 systolic
one-dimensional (1-D) interpolation processors with 6 pro-
cessing elements each. The objective is to balance the in-
ternal memory bandwidth with the processing power so in
each cycle, 8 valid pixels are presented to one interpolator.
Quarter-pel interpolation is done when required by reading
the data from two of the four memories containing the half
and full pel positions, and averaging according to the H.264
standard. The fractional pipeline and the integer pipeline
work at the same rate and process one search point in 33 cy-
cles. To maintain this data rate, each FPEU needs two vector
alignment units so two half or integer pel 64-bit vectors are
presented in each cycle to the quarter-pel interpolation unit.

Table 1 compares the complexity and performance of the
proposed processor core implementation to that of other im-
plementations. The IPEUs and FPEUs have been carefully
pipelined, and all the configurations can be implemented to
achieve a clock rate of 200 MHz when targeting the Virtex-4
Xilinx family. More details can be obtained in [12].

3. DESIGNING MOTION ESTIMATION
ALGORITHMS

The Estimo C language is a high-level C-like language that
is aimed at designing a broad range of block-matching al-
gorithms. The code can be developed and compiled in the
SharpeEye Studio [13], an integrated development environ-
ment (IDE) for motion estimation. The language contains
a preprocessor for macro facilities that include conditional
(if ) and loop (for, while, do) statements. The language also
has facilities directly related to the motion estimation pro-

Estimo C source code
s = 8; // initial step size

check(0, 0);
check(0, s);
check(0, −s);
check(s, 0);
check(−s, 0);
update;

do {
s = s/2;
for (i = 1 to 5 step 1) {

check(0, s);
check(0, −s);
check(s, 0);
check(−s, 0);
update;
#if (WINID == 0)

#break;
}
} while (s > 1);

for (x = −0.5 to 0.5 step 0.25)
for (y = −0.5 to 0.5 step 0.25)

check(x, y);
update;

Program memory
00: 0 05 00 check 5 pts, offs 00
01: 0 04 05 check 4 pts, offs 05
02: 2 00 0b if WINID is 0, goto 0b
03: 0 04 05 check 4 pts, offs 05

· · ·
0b: 0 04 09 check 4 pts, offs 09
0c: 2 00 15 if WINID is 0, goto 15

· · ·
15: 0 04 0d check 4 pts, offs 0d
16: 2 00 15 if WINID is 0, goto 1f

· · ·
1f: 1 04 0d chk 25 frac pts, offs 11
↑

opcode
0 integer check pattern
1 fractional check pattern
2 conditional jump

Point memory
00: 00 00 integer (0, 0)
01: 00 08 integer (0, 8)
02: 00 f8 integer (0, −8)

· · ·
11: fe fe fractional (−0.5, −0.5)
12: fe ff fractional (−0.5, −0.25)

· · ·
29: 03 03 fractional (0.5, 0.5)

Fig. 2. The Estimo C code for a motion estimation algorithm
and excerpts of the target files generated by the compiler.

cessor’s instruction set, such as checking the SAD of a pat-
tern consisting of a set of points, and conditional branching
depending on which point from the last pattern check com-
mand had the best SAD. The compiler converts the program
to assembly and then to a program memory file containing
instructions and a point memory file containing patterns.

Fig. 2 shows an example block-matching algorithm writ-
ten in Estimo C and excerpts from the target files. The al-
gorithm is a diamond search pattern executed for up to 5
times for a radius of 8, 4, 2, and 1 pixels, followed by a
small full search at fractional pixel level. The first set of
check() and update() commands create the first search pat-
tern, which consists of 5 points. Each check() command
adds a point to the search pattern being constructed, and the
update() command completes the pattern. This pattern is
compiled into the instruction at program address 00, which
uses the 5 points available in the point memory at addresses
00–04. The preprocessor goes through the do while loop
3 times, with s taking the values 4, 2 and 1. Each time, a
4-point pattern is checked for up to 5 times. The #if (WINID
== 0) #break command ensures that if a pattern search does
not improve the motion vector estimate, it is not repeated.
The final lines create a 25-point fractional pattern search.

4. CYCLE-ACCURATE SIMULATOR

Designers may need to know how much time a particular al-
gorithm takes to determine the motion estimation vectors. It
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Fig. 3. Screenshot of the SharpEye IDE used to analyse motion estimation algorithms and processor configurations.

would also be very useful to be able to choose configuration
parameters for the motion estimation processor depending
on the particular requirements of the design.

Doing this analysis on the actual processor can be com-
plicated and time consuming. The tasks required include
synthesizing a processor with some specific configuration
and measuring the time used by the processor to perform
the motion estimation. A cycle-accurate simulator of the
processor can speed up the development cycle significantly
by reducing the number of tasks required by the designer
to analyse a particular configuration. Additionally, the de-
signer does not need access to the hardware when using the
simulator.

A cycle-accurate model of the processor was developed
as part of the toolset. x264 [11], a free software library
for encoding H.264, was modified to use the cycle-accurate
model; motion estimation in x264 was modified to use the
cycle-accurate model instead of its own block searching al-
gorithms when searching for the motion vectors.

The cycle-accurate simulator can be used directly from
the SharpEye IDE described in Section 3. The designer can
design a motion estimation algorithm and test it using dif-
ferent processor configuration parameters. Fig. 3 shows a
sample session.

The simulator takes several parameters as inputs. The
inputs which determine the processor configuration are: the
program and point memories generated by the Estimo com-
piler, the number of IPEUs and FPEUs, the minimum size
for block partitioning, whether to use motion vector cost op-
timization, and whether to use multiple motion vector candi-
dates. The simulator takes other options which do not affect
the processor configuration itself, which are: the video file to
process and its resolution, the maximum number of frames
to process, and the quantization parameter (QP).

The simulator will then process the video file using the
selected search algorithm and processor configuration, and
give the following outputs: the bit rate of the compressed
video, the peak signal-to-noise ration (PSNR), the number
of frames processed per second (fps) assuming a clock rate
of 200 MHz, the number of clock cycles required per mac-
roblock, and the energy requirements per macroblock.

The designer can simulate and analyse various config-
urations by using the simple controls in the configuration
window, and then generate plots or view the results in a ta-
ble. When he is satisfied with a particular configuration, he
can generate a VHDL file which can be used together with
the rest of the core hardware register transfer level (RTL)
library to synthesize the motion estimation processor.
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Fig. 4. Graph of PSNR against bit rate for the pedes-
trian area sequence using the hexagonal search algorithm
(a) without and (b) with Lagrangian motion vector cost op-
timization for different sub-partition configurations.

5. ANALYSIS OF MOTION ESTIMATION
ALGORITHMS FOR HD VIDEO SEQUENCES

A number of 1920 × 1080 HD test video sequences from
[14] were analysed in different ways.

In H.264, it is possible to sub-partition the 16× 16 mac-
roblocks into smaller blocks, and perform a motion estima-
tion search for each sub-partition. An experiment was per-
formed to measure the effect of macroblock sub-partitioning
when encoding HD video sequences. The experiment was
performed first without motion vector costing, that is, dur-
ing the motion estimation search, the cost of encoding the
motion vector itself was ignored. Fig. 4(a) shows the PSNR
against bit rate with no sub-partitions allowed, with sub-
partitions of size≥ 8×8 allowed, and with sub-partitions of
size≥ 4×4 allowed. The experiment was repeated with mo-
tion vector costing using Lagrangian optimization. Fig. 4(b)
shows the PSNR against bit rate with the Lagrangian opti-
mization. In both cases, the pedestrian area video sequence
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Fig. 5. Graph of PSNR against bit rate for the pedestrian
area sequence using the hexagonal search algorithm with
Lagrangian optimization for different search ranges.

and the hexagonal search algorithm were used. Fig. 4(a)
indicates that without Lagrangian optimization, partition-
ing the 16× 16 macroblocks into smaller partitions actually
gives worse results for HD sequences. For HD sequences
objects are usually large in terms of pixels, so while sub-
partitioning during the motion estimation search can provide
lower SAD costs, there is little to be gained by splitting the
macroblock into smaller partitions. There is a cost to be paid
however; if for example the macroblock is split into four
8×8 sub-partitions, 4 motion vectors have to be encoded in-
stead of only 1. Fig. 4(b) shows that if Lagrangian optimiza-
tion is used, the compression performance obtained when
using sub-partitioning is much nearer to that obtained when
not using sub-partitioning. Unlike in the case of Fig. 4(a),
the cost of encoding the motion vectors themselves is taken
into consideration, so sub-partitioning does not degrade the
coding performance. However, no improvement is obtained
for the extra complexity. This experiment thus indicates
that for HD sequences, sub-partitioning offers no gain while
adding to the coding complexity. The experiment was re-
peated using different HD sequences with similar results.

Another experiment was performed to see what effect
the range of the search has. Fig. 5 shows that when us-
ing the hexagonal search algorithm on the pedestrian area
sequence, increasing the search range from 8 pixels to 16
pixels and then to 32 pixels will improve the coding perfor-
mance considerably, while increasing the range from 32 pix-
els to 64 pixels and then to 128 pixels will improve the cod-
ing performance less. The improvement is more pronounced
when coding for lower quality. Similar results were obtained
when using other search algorithms, and when coding differ-
ent video sequences. Table 2 compares the results obtained
when using 5 different motion estimation search algorithms:
exhaustive (full) search, UMH search [5], hexagonal search



Table 2. Bit rate and PSNR obtained for the pedestrian area
sequence using different search algorithms with QP = 26,
Lagrangian optimization, and different search ranges.

Range 8 Range 32 Range 128
Search Bit rate PSNR Bit rate PSNR Bit rate PSNR

algorithm Mbit/s dB Mbit/s dB Mbit/s dB
Exhaustive 8.748 41.9 7.045 41.7 6.151 41.6
UMH 7.946 41.8 6.775 41.7 6.195 41.6
Hexagonal 8.434 41.9 6.914 41.7 6.282 41.6
Diamond 8.657 41.9 7.019 41.7 6.304 41.6
Xilinx 8.746 41.9 7.157 41.8 6.442 41.7

[4], diamond search, and the search algorithm employed by
the Xilinx motion estimation engine [9]. In HD sequences,
a relatively small movement by an object translates to mo-
tion by a large number of pixels because of the high reso-
lution, so performance suffers considerably when the search
range is limited. Table 3 compares the results obtained when
coding differenct video sequences. Notice the results for the
two most difficult sequences to encode, tractor and riverbed.
For tractor, increasing the search range from 8 to 32 gives
a very large improvement, because it has fast motion, but
for riverbed, where the difficulty is not due to fast motion,
increasing the search range does not help much.

6. CONCLUSION

The paper has presented the LiquidMotion reconfigurable
motion estimation processor and the SharpEye integrated
development environment for the design of algorithms and
for the exploration of the processor’s design space. The
presented toolset is useful in producing a processor con-
figuration and a block-matching search program efficiently
without needing knowledge of the underlying microarchi-
tecture or of the instruction set of the processor. The exper-
iments conducted show that for motion estimation in high
definition video, sub-partitioning the macroblocks, while in-
creasing the complexity, does not improve the coding per-
formance. Experimental results also show the effect of the
search range on the coding performance for high definition
videos. The toolset is available at the download section of
http://sharpeye.borelspace.com/. The cycle-
accurate simulator and full source code are also available.
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