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Abstract

This work investigates how scalable video coding can be incorporated as part
of a universal reconfigurable compression system. This universal compres-
sion system can adapt its architecture for different compression algorithms
suitable for different kinds of data, such as general data, image data, and
video data. Although these algorithms are fundamentally different, they
have common components, which means that savings in hardware complex-
ity, energy and overall costs are possible with the use of reconfiguration and
shared blocks.

Scalable video coding is one of the compression modes of the universal
compression system, and generates a video bitstream such that quality can
be sacrificed for a lower bit rate after a video sequence has already been
encoded, without the need of further processing. This work investigates
such a scalable video coding algorithm that can exploit the block sharing
and the specialization required in the reconfigurable architecture, with the
constraints of offering fine-grained scalability and low hardware complexity.

The video coding algorithm makes use of motion vectors, vectors that
describe the motion of blocks within a video frame relative to another frame.
This work presents the design of an algorithm to encode these motion vec-
tors in a scalable manner using multi-layer motion vector palettes, allowing
the video bitstream to be scaled to low bit rates. This scheme is used
with a wavelet-based video coding system. The compression performance is
analysed and the results obtained compare favourably to the JSVM refer-
ence encoder of the state-of-the-art SVC extension to H.264. The proposed
scheme provides finer-grained scalability over a wider range of bit rates, and
requires less processing and memory.

The suitability of the algorithm for implementation in reconfigurable
hardware systems is investigated. This work demonstrates the suitability of
the algorithm for encoding high-definition video sequences in real time.
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Chapter 1

Introduction

1.1 Aim

The aim of this work is to investigate how scalable video coding can be

incorporated as part of a reconfigurable universal compression system.

1.2 Scalable video coding

Scalable video coding (SVC) systems are video coding systems that pro-

duce one video bitstream from which several embedded bitstreams can be

extracted without the need of further processing. The source video sequence

is encoded only once, generating an output video bitstream with the maxi-

mum available quality. From this output bitstream, it is possible to extract

several subsets that have different qualities, without the need of further

coding. This is suitable for providing multiple video bitstreams of different

quality, and requires less processing than the alternative which is to encode

each of these needed bitstreams independently.

SVC is becoming more popular in recent years, with emerging systems

using either hybrid schemes based on current video standards [1] or using

approaches based on wavelets for both the spatial and temporal dimensions

[2].

The H.264/AVC [3,4] standard adopted a scalable video extension in its

version 8 [3]. There is also a reference implementation of this extension,

the Joint Scalable Video Model (JSVM) software for SVC [5]. This scheme

is called a hybrid scheme, since it uses predictive coding for the tempo-
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CHAPTER 1. INTRODUCTION

ral dimension, that is, to remove redundancy in the time dimension, and

transform coding for spatial redundancy.

Since the early 1990s, work on video coding based on motion compen-

sation for wavelets has been present in the literature [6–8]. Wavelet coding

has been used for scalable coding of both images [9–12] and video [13–17].

While video coding using wavelets could be hybrid as well, by using pre-

dictive coding between frames and the wavelet transform for spatial coding

within frames, most wavelet coding schemes use wavelet coding for both the

temporal and spatial dimensions.

Most current video coding systems make use of motion estimation. Mo-

tion estimation generally involves dividing a video frame into macroblocks,

and then, for each macroblock, searching for a similar macroblock in a refer-

ence frame that is available to both the encoder and the decoder. The offset

of the matching macroblock in the reference frame is known as a motion

vector. The motion vectors are encoded as side information to the frame

data. At low bit rates, the bit rate allocated to the motion vectors becomes

a significant fraction of the total bit rate, so scalable coding has been used

for the coding of the motion vectors themselves [18,19].

1.3 Reconfigurable universal compression system

Reconfigurable hardware has become a popular platform for signal process-

ing. For a long time, there have been reconfigurable hardware systems for

applications that are intensive on computation [20–22]. Moving the most

intensive parts of algorithms from the general processor to hardware imple-

mentations can result in average speedups by a factor of three to five, and

in average energy savings of 35% to 70% [23].

As an example of the use of reconfigurable hardware for signal processing

and compression, a lossy hyper-spectral image compression system based on

SPIHT [10] is presented in [24], and a lossless image compression based on

predictive coding is presented in [25]. Both of these works are aimed as space

systems such as satellites, where the flexibility of reconfigurable hardware to

be modified to use newer algorithms and fix bugs is critical. Another lossy

image compression algorithm, EBCOT [11], has become popular recently;

the JPEG 2000 [26] standard is based on EBCOT. Hardware systems have

been designed to execute the algorithm efficiently [27–29]. Recent work
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1.4. OBJECTIVES

on image compression systems for space applications uses reconfigurable

hardware as well [12, 30]. This shows the increasing use of reconfigurable

hardware for digital signal processing applications.

Reconfigurable hardware has been used for compression. This work aims

to complement an existing body of work developed within our research group

towards a universal compression system. The system includes generic com-

pression [31, 32], lossless predictive image compression [33, 34] and lossless

predictive video compression [35]. The lossless video compression system in-

cludes a motion estimation engine [36], which can be used by the developed

SVC system as well.

It is worth mentioning the MPEG Reconfigurable Video Coding (RVC)

standard [37]. This standard provides a framework for different components

in a video coding system to be used with other components from other video

coding systems. This means that for RVC only video coding is involved. On

the other hand, the work presented here is different, since it is aimed to form

part of a universal compression system with other kinds of data.

1.4 Objectives

This work aims to provide a hardware-amenable SVC system for use with

the existing universal compression system. The main objectives are:

1. to investigate the existing universal compression system, and how an

SVC algorithm can be incorporated into it,

2. to investigate the scalable encoding of motion vectors such that they

can be included in the video bitstream generated by the scalable video

system,

3. to investigate and analyse an SVC algorithm that generates a video

bitstream which is scalable through a large range of bit rates, from low

bit rates to high bit rates, without the need of reencoding, and that is

compatible with the existing universal compression system,

4. to analyse the compression performance of the algorithm to ensure it

has good compression performance comparable to other SVC systems,

5. to design for low complexity so that the algorithm is amenable to

3
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hardware implementations, and demonstrate the suitability of the al-

gorithm for hardware implementations.

The presented SVC system is based on wavelets, and is thus scalable

through a large range of bit rates. As mentioned in Section 1.2, at low bit

rates, the motion vectors themselves need to be encoded in a scalable way.

A system to scale the motion vectors by making use of a multi-layer motion

vector palette is presented in this work, enabling scalability to low bit rates.

Throughout the design of the proposed SVC scheme, effort was made

to keep the complexity as low as possible so that the algorithm is suitable

for hardware implementation. The suitability of the algorithm for hardware

implementation was demonstrated by means of VHDL implementation and

simulation of the main components. The control logic itself is not the most

intensive task of the compression scheme, so it can be implemented using

either a separate general purpose processor, or a soft-core processor on top

of the reconfigurable system itself.

As an example of the use of such an SVC system, consider a space ap-

plication which has to transmit video. In space applications, it is usual to

require very high quality representation of important parts in the camera’s

view. However, there may be large parts of the image which are not im-

portant. Transmission bandwidth is expensive in space applications. To

reduce the bandwidth requirements, a scalable compression system can be

used, where the data can be compressed retaining all of the original data

obtained from the camera. Then, a lower quality subset of the compressed

video bitstream can be produced and transmitted using much less band-

width than would be required for the lossless data. If a part of the video

sequence is deemed to be important, a request can be sent back to ask for

more data. Using a scalable compression scheme has two major advantages

for such a scheme. Firstly, the lower quality subset can be obtained from the

lossless video bitstream without the need of further processing. Secondly,

data that has already been transmitted does not need to be retransmitted,

as the refinement data builds on the lower quality subset that was already

transmitted. Processing and bandwidth are both very expensive in space

applications, making scalable coding an attractive line to pursue.
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1.5 Outline

Chapter 2 includes background material required for the understanding of

later chapters. It also presents existing work in the area of image and video

compression, and existing work related to the hardware components de-

signed within this project.

Chapter 3 presents the existing reconfigurable universal compression sys-

tem. The scalable video coding algorithm developed within this project was

designed to be compatible with this universal compression system.

Chapter 4 investigates a method to encode the motion vectors produced

by the motion estimation engine in a multi-layer motion vector palette. This

enables the motion vectors to be encoded in a scalable manner.

Chapter 5 investigates the next steps in the scalable coding of video,

which are motion-compensated temporal filtering (MCTF), two-dimensional

wavelet transforms, and entropy coding. The chapter includes an analysis

of the memory requirements of the system.

In Chapter 6, the performance of the proposed scalable video coding is

analysed and compared to Motion JPEG 2000 and to JSVM. The chapter

shows that the performance matches, and sometimes beats, the performance

of JSVM for high-definition video sequences while the processing and mem-

ory requirements are much less than those of JSVM.

Chapter 7 demonstrates that the SVC system is suitable for reconfig-

urable hardware systems. It presents the design of hardware components to

be used with the reconfigurable universal compression system, and includes

details of how the hardware cost of some components was reduced.

Finally, Chapter 8 highlights the achievements of the project, and gives

some indications for future developments.
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Chapter 2

Background and Related

Work

This chapter presents the background required for the understanding of

later chapters, and describes existing related work. It also points out the

limitations in the existing work that this work tries to address.

Section 2.1 introduces image compression systems which form the basis

of our video coding scheme. Section 2.2 introduces wavelet coding for both

the spatial dimensions and the temporal dimension. Section 2.3 describes

progressive coding of images using wavelets, and Section 2.4 describes video

coding techniques such as motion estimation and scalable video coding. Sec-

tion 2.5 describes some existing work related to the design of hardware com-

ponents of the scalable video components designed in this work.

2.1 Image compression

Image compression can be either lossless or lossy. In lossless compression,

the original image is restored exactly bit by bit after decoding. The mini-

mum compressed size is bound by the entropy of the original image. Lossy

compression is used when there is no need to retain an exact bit-by-bit copy,

and some information can be lost. This does not necessarily mean that the

quality will be poor. For example, the original image can be noisy, and if

the noise introduced by lossy compression is less than the original noise, the

quality will not be affected. Of course, when using lossy compression, some

quality can be sacrificed for a further reduction in the size of the compressed

7
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Figure 2.1: Theoretical basis against launch year for image compression in
satellite systems [38, Figure 8].

bitstream.

2.1.1 Satellite image compression

An overview of image compression systems used on board satellites is pre-

sented in [38]. The systems are separated into systems using Block Trun-

cation Coding (BTC) [39], those that are based on predictive coding, those

that are based on the discrete cosine transform (DCT) [40], and those that

are based on discrete wavelet transforms (DWTs) [41]. Prediction-based

systems are used more widely for lossless compression, while the transform-

based systems are used more when lossy compression is required. Figure

2.1 shows what basis is used for compression systems according to the satel-

lite launch year. Prediction based systems were and still are popular, since

they are very effective for lossless compression, which is sometimes a re-

quirement. DCT systems, which suffer from blocking artefacts, are losing

popularity to wavelet systems, which are gaining popularity due to their

very good performance in compressing at low bit rates. Figure 2.2 shows

what implementation approach is used for compression systems. ASICs are

quite popular, however FPGAs are becoming popular in recent years. This

may be because they are cheaper and easier to develop than ASICs, since

to develop an ASIC takes a long time and has to be done in large volumes

to be economically feasible. However, regular FPGAs are susceptible to

single event upsets (SEUs) in space, creating a need for radiation-hardened

FPGAs.

One of the aims of this work is to provide a system which is suitable for

space applications. This survey justifies the choice of the wavelet transform

8
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Figure 2.2: Implementation approaches against launch year for image com-
pression in satellite systems [38, Figure 10].

for lossy image compression, and for the selection of an FPGA platform, by

showing their increasing use.

2.1.2 Lossy image compression

The most popular techniques for lossy image compression are based on trans-

form coding. The image is transformed using a transform such as the DCT

or the wavelet transform. Information is typically lost when quantizing the

transformed image.

When JPEG was introduced, wavelet coding was still new, and the DCT

was well established. At the time, the performance of wavelets was not

better than that of the DCT, so the JPEG committee adopted the DCT

for the lossy JPEG standard. However, new wavelet techniques led to the

adoption of wavelet-based coding for the newer JPEG 2000 [26] standard

[42]. JPEG 2000 is being used by the GEZGIN image compression payload

on the Turkish statellite BilSAT-1. It will also be used by the GEZGIN-2

payload for the Turkish RASAT and by the Parallel Processing Unit for

Singapore’s X-SAT [38]. In 2005, the CCSDS published a recommended

standard for image compression that uses the wavelet transform [43]. This

standard, which supports both lossy and lossless image compression, has

not yet been used in space [38]. Again, these works indicate the growing

popularity of wavelet transforms in video coding applications.
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Figure 2.3: One level of one-dimensional wavelet decomposition.

2.2 Wavelet coding

Wavelets are a tool for decomposition of signals into bands of different fre-

quencies [41]. Wavelets can be used for decomposition in both the spatial

dimensions and the temporal dimension. The spatial dimensions refer to

the two-dimensional space domain of an image. The temporal dimension

refers to the time dimension of a video sequence. Wavelet transforms can

be obtained by filtering the original signal for as many times as required.

2.2.1 Wavelet filtering

One level of one-dimensional wavelet decomposition is obtained by subject-

ing the signal to a low-pass filter and a high-pass filter. Since the output of

each of the filters has a frequency range that is half the frequency range of

the original signal, it is typical to downsample the output of the two filters

by a factor of two as shown in Figure 2.3 [41]. The decimation does not lose

any information since the output of both filters has a frequency range that

is half that of the original signal. If there are n input values, there will be n

output values, n/2 from the low-pass filter and n/2 from the high-pass filter.

The filters in the decomposition stage are called analysis filters.

The reverse process is similar. One level of one-dimensional wavelet

reconstruction is obtained by upsampling the low-pass signal by two and

passing it through a low-pass filter, upsampling the high-pass signal by two

and passing it through a high-pass filter, and adding the two resulting sig-

nals, as shown in Figure 2.4 [41]. The filters in the reconstruction stage are

called synthesis filters.

Multiple levels of the transform can be made by repeating the filtering

and decimation on the output of the low-pass filter while leaving the output

of the high-pass filter unchanged [41].
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Figure 2.4: One level of one-dimensional wavelet reconstruction.
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Figure 2.5: One level of wavelet filtering using lifting.

2.2.2 Wavelet filtering using lifting

A fast implementation of the wavelet transform using a technique called

lifting is presented in [44]. Lifting is an efficient construct to obtain the

wavelet transform which gives the same results as those obtained using the

traditional filters shown in Figures 2.3 and 2.4. Figure 2.5 shows how the

analysis filter of Figure 2.3 can be implemented using lifting. The Predict

and Update blocks in the figure are not stateless. The filtering is performed

in two stages, the first stage being the predict step and the second stage

being the update step. Decimation is achieved by splitting the input into

alternate values before the predict and update steps. Since from every two

values one is passed to one branch and the other value is passed to the other

branch, there is no need to decimate the output, which means that no values

are calculated only to be decimated in the next step.

The high-pass output is available after the prediction step, and the low-

pass output is available after the update step. These outputs can be written

as

h2k+1 = x2k+1 − α(x2k + x2k+2) (2.1)

l2k = x2k + β(h2k−1 + h2k+1), (2.2)

where h2k+1 are the high-pass outputs and l2k are the low-pass outputs.

Notice that the high-pass and low-pass output values alternate for even and
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Figure 2.6: One level of two-dimensional wavelet decomposition obtained by
a horizontal transform followed by a vertical transform.
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Figure 2.7: Second-level and third-level two-dimensional wavelet decompo-
sition.

odd input values.

2.2.3 Two-dimensional wavelet transforms

For the wavelet transform in the spatial domain, we need a two-dimensional

transform. One level of the two-dimensional transform can be obtained

by first applying a one-dimensional transform to all the rows of the input

signal, and then repeating on all the columns [41]. After doing this, the

output consists of four parts as shown in Figure 2.6: (a) LL0 for horizontal

low-pass and vertical low-pass, (b) HL0 for horizontal high-pass and vertical

low-pass, (c) LH 0 for horizontal low-pass and vertical high-pass, and (d)

HH 0 for horizontal high-pass and vertical high-pass.

For multiple levels of the two-dimensional transform, the transform is

repeated on the horizontal low-pass and vertical low-pass output only, while

leaving the other three parts unchanged. Figure 2.7 shows two more levels.

In the second level, LL0 is decomposed into LL1, HL1, LH 1 and HH 1, and

in the third level, LL1 is decomposed into LL2, HL2, LH 2 and HH 2.

Usually, to perform the wavelet transform, the whole image to be trans-

formed is stored in memory and then the transform is performed on the
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Figure 2.8: An example of symmetric extension at an image boundary.

whole image. A line-based wavelet image compression method that uses less

memory is presented in [45]. In line-based wavelet image compression, the

horizontal transform is performed in the usual manner. The vertical filtering

is performed as soon as there are enough transformed lines. The compres-

sion performance can suffer slightly because less information is available to

the encoder at any time; whereas usually the whole image is available for

analysis by the encoder, when using the line-based transform less lines are

available. Synchronization is another issue that has to be given care.

Line-based lifting wavelet transforms are also used in [46] for a hard-

ware architecture for motion JPEG 2000. The scheme includes symmetric

extension [47] along the edges. Symmetric extension is commonly used in

wavelet transforms since it does not suffer from boundary effects. Figure

2.8 shows an example of a symmetric extension. The values on the left are

the extended values which are used during filtering of the actual values to

remove boundary effects.

In [46], however, the symmetric extension is only applied in the horizontal

direction, where only a few pixels need to be stored to reflect an edge. In

the vertical direction no symmetric extension is applied, because whole lines

would be required to be stored in memory. Our work aims to avoid this

limitation and to find a solution which provides symmetric extension for

both the horizontal and vertical direction without a penalty in complexity

or memory requirements.

The wavelet transform performance depends on the filter coefficients. In

JPEG 2000, there are two sets of filter coefficients which may be used, one

13
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Table 2.1: Coefficients for the Daubechies 9/7 analysis and syn-
thesis filters [49].

Analysis coefficients Synthesis coefficients
n Low-pass hn High-pass gn Low-pass hn High-pass gn
0 0.602949 0.557543 0.557543 0.602949
±1 0.266864 −0.295636 0.295636 −0.266864
±2 −0.078223 −0.028772 −0.028772 −0.078223
±3 −0.016864 0.045636 −0.045636 0.016864
±4 0.026749 0.026749

Table 2.2: Coefficients for the Le Gall 5/3 analysis and syn-
thesis filters [50].

Analysis coefficients Synthesis coefficients
n Low-pass hn High-pass gn Low-pass hn High-pass gn
0 6/8 2/2 2/2 6/8
±1 2/8 −1/2 1/2 −2/8
±2 −1/8 −1/8

for an irreversible transformation suitable for lossy compression, and one for

a reversible transformation suitable for both lossless and lossy compression

[48]. The irreversible transform is obtained using the Daubechies 9-tap/7-

tap filter [49], and the reversible transform is obtained using the Le Gall

5-tap/3-tap filter [50]. Table 2.1 shows the filter coefficients for the 9/7

filter and Table 2.2 shows the filter coefficients for the 5/3 filter.

As well as being reversible, the 5/3 filter, has the advantage that it can

be implemented using shift and add operations in hardware. In hardware,

the 9/7 filter would require fixed point multiplication to be implemented.

This renders the 5/3 filter more attractive than the 9/7 filter for hardware

solutions.

For standard wavelets filters, few wavelet bases can compete with the

performance of the 9/7 filter, and it is hard to improve the performance

it achieves significantly [51]. For certain image processing applications,

such as denoising, wavelet frames with nearly shift-invariant properties show

promise [52], but they are expansive, that is, the number of wavelet coef-

ficients produced is larger than the number of input samples [53], which

complicates their possible use in compression applications.

Early wavelet coding used sub-band coding techniques, but this had
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several problems [42]. The method was not suitable for low bit rate ap-

plications. It was also difficult to encode an input to an exact target bit

rate. New wavelet coding techniques were then developed, starting with

EZW coding published in 1993 [9]. EZW coding uses successive approxi-

mation quantization: after the wavelet transform stage, the most significant

wavelet transform outputs are encoded first. This requires the position of

the most significant coefficients to be encoded, and this is done efficiently

using zero-trees, data structures designed for EZW.

2.3 Progressive image coding

EZW has an important property resulting from its successive approximation

quantization; it generates an embedded code representation. This means

that during coding, if the number of bits generated is the required amount

to reach the desired bit rate, the coding process can stop and the coding

is complete. For a higher bit rate, the coding process can simply continue

until the required number of bits are generated. To generate a lower bit rate

from an existing coded image, all that is needed is the truncation of the bits

at the end. The same general idea applies to scalable video coding (SVC),

which is the video equivalent to progressive coding for images.

In 1996, SPIHT [10], a new implementation based on set partitioning

in hierarchical trees, was introduced. SPIHT is an improvement on EZW

coding that does not need to transmit the position data explicitly. If the

entropy coding stage is omitted, SPIHT shows only a small loss in perfor-

mance. Similar to EZW, in SPIHT coding the most significant information

is coded first, producing a progressive code.

In 2000, the EBCOT [11] algorithm was published. EBCOT is based on

independent embedded block coding with optimized truncation of the em-

bedded bitstreams. Apart from the good compression performance, EBCOT

produces a bitstream with many features, such as resolution scalability. For

progressive coding, EBCOT uses bit plane coding. With bit plane coding,

the output values of the wavelet transform are not encoded value by value,

but bit by bit. All the bits with a significance of 2k are in the same bit

plane and are encoded together before the bits from the next bit plane with

significance 2k−1 are encoded. Thus, the bit plane containing the most sig-

nificant bits is encoded first, and the bit plane containing the least significant
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bits, that is, the bit plane with significance 20 = 1, is encoded last. If the

bitstream is truncated, only the least significant bits are lost.

Context modelling is tied to bit plane coding in EBCOT. The context

of a pixel in the bit plane is determined from the value of the bits of the

same pixel and its neighbours in more significant bit planes. EBCOT uses

arithmetic coding for the entropy coding stage. The EBCOT algorithm was

adopted with modifications as the basis of the JPEG 2000 image compression

standard [11].

The Mars Exploration Rover (MER) space mission in 2004 used another

image compression algorithm, ICER [12]. In many ways, ICER is similar to

EBCOT and JPEG 2000. ICER supports seven different invertible filters

for the wavelet transform. It uses a bit plane coding technique based on

that used in EBCOT. For entropy coding, ICER uses interleaved entropy

coding [54].

The standard recommended by the CCSDS for image compression [43]

supports progressive coding as well. It uses a three-level two-dimensional

wavelet transform with a 9/7 filter, followed by a bit plane encoder. The

simple entropy coder in the standard uses variable-length binary codes. This

standard is aimed at high-rate instruments such as those on board space-

craft, aiming for low complexity to allow fast and low-power hardware im-

plementation.

Our work takes inspiration from EBCOT and ICER for the spatial com-

pression component. This is because ICER is a good fit for our requirements,

since one of its original goals was to provide image compression for space

applications and so it has low complexity.

2.3.1 Bit plane coding and context modelling

We have already mentioned that in EBCOT, the outputs values of the

wavelet transform are not encoded one value at a time, but one bit plane

at a time. If the value with the largest amplitude in one code block has

K significant bits, there are K bit planes to encode. The most significant

bit plane contains all the bits with significance 2K−1 from all the values in

the code block. The least significance bit plane contains all the bits with

significance 20 = 1 from all the values in the code block.

Before encoding a bit plane, the plane is divided into sub-blocks and the

significance of each sub-block is encoded. A sub-block is significant if any of
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its pixels is significant. If an eight-bit pixel has the binary value 00010010,

it is not significant for the three most significant bits, then, starting from

the first 1 it becomes significant, and remains significant for all the five least

significant bits.

The significance of the code block is encoded in a hierarchical manner.

For example, if the code block contains 256× 256 pixels, it is first split into

four sub-blocks of 128 × 128 pixels each, and the significance of each sub-

block is encoded. If a sub-block is not significant, the process ends there,

but if a sub-block is significant, it is divided into four further sub-blocks of

64× 64 pixels each and the significance of each sub-block is encoded. This

is repeated down to sub-blocks of 16 × 16 pixels each, for a maximum of

4 + 16 + 64 + 256 = 340 bits.

For the next bit plane, this process will be repeated, but if a sub-block

was significant in a previous bit plane, it is still significant, so its significance

does not need to be reencoded.

We have seen that when a sub-block has just become significant, it is

divided into four sub-blocks and the significance of each is encoded. If the

first three are not significant, then the fourth must be significant, and does

not need to be encoded.

In all, there are three cases where significance is not encoded:

1. If the parent sub-block is not significant, then the sub-block cannot be

significant.

2. If the sub-block was already encoded as significant in a previous bit

plane, then it is still significant.

3. If the parent sub-block is significant, and the three sibling sub-blocks

are not significant, then the sub-block must be significant.

The bit plane coding and significance coding described above is from

EBCOT. EBCOT also has a context modelling scheme, which is slightly

modified in ICER. In our work, we use the bit plane coding and signifi-

cance coding of EBCOT, and the context modelling of ICER, which will be

described now.

The context modelling makes use of the significance of the pixel being

encoded and of its neighbouring pixels. Each pixel is given a category, which

can take a value from 0 to 3. If a pixel is not significant, it has category 0.
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If a pixel has just become significant, its category remains 0, then becomes

1 for the next bit plane, 2 for the bit plane after that, and 3 for all the bit

planes after that. Thus, if a pixel has the binary value 00010010, it has

category 0 for the three most significant bit planes. The fourth bit plane is

encoded using category 0, but since the fourth bit is a 1, the category will

be changed to 1. The fifth bit is encoded using category 1, the sixth bit

is encoded using category 2, and all the remaining bits are encoded using

category 3.

The most important category to encode well is category 0, and it has

nine contexts assigned to it. The context depends on which of its neigh-

bouring pixels are significant at the time of encoding. Category 1 has two

contexts, and category 2 has one context. The bits in category 3 are nearly

incompressible, so they are not encoded using arithmetic coding and need

no contexts [12].

Other than the twelve contexts described above, there are five contexts

for the sign bit. The sign bit is encoded just after the first significant bit of

a pixel is encoded. For our number 00010010, in the fourth bit plane, the

1 bit is encoded using one of the contexts for category 0, then the sign bit

(which is not shown in the representation) is encoded in one of the contexts

for the sign bit. The context for the sign bit depends on the significance

of the neighbouring pixels, and to the sign of the significant neighbouring

pixels.

2.4 Video compression

Video compression has some similarities to image compression, as each frame

in a video sequence is an image. But video has another dimension, the

temporal dimension. To compress video effectively, we need to cater for

temporal redundancy as well as spatial redundancy.

Modern coding standards such as VC-1, AVS and H.264/AVC [3, 4]

use motion estimation and compensation to compress across frames. In

H.264/AVC, a frame is split into macroblocks, and for each macroblock the

best match is found from reference frames. Once a match is found, the

difference between it and the macroblock is found, and this residual is en-

coded instead of the macroblock. Since the residual usually has pixels with

smaller amplitudes than those of the original macroblock, it can be encoded
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using fewer bits. The motion vector, that is, the coordinates of the matching

block, has to be encoded as side information.

2.4.1 Motion estimation

Motion estimation is the process of searching for a matching macroblock in a

reference frame. It is called motion estimation since in effect it is estimating

the motion of objects from one frame to another. The relative offset of a

macroblock in the reference frame is called a motion vector.

Previous work [55] shows that motion estimation is the most expensive

operation in the H.264/AVC encoder, representing up to 90% of the total

complexity. This indicates that to design a video coding system where com-

plexity is an important consideration, it is important to consider the motion

estimation search.

Full search motion estimation algorithms have gained popularity in hard-

ware implementations owing to their regularities, which make it possible to

implement motion estimation hardware using systolic arrays [56]. Many

other approaches, such as the hexagonal search algorithm [57] and the un-

symmetrical multi-hexagonal search algorithm [58], do not perform an ex-

haustive search on full point regions. The use of these block-matching algo-

rithms can make the estimation process faster by requiring less computations

than a full search. Although the full-search algorithm is usually believed to

yield optimal rate-distortion performance, it has been shown that a well-

designed fast block-matching algorithm can provide better rate-distortion

performance owing to its ability to track real motion more accurately [59].

There are various hardware implementations of motion estimation al-

gorithms. Processors with instruction set architectures (ISAs) tailored for

block-matching search algorithms, are presented in [60] and [61]. Xilinx

have a motion estimation engine [62] that computes the sum of absolute

differences (SAD) for a set of 120 search locations within a 112× 128 search

window in parallel. None of these cores offer the possibility of matching the

hardware architecture and the search algorithm to optimize performance. In

this work, we use a motion estimation engine developed within our research

group that is an application-specific instruction-set processor (ASIP) [63].

This engine can be tuned to a particular application domain so that it uses

the least possible hardware cost.

The motion estimation process can be performed in various different
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ways, and it is up to the designer to choose the strategy. Other than the

search strategy itself, other choices include whether to use multiple motion

vector candidates in the search, the number of reference frames to which

to compare the macroblocks, whether the macroblocks are split into parti-

tions, whether to perform sub-pixel interpolation and search, and whether

to include the cost of encoding the motion vector itself during estimation.

Because of the number of design parameters and their complexity, the de-

sign space can be very large, and exploring this design space to find design

parameters that are optimal can be complex and ultimately application de-

pendent.

As part of this work, tools were developed for the configuration of the

motion estimation processor. A toolset was developed for the optimization

and generation of configuration data for a high-performance motion esti-

mation processor. The toolset makes the process of finding the optimal

hardware configuration and software parameters faster. A cycle-accurate

simulator is included, making it possible to change the parameters and test

the configuration in a short time without requiring hardware access.

The idea of configurable processors itself is not new, there is also similar

work on configurable generic processors, like the Xtensa configurable pro-

cessor [64] from Tensilica. Designers can choose configuration parameters

and generate a custom processor optimized for their needs. The options

include support for 16 × 16-bit multiplication, a floating point unit, a bar-

rel shifter, zero overhead looping, and others. Tensilica also provides the

XPRES compiler, a tool for design space exploration.

2.4.2 Scalable video compression

Progressive image coding, which was presented in Section 2.3, provides a

bitstream that can be used to generate a lower quality bitstream by simply

using only a subset of the bits. Scalable video compression is the counterpart

of progressive image coding for video coding.

In some scalable video coding algorithms, the encoder keeps track of the

bitstream being decoded by the decoder. Different decoders can receive dif-

ferent subsets of the same bitstream, and will thus have a different state,

so the encoder has to maintain multiple motion compensation loops to ac-

commodate all the different decoders. This makes the encoder complex, and

limits the number of possible output scales [65].

20



2.4. VIDEO COMPRESSION

As an alternative to this strategy, motion adaptive temporal wavelet

transforms are presented as a means to deal with temporal redundancy

in [65]. Using a 5/3 wavelet kernel for temporal filtering is shown to have bet-

ter compression performance than using the Haar wavelet or a 1/3 wavelet

kernel, which are the most basic wavelet filters.

Scalable quantization after the temporal and spatial transforms can be

obtained using embedded block coding as in EBCOT, which was presented

in Section 2.3.

2.4.3 Hybrid video coding

Hybrid video coding schemes are called hybrid because they use different

techniques for the spatial and temporal dimensions, typically predictive cod-

ing in the temporal dimension and transform coding in the spatial dimen-

sions.

The SVC extension to the H.264/AVC video compression standard is

such a hybrid video coding scheme [1]. Scalability is achieved on three dif-

ferent levels, temporal scalability, spatial scalability and quality scalability.

Temporal scalability is achieved using hierarchical prediction structures as

in H.264/AVC. Frames are not encoded in chronological order. The frames

in the temporal base layer are encoded first, then the frames in the next lay-

ers, which may be interleaved within the frames in upper layers. This does

not add complexity to H.264/AVC, which already uses hierarchical temporal

prediction structures. But H.264/AVC is already very complex, especially

for low complexity systems like space applications which have more stringent

complexity constraints than other platforms.

For spatial scalability, the lowest resolution layer is encoded first, then

the higher resolution layers. Macroblocks in a layer can be predicted using

matching blocks in the same layer, or matching blocks in layers with a lower

resolution. For a block in a lower resolution to be used in prediction, it has

to be scaled up. Also, for a block in a lower resolution to be usable, it has to

be decodable without needing access to a block with yet a lower resolution.

This last condition is to limit the decoder complexity, limiting the amount

of computation required to decode one macroblock.

Our work uses wavelet transforms in both the temporal and spatial do-

main. As shown in Figure 2.7, the two-dimensional wavelet transform has

spatial scalability intrinsically. If the higher-level bands are discarded, the
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image is automatically scaled down in the spatial dimensions. The same can

be done in the temporal dimension.

The SVC extension for H.264/AVC also supports quality scaling, with

a number of scales available, with low quality layers being encoded first

followed by quality refinement layers. This has to be done carefully, as

discarding quality refinement packets will cause drift between the motion

compensation loops of the encoder and the decoder. To leave the refinement

packets totally out of the motion compensation loop would result in a loss in

compression performance. The concept of key pictures is introduced in SVC

to control the drift, where some key frames do not depend on any refinement

packets to be decoded. These key pictures help to bring drift back down

whenever they occur in the bitstream. It is worth noting that the quality

scalability in SVC for H.264/AVC is limited to a fixed number of possible

output scales, that is, it is not finely-scalable. Our work uses schemes similar

to EBCOT for quality scalability across different frames and does not suffer

from drift, so there is no need for complexity to handle drift.

One of the objectives of our work is to provide a simpler algorithm that

is less complex than H.264/AVC. Also, SVC for H.264/AVC achieves coarse-

grained scalability using multiple layers, the quality of which is specified in

the encoding process. The transform coefficients in each layer can then be

further split into several quality layers, providing medium-grained scalabil-

ity. Our work aims to offer fine-grained scalability, such that no quality

specification is required during the encoding process, that is, the encoded

bitstream will have a quality ranging from the lowest to the highest obtain-

able quality.

2.4.4 Systems based on wavelets

Hybrid video coding schemes use different strategies for dealing with tempo-

ral and spatial redundancy, most commonly predictive coding for temporal

redundancy and transform coding for spatial redundancy. Systems based

on wavelets use the same strategy, specifically wavelet transform coding, for

both temporal and spatial redundancy.

Wavelet-based SVC systems can have one of several architectures for

motion compensation. The most popular is the T+2D architecture, which

stands for temporal + two-dimensional spatial, where motion-compensated

temporal filtering (MCTF) precedes the two-dimensional spatial DWT. This
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system is the simplest and most intuitive, with its drawback being difficult

spatial scalability.

Some systems use the 2D+T architecture, where the two-dimensional

spatial transform is done first, but this makes MCTF difficult because of

the shift variant nature of the two-dimensional DWT. A proposed solution

for this is to transform the complete DWT to an over-complete DWT [66],

but the complexity and memory requirements increase significantly with

the number of spatial wavelet decomposition levels. Even so, the coding

efficiency of 2D+T systems is worse than that of T+2D systems, especially

at high resolutions [2]. There are also adaptive architectures that propose

to select 2D+T or T+2D according to the content, and multi-scale pyramid

architectures, sometimes referred to as 2D+T+2D, that try to combine the

two [2]. The system proposed in this paper is based on the T+2D architec-

ture because of the complexity of the other architectures.

Early MCTF work used the Haar filter [6–8,13,14] for filtering in the tem-

poral dimension. Later works demonstrate the advantages of using wavelet

filters with longer kernels [15–17], mainly the 5/3 filter. The system pre-

sented in this dissertation uses the 5/3 filter for its MCTF stage.

Wavelet filtering using lifting makes use of a prediction step and an

update step as described in Section 2.2.2. For temporal filtering, we can

treat frames in a similar manner to the way we treat values in (2.1) and

(2.2). If the input frames are F0, F1, F2, . . ., then the prediction step and

update step can be written as

H2k+1 = F2k+1 − α(F2k + F2k+2) (2.3)

L2k = F2k + β(H2k−1 +H2k+1). (2.4)

These two equations are not catering for motion compensation yet. For the

prediction step (2.3), the pixels in F2k and F2k+2 have to be mapped to their

matching pixels in F2k+1. For the update step (2.4), H2k−1 and H2k+1 from

the prediction steps have to be mapped back to match the pixels in F2k.

In MCTF, a motion-estimation search is typically performed to generate

motion vectors that are used for motion compensation in the prediction

step. The reverse of these motion vectors are then used in the update step.

Since multiple macroblocks may be matched to the same macroblock in the

reference frame, motion estimation yields a many-to-one mapping, and this
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has to be taken into account when reversing the motion vectors for the

update step. In [16], when there are more than two pixels in a prediction

frame H2k−1 that are mapped onto the same pixel in a frame F2k, only

one of the pixels is used, and the others are discarded. In [17], the motion

compensation in both the prediction and update steps is modified so that for

one pixel, instead of using one other pixel from each adjacent frame, multiple

pixels are used with a weighting function, in a technique named barbell

lifting. In [15], instead of using motion vectors, motion compensation is

done by warping the frames to account for the motion; this method assumes

a unique motion trajectory and so has no pixel collisions. Our work aims to

use a more accurate value than the single value used in [16], while avoiding

the complexity of the systems in [17] and [15].

2.4.5 Scalable motion vector coding

At high bit rates, the bit rate taken by the motion vectors themselves is

insignificant. At low bit rates, however, the bit rate taken by the motion

vectors becomes significant. In [18], motion vectors are split into several lay-

ers for motion vector scalability. A motion estimation search is performed

for each layer, and in each refinement layer, the motion vectors from the pre-

vious layer are used as motion vector candidates in the motion estimation

search. This system has the disadvantages that motion-estimation searches

have to be performed more than once, and each refinement layer will only

use the motion vectors from previous layers as motion vector candidates.

When a new motion estimation search is performed, the starting point can

be the motion vector from the previous layer, but a complete search is still

performed. Recall that motion estimation is one of the most time consum-

ing parts in typical video coding algorithms, so this strategy is not very

attractive when low complexity is a goal.

The work in [65] and [19] achieves scalable motion vector encoding with-

out requiring multiple motion estimation passes. Our work takes this route

to avoid the need for multiple motion estimation searches, which are very

time consuming. In [65] and [19], scalable motion vector encoding is achieved

by quantizing the motion vectors themselves. The motion vectors are trans-

formed along the temporal domain and in the spatial domain using reversible

DWTs, and then the coefficients are encoded using bit plane coding in the

same way as image data is encoded in EBCOT. The errors introduced by
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Figure 2.9: Rate-distortion performance of various rate-allocation strategies
for motion vectors [19, Figure 7].

quantizing the motion parameters are analysed, and a framework is pre-

sented that scales both the motion parameters and the samples obtained

from the wavelet transforms jointly. Two techniques to distribute the bits

between motion parameters and samples are presented: a brute force search

method, and a model-based rate allocation strategy. Figure 2.9 shows a typ-

ical result from the presented experiments. The non-scalable curve shows

the achievable quality if no scalability is used, that is, for each point in the

curve, the encoder had to be run. The lossless motion curve, on the other

hand, retains all the motion vector information and only scales the image

data. This shows the problem we are trying to solve very well: at low bit

rates, the bit rate used by the motion vectors themselves becomes the major

part of the total bit rate, and motion vectors alone do not provide a signal,

so the PSNR suffers. The other two curves show a scalable system where

the motion vectors are scaled together with the image data. The brute force

method produces a slightly better output than the model-based method,

but requires more computation. Both methods are better than using loss-

less encoding of the motion parameters and lossy encoding of the samples,

especially at low bit rates.

The schemes just seen treat the motion vectors as if they were images.

Our algorithm aims to achieve better performance by not treating the motion
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vectors as images, but as vectors, which should make it possible to tailor

the algorithm specifically to the required use case. This can be achieved by

encoding motion vectors using a motion vector palette. This makes use of

the fact that many motion vectors will have similar values; if a large object is

moving, the macroblocks showing the object would have similar values, and

can be mapped onto the same motion vectors in the motion vector palette.

A divisive clustering technique can be used to split the set of motion vectors

into clusters, which in the end are used to generate a palette of motion

vectors. This palette can then be split into layers.

Palettes of motion vectors have already been proposed for motion vec-

tor coding in [67], but that scheme is not aimed for scalable coding of the

motion vectors, and no layers for scalable encoding are used, such that each

set of motion vectors is encoded independently. Our work aims to overcome

this limitation and use multi-layered motion vector palettes. In the designed

multi-layer coding scheme, each refinement layer for the motion vector en-

coding would add to the number of possible values in the palette, that is,

each layer would enlarge the motion vector palette.

In [67] motion vectors are split into clusters using a popularity algorithm,

that is, counting which motion vectors are more popular. This does not lend

itself well to splitting the final palette into layers. This work investigates

the use of a divisive clustering technique, where each cluster division can be

recorded and the information used later when splitting the final palette into

layers.

A divisive clustering technique that is suitable for adoption by such a

scheme is presented in [68]. The work in [68] is targeted at colour quanti-

zation with palettes, while in this work palettes would be used for motion

vector quantization. Also, the divisive clustering technique would have to

be adapted to support multi-layered coding.

Once the palette of possible motion vector values is selected, the palette

and motion vectors would need to be encoded. In the refinement layers for

the motion vector palettes, rather than encoding the motion vector values

themselves, the difference in the motion vector values from the values for a

lesser-quality layer are encoded.

Generating the palette is only the first step. After the palette generation

and encoding, the motion vectors have to be encoded as index values pointing

to the motion vector values in the palette. A method to encode such index
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values is presented in [69], where colour pixels are encoded for palette images

using two-dimensional context models. The work in [69] uses 512 different

contexts for this encoding process. This number of contexts can be too high

for this work, so the use of a smaller number of contexts is investigated in

this work. A smaller number of contexts may be required for the adaptive

encoder to settle earlier, as the number of macroblocks for a typical frame

is much smaller than the number of pixels in a typical image, and using

too many contexts means that the contexts take longer to adapt, making

the use of a large number of contexts counter-productive. Also, the method

would need modifications to support the encoding of the values in layers for

scalable encoding.

2.5 Hardware amenability

The scalable video compression system presented in this work can be di-

vided into two parts: motion-compensated temporal filtering, and image

compression of the temporally filtered frames. Temporal filtering removes

the temporal redundancy between frames, and then the temporally filtered

frames are individually encoded using an image compression algorithm based

on wavelets. Hardware systems for image compression based on predictive

coding, such as [25] and [30], are not suitable for scalable video compression,

as predictive coding is only suitable for lossless compression.

There are hardware systems, such as [27], for progressive image compres-

sion, which would be suitable for scalable video coding. The ICER image

compression algorithm is hardware amenable, as it was designed for reconfig-

urable hardware implementation for space missions. The image compression

subsystem used in this work is very similar to ICER. Although it is similar

to ICER, the system presented in this dissertation has some differences. It

is designed in such a way that it can be used as one component of a system

which is dynamically reconfigurable to handle different kinds of data, with

the use of other components that handle generic data [31], lossless image

and video compression [34,35], and motion estimation [36].

In this work, we present hardware components that include the encod-

ing of motion vectors using palettes. The motion vector palette encoding

algorithm makes use of divisive clustering, which in turn requires the compu-

tation of eigenvalues. A system for hierarchical K-means clustering system
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is presented in [70]. While that system is flexible and suitable for a range

of problems, it is quite complex. This work investigates the use of a more

specialized clustering technique that is sufficient for motion vector palette

encoding at a lower hardware cost, since there is no need for the flexibility

provided by [70].

As mentioned above, the clustering algorithm requires the calculation of

eigenvalues. A generic system for the calculation of eigenvalues is presented

in [71], but again, the generic nature of the system makes complexity an

issue, and it uses two CORDIC [72] units to calculate the eigenvalues. In

this dissertation, a hardware component tailored to the specific algorithm

requirements will be presented. Since it does not need to be generic, it can

have a lower hardware cost; for example, the operations are pipelined in a

way that only one CORDIC unit is required.

The scalable image compression component of this paper is based on

the discrete wavelet transform with lifting, similar to the system described

in [46]. In [46], the wavelet transform uses symmetric extension at the edges

in the horizontal direction, but not in the vertical direction, in order to avoid

buffering extra whole lines. In the hardware design for our work, symmetric

extension at the edges in the vertical direction is achieved without the need

of extra buffering.

2.6 Conclusion

This chapter presented existing work in image and video coding and in

scalable video coding, as well as hardware components related to the scalable

video coding algorithm investigated in this work. The areas in which this

work aims to provide improvements were pointed out.
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Chapter 3

Reconfigurable Universal

Compression

This chapter presents a reconfigurable universal compression system devel-

oped within our research group. The various components of the universal

compression system, and how they work together, are presented. This chap-

ter also indicates where the new components of this work fit in the universal

compression system.

Section 3.1 describes how dynamic reconfiguration can be used in a uni-

versal compression system. Section 3.2 introduces the different stages in the

universal compression system, and which stages can be shared for multi-

ple kinds of data. Section 3.3 talks about some kinds of data that can be

compressed using this system. Section 3.4 describes the architecture of the

reconfigurable universal compression system, including the scalable video

coding components which are proposed in this work. Section 3.5 gives a

brief overview of the different stages in the proposed scalable video coding

scheme.

3.1 Dynamic reconfiguration

To enable compression of different kinds of data without the need to recon-

figure the whole system for each kind of data, the compression process is

partitioned into multiple stages, some of which are common to all kinds of

data.

One reconfigurable device can be used to encode different kinds of data.
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Some parts are common to different kinds of data, and some other parts can

be reconfigured for the specific kind of data that is being compressed at a

particular time. The reconfigurable parts can be reconfigured dynamically

on modern FPGAs.

On Xilinx dynamically reconfigurable FPGAs, the configuration bit-

stream of a part of the FPGA can be changed using the internal config-

uration access port (ICAP), while the rest continues to operate [73]. The

ICAP enables these devices to reconfigure themselves without the need of

an external configuration controller.

Reconfiguring the FPGA dynamically introduces some configuration de-

lay. This means that the number of reconfigurations should be kept as low

as possible. If possible, data streams of the same kind should be compressed

one after the other, without a different kind of data in between, to reduce

the number of reconfigurations [74, 75]. The reconfiguration bitstream can

be optimized using bitstream compression techniques developed within our

research group and presented in [76].

This dissertation presents a scalable video coding (SVC) algorithm that

reuses components of the existing universal compression system. For exam-

ple, the motion estimation engine required by the SVC is already a part of

the universal compression system when used for lossless video coding, re-

ducing the amount of reconfiguration required to go from the lossless video

mode to the scalable video mode.

3.2 Statistical compression in three stages

The universal compression process can be partitioned into three stages [32]:

1. context data modelling,

2. probability estimation, and

3. arithmetic coding.

Some kinds of data may require some preprocessing to prepare them for

these stages. The preprocessing stage can be considered as a part of the

context modelling for the scope of these three stages.

Figure 3.1 shows an overview of the universal lossless compression system

described in [32]. The first stage, context data modelling, is a dynamically
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Figure 3.1: Overview of universal lossless compression system.

reconfigurable stage: a different configuration will be used for each kind of

data. The second and third stages are statically configured, and are common

to multiple kinds of data.

In arithmetic coding [77], a message is encoded as a probability interval.

In the beginning of the process, the interval is [0, 1). Each time a symbol

is to be encoded, the current interval is split into subintervals, one for each

possible symbol, and the subinterval corresponding to the symbol to encode

is selected as the new current interval.

For memoryless sources, the symbol probabilities of the symbols are the

same throughout the message. However, most information sources are not

memoryless, that is, the symbol probabilities often depend on the previously

encoded symbols. We can say that the symbol probabilities depend on the

context in which the symbols are.

The job of the first stage, context modelling, is to determine which con-

text to use to encode a symbol. From the message symbols that have already

been encoded, a context is identified. Each context will hold information on

how probable each symbol is, and the second stage, probability estimation,

splits the probability interval into subintervals. The third stage, arithmetic

coding, encodes the probability interval into a number of bits.

3.2.1 Context modelling

Context modelling is the process of identifying a context for the symbol to

be encoded. Each context has its own set of symbol probabilities. When
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a symbol is to be encoded, the context is identified using only the symbols

preceding it. The symbol itself may not be used in determining the context,

otherwise the decoder will have less information than the encoder, and will

not be able to identify the context.

The PPMH [31] algorithm is a generic compression algorithm that is

suitable for hardware implementation. This algorithm can be used to com-

press generic data using the three stages above. In the context modelling

stage, the n preceding symbols are used in an n-order model. These symbols

are used to identify a context to encode a symbol. This is achieved using a

tree structure in memory, where each tree node corresponds to a context.

As another example, when compressing two-dimensional images, the

value of a pixel will depend on all previous pixels which are in the vicinity of

the pixel to compress. These will not necessarily be the previous n encoded

pixels. LMMIC [34] is a predictive lossless scheme for compressing images.

In this scheme, the context is identified using a number of symbols in the

vicinity of the symbol to be encoded. Unlike the PPMH scheme, which uses

only the symbol values in identifying a context, the LMMIC scheme does

not identify a context using only pixel values. The context is chosen using

various techniques, including image segmentation, run length coding, and

image gradients.

It is worth noting that the algorithms used for context modelling can

be very different. For example, the context modeller for PPMH uses a

tree structure to store the different contexts, while the context modeller for

LMMIC does not.

3.2.2 Probability estimation

An implementation of the probability estimation stage is presented in [31].

Once the context modelling stage identifies a context for a particular symbol,

the probability estimator will use a memory area associated with the context.

The estimator uses the symbol to determine the subinterval to pass to the

arithmetic coder. In an adaptive system, the estimator also has to update

the context information with the symbol, so that if a symbol is very common

and needs to be encoded multiple times, the number of bits required to

encode it will become smaller every time.

For each context, the probability estimator uses a balanced binary tree to

store the symbols of the alphabet and their frequency counts. An additional
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symbol, the escape symbol, is used when the symbol being encoded has a

frequency count of zero in the tree. If the alphabet size, that is, the number

of different possible symbols that can be encoded, is 2k, the depth of the

required binary tree is k + 1. To fully encode a symbol using this binary

tree, it is enough to encode one binary decisions at each level of the tree.

This means that after at most k + 1 binary decisions, the symbol is fully

encoded.

Using the binary tree of depth k + 1 from [31] to encode a symbol in

a 2k-size alphabet has two main advantages. Firstly, the arithmetic coding

stage does not need to be a complex multi-bit symbol arithmetic coder;

a binary arithmetic coder is sufficient. Secondly, updating the frequency

counts is achieved with a single update operation for each visited node while

traversing the tree. Traditional arithmetic coders maintain frequency counts

in a cumulative form. In cumulative form, updating frequency counts for

symbols at the bottom of the range affects the cumulative values of all

symbols higher in the range. The presented tree requires only one update

for each tree node visited, so a constant cycle count is obtained when the

design is moved to hardware.

The proposed SVC scheme makes use of bit plane coding. A probability

context will be found for every bit in each bit plane. Since the scheme

works on bits rather than k-bit symbols, it does not need the tree required

for a k-bit probability estimator, and can use a simpler one-bit probability

estimator.

3.2.3 Arithmetic coding

The final stage of the PPMH algorithm mentioned in Section 3.2.1 is the

arithmetic coder. A suitable arithmetic coding engine is described in detail

in [78].

As described in Section 3.2.2, the arithmetic coder does not need to be a

complex multi-bit symbol coder; only a binary arithmetic coder is required.

The algorithm used is based on the Z-coder [79], which is a generalization of

the Golomb-Rice coder [80] for lossless compression. The Golomb run-length

coder for binary symbols has some limitations which make it unsuitable for

adaptive codes; it is not suitable to encode events when the event probability

changes within the message. The Z-coder adapts Golomb coding to provide

a coding system that can be used for adaptive entropy coding of binary
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symbols.

The Z-coder itself is further modified to be hardware amenable in [78];

the modified algorithm is the MZ-coder. The MZ-coder balances the com-

plexity of coding the most probable symbol (MPS) and the least probable

symbol (LPS). This balancing is useful since the reconfigurable hardware

implementation used encodes one binary symbol per clock cycle. Having

low complexity for the MPSs at the cost of higher complexity for the LPSs

can be a good idea for a program running on a traditional processor, but it

can lead to higher complexity in the slowest data path on an FPGA, leading

to a lower clock frequency. The MZ-coder also simplifies the precision of

the arithmetic and allows for a fully pipelined architecture. The proposed

work uses this encoder since it fits well with the requirement of a binary

arithmetic encoder.

3.3 Different kinds of data

The ability to dynamically reconfigure a universal compression system is

desirable, but its use would be limited if the compression performance suf-

fered in order to have reconfiguration capabilities. For the scheme described

in Section 3.2 to be attractive, the compression performance needs to be

comparable to the performance for stand-alone compression algorithms. To

demonstrate that compression performance does not need to be sacrificed,

this section gives details about existing lossless image and video coding al-

gorithms within this reconfigurable framework.

3.3.1 Images

The LMMIC scheme presented in [34] is a lossless image compression scheme

developed within our group. It uses the three-stage architecture, models

images using multiple modes. Once the mode and context are determined

from the image, the probability estimation and arithmetic coding stages

will compress the data. The compression performance of this algorithm is

compared to the performance of other lossless image compression schemes

in [33]. The algorithm is aimed at high-speed space applications, so relevant

test data was used. The system outperforms other schemes in terms of bits

required per pixel, and processes one bit per clock cycle. This translates to

a throughput of 100 Mbit/sec on a Xilinx Virtex-4 SX35 FPGA.
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The performance of the LMMIC scheme demonstrates that it is possible

to design algorithms that fit the three-stage architecture of Section 3.2 and

still obtain a compression performance comparable to the best available

techniques.

3.3.2 Video

In the same way that LMMIC compresses images using the three-stage ar-

chitecture, there are video coding schemes that use such an approach in

stages.

A lossless video compression algorithm that uses adaptive prediction is

presented in [81]. The algorithm uses both spatial and temporal prediction.

The prediction stage is followed by a context-based arithmetic coder. This

algorithm could be fitted into the reconfigurable three-stage architecture;

the preprocessing and context identification sections can become the recon-

figurable context modelling stage, while the static probability estimator and

arithmetic coder can be used for the final stages of the algorithm. The pre-

sented experimental results demonstrate that this algorithm performs well

compared to other available lossless video compression schemes.

Another lossless video compression scheme, which was developed in our

research group, is BAPME [35]. The BAPME lossless video compression

scheme is built on top of the LMMIC lossless image compression scheme,

with motion estimation techniques similar to [81], and gives good results as

well. Once again, this demonstrates that using the three-stage architecture

for compression does not result in a loss in compression performance.

The scheme of [81] performs lossless video coding without encoding any

motion vectors to reduce the amount of side information required. The

motion compensation stage of this scheme performs a motion estimation

search for each individual pixel instead of trying to find a match for a whole

macroblock. The search is performed using a window of pixels close to the

pixel that is being processed. Suppose that the pixel pi(x, y) in frame i is

being processed. A corresponding pixel pi−1(x+m, y+n) in frame i−1 needs

to be found. To find m and n, a window of neighbouring pixels wi(x, y) that

have already been encoded and that are close to the pixel pi(x, y) is used.

A match wi−1(x+m, y+n) for this window is found in the reference frame,

giving us the values of m and n. Then the value of pi−1(x+m, y+n) is used

in predicting the value of pi(x, y). When the decoder is trying to decode
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pi(x, y), it will have the values of frame i− 1 and of wi(x, y), so the decoder

can perform the same search and get the value of the pixel pi−1(x+m, y+n).

The decoder does not need the values m and n as side information, since it

can repeat the motion estimation search itself.

This technique is used in BAPME, which is a lossless video coding

scheme, as well. This work investigates whether this behaviour is suitable

for SVC.

The motion estimation search in the algorithm by [81] is an exhaustive

search. In BAPME, a fast motion estimation search is used for motion

estimation in pixel-based predictive lossless video compression. A fast dia-

mond search technique is used to find the matching window in the reference

frame. Since our algorithm is in the same reconfigurable system as BAPME,

we reuse the same fast motion estimation search that is used by BAPME,

which gives a speed improvement over full search algorithms without loss in

compression performance.

Whereas the two schemes described above are for lossless video coding,

the scheme presented in this work is a lossy video coding scheme. For lossy

video compression, similar to the case of lossy image compression, transform

based coding is more widely used than predictive coding. This work aims to

provide a compression performance that matches other lossy video coding

algorithms, which would indicate that compression in stages does not require

a loss in performance

3.4 System architecture

Figure 3.2 shows the reconfigurable system for universal compression. The

encoder at the top is for lossless data compression. It treats input as one-

dimensional data, and uses statistical Markov modelling for context mod-

elling. Such a system is presented in [31], together with details about a

probability estimator for k-bit words and arithmetic coding.

The second encoder is for lossless image compression using predictive

coding which makes use of the same probability estimation and arithmetic

coding techniques: the LMMIC system mentioned in Section 3.3.1. When

changing the configuration of the system from one-dimensional data com-

pression to lossless image compression, the probability estimator and arith-

metic encoder may be retained, and only a part of the system has to be
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Figure 3.2: A universal reconfigurable compression system, with shaded
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data.
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reconfigured. The third encoder is for lossless video compression, and uses

the BAPME coding system mentioned in Section 3.3.2. Motion estimation

is required for video compression, so a motion estimation block is included in

the diagram. Details about the suitable hardware motion estimation block

developed by our group are presented in [36].

The last two blocks shown in Figure 3.2 are for scalable video compres-

sion and scalable image compression, sometimes called progressive image

compression. Whereas predictive coding is most suitable for lossless com-

pression, lossy compression of image and video is typically obtained using

transform coding, such as the discrete wavelet transform (DWT). As indi-

cated by the figure, the scalable video compression system is a superset of

the scalable image compression system. Also, the scalable video compres-

sion system shares the motion estimation engine and the arithmetic encoder

with other compression systems.

3.5 Scalable video coding

Figure 3.3 shows a basic overview of the encoding process for the SVC

method proposed in this dissertation. It corresponds to the scalable video

compression block in Figure 3.2. The system is a T+2D system, that is, tem-

poral filtering followed by two-dimensional spatial filtering. The resultant

video bitstream is scalable in time, in space, and in quality.

If three levels of temporal decomposition are used, the frame rate can be

reduced to 1/2, 1/4, or 1/8 of the original frame rate by dropping frames. If

three levels of spatial decomposition are used, the spatial dimensions can be

reduced to 1/2, 1/4, or 1/8 of the original dimensions, with the area thus begin

reduced to 1/4, 1/16, or 1/64 of the original area. The quality of the output

can be reduced using fine-grained scalability. If a reversible two-dimensional

DWT is used, a video sequence can be scaled all the way from lossless to the

least acceptable quality. If a non-reversible two-dimensional DWT is used,

the encoder cannot encode losslessly, but the sequence can still be scaled

from very high quality to the least acceptable quality.

3.5.1 Scalable motion vector coding

The motion estimation stage generates motion vectors describing the motion

between frames. The motion estimation processor searches for the motion
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Figure 3.3: An overview of the encoding process for T+2D SVC with motion
vector palettes.

vectors that best describe the motion of the video, which are then encoded

as part of the compressed video bitstream. In order to have scalable coding

of the motion vectors themselves, the vectors are encoded in multiple layers.

This is done using motion vector palettes, which will be described in Chapter

4.

3.5.2 Motion-compensated temporal filtering

The next step is to use the motion vectors in motion-compensated temporal

filtering (MCTF) using the 5/3 filter with lifting. This makes it necessary

for a number of frames to be held in memory. The details for this will follow

in Section 5.1.

3.5.3 Spatial wavelet filtering

The temporally-filtered frames are then encoded individually like images. A

two-dimensional DWT is performed on each frame. There are two options of

wavelet filters to use, the 5/3 filter for a reversible integer transform suitable

if the video sequence needs to be encoded losslessly, or the 9/7 filter.

3.5.4 Entropy coding of frames

Following the DWT step, each resulting wavelet band is encoded in turn.

The transformed bit planes are encoded starting from the most significant

bit plane. No fractional bit planes are used. Before context modelling, each
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bit plane is split into sub-blocks of 16 × 16 pixels, and the significance of

each sub-block is encoded like in EBCOT [11]. The significant sub-blocks

are then processed using the two-dimensional context modelling scheme used

in ICER [12], which is similar to EBCOT but is less complex, lending itself

better to hardware implementations. The context modelling uses 17 con-

texts, which are then used in adaptive arithmetic coding. The arithmetic

coding system used is the modified Z-Coder [82] that is suitable for hardware

implementations.

3.6 Conclusion

This chapter described the universal reconfigurable compression system and

indicated how scalable video coding can be incorporated into it. The com-

mon blocks that can be reused were indicated.
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Chapter 4

Scalable Motion Vectors

The video stream will consist mainly of two components, the motion vector

information, and the video frame information. This chapter analyses the

scalable encoding of motion vector.

Section 4.1 discusses the overhead incurred by encoding motion vectors

as side information and methods to reduce this overhead. Section 4.2 dis-

cusses the generation of motion vector palettes as a viable way to encode

motion vectors. Section 4.3 illustrates how the motion vector palette can be

encoded, and Section 4.4 illustrates how the motion vectors themselves can

then be encoded as indices pointing into this motion vector palette. Section

4.5 discusses why the motion vector palette is suitable for scalable coding.

Section 4.6 shows how the use of the layered motion vector palettes improves

the rate-distortion characteristic at low bit rates. Section 4.7 shows the gain

obtained by using palettes to encode the motion vector rather than using

wavelets as suggested by previous work.

4.1 Motion vectors as side information

In Section 3.3.2, we mentioned BAPME [35], which is used for lossless video

compression in the universal compression system. In BAPME, motion vec-

tors are not transmitted as side information. Instead, a pixel-based motion

estimation search is performed both at the encoder and at the decoder. Since

BAPME is lossless, the encoder and the decoder will be synchronized.
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4.1.1 No side information

An attempt was made to avoid side information with scalable video coding

(SVC), but this lead to the decoding failing whenever the full quality of the

video bitstream is not transmitted. Reduction in the quality of the video

bitstream leads to discrepancies between the data at the encoder and at

the decoder. A small reduction in quality will change the decoded pixels.

Since the lossy decoded pixels are different from the encoded pixels, a mo-

tion estimation search at the decoder will give motion vectors that can be

completely different from the motion vectors found at the encoder. This will

lead to larger discrepancies in the next decoded pixels. Thus, decoding was

found to fail catastrophically even with slight losses in quality, showing that

the technique used by BAPME to avoid transmitting motion vectors as side

information is not suitable for scalable video coding.

This suggests that using no side information does not work for scalable

video, and is suitable only for lossless video compression.

4.1.2 Extracting motion vectors from a base layer

As an alternative solution, an attempt was made to use two layers for the

video coding. The first layer, or base layer, is encoded first. Since it is always

transmitted in full, the decoder will have the exact same base layer as the

encoder, and the motion vectors can be extracted from this layer without

using any side information, just like in BAPME. Then, these motion vectors

can be used by the second layer, which is the scalable layer.

However, this did not give satisfactory results. When the base layer

has a low quality, the motion vectors extracted from the base layer are not

accurate, and lead to poor compression performance. For the motion vectors

to be accurate using this method, the base layer had to be of a high quality.

However, having a base layer of high quality is not suitable for SVC, since

then the quality cannot be scaled down sufficiently for low bit rates, and

the overhead can be actually worse than transmitting the motion vectors as

side information in the first place.

Figure 4.1 shows some typical rate-distortion curves obtained using this

method. The best curve in the set is obtained when intra-coding is used,

that is, when no base layer and no motion estimation are used and each

frame is encoded independently. When the base layer is of poor quality, at
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Figure 4.1: Typical rate-distortion curves obtained when extracting motion
vectors from base layers.

0.1 bits per pixel, the rate-distortion curve is much poorer, indicating that

the motion vectors obtained using a low quality base layer are of such bad

quality that they hinder the encoding process, making the curve lag the

intra-coding curve by more than 0.1 bpp. The curves for base layers with

better quality are not good either, they never recover the high bit rate spent

on the base layer for the motion vectors.

4.1.3 Scalable encoding of the motion vectors

The problem with encoding the motion vectors as side information is at low

bit rates. The bit rate of motion vectors is insignificant at high bit rates,

where the bit rate of the frame data for each frame will be much higher, but

at low bit rates this is not the case. A number of video sequences from [83]

at different resolutions were used to obtain bit rates for the motion vectors

and for the frame data. Table 4.1 gives some details on the sequences.

Table 4.2 shows the bit rate of the motion vectors and the bit rate of

the full quality frame data for the SVC scheme presented in this work.

Notice that at full quality, the motion vector bit rate is less than 1% for

practically all video sequences shown. However, if the frame data is scaled

to a lower quality, the situation changes and the bit rate used for motion

vectors becomes significant. If, for example, we need to scale the crowdrun
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Table 4.1: The video sequences used in experiments [83].

Sequence Resolution Details

crowdrun 1920× 1080 crowd of people running
riverbed 1920× 1080 riverbed seen through water, hard to code
rush hour 1920× 1080 many cars moving slowly, fixed camera
tractor 1920× 1080 chaotic movement, camera follows tractor

shields 1280× 720 man walking in front of detailed shields
stockholm 1280× 720 detailed houses, water and moving cars

coastguard 352× 288 boats moving on a river
foreman 352× 288 man talking and showing buildings

Table 4.2: Bit rate used by motion vectors and by frame data
for various video sequences.

Sequence Resolution Motion vectors Frame data
(bpp) (bpp)

crowdrun 1920× 1080 0.0055 2.84
riverbed 1920× 1080 0.0185 1.98
rush hour 1920× 1080 0.0073 1.37
tractor 1920× 1080 0.0076 1.73

shields 1280× 720 0.0015 2.35
stockholm 1280× 720 0.0017 2.39

coastguard 352× 288 0.0102 2.08
foreman 352× 288 0.0218 1.79

sequence down to a bit rate of 0.02 bits per pixel, which is about 1.5 Mbps,

the bit rate of the motion vectors would be around 25% of the whole bit

rate.

When motion estimation is performed, a video frame is split into a num-

ber of macroblocks, and a matching macroblock is found for each one in

a reference frame. The offset of the matching macroblock in the reference

frame relative to its location in the current frame is the motion vector of

the macroblock.

In order to decrease the overhead of the motion vectors at low bit rates, a

layered scheme for the motion vectors themselves was designed. The layered

scheme makes use of motion vector palettes.

The motion vector palette is a palette consisting of a limited number of

motion vectors that can be used for motion compensation in one frame. For

scalability, this motion vector palette is split into layers so that sections of
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it can be removed later without the need of re-encoding.

The size of the video bitstream used to encode the motion vectors is

smaller than the size of the bitstream used to encode the temporally filtered

frames. Scaling the motion vector information can have a large effect on

the quality. Thus, motion vector information is scaled only at low bit rates,

when the size used for the frames is reduced so much that it is comparable

to the size of the motion vectors, otherwise the loss in quality due to the

scaling of motion vectors is larger than the loss in quality due to the scaling

of frames by the same amount.

It is important to note that with wavelet temporal filtering, the effects

introduced into a frame will only propagate to a fixed number of frames.

For example, if one level of a 5/3 filter is used, the quantization errors in a

frame will propagate to a maximum distance of two frames. For two levels,

the maximum propagation distance is increased by a further four frames to

become six frames. For three levels, the maximum distance is increased by

eight frames to 14 frames. Thus, the drifting effects are limited and do not

go on indefinitely.

Using colour palettes for image coding usually shows visible artefacts,

since this quantizes the pixel values in the output image. Using motion

vector palettes does not imply that similar artefacts will be a problem in the

decoded bitstreams. Motion vectors are only used in reducing the temporal

redundancy before the final encoding of the image data. Quantization of the

motion vectors before the temporal filtering does not lead to quantization

errors in the output pixel values. In fact, it is possible to quantize the motion

vectors using motion vector palettes and obtain lossless encoding when using

the 5/3 reversible filter for the spatial dimensions.

4.2 Generating motion vector palettes

A method for palette generation for colour quantization is presented in [68].

This method was adopted to generate palettes of motion vectors instead of

colours, and it was modified to allow the splitting of the resulting palette

into a number of layers.

The method is essentially a divisive clustering technique starting with a

set containing all the motion vectors, and dividing into subsets as required.

If the number of macroblocks is n1, there are n1 motion vectors of the
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form

v1,j =

(
δx1,j

δy1,j

)
, 1 ≤ j ≤ n1. (4.1)

These motion vectors may be repeated, that is, two or more macroblocks

may have identical motion vectors. Let S1 be a set containing all the original

n1 motion vectors. We need to partition S1 into disjoint sets of the form Si,

where each Si is a set containing ni motion vectors vi,j , with 1 ≤ j ≤ ni. As

for the set S1, motion vectors may be repeated, however, identical motion

vectors will always be grouped into the same subset during partitioning,

that is, the sets will be disjoint. Each set Si has a mean value

mi =
1

ni

ni∑
j=1

vi,j . (4.2)

The final aim of the whole process is to obtain p distinct motion vectors

from the original n1 motion vectors. This is achieved by partitioning S1

into p sets. The mean of each of these sets will be used as one of the p

motion vectors in the palette. The motion vectors of the frame will then be

encoded as indices pointing to one of the p motion vectors in the palette.

That is, there will be p motion vectors in the palette, and n1 indices which

each point to one of the p motion vectors in the palette.

The partitioning has the structure of a proper binary tree. Figure 4.2

shows such a binary tree. The root node has an index i = 1 and represents

set S1. After one division, S1 is replaced by S2 and S3, which in Figure 4.2

is indicated by the root node 1 having two child nodes 2 and 3. The motion

vectors in the set represented by a parent node are split between the two

sets represented by the child nodes. Next, S2 is split into S4 and S5, and

this divisive clustering process continues until in the end there are p nodes.

In Figure 4.2, there are p = 9 leaf nodes representing the final nine sets.

The total number of nodes is 2p− 1 = 17.

During the partitioning, the choice of which set to split, and how to split

it, is made to minimize the total squared error TSE between the original

motion vectors and the resultant motion vectors, which is given by

TSE =
∑

all leaf
nodes i

ni∑
j=1

‖vi,j −mi‖2. (4.3)
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Figure 4.2: A binary tree with nodes representing sets of motion vectors.

To decide which set to split and how to split it, we need to calculate the

estimator Ri and the variance R̃i, which are given by

Ri =
1

ni

ni∑
j=1

vi,jv
T
i,j (4.4)

R̃i = Ri −mim
T
i (4.5)

for all leaf nodes i. Ri and R̃i are 2× 2 symmetric matrices.

As described in [68], the cluster variation in a set Si is greatest in the

direction of the vector ei which maximizes the expression

1

ni

ni∑
j=1

(
(vi,j −mi)

Tei
)2

= eTi R̃iei. (4.6)

Since R̃i is a symmetric matrix, this expression is maximized when ei is

an eigenvector corresponding to the principal eigenvalue λi of R̃i. This

principal eigenvalue λi and a corresponding eigenvector ei are calculated for

each set Si.

In each division, we increase the number of leaf nodes by one by splitting

one set represented by a leaf node into two subsets. Each time we need to

split a set, the leaf node i corresponding to the set Si with the largest

absolute value of λi is selected. If the number of leaf nodes in the binary

tree before the split is k, the total number of nodes is 2k−1. After the split

there will be a total of 2k + 1 nodes, of which k + 1 will be leaf nodes. The
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set Si will be split into sets S2k and S2k+1 according to

S2k = {v ∈ Si : eTi v ≤ eTi mi} (4.7)

S2k+1 = {v ∈ Si : eTi v > eTi mi}. (4.8)

Clearly, any identical motion vectors will go into the same set. After p− 1

divisions, the binary tree will have a total of 2p − 1 nodes, of which p are

leaf nodes.

4.3 Encoding the motion vector palette

Encoding the motion vector palette entails encoding many integers, the mag-

nitude of which is not known in advance. Section 4.3.1 shows a method to

encode these integers.

4.3.1 Encoding integers

Algorithm 4.1 shows an algorithm similar to exponential-Golomb coding [84]

that is used to encode the integers. A number of experiments on different

video sequences was performed, and on average, the modification produces

4.5% less bits than exponential-Golomb for integers typical to the palette

encoder of Sections 4.3 and 4.4. Algorithm 4.1 encodes a non-negative inte-

ger n. The decoder will not have information about how large n is, so the

exact number of bits required to represent n cannot be used by the encoder,

but an estimate e is used, and the better the estimate, the less bits are used

to encode n. For binary, the number of bits required to represent n is

r = dlog2(n+ 1)e. (4.9)

The algorithm is equivalent to exponential-Golomb coding when r ≤ e, but

differs when r > e.

As an example, let us encode the number 13 with an estimated number

of bits e = 6. The required number of bits is r = dlog2(13+1)e = 4. In fact,

13 is represented as ‘1101’ in binary, which is four bits wide. Since r ≤ e,

we encode 13 using the first branch, that will be ‘1’ (Line 3) followed by

‘001101’ (Line 4). Thus, 13 is encoded as ‘1001101’, using seven bits.

If the estimated number of bits is e = 2, we encode 13 using the second
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Algorithm 4.1 An algorithm to encode a non-negative integer n with e as
the estimated number of bits required.

1: r ← dlog2(n+ 1)e {required bits to encode n}
2: if r ≤ e then
3: write ‘1’
4: write n using e bits
5: else
6: write r − e ‘0’s
7: write n using r bits
8: end if

Table 4.3: The number of bits used to encode a non-negative in-
teger n using Algorithm 4.1 and using exponential-Golomb cod-
ing, with an estimated number of bits e.

Range of n r Bits used by Bits used by
Algorithm 4.1 exponential-Golomb

0 ≤ n/2e < 1 ≤ e e+ 1 e+ 1
1 ≤ n/2e < 2 e+ 1 e+ 2 e+ 3
2 ≤ n/2e < 3 e+ 2 e+ 4 e+ 3
3 ≤ n/2e < 4 e+ 2 e+ 4 e+ 5

...
...

...
...

2i−1 ≤ n/2e < 2i − 1 e+ i e+ 2i e+ 2i− 1
2i − 1 ≤ n/2e < 2i e+ i e+ 2i e+ 2i+ 1

...
...

...
...

branch, that will be ‘00’ (Line 6) followed by ‘1101’ (Line 7). In this case,

13 is encoded as ‘001101’, using six bits.

For the general case, if r ≤ e, the number of bits used to encode n will

be 1 for Line 3 plus e for Line 4, for a total of e + 1 bits. If r > e, the

number of bits used to encode n will be r − e for Line 6 plus r for Line 7,

for a total of 2r − e bits.

Table 4.3 compares the number of bits used by this algorithm to the

number of bits used by exponential-Golomb coding. In our case, excluding

the equivalent case of r ≤ e, the most common case is when r = e+ 1. This

explains why the modified algorithm gives better results than exponential-

Golomb in our use case, as it uses e+2 bits instead of the e+3 bits required

by exponential-Golomb.

The error E in the estimate e is E = |e − r|. If r ≤ e, then 1 + e
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Algorithm 4.2 An algorithm to encode an integer n with e as the estimated
number of bits required for its magnitude.

1: encode magnitude |n| with e estimated bits {Algorithm 4.1}
2: if n > 0 then
3: write ‘0’
4: else if n < 0 then
5: write ‘1’
6: end if

bits are used instead of the r bits required for simple binary representation,

resulting in an overhead of 1 +E bits. For example, to encode n = 13 with

an estimated bit size e = 6, the number of bits used is 1 + e = 7 instead of

the r = 4 bits required to encode 13.

If r > e, then 2r − e bits are used instead of the minimum required r,

resulting in an overhead of E bits. For example, to encode n = 13 with

e = 2, the number of bits used is 2r − e = 6 bits instead of the required

r = 4 bits.

The overhead is 1 + E when r ≤ e and E when r > e. In both cases,

for every extra bit of error in the estimate, one extra bit is wasted in the

encoding.

To encode integers that can be positive or negative, the algorithm is

extended as shown in Algorithm 4.2. First the non-negative magnitude of

the integer is encoded, then, a sign bit is written only if n 6= 0. This has

the advantage that unlike popular exponential-Golomb negative extensions,

no overhead is present when n = 0. This is particularly important for our

algorithm, which encodes differences in motion vectors between successive

layers, and for these differences, the case n = 0 is not uncommon.

4.3.2 Encoding the palette

To encode a motion vector palette with p entries, the number p is encoded

using Algorithm 4.1, with an estimated number of bits ep = 4. Although

this looks like a small number (a palette with more than 16 motion vectors

would require more than four bits), this is intended for multi-layer palettes,

where an initial value of ep = 4 is not bad. As shown in Section 4.3.1, an

error in the estimate ep will lead to higher bit overheads, so a system was

devised to adapt ep dynamically. If we need to write more than one palette,

as will be the case in Section 4.5 below, ep is updated after each value of p
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is encoded using

rp = dlog2(p+ 1)e (4.10)

new ep =
b3ep + 1/2c+ rp

4
. (4.11)

ep has a precision of 1/4, and its fractional part is discarded when used in

the algorithm that expects e to be an integer.

After encoding the number of motion vectors in the palette, we must

encode the p motion vectors themselves. Recall that each motion vector has

two components, δx and δy. The values δx and δy can be negative, so we use

Algorithm 4.2 for each component. To write the motion vector components

δx and δy of each motion vector, we start with an estimated number of bits

ev = 1. The value of this initial estimate is not really important, as after

each component of a motion vector is encoded, ev is updated in the same

way as ep in (4.10) and (4.11).

4.4 Encoding the motion vector indices

After the motion vector palette with p entries is encoded, the motion vec-

tors are encoded with reference to the palette, that is, each motion vector is

encoded as an index n in the range 0 ≤ n < p. The details of the designed

scheme for context modelling of the indices follow below. The scheme is sim-

ilar to [69], which is designed for colour palettes, but uses a much smaller

number of contexts. The small number of contexts is essential for the adap-

tive encoder to settle quickly: using more contexts means that the contexts

would take longer to adapt.

The indices are encoded using adaptive two-dimensional contexts. Figure

4.3 shows neighbouring motion vectors that are used in obtaining the context

for the current motion vector O . Each vector is encoded as the answer to

four questions:

1. Is the current motion vector O equal to W ?

2. Is the current motion vector O equal to N ?

3. Is the current motion vector O equal to NE?

4. What is the current motion vector O?
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Figure 4.3: Motion vectors for macroblocks neighbouring the current motion
vector O .

Table 4.4: The context number for encoding a motion vector.

Question 1 Question 2 Question 3
Is O = W ? Is O = N ? Is O = NE?

W = WW 1 W = NW 1 W = N 1
N = NW 2 N = NN 2 N = NNE 2

NW = NWW 4 NW = NNW 4 NW = NN 4
Extra 0 Extra 8 Extra 16

If the answer to any of the first three questions is true, the remaining ques-

tions are redundant and skipped. Question 4 is the fall-back question in case

none of the tested neighbours match O , and does not have a binary answer.

Figure 4.4 shows how the number of questions to ask before the fall-back

question affects the compression performance. The motion vectors encoded

were obtained from four different sequences. The curves for zero questions,

that is, when only the fall-back question is used, are the poorest in all

cases. There are marked improvements when one or two questions precede

the fall-back question, and a further slight improvement for three questions.

However, there is no visible improvement in performance for a further fourth

question, indicating that three questions are sufficient before the fall-back

question.

The answers to the first three questions are encoded using a binary

arithmetic coder with adaptive contexts. The contexts used are derived

according to Table 4.4.
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Figure 4.4: The mean square error of the motion vectors when encoded using
palettes with a different number of questions.
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Figure 4.5: Example values for neighbours of the current motion vector O .

For example, suppose we have the values of Figure 4.5. For Question 1,

we have W = WW , N = NW , and NW 6= NWW , so the context to use

will be 1(1)+1(2)+0(4)+0 = 3. Since O 6= W , the answer to Question 1 is

false, or ‘0’. Then, we have to encode bit ‘0’ using context 3. For Question

2, we have W 6= NW , N = NN , and NW = NNW , so the context to use

will be 0(1) + 1(2) + 1(4) + 8 = 14. Since O = N , the answer to Question 2

is true, so we encode bit ‘1’ using context 14. Since the value of O can be

obtained from the answer to this question, no further questions are required.

There are a total of 24 possible contexts, eight for each of Questions 1–3.

Figure 4.6 shows how the compression performance varies according to the

number of contexts for each question. Increasing the number of contexts

improves compression until the number of contexts reaches eight for each

question. There is no improvement when using 16 contexts. This is because

with too many contexts, each context will require more motion vector to

adapt to a good probability estimation. The number of motion vectors is not

very large, it is much smaller than the number of pixels in a frame, thus the

number of contexts has to be limited for effective context modelling. Note

that for the (b) riverbed sequence, there is almost no visible improvement

from one context to eight contexts per question. This is because the moving

water in the sequence results in dissimilar motion vectors in neighbouring

macroblocks, which makes the context modelling scheme ineffective.

When O lies on an edge, some of the neighbours in Figure 4.3 can be

missing, so some questions make no sense and are skipped. For example, if

O lies on the left edge of the image, there are no W neighbours, so Question

1 is skipped. Similarly, Question 2 is skipped if O lies on the top edge, and

Question 3 is skipped if O lies on the right edge or the top edge.
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Figure 4.6: The mean square error of the motion vectors when encoded using
palettes with a different number of contexts per question.
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Algorithm 4.3 An algorithm to encode an integer n in the range 0 ≤ n < p
using a binary arithmetic encoder.

1: mid← largest power of 2 that is < p
2: while mid ≥ 1 do
3: encode n < mid, with prob(n < mid) = mid/p
4: if n < mid then
5: p← mid
6: else
7: n← n−mid
8: p← p−mid
9: end if

10: while mid ≥ p do
11: mid← mid/2
12: end while
13: end while

Also, when O lies on the top edge of the image, some of the conditions

for Question 1 in Table 4.4 need to be adjusted, as there are no N , NW

and NWW neighbours. In this case, for the purpose of obtaining a context

number, we assume that N = NW and NW = NWW .

Sometimes Questions 2 and 3 can be skipped because the answer is al-

ready known from the previous questions. For example, if W = N , Question

2 is equivalent to Question 1 and thus redundant. Similarly, if W = NE ,

Question 3 is equivalent to Question 1, and if N = NE , Question 3 is equiv-

alent to Question 2, both cases making Question 3 redundant.

If none of the answers to the first three questions are true, the index

of the motion vector in the motion vector palette is encoded. This can be

achieved using the same binary arithmetic coder with Algorithm 4.3. In this

algorithm, all integers n in the range 0 ≤ n < p are assumed to be equally

probable, so the arithmetic encoder uses log2 p bits to encode the integer n.

The encoding of Question 4 can be optimized if we consider the answers

to Questions 1–3. Suppose that

O = 7, W = 0, N = 8, NE = 6, p = 10.

In this case, we could naively encode O by encoding the value n = 7 with

p = 10 using log2 10 bits. But both the encoder and the decoder already

have the answers to Questions 1–3, and thus can deduce that n cannot take

the values 0, 6 and 8, meaning that we can remove some redundancy by
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adjusting the values of n and p. The value of n is decreased by the number

of distinct checked values less than O . In this case,

W < O , N ≮ O , NE < O .

There are two distinct checked values, W and NE , that are less than O ,

so n′ = n − 2 = 5. The value of p is decreased by the number of distinct

questions asked, in this case three, so that p′ = p − 3 = 7. Instead of

encoding n = 7 in the range 0 ≤ n < 10, we can thus encode n′ = 5 in the

range 0 ≤ n′ < 7. This saves log2 10 − log2 7 = 0.51 bits in the arithmetic

coder. This saving is more pronounced for smaller values of p, which will

make it particularly important when splitting the motion vector palette into

layers, which will follow in Section 4.5.

Further to this, if originally p = 1, n has to be 0 and no questions

are required. If p = 2, and one question is asked, the question essentially

decreases p to p′ = 1, and no further questions are required. The same

happens with two questions when p = 3 and with three questions when

p = 4.

4.5 Splitting the motion vectors into layers

To support scalable motion vector encoding, the motion vectors are encoded

in layers. In Section 4.2 we obtained a binary tree with p leaf nodes and

a total of 2p − 1 nodes. Figure 4.7 shows such a binary tree with p = 9

leaf nodes and a total of 17 nodes. The set S1 at the root node contains all

the motion vectors. If we want to truncate the binary tree so that we have

only t leaf nodes instead of p, all we need to do is to remove all the nodes

i > 2t− 1. In the example, if we want only t = 4 leaf nodes, we remove all

the nodes i > 7, which are dashed in Figure 4.7. Nodes 3, 5 and 7 are not

leaf nodes in the complete tree, but become leaf nodes in the truncated tree.

Suppose we want to encode the motion vectors in two layers. The first

layer has only four values: nodes 3, 5, 6 and 7. The second layer has nine

values: nodes 6, 8, 9, 10, 12, 13, 14, 16 and 17. These two layers can be

represented by the tree shown in Figure 4.8. Note that the root node in

this case is 0, not 1. This is to indicate that if neither of the two layers is

encoded, no motion vector information is transmitted at all. Whereas m1,
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Figure 4.7: The binary tree of motion vectors which can be truncated.
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Figure 4.8: A layered tree with nodes representing sets of motion vectors.

the mean of all the motion vectors in S1, may be non-zero, m0 is always

zero.

After the motion vectors are split into layers, each layer is encoded in

turn. The first layer can be encoded using the methods described in Sections

4.3 and 4.4, with p = 4 possible motion vectors.

The second layer is encoded next. As before, this is done by encoding

the palette first and the indices later. For this second layer, we encode

four motion vector palettes, one for each sub-tree, each using the method

of Section 4.3 with one small modification. Instead of encoding the motion

vectors, which for the sub-tree rooted at node 3 would be m8 and m9,

the differences between the nodes and their parent is encoded, in this case

m8 −m3 and m9 −m3. These differences are typically very close to zero.

After the motion vector palettes are encoded, the motion vector indices

have to be encoded using the method of Section 4.4. The method is modified

to make use of the previous layer, which will be known to both the decoder

and the encoder. Suppose the current motion vector O from the previous

layer is the motion vector represented by node 3. Then, for this particu-

58



4.5. SPLITTING THE MOTION VECTORS INTO LAYERS

lar macroblock, only two motion vectors are possible, those represented by

nodes 8 and 9, so we have p = 2. Also, if W for the previous layer is not

the motion vector for node 3, that is, if for the previous layer O 6= W and

Question 1 was false, then Question 1 is skipped for this layer, as O 6= W

still. Similarly, Question 2 is skipped if O 6= N for the previous layer, and

Question 3 is skipped if O 6= NE for the previous layer. Notice that when

the motion vector O from the previous layer is 6, we have p = 1, which, as

mentioned in Section 4.4, does not need any bits to encode.

4.5.1 Where to split the motion vector palette layers

In the example of Figures 4.7 and 4.8, we saw how to split a palette of nine

motion vectors in two layers by truncating five values. When encoding a

motion vector palette, we need a method to decide how many palette values

to retain in each layer.

We start with the original binary tree, like the one shown in Figure 4.7.

The tree has p leaf nodes, which means there are p motion vectors in the

palette. These are split into eight layers. Eight layers was found to be a

reasonable value experimentally; using less layers gives us less scalability,

and using more layers will require more bits to encode the motion vectors

without adequate compensation. The eight layers will have a number of

motion vectors pi, 1 ≤ i ≤ 8, with p1 being the number of motion vectors in

the first layer, and p8 = p being the number of motion vectors in the final

layer. The values pi are calculated using

pi = dp× fie , (4.12)

with the values fi found in Table 4.5. The values in the table were found

experimentally to split the palette into layers that require a similar number

of bits to encode for a wide range of video sequences. Figure 4.9 shows

how the bit rates required for the motion vectors increases gradually as the

number of palette layers increases for different video sequences at different

resolutions. The gradual increase in all the sequences validates the choice

of values in Table 4.5.
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Figure 4.9: The bit rates of the motion vectors against different number of
palette layers for video sequences of different resolutions.
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Table 4.5: Factors to split the motion vector palette into eight
layers.

Layer i Fraction fi
1 2/64
2 4/64
3 7/64
4 12/64
5 20/64
6 31/64
7 45/64
8 64/64

4.6 The effect of using motion vector layers

This section shows results for experiments related to motion vector scalabil-

ity.

Table 4.2 in Section 4.1.3 has already given us an indication of the bit

rate used for the motion vectors and for the frame data in the resultant

bitstreams. The bit rate for the motion vectors is much smaller than that

for the frame data for the full quality bitstream, but when the bitstream is

scaled down to low quality, the bit rate for the motion vectors can become a

significant part of the total bitstream. In this case, discarding some motion

vector layers becomes essential, otherwise we can have more bits dedicated

to the motion vectors than to the frame data itself.

The four high definition (HD) sequences of Table 4.1 were encoded using

eight motion vector layers as described in Section 4.5.1. At high bit rates,

all the eight layers should be retained. However, at low bit rates, using a

large proportion of the bitstream for motion vectors will not give optimal

results. Figure 4.10 shows how discarding motion vector layers affects the

quality of the decoded sequences. Figure 4.11 shows the same thing for

lower-resolution sequences, two 720p sequences and two CIF sequences.

The curves labelled 8 show the quality when all eight layers are retained.

In this case, when scaling the quality down to a certain point, almost all

of the bitstream will be used up by the motion vectors, leading to very low

values of PSNR. The curves labelled 0 show the quality when all motion

vector layers are removed. In this case, the quality will never rise above a

low value, because the temporal filtering is not aligned. The curves labelled
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Figure 4.10: Rate-distortion curves for the proposed SVC scheme with multi-
layer motion vector palettes when retaining 0, 1, . . . , 8 palette layers for
HD video sequences.
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Figure 4.11: Rate-distortion curves for the proposed SVC scheme with multi-
layer motion vector palettes when retaining 0, 1, . . . , 8 palette layers for
lower-resolution video sequences.
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1–7 lie between the two extremes. Choosing the appropriate number of

motion vector layers will thus give a resulting curve that encloses all the

nine curves.

These curves show that eight layers are enough to obtain a smooth re-

sultant curve which encloses the nine curves of each plot for a wide range of

resolutions and for different kinds of video sequences. Using more layers will

not give a curve which is much smoother, however, it will be more expensive

in two ways. Firstly, it will need more processing to encode more layers,

and secondly, using more layers will increase the bit rate overhead caused

by the layering.

4.7 Palettes versus wavelets for motion vectors

In [65] and [19], motion vector scalability is achieved by quantizing the mo-

tion vectors using wavelets in a similar way to how images are encoded in

EBCOT [11]. The effect of scaling motion vectors encoded using wavelets

was investigated. Figure 4.12 shows how the mean square error of the motion

vectors increases when the motion vector bitstream is scaled to a smaller size.

The different curves are for different numbers of levels of wavelet decomposi-

tion. The best results are obtained for two levels of wavelet decomposition,

except in the case of the (b) riverbed sequence. Again, this sequence behaves

differently because neighbouring motion vectors are dissimilar owing to the

nature of the video sequence, where the riverbed is seen through moving

water. This dissimilarity makes the wavelet transform counter-productive,

and that is why the best results are obtained when using no levels of wavelet

decomposition.

Figure 4.13 shows a comparison of this wavelet scheme to the motion

vector palettes scheme presented in this chapter. For both, scaling down the

motion vector bitstream increases the mean square error, but this increase is

significantly smaller for our palette scheme. This is because scaling down the

motion vectors using the wavelet scheme will affect all the motion vectors,

while scaling down the motion vectors when using the palettes will not affect

the most common motion vector values. The proposed algorithm has the

advantage that it has more flexibility in choosing which motion vectors to be

approximated (or quantized). If, for example, a particular motion vector is

very common, it can be retained at a very high precision, while other motion
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Figure 4.12: The mean square error of the motion vectors when encoded
using wavelets with a different number of levels.
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Figure 4.13: Comparison of the mean square error of the motion vectors
when encoded using palettes and wavelets.
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vectors which are used very little are retained at a lower precision. Having

a motion vector common to a high number of macroblocks is not unlikely;

when a large visual object is moving, for instance, a lot of macroblocks will

have similar motion vectors.

4.8 Conclusion

In this chapter, we have shown that while omitting motion vectors in the final

video bitstream is a viable solution for lossless video coding, it is unsuitable

for scalable video coding. A scheme for the scalable encoding of motion

vectors using palettes was presented, together with analysis of its design and

an investigation of its design parameters. The effect that scaling the motion

vectors has on the rate distortion characteristics of the scalable video was

investigated. The motion vector palette scheme was shown to outperform

scalable motion vector encoding that uses wavelets as suggested by previous

work.
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Chapter 5

Scalable Video Coding

After finding motion vectors using the motion estimation engine, motion

vector palettes are generated. Then, wavelet transforms are used to fil-

ter the frames in the temporal dimension and in the spatial dimensions.

This chapter analyses a scalable video coding scheme that includes motion-

compensated temporal filtering, wavelet spatial filtering, and the steps that

follow.

Section 5.1 presents an analysis of the motion-compensated temporal fil-

tering, including details about memory requirements and about the latency

introduced. Section 5.2 describes how the temporally filtered frames are en-

coded using two-dimensional wavelet transforms, and investigates the effect

of different wavelet filter types and different wavelet transform parameters.

5.1 Motion-compensated temporal filtering

The temporal filtering is performed using the 5/3 wavelet filter. As stated

in Section 2.4.2, the 5/3 filter performs better than the simpler 1/3 filter.

Larger filters will increase the complexity, the memory requirements, and

the frame latency. Figure 5.1 shows one level of temporal filtering with

lifting. When using lifting [85], the 5/3 filter at a level l, with decimation

taken into account, is given by

Hl,k = Ll−1,2k+1 −
⌊
Ll−1,2k + Ll−1,2k+2

2

⌋
(5.1)

Ll,k = Ll−1,2k +

⌊
Hl,k−1 +Hl,k + 2

4

⌋
, (5.2)
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Figure 5.1: One level of temporal wavelet filtering using the 5/3 filter.

where Hl,k is the kth high-pass coefficient and Ll,k is the kth low-pass coef-

ficient. The high-pass step (5.1) is the prediction step and the low-pass step

(5.2) is the update step. Hl,k and Ll,k refer to whole frames, and motion

compensation is needed to align the pixels for filtering.

5.1.1 Memory requirements for temporal filtering

Figure 5.2 shows three levels of temporal wavelet decomposition, with the

original frames denoted as F0, F1, . . .. Computing L2,0 depends on H2,0,

which in turn depends on L1,2, which depends on H1,2, on L0,6, on H0,6

and on F14. This shows that one level of temporal wavelet decomposition

requires a latency of two frames, two levels require a latency of six frames,

and three levels require a latency of 14 frames. Also, buffering a number of

frames is necessary. For one level, a buffer with capacity for four frames can

be used, a buffer with capacity for eight frames can be used for two levels,

and a buffer with capacity for 16 frames can be used for three levels.

Figure 5.3 shows how a buffer size of 16 frames is sufficient for three

levels of wavelet filtering. Each group of steps processes eight frames, and

consists of five steps:

a. Input: eight frames are read into the buffer,

b. Level 1: the first level of wavelet decomposition processes the eight

frames and produces four low-pass and four high-pass frames,

c. Level 2: the second level of decomposition processes the four low-pass

frames from the previous step and produces two low-pass and two

high-pass frames,
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Figure 5.2: Three levels of temporal decomposition for the first frames.

d. Level 3: the third level of decomposition processes the two low-pass

frames from the previous step and produces one low-pass and one

high-pass frame, and

e. Output: eight temporally decomposed frames are passed on to the

next stage.

In Step 1a, the first eight frames F0, . . ., F7 are read into the buffer. In

Step 1b, the first level of filtering produces H0,0, H0,1, H0,2 and L0,0, L0,1,

L0,2. No new buffer space is required for the H0 and L0 frames, as H0,0 can

replace F1, L0,0 can replace F0, and so on, such that F0, . . ., F5 are replaced.

In Step 1c, the second level replaces L0,0, L0,1 with H1,0 and L1,0. For Step

1d, the third level does not have enough inputs yet, and, for Step 1e, there

are not enough frames to output.

Next, in Step 2a, the eight frames F8, . . ., F15 are read into the last eight

frame locations of the buffer. In Step 2b, the first level of filtering replaces

the eight frames F6, . . ., F13 with H0,3, . . ., H0,6 and L0,3, . . ., L0,6. In Step

2c, the second level replaces the four frames L0,2, . . ., L0,5 with H1,1, H1,2

and L1,1, L1,2. In Step 2d, the third level replaces the two frames L1,0, L1,1

with H2,0 and L2,0. Now, as shown in Step 2e, the eight temporally filtered

frames L2,0, H2,0, H1,0, H1,1, H0,0, H0,1, H0,2, H0,3 are ready for the next

coding stages, that is, spatial wavelet filtering, bit plane coding, context

modelling, and arithmetic coding.
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Figure 5.3: The contents of the 16-frame buffer for three levels of temporal
wavelet decomposition.
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Steps 3a–3e show the next steps, when frames F16 . . ., F23 are read and

filtered. The buffer is used as a circular buffer.

We have seen that a buffer with capacity for 16 frames is required for

three levels of temporal filtering. In general, for L levels, 2L+1 frames need to

be held in memory, and memory requirements grow exponentially with L.

In practice, choosing three levels was found to give an adequate balance

between memory requirements and compression performance; using four

levels does not improve compression performance enough to compensate

for using twice as much memory as three levels, and doubling the latency.

Figure 5.4 shows rate-distortion curves for various different levels of tem-

poral wavelet decomposition, beginning from 0 for no temporal filtering, and

ending at 4 for four levels of temporal decomposition. As can be seen from

the graphs, three levels of decomposition is a good choice. Note that the (b)

riverbed sequence shows degradation on temporal filtering, indicating that

the sequence is difficult to encode using temporal filtering. The sequence

consists of a riverbed as seen through moving water, which makes it difficult

to match macroblocks from a frame to another frame, and thus, temporal

filtering is counter-productive in this case.

Other than buffering the pixel data, the motion vectors generated by

the motion estimation need to be buffered as well. Motion estimation is

performed before the prediction and update steps so that the original unfil-

tered frames can be used in the search. For the first eight frames, motion

estimation is performed between Steps 1a and 1b of Section 5.1.1. For the

first level, motion estimation is performed on F1 with F0 as a backwards

reference frame and F2 as a forwards reference frame. These searches are

independent, and motion vectors from each have to be stored. Similarly,

motion estimation is done on F3 with reference frames F2 and F4, on F5

with reference frames F4 and F6, and on F7 with reference frames F6 and

F8. For the second level, the motion estimation search is performed on F2

with reference frames F0 and F4 and on F6 with reference frames F4 and

F8. For the third level, motion estimation is performed on F4 with reference

frames F0 and F8. All of these motion estimation searches are performed

between Steps 1a and 1b. Note that frame F8 was required for some of these,

so although it is not included in Step 1a in Figure 5.3, one more frame has

to be stored before motion estimation.

For each pixel frame, we need to buffer two motion vector frames. So
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Figure 5.4: Rate-distortion curves for different levels of temporal wavelet
decomposition.
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Figure 5.5: One level of temporal wavelet filtering using motion compensa-
tion and the 5/3 filter.

for L levels, as well as the 2L+1 pixel frames, we need 2L+2 motion vector

frames. Although there are twice as many motion vector frames as pixel

frames, motion vectors take much less space than the pixels. For example,

using 16× 16 macroblocks, there will be one motion vector every 256 pixels

for one frame of values.

5.1.2 Motion compensation for the prediction step

If we introduce motion compensation into Figure 5.1, we get Figure 5.5. To

compute Hl,k in the prediction step, motion compensation needs to be ap-

plied to two frames, the previous frame Ll−1,2k and the next frame Ll−1,2k+2,

in order to align their pixels with corresponding pixels in Ll−1,2k+1. Fl,k de-

notes the operation that is applied to the previous frame Ll−1,2k (moving it

Forwards), and Bl,k denotes the operation that is applied to the next frame

Ll−1,2k+2 (moving it Backwards). To compute Ll,k in the update step, the

operation B−1l,k−1, which is the inverse of Bl,k−1, is applied to Hl,k−1, and

F−1l,k is applied to Hl,k. Similarly, to compute Ll,k+1, B−1l,k is applied to Hl,k,

and F−1l,k+1 is applied to Hl,k+1.

If

−→
L l−1,2k = Fl,k(Ll−1,2k) (5.3)

←−
L l−1,2k+2 = Bl,k(Ll−1,2k+2), (5.4)
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Algorithm 5.1 An algorithm to generate
−→
L l−1,2k = Fl,k(Ll−1,2k).

1: for all (x, y) do
2: (x′, y′)← (x, y) + (δxF, δyF)

3:
−→
L l−1,2k(x, y)← Ll−1,2k(x′, y′)

4: end for

then motion compensation can be introduced into (5.1) by rewriting it as

Hl,k = Ll−1,2k+1 −

⌊−→
L l−1,2k +

←−
L l−1,2k+2

2

⌋
. (5.5)

For each location (x, y) in the frame Ll−1,2k+1, we search for a forwards

motion vector (δxF, δyF) such that the pixel at (x + δxF, y + δyF) in the

previous frame Ll−1,2k corresponds to the pixel (x, y) in Ll−1,2k+1. Similarly,

(δxB, δyB) is the backwards motion vector to map pixels from the next frame

Ll−1,2k+2. Notice that we do not perform one motion estimation search for

each pixel (x, y), but only once for each macroblock, so that for all the

values of (x, y) in one macroblock, there will be only one (δxF, δyF) and one

(δxB, δyB). Once we have the motion vectors, the operations Fl,k and Bl,k

in (5.3) and (5.4) can be written as

−→
L l−1,2k(x, y) = Ll−1,2k(x+ δxF, y + δyF) (5.6)

←−
L l−1,2k+2(x, y) = Ll−1,2k+2(x+ δxB, y + δyB). (5.7)

The process to generate
−→
L l−1,2k is shown in Algorithm 5.1, and a similar

process can be used to generate
←−
L l−1,2k+2.

5.1.3 Motion compensation for the update step

To compute Ll,k, we need to apply the operation B−1l,k−1 to Hl,k−1 and the

operation F−1l,k to Hl,k. If

−→
H l,k−1 = B−1l,k−1(Hl,k−1) (5.8)
←−
H l,k = F−1l,k (Hl,k), (5.9)
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then motion compensation can be introduced into (5.2) by rewriting it as

Ll,k = Ll−1,2k +

⌊−→
H l,k−1 +

←−
H l,k + 2

4

⌋
. (5.10)

The operations B−1 and F−1 are not as straightforward as the opera-

tions F and B. The process to generate
←−
H l,k is shown in Algorithm 5.2.

The algorithm maps the values in Hl,k back to match the pixels in Ll−1,2k
using the motion vectors (δxF, δyF). However, different macroblocks can be

mapped back to the same area. That is, there can be two pixels (xa, ya) and

(xb, yb) that satisfy

(xa, ya) + (δxaF, δyaF) = (xb, yb) + (δxbF, δybF). (5.11)

To handle this many-to-one mapping, all the values in
←−
H l,k are initially

marked as invalid, as shown in the loop at Lines 1–3. When a pixel is

mapped back to a value that is still invalid, the pixel value replaces the

invalid value as shown in Line 7. When a pixel is mapped back to a value

that is already valid, the mean of the current valid value and the pixel value

replaces the current valid value, as shown in Line 9. At the end, any invalid

values are set to zero, as shown in the loop at Lines 12–16. A similar process

can be used to generate
−→
H l,k−1.

Let us look back at how collisions are handled in the algorithm. If, for

example, two pixels in Hl,k with values a and b are mapped to the same

pixel in
←−
H l,k, a will be stored directly using Line 7, and b will be processed

using Line 9. When b is processed, Line 9 will replace the current value a

with the value (a+b)/2 = a/2 + b/2.

Now suppose that three pixels with values a, b and c are mapped to the

same pixel in
←−
H l,k. As before, a will be stored directly using Line 7, and

when b is processed, the value a will be replaced by a/2 + b/2 using Line 9.

When c is processed, the value is replaced by (a/2+b/2+c)/2 = a/4 + b/4 + c/2,

which is only an approximation of the real average value a/3 + b/3 + c/3.

This approximation reduces the complexity of the implementation without

having much effect on the result, especially when considering that most

many-to-one collisions that happen will only be two-to-one, which is han-

dled accurately. This approximation is particularly useful for hardware im-

plementation, where division by two is a simple shift operation, and division
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Algorithm 5.2 An algorithm to generate
←−
H l,k = F−1l,k (Hl,k).

1: for all (x, y) do {loop to initialize all values as invalid}
2:

←−
H l,k(x, y)← ∧ {∧ is the invalid value}

3: end for
4: for all (x, y) do {the main loop}
5: (x′, y′)← (x, y) + (δxF, δyF)

6: if
←−
H l,k(x′, y′) = ∧ then

7:
←−
H l,k(x′, y′)← Hl,k(x, y)

8: else

9:
←−
H l,k(x′, y′)←

⌈
Hl,k(x, y) +

←−
H l,k(x′, y′)

2

⌉
10: end if
11: end for
12: for all (x, y) do {loop to set all invalid values to 0}
13: if

←−
H l,k(x, y) = ∧ then

14:
←−
H l,k(x, y)← 0

15: end if
16: end for

by other numbers can be relatively expensive.

5.1.4 Temporal filtering after motion estimation

After the pixel matching steps of Sections 5.1.2 and 5.1.3 are performed,

wavelet decomposition is performed using regular wavelet lifting as intro-

duced in Section 2.2.2. This modifies the contents of the 16-frame buffer

as described in Section 5.1.1. The Output steps of Figure 5.3 will pass the

data to the next steps, that is, to spatial filtering, context modelling, and

probability estimation and arithmetic coding.

5.2 Encoding the temporally filtered frames

The temporally filtered frames need to be encoded using wavelet transforms,

context modelling, probability estimation and arithmetic coding.

5.2.1 Spatial filtering

The first step after motion compensation is the spatial filtering of the frames.

There are two possible wavelet filters, the 5/3 filter and the 9/7 filter. The
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5/3 filter uses integer arithmetic and is reversible, such that it can provide

lossless quality. The 9/7 filter uses fixed point or floating point arithmetic

and consequently has rounding errors, making it non-reversible and unsuit-

able for lossless encoding. The 5/3 filter outperforms the 9/7 filter at high

bit rates where the rounding errors are significant, while the 9/7 filter is bet-

ter at lower bit rates where the rounding errors are not significant and its

better filter characteristics are more significant. Figure 5.6 shows how the

9/7 filter outperforms the 5/3 filter at low bit rates, and Figure 5.7 shows

how the situation is reversed at high bit rates.

Figure 5.8 shows the performance of the scalable video coding (SVC)

scheme for different levels of spatial decomposition, starting from zero levels

where no spatial decomposition is performed, up to four levels of decom-

position. Increasing the levels from zero to one, to two, and to three gives

significant gains in the rate-distortion curves. However, there is no clear

gain for using four levels of decomposition instead of three. In this work,

three levels of spatial decomposition are used.

5.2.2 Context modelling

After the spatial wavelet transform, bit plane coding and context modelling

are performed. These steps include encoding the significance of code blocks

and bit plane coding techniques from EBCOT [11], together with context

modelling as used by ICER [12]. The details of these parts can be seen in

Section 2.3.1.

5.2.3 Probability estimation

The wavelet coding algorithm uses bit plane coding, which only needs a one-

bit probability estimator. For probability estimation, a one-bit adaptive

probability estimator is used. The probability estimate for the next bit

will depend on the previous bits. We need to find the probability of the

next bit being ‘0’ or ‘1’. Let m be the number of previous ‘0’s, n be the

number of previous ‘1’s, and x be the probability that the next bit will

be ‘0’, x = P (‘0’), 0 ≤ x ≤ 1. If we assume that the value x remains

constant throughout the bit sequence, we can use Bayes’ theorem to write
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Figure 5.6: Rate-distortion curves for the 5/3 and 9/7 wavelet filters for low
bit rates.
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Figure 5.7: Rate-distortion curves for the 5/3 and 9/7 wavelet filters for
high bit rates.
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Figure 5.8: Rate-distortion curves for different levels of spatial wavelet de-
composition.
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the probability distribution for x given the values m and n as

P (x |m,n) =
P (x)P (m,n |x)

P (m,n)
, (5.12)

where P (x) is the a priori probability of x, P (m,n |x) is the a posteriori

probability of m and n, and P (m,n) is a normalizing factor. We can assume

that the a priori probability P (x) is constant within the range 0 ≤ x ≤ 1.

The a posteriori probability P (m,n|x) is given by

P (m,n |x) = xm(1− x)n
(
m+ n

m

)
. (5.13)

Since P (x), P (m,n) and
(
m+n
m

)
are all constant, we can rewrite (5.12)

as

P (x |m,n) = kxm(1− x)n. (5.14)

where k is a constant. Further to this,∫ 1

0
P (x |m,n)dx = 1. (5.15)

From (5.14) and (5.15), we can find

P (x |m,n) =
(m+ n+ 1)!

m!n!
xm(1− x)n. (5.16)

The probability that the next bit is ‘0’ is thus

P (‘0’ |m,n) =

∫ 1

0
xP (x |m,n)dx (5.17)

=

∫ 1

0

(m+ n+ 1)!

m!n!
xm+1(1− x)ndx (5.18)

=
m+ 1

m+ n+ 2
(5.19)

To implement this probability estimator, all we need to do is to keep

two counters; m for the number of ‘0’s and n for the number of ‘1’s. If

the counters overflow, both are divided by two. This scaling down has

the advantage that it keeps the probability estimation up do date with the

adapting input, giving better results as described in [35].
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5.3 Conclusion

In this chapter, we have presented the motion-compensated temporal filter-

ing employed by our scalable video coding scheme. The memory require-

ments of the temporal filtering were analysed, and the effect of the number

of levels of temporal filtering on memory requirements, latency and com-

pression performance was investigated, showing that using three levels of

temporal filtering gives a good balance of memory requirements, latency

and compression performance. Spatial wavelet filtering was investigated as

well, demonstrating the differences between different filter types and the ef-

fect of the number of levels of spatial decomposition on video sequences of

different resolutions. The chapter concludes with an analysis of the proba-

bility estimation scheme that follows the context modelling.
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Chapter 6

Performance Analysis

This chapter analyses the performance of the proposed scalable video coding

scheme.

The performance is first compared to Motion JPEG 2000, which uses

similar spatial coding but does not include motion compensation, in Sec-

tion 6.1. Section 6.2 presents a comparison of the scalable video coding

(SVC) scheme presented to Joint Scalable Video Model (JSVM), including

memory requirements, execution duration, and compression performance

comparisons.

6.1 Comparison to Motion JPEG 2000

In this section, the proposed scalable video coding scheme is compared to

Motion JPEG 2000 using the Kakadu encoder [86], a wavelet-based video

encoder that does not include motion compensation. Figure 6.1 shows the

rate-distortion curves for the two schems for the four high definition (HD)

sequences of Table 4.1. The proposed system outperforms Motion JPEG

2000 for almost all the video sequences, demonstrating the gains obtained

using motion compensated temporal filtering. On (b) riverbed, however,

Motion JPEG 2000 outperforms the proposed scheme. This is because the

sequence shows the riverbed through moving water, which makes motion

compensation less effective.

Figure 6.2 compares the proposed scheme to Motion JPEG 2000, this

time for video sequences with a lower resolution. Motion JPEG 2000 exhibits

poorer performance for all of these sequences by a larger margin than for
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Figure 6.1: Rate-distortion curves for Motion JPEG 2000 and the proposed
method.
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Figure 6.2: Rate-distortion curves for Motion JPEG 2000 and the proposed
method for lower resolution sequences.
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the sequences in Figure 6.1, indicating that motion compensation is more

important for lower resolutions.

6.2 Comparison to JSVM

In this section, the proposed scheme is compared to the reference JSVM

software for SVC version 9.19.12 [5], as implementations for other wavelet

methods are not as readily available. The video sequences of Table 4.1 were

used. Only quality scalability is compared here. The JSVM software was

configured so that its motion estimation search is similar to that currently

used by our scheme. The JSVM software only supports coarse-grained and

medium-grained scalability, and it was configured with three coarse-grained

scalability layers. The base layer, Layer 0, and the refinement layers, Layers

1 and 2, were configured to have a quantization parameter (QP) of 38,

32 and 26 respectively. The refinement layers were each configured to have

four levels of medium-grained scalability. The parameters used for the JSVM

software are listed in Table 6.1. Our scheme supports fine-grained scalability

and does not need configuration of different layers. For both systems, three

temporal layers were used. For the proposed scheme, three levels of the

9/7 two-dimensional wavelet filter were used, as suggested in Section 5.2.1.

Notice that while JSVM needs to be given some detailed configuration about

the encoding process, the proposed scheme only needs a few parameters.

6.2.1 Memory requirements and execution duration

The memory requirements and processing time of the algorithm was mea-

sured and compared. Both the proposed scheme and JSVM were compiled

using the GCC C++ compiler version 4.7.0 [87] with full optimization and

run on an Intel Core i5-760 at 2.8 GHz [88]. Memory usage was measured

using the Massif heap profiler, a tool from the Valgrind suite of tools, ver-

sion 3.7.0 [89]. Table 6.2 shows the memory requirements for JSVM and the

proposed method. Our method uses less memory by a factor of more than

7 for both high resolution sequences and low resolution sequences. Table

6.3 shows the processing time. Again, our method outperforms JSVM by a

large factor ranging from 25 to over 100.
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Table 6.1: The parameters used for the JSVM encoder.

Profile Layer 0
GOPSize 8 MGSVectorMode 0
BaseLayerMode 2 LowComplexityMbMode 1
SearchMode 4 MeQPLP 36
SearchRange 128 MeQP0–MeQP5 36
CgsSnrRefinement 1 QP 38
EncodeKeyPictures 1
MGSControl 1
NumLayers 3

Layer 1 Layer 2
InterLayerPred 1 InterLayerPred 1
MGSVectorMode 1 MGSVectorMode 1
MGSVector0 2 MGSVector0 2
MGSVector1 2 MGSVector1 2
MGSVector2 4 MGSVector2 4
MGSVector3 8 MGSVector3 8
LowComplexityMbMode 1 LowComplexityMbMode 1
MeQPLP 30 MeQPLP 24
MeQP0–MeQP5 30 MeQP0–MeQP5 24
QP 32 QP 26

Table 6.2: Memory usage for JSVM and the proposed method.

Sequence Resolution JSVM Proposed Factor

crowdrun 1920× 1080 2.41 GiB 320 MiB 7.7
riverbed 1920× 1080 2.40 GiB 321 MiB 7.7
rush hour 1920× 1080 2.40 GiB 320 MiB 7.7
tractor 1920× 1080 2.40 GiB 320 MiB 7.7

shields 1280× 720 1.10 GiB 146 MiB 7.7
stockholm 1280× 720 1.10 GiB 146 MiB 7.7

coastguard 352× 288 156 MiB 17.2 MiB 9.1
foreman 352× 288 156 MiB 17.2 MiB 9.0
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Table 6.3: Processing time for JSVM and the proposed method.

Sequence Resolution JSVM Proposed Factor

crowdrun 1920× 1080 2110 s 82.5 s 26
riverbed 1920× 1080 9090 s 73.2 s 120
rush hour 1920× 1080 2420 s 51.2 s 47
tractor 1920× 1080 4270 s 59.0 s 72

shields 1280× 720 1340 s 34.7 s 39
stockholm 1280× 720 834 s 33.9 s 25

coastguard 352× 288 115 s 3.87 s 30
foreman 352× 288 112 s 3.73 s 30

6.2.2 Rate-distortion characteristics

Figures 6.3 shows the rate-distortion curve for the two systems for the four

HD sequences. For (a) crowdrun, JSVM performs better than our scheme,

but for the other sequences our scheme is comparable to, or better than,

JSVM. At the lower end of the bit rate, JSVM is harder to match. This

may be because the lowermost point for JSVM corresponds to its base layer,

which has no scalability restrictions, whereas our scheme is scalable to even

lower bit rates than those shown in the plots. The JSVM curves have mark-

ers to indicate the possible operating points, whereas the proposed scheme

supports fine-grained scalability.

The full range

The range of the curves in Figure 6.3 are limited to the range of the JSVM

bitstream. In Figure 6.4, the same curves are shown, but this time covering

the range of the single video bitstream obtained from our method. We can

see that the scalability range of JSVM is much smaller than the range for

the proposed scheme. It is possible to add the number of layers for JSVM

to increase its range, but the amount of processing will increase with each

refinement layer, which is not the case with the proposed scheme, where one

encoding pass will be sufficient for the whole range shown.

Multiple JSVM bitsreams

Figure 6.5 compares the proposed scheme to JSVM again, this time using

three separate bitstreams for the JSVM method. The JSVM curves for

Figure 6.3 were obtained using a QP of 38 for the base layer, 32 for the
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Figure 6.3: Rate-distortion curves for JSVM and the proposed method, for
the bit rate range of the JSVM bitstream.
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Figure 6.4: Rate-distortion curves for JSVM and the proposed method, for
the bit rate range of the bitstream from the proposed method.

92



6.2. COMPARISON TO JSVM

24

28

32

36

40

0 0.1 0.2 0.3 0.4 0.5

0 10 20 30

P
S
N
R

(d
B
)

Bits per pixel

Bit rate (Mbps)

JSVM 26–32–38
JSVM 32–38–44
JSVM 38–44–50
Proposed

(a) crowdrun (1920× 1080)

24

28

32

36

40

44

0 0.1 0.2 0.3 0.4 0.5

0 10 20 30

P
S
N
R

(d
B
)

Bits per pixel

Bit rate (Mbps)

JSVM 26–32–38
JSVM 32–38–44
JSVM 38–44–50
Proposed

(b) riverbed (1920× 1080)

34

36

38

40

42

44

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0 1 2 3 4 5 6

P
S
N
R

(d
B
)

Bits per pixel

Bit rate (Mbps)

JSVM 26–32–38
JSVM 32–38–44
JSVM 38–44–50
Proposed

(c) rush hour (1920× 1080)

28

30

32

34

36

38

40

0 0.04 0.08 0.12 0.16 0.2

0 5 10 15

P
S
N
R

(d
B
)

Bits per pixel

Bit rate (Mbps)

JSVM 26–32–38
JSVM 32–38–44
JSVM 38–44–50
Proposed

(d) tractor (1920× 1080)

Figure 6.5: Rate-distortion curves for JSVM and the proposed method, with
three different ranges for JSVM.
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second layer, and 26 for the complete bitstream, covering a QP range of

26–32–38. In Figure 6.5, three JSVM bitstreams are used for each video

sequence. Other than the 26–32–38 range of QP, there are curves for the

two other ranges 32–38–44 and 38–44–50. The figure shows that the point

for a QP of 38, which is available for the three bitstreams, lies on different

points on the graphs. The best of these three points is when the 38 point

the QP of the base layer, and the worst is when the 38 point is the QP

of the complete bitstream. This demonstrates why it is more difficult to

match the performance of JSVM towards the lower bit rates supported by

a bitstream, where the scalability of the bitstream does not affect the rate

distortion characteristic. This can be seen clearly in the curves for (c) rush

hour, where JSVM seems to outperform our scheme at the points for the base

layers for each of the three JSVM bitstreams, but our scheme outperforms

JSVM for the rest of the scalability range.

Lower resolutions

Other than the HD sequences, the algorithm was tested on 720p sequences

and CIF sequences. In some of these lower resolution sequences, the curves

for the proposed methods are close to JSVM, and in some of them, the

performance of our method is poorer. Figure 6.6 shows some typical results

obtained. At 720p, there is (a) shields which shows poorer performance and

(b) stockholm which is close to JSVM. At CIF resolution, the performance for

(c) coastguard is very similar to JSVM, but for (d) foreman, the performance

is poorer.

Generally, wavelet video coding performs better than predictive or hybrid

video coding at high resolutions. This explains why the proposed method

outperforms JSVM for HD sequences, but not for 720p and CIF sequences.

6.3 Conclusion

In this chapter we have analysed the performance of the presented scalable

video coding scheme. The benefits of the temporal filtering were demon-

strated by comparing the scheme to Motion JPEG 2000, which employs

similar methods for spatial redundancy but has no motion compensation.

The memory requirements and execution duration of the proposed scheme

and of the state-of-the-art JSVM algorithm were investigated, showing that
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Figure 6.6: Rate-distortion curves for JSVM and the proposed method for
lower resolution sequences.
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our scheme requires much less memory than JSVM and executes much faster.

The compression performance analysis shows that our scheme generally out-

performs JSVM for HD video sequences and gives similar performance on

video sequences of lower resolution, while providing finer scalability over a

larger range of bit rates.
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Chapter 7

Hardware Amenability

A reconfigurable universal compression system developed within our re-

search group was presented in Chapter 3. This chapter investigates the

suitability of the scalable video scheme presented in previous chapters for

hardware implementation as a part of the universal compression system.

Section 7.1 describes the motion estimation engine, presents some tools

developed to analyse and configure this engine, and also includes analy-

sis of motion estimation algorithms. Section 7.2 investigates the hardware

amenability of the algorithms that generate and encode the motion vector

palettes. Section 7.3 investigates the hardware amenability of the compo-

nents that encode the temporally filtered frames. Section 7.4 analyses the

hardware cost of the designed components. Section 7.5 gives some detail

about how the designed hardware components were validated.

7.1 Motion estimation

As mentioned in Section 2.4.1, motion estimation is an expensive part of

video coding in terms of complexity and hardware cost. To design for low

complexity, motion estimation must be given its due consideration. This

section describes the configurable motion estimation engine used in this

work, and investigates how it can be configured for low complexity.

7.1.1 Motion estimation engine

A reconfigurable application-specific instruction-set processor (ASIP) de-

veloped in our group is to be used for motion estimation. It is designed
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to execute user-defined block-matching motion estimation algorithms opti-

mized for hybrid video codecs such as MPEG-2, MPEG-4, H.264/AVC [3,4]

and Microsoft VC-1. It is also used for BAPME [35], and is the engine for

the scalable video coding (SVC) scheme proposed by this work.

The core offers scalable performance dependent on the features of the

chosen motion estimation search algorithm and the number and type of ex-

ecution units to be implemented in hardware. Hardware configuration can

typically be achieved at compile time by adapting the architecture to the

chosen algorithm, and in an FPGA implementation, it is possible to pre-

compile a range of hardware bitstreams with different configurations from

which one can be chosen to match the current video processing require-

ments. The microarchitecture can be easily scaled to high definition (HD)

video even when using low cost FPGAs such as the Xilinx Spartan-3. The

ability to program the search algorithm to be used, together with the ability

to reconfigure the underlying hardware that it will execute on, give an ex-

tremely flexible video processing platform. A base configuration consisting

of a single 64-bit integer pipeline, capable of processing a hexagonal mo-

tion estimation algorithm, such as the one implemented in the x264 [90]

video encoder, over a search window of 112 × 128 pixels in real-time for

high-definition video, can be implemented in 2300 logic cells on a Xilinx

FPGA. In contrast, a complex configuration supporting motion vector can-

didates, sub-blocks, motion vector costing using Lagrangian optimization,

four integer-pel execution units (IPEUs) and one fractional-pel execution

unit (FPEU) plus sub-pel interpolator execution unit (SPIEU) will need

around 14, 600 logic cells.

Table 7.1 compares the hardware cost and the performance of the pro-

cessor core implementation to that of other implementations. The IPEUs

and FPEUs have been carefully pipelined, and all the configurations can be

implemented to achieve a clock rate of 200 MHz when targeting the Virtex-4

Xilinx family. More details can be obtained in [91].

7.1.2 Motion estimation algorithms

In order to target the motion estimation ASIP, a custom language developed

within the group is used. The Estimo C language is a high-level C-like lan-

guage that is aimed at designing a broad range of block-matching algorithms.

The code can be developed and compiled in the SharpeEye Studio [92], an
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Table 7.1: Comparison of the hardware cost for different im-
plementations for a diamond search pattern.

Processor Cycles FPGA Virtex-II Memory
impl. per MB slices clock (BRAMS)

Intel P4 ∼ 3000 N/A N/A N/A
assembly

Dias et al. 4532 2052 67 MHz 4 (external
[60] reference area)

Babionitakis 660 2127 50 MHz 11 (1 ref. area,
et al. [61] 48× 48 pixels)

Proposed, 510 1231 125 MHz 21 (2 ref. areas,
1 IPEU 112× 128 pixels)

Proposed, 287 2051 125 MHz 38 (2 ref. areas,
2 IPEUs 112× 128 pixels)

IDE for motion estimation.

The language contains a preprocessor for macro facilities that include

conditional (if ) and loop (for, while, do) statements. The language also has

facilities directly related to the motion estimation processor’s instruction

set, such as checking the sum of absolute differences (SAD) of a pattern

consisting of a set of points, and conditional branching depending on which

point from the last pattern check command had the best SAD. The compiler

converts the program to a program memory file containing instructions and

a point memory file containing patterns.

Figure 7.1 shows an example block-matching algorithm written in Estimo

C and excerpts from the target files. The algorithm is a diamond search

pattern executed for up to five times for a radius of eight, four, two and one

pixels, followed by a small full search at fractional pixel level. The first set of

check and update commands create the first search pattern, which consists

of five points. Each check command adds a point to the search pattern being

constructed, and the update command completes the pattern. This pattern

is compiled into the instruction at program address 00, which uses the five

points available in the point memory at addresses 00–04. The preprocessor

goes through the do while loop three times, with s taking the values four,

two and one. Each time, a four-point pattern is checked for up to five times.

The #if (WINID == 0) #break command ensures that if a pattern search

does not improve the motion vector estimate, it is not repeated. The final
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Estimo C source code
s = 8; // initial step size

check(0, 0);
check(0, s);
check(0, −s);
check(s, 0);
check(−s, 0);
update;

do {
s = s/2;
for (i = 1 to 5 step 1) {

check(0, s);
check(0, −s);
check(s, 0);
check(−s, 0);
update;
#if (WINID == 0)

#break;
}

} while (s > 1);

for (x = −0.5 to 0.5 step 0.25)
for (y = −0.5 to 0.5 step 0.25)

check(x, y);
update;

Program memory
00: 0 05 00 check 5 points, offset 00
01: 0 04 05 check 4 points, offset 05
02: 2 00 0b if WINID is 0, goto 0b

03: 0 04 05 check 4 points, offset 05
· · ·

0b: 0 04 09 check 4 points, offset 09
0c: 2 00 15 if WINID is 0, goto 15

· · ·
15: 0 04 0d check 4 points, offset 0d
16: 2 00 15 if WINID is 0, goto 1f

· · ·
1f: 1 04 0d chk 25 frac points, offset 11
↑

opcode
0 integer check pattern
1 fractional check pattern
2 conditional jump

Point memory
00: 00 00 integer (0, 0)
01: 00 08 integer (0, 8)
02: 00 f8 integer (0, −8)
03: 08 00 integer (8, 0)
04: f8 00 integer (−8, 0)
05: 00 04 integer (0, 4)
06: 00 fc integer (0, −4)

· · ·
11: fe fe fractional (−0.5, −0.5)
12: fe ff fractional (−0.5, −0.25)

· · ·
29: 03 03 fractional (0.5, 0.5)

Figure 7.1: The Estimo C code for a motion estimation algorithm and ex-
cerpts of the target files generated by the compiler.

lines create a 25-point fractional pattern search.

7.1.3 Cycle-accurate simulation

The configurable hardware system has a number of design parameters, and

it can be complex to configure. Since it has many design parameters, it has

a large design space, and consequently, exploring this design space to find

optimal configuration parameters can be hard. Doing this exploration on

the actual hardware can be complicated and time consuming.

During motion estimation algorithm design, the time a particular algo-
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rithm takes to determine the motion estimation vectors could be needed. It

would also be very useful to be able to choose configuration parameters for

the motion estimation processor depending on the particular requirements

of the design.

Doing this analysis on the actual processor can be complicated and time

consuming. The tasks required would include synthesizing the hardware

with specific configuration parameters, configuring the FPGA board, and

measuring the time used by the processor to perform the motion estima-

tion. An alternative is to use a cycle-accurate simulator of the hardware

system that can speed up the development cycle significantly by reducing

the number of tasks required for the analysis of a particular hardware con-

figuration. This has the added advantage that there is no need to access the

hardware when using the simulator.

For these reasons, a cycle-accurate simulator was developed for the de-

sign space exploration of the motion estimation processor. This enables the

configuration and analysis of the motion estimation search as part of the

universal compression system. x264 [90], a free software library for encod-

ing H.264/AVC, was modified to use the cycle-accurate model for its motion

estimation search; the motion estimation code in x264 was replaced by an

engine that uses the cycle-accurate model when searching for the motion

vectors.

The cycle-accurate simulator can be used directly from the SharpEye

IDE introduced in Section 7.1.2. Designers can design a motion estimation

algorithm and test it using different processor configuration parameters.

Figure 7.2 shows a sample session.

The simulator takes several parameters as inputs. The inputs which

determine the processor configuration are

• the program and point memories generated by the Estimo compiler,

• the number of IPEUs and FPEUs,

• the minimum size for block partitioning,

• whether to use motion vector cost optimization, and

• whether to use multiple motion vector candidates.

The simulator takes other options which do not affect the processor con-

figuration itself, which are the video file to process and its resolution, the
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maximum number of frames to process, and the quantization parameter

(QP).

The simulator will then process the video file using the selected search

algorithm and processor configuration, and give the following outputs:

• the bit rate of the compressed video,

• the PSNR,

• the number of frames processed per second (fps) assuming a clock rate

of 200 MHz,

• the number of clock cycles required per macroblock, and

• the energy requirements per macroblock.

Designers can simulate and analyse various configurations by using the

simple controls in the configuration window, and then generate plots or view

the results in a table. When they are satisfied with a particular configura-

tion, they can generate a VHDL file which can be used together with the

rest of the core hardware register transfer level (RTL) library to synthesize

the motion estimation processor.

Using the cycle-accurate simulator developed in this work, different block

matching strategies can be evaluated with video sequences that are suitable

for the problem domain of the final application. For example, if the aim is

to develop a system for space applications, satellite video data can be used

to test the system.

For a particular required level of performance, the minimum possible

hardware cost can be found easily by testing several configurations and

picking the least complex one which satisfies the timing and performance

requirements. The bitstream for the reconfigurable hardware can then be

used in the reconfigurable system. It is also possible to generate separate

configurations for different use cases, in order, for example, to save power

for certain conditions that require less complexity.

7.1.4 Analysis of motion estimation algorithms

For analysis, a number of test video sequences from [83] were used. Each

sequence has a frame rate of 25 fps. The analysis was performed with a QP

of 26.
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Figure 7.3: Graph of fps against bit rate for the station, pedestrian area and
tractor sequences, with (a) one IPEU and no sub-pel estimation, and (b)
two IPEUs and one FPEU.

Three 1920× 1080 sequences, pedestrian area, station and tractor, were

processed and the number of frames that can be processed per second (fps)

was plotted against the bit rate. Figure 7.3 shows the results. The graph of

Figure 7.3 was generated directly by the tools developed as part of this work.

Each of the files was processed twice, (a) without sub-pel estimation and

(b) with sub-pel estimation. In each case, Langrangian optimization and

multiple motion vector candidate optimization were used. With no sub-pel

estimation, the files can be processed at a rate larger than 30 fps with only

one IPEU, requiring only 2900 logic cells. In order to have a similar frame

rate when sub-pel estimation is used, two IPEUs and one FPEU were used,

raising the number of required logic cells to 11, 000. The bit rate is reduced

by 6% for pedestrian area, 31% for station, and 16% for tractor, showing

the benefits of sub-pel motion estimation. The area of the plot points is

proportional to the number of logic cells.

The processor supports operating the IPEUs and FPEUs in parallel. In

case (a), since no sub-pel estimation was used, this does not affect the results.

In case (b), the fps plotted is for the case of using this parallelization. The

advantage of parallel operation is that for the same fps rate, less logic cells

are required than in the case of sequential operation. For example, if the
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Figure 7.4: Different configurations for the pedestrian area sequence. The
labels contain a list of optimizations used: (8) 8 × 8 partitioning, (s) sub-
pixel estimation, (l) Lagrangian optimization, (c) multiple motion vector
candidates. The point area is proportional to the number of logic cells.

integer-pel and sub-pel execution units operate sequentially instead of in

parallel, we will have to use three IPEUs and two FPEUs for similar frame

rates, further raising the number of required logic cells to 14, 600.

It is important to remember that different kinds of video may give differ-

ent results, so the video files used in the simulation should be representative

of the final application. The station sequence has very little motion, so a

bit rate of 2700 kbit/s is enough to encode it. The pedestrian area sequence

has more motion and requires a bit rate of around 6800 kbit/s for the same

QP. The tractor sequence is the most difficult of the three to encode and

requires a bit rate of 12, 400 kbit/s. More complex motion estimation strate-

gies could be deployed to reduce the bit rate, illustrating the advantages of

a flexible motion estimation core.

Figure 7.4 shows the effect of different configurations when processing

the 1920×1080 sequence pedestrian area. The area of the points in the figure

is proportional to the number of logic cells required. Some configurations

had an fps smaller than 25, which is the minimum for real-time processing,

so the number of execution units was increased. This can be seen by their

larger area requirements. The point labelled none supports none of the
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Table 7.2: Bit rate obtained by using hexagonal and full
searches, with and without sub-pel motion estimation.

Sequence Resolution No sub-pel Sub-pel
Hex Full Hex Full

(kbit/s) (kbit/s) (kbit/s) (kbit/s)

pedestrian area 1920× 1080 6048 5980 5671 5532
station 1920× 1080 4064 4047 2800 2579
tractor 1920× 1080 10187 10140 8584 8739

park run 1280× 720 10963 10947 8611 9284
shields 1280× 720 5854 5812 3612 4252
stockholm 1280× 720 4440 4422 2188 2917

optimizations.

When the multiple motion vector candidate optimization is used (points

having c in the label), the bit rate is reduced, and the processing speed

changes. When 8× 8 partition sizes are used (8 ) with no Lagrangian opti-

mization (points having no l in the label), the bit rate is actually worse than

when no sub-block partitions are used, indicating that Lagrangian optimiza-

tion is essential when using sub-block partitions. Lagrangian optimization

has the advantage of both reducing the bit rate and increasing the process-

ing speed in all the cases. The processing speed is increased because the

number of search points is reduced owing to faster convergence.

The hexagonal-search algorithm was compared to the full-search algo-

rithm in another experiment. The hexagonal search used consists of up to

eight iterations, with a hexagon radius of two pixels; it can select points up

to 16 pixels in each direction from the initial point. The full search used

can span the same range, 16 pixels in each direction from the initial point.

The full search was performed by replacing the integer-pel search in the

cycle-accurate simulator with a full search while leaving everything else un-

changed. Table 7.2 shows the bit rates produced when processing sequences

using these two searches both with and without sub-pel refinement.

With no sub-pel refinement, the full search produces a marginally better

bit rate. With sub-pel refinement, the bit rates are very similar for the

1920×1080 sequences, but the hexagonal search performs better in the 720×
576 sequences by 8% for park run, 18% for shields, and 33% for stockholm.

This can be because the hexagonal search is a more logical search which

has a higher chance of corresponding to the real object motion in the video
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Figure 7.5: The scalable video compression components required for the
universal reconfigurable compression system.

sequence, while the full search is much more likely to select a point which

does not correspond to the real object motion; the motion vectors given by

the full search are more susceptible to noise. This result confirms that a well-

designed fast block matching algorithm can provide better rate-distortion

performance than the full search algorithm as shown by [59].

These experiments have demonstrated how for a particular type of video

sequences, we can configure the motion estimation processor. The proces-

sor’s features can be added until the required compression performance is

obtained. Then, the number of processing units can be added until the tim-

ing constraints are met, that is, until the number of frames processed per

second is sufficient. This allows us to configure the processor to have the

least possible hardware cost while meeting the design constraints.

7.2 The motion vector palettes

In Section 3.4, an architecture for universal compression was presented in

Figure 3.2. Figure 7.5 shows the subset of Figure 3.2 that is used for SVC.

Figure 7.6 shows the data flow through the components of this subsystem.

The motion estimation engine presented in [36] is used to perform the

motion estimation search and generate one motion vector for each mac-

roblock. The motion vector palette generator and encoder takes these mo-

tion vectors and generates a motion vector palette, which it then encodes.

The number of motion vectors in the palette can be smaller than the number

of distinct original motion vectors, so for the motion-compensated temporal

filter, only the motion vectors available in the palette should be used. This

means that the temporal filter should use the quantized motion vectors from

the palette generator and encoder, not the motion vectors from the motion

estimator.

Figure 7.7 shows an overview of the architecture of the motion vector
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Figure 7.6: The data flow through the components of the scalable video
compression system.

palette generator and encoder. The complete process can be divided into

three main parts:

1. Input: the initialization process that reads the original motion vectors

into one cluster of motion vectors (Section 7.2.1),

2. Clustering: divisive clustering of the motion vectors to generate a

motion vector palette (Section 7.2.2), and

3. Output: the output of the quantized motion vectors to the temporal

filter (Section 7.2.3) and of context modelling data to the probability

estimator (Section 7.2.4).

Together with these three blocks, there are two support components:

the split accumulator (Section 7.2.5) and the statistics calculator (Section

7.2.6). There are also a number of arrays stored in memory, which will be

described in the following sections.

7.2.1 Input of original motion vectors

The first stage is the initialization process. The motion vectors of the form

(x, y) are read one at a time and stored in array (a) mv in memory. From
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Section 4.2, we know that we need some statistical values. In order to

generate these statistics for the starting set of vectors S1, each input vector

is passed to the accumulator block which accumulates the sums Σx, Σy,

Σx2, Σy2 and Σxy. These values are then passed to the statistics calculator

block, which calculates statistical values needed by the divisive clustering

described in Section 7.2.2 below. This stage also initializes the other memory

arrays.

7.2.2 Divisive clustering of motion vectors

The divisive clustering method of Section 4.2 is used to split the set S1 of

all the motion vectors into a number of clusters equal to the size of the

motion vector palette. A binary tree is built, with each node representing

a cluster of motion vectors. For each cluster division, a cluster of motion

vectors represented by one leaf node is split into two clusters. The leaf node

in question becomes a parent node with two child nodes, one for each of the

two new clusters.

To decide which leaf node to split, and how to divide its motion vectors

into two clusters, some statistical values are required. Each cluster Si has ni

motion vectors of the form (x, y). The values x, y, x2, y2 and xy are added

over all the ni vectors, and their means x̄, ȳ, xx, yy and xy are found.

As described in Section 4.2, we need to find the variance R̃i in (4.5),

which is a 2× 2 symmetric matrix given by(
a b

b d

)
=

(
xx− x̄x̄ xy − x̄ȳ
xy − x̄ȳ yy − ȳȳ

)
. (7.1)

The values a and d cannot be negative, but b can be negative. Let

∆ =
√

(a− d)2 + (2b)2. (7.2)

We can find that the principal eigenvalue λ and the corresponding eigenvec-
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tor e are

λ =
a+ d+ ∆

2
(7.3)

e =


(1 0)T if ∆ = 0,

(a− d+ ∆ 2b)T if a > d,

(2b d− a+ ∆)T otherwise.

(7.4)

These statistical values are calculated using the statistics calculator compo-

nent which will be presented in Section 7.2.6 below.

When a split is required, the set or cluster represented by the leaf node

having the largest λ is split into two clusters, and the motion vectors that

satisfy the inequality

(x y) e ≤ (x̄ ȳ) e (7.5)

go into the first cluster, while the others go into the second cluster.

Figure 7.8 shows the contents of the used data structures when starting

with nine motion vectors and generating a palette of four motion vectors.

This means that at the end of the clustering process, there should be four

clusters. This requires three divisions, or three splits.

The original motion vectors are shown in the bottom left corner. There

are three data structures shown in Figure 7.8 apart from the table of original

motion vectors: the palette indices, the binary tree, and the heap of leaf

nodes. These data structures are stored using arrays in the actual component

implementations.

After initialization, there is only one cluster, which holds all the motion

vectors. Since there is only one cluster, all the values in the palette indices

table of Figure 7.8 are 0. The mean of the nine motion vectors is m1 =

(−1, 0), and the binary tree consists of only one node, node 1, which is the

root node and represents the cluster containing all the vectors. A heap data

structure [93] is used to maintain an ordered list of all the palette indices

sorted by their corresponding λ. After initialization, there is only one value

in the heap, with λ1 = 116.

Each time a cluster is to be split, the palette index at the top of the

heap is the palette index of the cluster to split. The leaf node in the binary

tree that corresponds to this palette will thus become a parent node with
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two child nodes, the first child node will contain the motion vectors of the

new parent which satisfy (7.5), and the second will contain the rest.

For the first cluster division, or the first split, the set S1 of all motion

vectors is split in two. The first set S2, represented by node 2, contains

seven vectors and has a mean m2 = (−6, 2) and a principal eigenvector

λ2 = 9. The second set S3, represented by node 3, contains two motion

vectors and has a mean m3 = (17,−7) and λ3 = 0.5. The seven vectors in

set S2 have a corresponding palette index of 0, and the two vectors in set

S3 have a corresponding palette index of 1. Since λ2 > λ3, the palette index

corresponding to S2 is at the top of the heap, and the next set to split will

thus be S2. The first, second and third split are shown in Figure 7.8. For the

second split, three vectors from palette index 0 are split into a new palette

index 2. For the third split, two vectors from palette index 0 are split into

a new palette index 3.

The data required by the clustering algorithm is held in a number of

arrays. Table 7.3 shows the contents of all the arrays held in memory at the

end of the third split for the example above.

Array (a) mv holds the actual motion vectors and their corresponding

palette index. The motion vectors themselves are written in the initialization

stage (Section 7.2.1) and are not changed during the rest of the algorithm.

The palette index entries start as all 0s on initialization, and on each split,

a new palette index is introduced. In the first split, palette index 0 is split

into 0 and 1, and some entries are changed from 0 to 1. In the second split,

palette index 0 is split into 0 and 2, and in the third split, palette index 0

is split into 0 and 3.

To avoid having to iterate through all the elements in array (a) mv when

we need to iterate through the elements of one set, we use array (b) mv index ,

which is simply a list of the indices of array (a) mv ordered such that the

motion vectors in the same set are contiguous. For example, the entries for

node 5, which has palette index 2, are the motion vectors at locations 2, 4

and 5 in array (a) mv , which are not contiguous. So pointers to these three

locations are stored contiguously in array (b) mv index . On each split, one

set is split into two sets, so the entries belonging to that set in array (b) mv

index are split into two; since they are already contiguous, the entries for

the other sets are not touched, and only a small set of pointers has to be

updated and reordered.
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Table 7.3: Memory contents for the divisive clustering of mo-
tion vectors.

(a) mv

x y palette index

0 −10 2 3
1 −10 4 3
2 −4 4 2
3 −8 −1 0
4 −3 4 2
5 −4 5 2
6 −6 −2 0
7 17 −7 1
8 17 −8 1

(b) mv index

mv index

0 3
1 6
2 1
3 0
4 5
5 4
6 2
7 8
8 7

(c) binary tree

node x̄ ȳ is leaf? pointer pointer meaning

1 −1 0 no 1 children: 2, 3
2 −6 2 no 2 children: 4, 5
3 17 −7 yes 1 palette index: 1
4 −8 1 no 3 children: 6, 7
5 −4 4 yes 2 palette index: 2
6 −7 −1 yes 0 palette index: 0
7 −10 3 yes 3 palette index: 3

(d) leaf

palette first size bin
index mv index tree

0 0 2 6
1 7 2 3
2 4 3 5
3 2 2 7

(e) leaf statistics

palette ex ey x̄frac ȳfrac
index /256 /256

0 8 −4 0 −128
1 0 8 0 −128
2 −4 5 86 85
3 0 8 0 0

(f) leaf heap

palette index λ

1 0 1.5
2 3 1
3 2 0.5
4 1 0.5
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Array (c) binary tree holds the binary tree shown in Figure 7.8. The

meaning of the pointer field p depends on whether the node is a parent node

or leaf node. If the node is a parent node, its children have node numbers

2p and 2p + 1, where p is the pointer value. If the node is a leaf node, the

pointer value p refers to the palette index associated with the leaf node. The

binary tree after the third split in Figure 7.8 is described completely by the

contents of array (c) binary tree in Table 7.3.

Arrays (d) leaf and (e) leaf statistics hold the information about each

palette entry. Each palette entry corresponds to a set of motion vectors

which are contiguous in array (b) mv index , and the first index and number

of entries is held in the first two fields of array (d) leaf . The palette entry

also has a corresponding leaf node in the binary tree, and the node number

is held in the third field. For example, palette index 2 has node 5, as can be

seen in its third field, and it has three motion vectors starting at location 4 in

array (b) mv index . Array (e) leaf statistics holds extra information about

the set that is useful during clustering; it contains the eigenvector e and the

fractional part of the mean m that is required for accurate calculation of

(7.5).

Array (f) leaf heap holds the heap of leaf nodes that is used to select a

set of motion vectors to split. The heap is sorted according to the principal

eigenvalue λ of a set. To select a cluster for division, the top of the heap is

taken. From the palette index obtained from the top of the heap, we can

obtain the list of motion vectors by going to array (d) leaf and then to array

(b) mv index .

For example, if we wanted one further division, the current top of the

heap has palette index 0 and λ = 1.5. Form array (d) leaf , we can see

that there are two vectors starting at motion vector index 0. With this

information, we can use array (b) mv index to find that these two vectors

are at locations 3 and 6 in the table or original motion vectors in array

(a) mv . For each of these motion vector, inequality (7.5) is used to decide

whether the vector goes into the first subset or the second subset. For the

first motion vector, (−8,−1), the inequality becomes

(
− 8 − 1

)( 8

−4

)
≤
(
− 7 − 11/2

)( 8

−4

)
,
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which is true. For the second vector, (−6,−2), the inequality becomes

(
− 6 − 2

)( 8

−4

)
≤
(
− 7 − 11/2

)( 8

−4

)
,

which is false. Thus, the first vector would go into the first subset, and the

second vector would go into the second subset.

During the splitting process, while the values of these vectors are tested

for inequality (7.5), the sums Σx, Σy, Σx2, Σy2 and Σxy are calculated on

the fly for both subsets using the split accumulator, which will be described

in Section 7.2.5. At the end of the splitting process, these two sets of sums

are passed in turn to the statistics calculator, which calculates two sets of

statistics. The statistics calculator also calculates the means x̄ and ȳ of

the clusters. The statistics for all the leaf nodes are held in array (e) leaf

statistics. The element at the top of the heap, which represents the new

parent node, is replaced by two new elements which represent the two new

leaf nodes. This means that we need three heap operations: removal of the

parent node, and insertion of each of the child nodes. Usually, after each

operation, the heap will have to be reordered. In our case, two of these

operations can be combined. First, the parent node is replaced with one of

the child nodes, and the heap is reordered once, then the second child node

is added to the end of the heap and the heap is reordered once more. Thus,

even though there are three operations on the heap, the heap needs to be

reordered only two times.

Once the divisive clustering is complete, arrays (b) mv index , (e) leaf

statistics and (f) leaf heap are no longer needed, so they are reused in the

output stage described in Section 7.2.4. Arrays (a) mv , (c) binary tree and

(d) leaf will still be required.

7.2.3 Output of the quantized motion vectors

The quantized motion vectors need to be passed to the temporal filter. For

each motion vector, the palette index is read from array (a) mv , and then

used to get the corresponding binary tree node from the array (d) leaf .

Finally, the mean motion vector m is read from the x̄ and ȳ fields of array

(c) binary tree and passed to the temporal filter.

For example, for the first motion vector, the palette index 3 is read from

116



7.2. THE MOTION VECTOR PALETTES

6

2

7 5

0
binary tree

node number

3

3

Layer 1

Layer 2

Figure 7.9: Layered tree for encoding motion vector palettes in layers.

the first location of array (a) mv . Then, the binary tree node number 7 is

read from array (d) leaf . Finally, the mean value for the motion vectors in

the cluster is read from (c) binary tree. This mean value, (−10, 3), is the

quantized motion vector, and is used instead of the original motion vector

(−10, 2).

7.2.4 Encoding of the motion vector palettes

While the quantized motion vectors are being passed to the temporal filter,

the motion vector palettes can be encoded concurrently. This means that

the processes of this section and Section 7.2.3 can be executed in parallel.

The encoding process of the motion vectors involves splitting the binary

tree produced in Section 7.2.2 into a number of layers as described in Section

4.5. For each layer, the first thing to do is to determine the number of nodes

from the binary tree to use.

For example, the values shown in Figure 7.8 can be split into two layers,

the first with two palette entries, and the second with all the four palette

entries. For the first layer, since only two palette entries are required, the

binary tree nodes with number > 3 cannot be used, and the nodes with

number ≤ 3 and with no children ≤ 3 are the nodes that are the effective

leaf nodes. Generally, if we need k palette indices, the binary tree nodes i

to be used are those that satisfy the two conditions

1. i < 2k and

2. node i has no child nodes < 2k.

In this case, k = 2, and nodes 2 and 3 are used, as shown in the first level

of the layered tree in Figure 7.9.

A stack is used to traverse the final binary tree of Figure 7.8 depth first.

Since array (f) leaf heap of Section 7.2.2 is no longer used, the node stack
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Table 7.4: Memory contents for the first layer of the layered
tree.

(e) layered tree

binary parent’s sibling child
tree binary tree count index
node node

0 2 0 2 0
1 3 0 − 1

(b) layered tree index

palette layered
index tree

index

0 0
1 1
2 0
3 0

can reuse this area of memory. While traversing the binary tree, the two

arrays in Table 7.4 are constructed. The binary tree nodes that satisfy the

conditions above are stored in array (e) layered tree. A conversion table

for palette indices from the whole binary tree to palette indices using the

limited nodes of the first layer is stored in array (b) layered tree index . In

this case, the palette indices 0, 2 and 3, which correspond to the leaf nodes

5, 6 and 7 in the binary tree, will all be assigned to the index 0 in the

layered tree, while palette index 1, which corresponds to the leaf node 3 in

the binary tree, will be assigned to index 1 of the layered tree. This first

layer is encoded in two steps:

1. The palette itself is encoded as described in Section 4.3. This requires

the encoding of a number of integers and does not require context

modelling.

2. The motion vectors are encoded as indices to this palette as described

in Section 4.4. This part requires a context modeller and probability

estimator, which have been implemented as well.

For the second layer, the process is performed on parts of the binary tree

instead of on the whole tree. Each of the binary tree nodes of the previous

layer, in this case nodes 2 and 3, is treated as a root node in a sub-tree and

the process performed on this sub-tree. In this case, array (e) layered tree

will have four entries, the first three for the sub-tree with root 2, and the

last entry for the sub-tree with root 3. After generating the layered tree, the

second layer is encoded using the same two steps used to encode the first

layer. If there are more than two layers, this process is repeated for all the

118



7.2. THE MOTION VECTOR PALETTES

Table 7.5: Memory contents for the second layer of the lay-
ered tree.

(e) layered tree

binary parent’s sibling child
tree binary tree count index
node node

0 6 2 3 0
1 7 2 − 1
2 5 2 − 2
3 3 3 1 0

(b) layered tree index

palette layered
index tree

index

0 0
1 3
2 2
3 1

Register 1

Register 2

split

value

sum 1

sum 2

mux +

Figure 7.10: The split accumulator for each sum component required.

remaining layers.

7.2.5 Split accumulator

During the splitting of motion vectors into two clusters, each vector can

either go to the first cluster, or to the second, according to the outcome of

condition (7.5). For each of these two clusters, we will need the sums Σx,

Σy, Σx2, Σy2 and Σxy.

One adder can be used to accumulate Σx for both clusters. In fact, for

each of the five required sums, only one adder is required, so that in all

five adders can be used instead of ten. Figure 7.10 shows the multiplexing

done to achieve this, with the split input being a boolean input indicating

whether the value belongs to the second cluster, that is, the cluster that is

being split from the original cluster.
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7.2.6 Calculating the statistics

The clustering algorithm in Section 7.2.2 requires the statistical values λ and

e as given by (7.3) and (7.4). The calculation of these values requires division

for the calculation of the means x̄, ȳ, xx, yy and xy, multiplication for the

calculation of x̄x̄, ȳȳ, x̄ȳ, (a − d)2 and (2b)2, addition/subtraction, and a

square root operation to calculate ∆ from ∆2. The square root operation

can be obtained using the CORDIC [72] technique. For Xilinx Virtex 5,

the divider, multiplier, and CORDIC square root operator can be generated

using Xilinx CORE Generator.

Pipelining of the operations was used to use a single divider, a single

multiplier, a single adder/subtractor and a single square root operator. Fig-

ure 7.11 shows the timing diagram used for the calculation of these values

using pipelining. The total latency L depends on the divider latency D, the

multiplier latency M , and the square root latency Q, and is given by

L = D + 2M +Q+ 9. (7.6)

Note that the adder/subtractor has a latency of one cycle. If the divider

has a latency of 33 cycles, the multiplier has a latency of four cycles, and

the square root operator has a latency of 10 cycles, the total latency is 60

cycles.

Each time a cluster is split in two, the statistical calculations have to

be performed for each of the two new clusters. But the calculation for the

second cluster can be started before the calculation for the first cluster is

ready, as long as superimposing the two timing diagrams does not create

any conflict. Thus, the divider, multiplier, adder/subtractor and square

root operator can be shared between the two. Figure 7.12 shows the inputs

to the mathematical operators for two parallel calculations with D = 33,

M = 4 and Q = 10. If the calculation for the second cluster starts five

cycles after the calculation for the first cluster, no collisions happen.

Figure 7.13 shows the architecture for the statistical calculator. Note

that there are two FSMs, one for each of the two required calculations.

The inputs to each mathematical operator are multiplexed from the two

FSMs. There are four multiplexed operators: a divider, a multiplier, an

adder/subtractor and a square root operator.
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Figure 7.13: The architecture of the statistics calculator showing the multi-
plexing for one mathematical operator.

Arithmetic
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Wavelet
cont. mod.

2-D wav.
transform

Figure 7.14: The scalable image compression components required for the
universal reconfigurable compression system.

7.3 The temporally filtered frames

After the motion compensation steps, we are left with temporally-filtered

frames that need to be encoded. Some components were implemented to do

this. These components can be used to encode images as well. Figure 7.14

shows the subset of Figure 7.5 that is used to encode the temporally filtered

frames. It is also the part of Figure 3.2 in Section 3.4 that processes scalable

image compression.

7.3.1 Two-dimensional wavelet transforms

The temporally-filtered frames are first transformed using a two-dimensional

discrete wavelet transform (DWT) [41], which generates a number of sub-

bands. Figure 7.15 shows one level of the two-dimensional DWT. The

wavelet filters use lifting [85]. The horizontal filter needs to buffer a number

of values, and the vertical filter needs to buffer a number of horizontal lines.

For the 5/3 filter, the horizontal filter needs to buffer two values, and the

vertical filter needs to buffer two lines. If the width of the input image is w,
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Figure 7.15: One level of the two-dimensional wavelet transform.

the filter introduces a latency of approximately 2w, and one complete line

of output will be produced for each of the sub-bands after three lines are

input. After the first output line, another output line will be produced for

every two input lines.

Let us denote the values before the DWT by x0,k. If there are a total of

n values, then 0 ≤ k < n. For the 5/3 filter, one stage of lifting is required,

while for the 9/7 filter, two stages of lifting are required. The lifting process

transforms the original values into low-pass values and high-pass values. The

low-pass values are denoted by xi,2k and the high-pass values are denoted

by xi,2k+1, where i = 1 when one lifting stage is required and i = 2 when

two lifting stages are required. The lifting process is given by

xi,2k+1 = xi−1,2k+1 − αi(xi−1,2k + xi−1,2k+2) (7.7)

xi,2k = xi−1,2k + βi(xi,2k−1 + xi,2k+1), (7.8)

where (7.7) is the prediction step and (7.8) is the update step. For the 5/3

filter, α1 = 1/2 and β1 = 1/4. It follows that both xi,2k and xi,2k+1 depend

on the values up to xi−1,2k+2. So x1,0 and x1,1 depend on the values up to

x0,2. Similarly, x2,0 and x2,1 depend on the values up to x1,2, which in turn

depend on the values up to x0,4.

If we use symmetric extension [47] at the edges of the input values, where

x0,0 is the first value and x0,n−1 is the last value, we can write

x0,−k = x0,k (7.9)

x0,n−1+k = x0,n−1−k. (7.10)
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From (7.7) to (7.10), it is trivial to show that

xi,−k = xi,k (7.11)

xi,n−1+k = xi,n−1−k, (7.12)

that is, symmetry at the edges of the input values leads to symmetry at the

edges of the output values. This will have the important consequence that

we do not need to generate or buffer any xi,−k and xi,n−1+k values at any

time in the lifting process.

Let us consider the edge cases. At the beginning of the lifting process,

that is, when 2k = 0, we can rewrite (7.7) and (7.8) as

xi,1 = xi−1,1 − αi(xi−1,0 + xi−1,2) (7.13)

xi,0 = xi−1,0 + βi(xi,−1 + xi,1). (7.14)

The reflected value xi,−1 is used only together with xi,1, and from (7.11)

these two values are equal, so that no extra buffering is required.

At the end of the lifting process, we have two cases, the case when n is

even and the case when n is odd. When n is even, the edge is at 2k+1 = n−1,

and we can rewrite (7.7) and (7.8) as

xi,n−1 = xi−1,n−1 − αi(xi−1,n−2 + xi−1,n) (7.15)

xi,n−2 = xi−1,n−2 + βi(xi,n−3 + xi,n−1). (7.16)

The reflected value xi−1,n is used together with xi−1,n−2, and from (7.12)

these two values are equal, so no extra buffering is required.

When n is odd, the edge is at 2k = n− 1, and we have to find the value

of xi,2k only, and do not need to find the value of xi,2k+1, which is only a

reflection of xi,2k−1. In this case, we can rewrite (7.8) as

xi,n−1 = xi−1,n−1 + βi(xi,n−2 + xi,n). (7.17)

The reflected value xi,n is used together with xi,n−2, and again from (7.12)

these two values are equal, so no extra buffering is required here either.

Figure 7.16 shows how the two-dimensional DWT is cascaded for three

levels of wavelet decomposition. The width of the input frame to the first

level is w. The width of LL0 is w/2, so the vertical filter in the second

125



CHAPTER 7. HARDWARE AMENABILITY

LL0

HL0

LH 0

HH 0

input

HL1

LH 1

HH 1

LL2

HL2

LH 2

HH 2

Single
level

Single
level

Single
level

LL1

HH 0

LH 0

LL0

HL0

HH 0

HL0
LH 0

HH 0

HL0
LH 0

Figure 7.16: Three levels of the two-dimensional wavelet transform.

wavelet stage will need half the buffer space required by the first level.

For the 5/3 filter, after three lines of the original image are input into the

first stage (think x0,0, x0,1 and x0,2), the first line of LL0 is produced (x1,0).

After two further lines are input (x0,3 and x0,4), the second line of LL0 is

produced (x1,2, not x1,1 which is high-pass). When seven lines of the original

image are input into the first stage, three lines of LL0 are produced. Just

as three lines of the original image are needed to produce one line of LL0,

three lines of LL0 are needed to produce one line of LL1. Thus, when seven

lines of the original image are processed, three lines of LL0 are produced

and input into the second stage, and the first line of LL1 is produced.

Table 7.6 shows how many lines of the original image are required to

output a given number of lines in the different wavelet sub-bands. For

example, as described above, for the 5/3 filter, three input lines are required

to output one LL0 line, and seven input lines are required to output three

lines. For the second level, three LL0 lines are required to output one LL1

line, which in turn require seven lines of the original image. For the third

level, three LL1 lines are required to output one LL2 line, which in turn

require seven LL0 lines, which in turn require 15 lines of the original image.

Similarly, for the 9/7 filter with two lifting stages, the output of one LL2

line requires five LL1 lines, which in turn require 13 LL0 lines, which in turn

require 29 lines of the original image.

It is important to note that this does not mean that 29 lines of the
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Table 7.6: Number of whole lines of input required to output
a given number of whole lines for the given two-dimensional
wavelet sub-bands.

Output 5/3 5/3 5/3 9/7 9/7 9/7
lines LL0 LL1 LL2 LL0 LL1 LL2

1 3 7 15 5 13 29
2 5 11 23 7 17 37
3 7 15 31 9 21 45
4 9 19 39 11 25 53
5 11 23 47 13 29 61
...

...
...

...
...

...
...

n 2n+ 1 4n+ 3 8n+ 7 2n+ 3 4n+ 9 8n+ 21

original image need to be buffered. If the original image has a width of w,

the two lifting stages of the first level will require 2w buffered values each,

the two lifting stages of the second level will require 2w/2 buffered values

each, and the two lifting stages of the third level will require 2w/4 buffered

values each, for a total of 7w buffered values for three levels of the 9/7 filter.

For the 5/3 filter, the requirements are half the requirements for the 9/7

filter, because only one lifting step is required as opposed to the two lifting

steps required by the 9/7 filter.

7.3.2 Bit plane coding and context modelling

As described in Section 2.3.1, for each wavelet sub-band, the wavelet context

modeller will process the bit planes in turn, so the output of the DWT are

stored in SRAM by bit plane. This is so that when the context modeller

is processing one bit plane, and it loads a word from SRAM, all the bits

in the memory word are in the same bit plane, and no unnecessary bits

are loaded. This means that the context modeller will not be reading from

SRAM during all the cycles, as reading one word from memory will provide

enough bits for several cycles. Thus, a number of wavelet sub-bands can be

processed in parallel if required, with each context modeller reading from

the SRAM in turn.

The context modelling used for the wavelet sub-bands is very similar to

that used by ICER [12]. A wavelet sub-band is divided into code blocks with

a limited size, this is done to limit the memory requirements of the context
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modeller, and it gives the added advantage of error containment, where an

error in the transmission of one code block does not affect the other code

blocks.

For each bit plane, the code block is first divided into a number of sub-

blocks. A sub-block is said to be significant if at least one pixel in it is

non-zero. The significance of each sub-block is encoded in a hierarchical

manner like in EBCOT [11]. If a 256 × 256 code block is subdivided into

16 × 16 sub-blocks, the number of bits required to store the significance

hierarchically will be 4 for 128× 128 sub-blocks, 16 for 64× 64 sub-blocks,

64 for 32× 32 sub-blocks and 256 for 16× 16 sub-blocks, for a total of 340

bits. When a block is known to be significant from previous bit planes, its

significance does not need to be encoded, and when a block is known to be

insignificant from a coarser block, it does not need to be encoded either, so

less than 340 bits are actually required.

After the significance of the sub-blocks in a bit plane is encoded, the

significant sub-blocks are encoded with the context modelling detailed in

[12]. The insignificant sub-blocks, which are all zero, are simply skipped.

The context modeller needs to store three bits of state for each pixel, one

for the sign and two for the category; these state bits are stored in SRAM.

As already mentioned, for each pixel we need the bit itself from the bit

plane, and three bits for the modeller state. If the SRAM bus is 64-bit

wide, four read cycles will give 64 bits from the bit plane and 64 context

states of three bits each. The context modeller processes one pixel bit per

cycle, so the four read cycles will provide enough data for the modeller to

work for 64 cycles. One context modeller will thus use 4/64 = 1/16 of the

memory bandwidth, such that 16 context modellers can run in parallel. If

eight context modellers are working in parallel, 8× 4/64 = 1/2 of the memory

read cycles are used by the context modellers.

7.4 Hardware cost

The algorithms for the motion vector palette encoder and for the wavelet

transform and context modelling were implemented in VHDL, and simulated

on ModelSim targeting a Xilinx Virtex 5 FPGA [94]. The clock period used

in the timing constraints was 7.5 ns, leading to a frequency of 133 MHz,

which is sufficient for encoding video at the required speed, as will be shown
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Table 7.7: Dynamic power and resources required for a 133 MHz
clock frequency implementation.

Component Power (mW) FFs LUTs

Motion vector palette encoder 108.10 3417 7415
statistics calculator 28 .65 2252 4002

FSM (2×) 3 .13 198 991
divider 16 .15 1328 452
multiplier 0 .00 271 402
square root 1 .56 220 297

2-D wavelet transform (3 levels) 123.74 2467 3457
Wavelet context modeller 88.48 184 780
Probability estimator 3.68 140 247
Arithmetic coder 1.41 163 462

below, while using higher clock frequencies would lead to higher dynamic

power consumption. The dynamic power for the implementations was esti-

mated using the Xilinx Power Analyzer. The power and resources required

can be seen in Table 7.7. The motion vector palette encoder uses a total of

about 108 mW. Three levels of the two-dimensional wavelet transform use

123 mW, while the context modeller, probability estimator and arithmetic

coder combined use about 94 mW.

The wavelet transform uses one clock cycle for each input value, so that

it can process 30 frames of size 2048×2048 per second at 133 MHz. Timing

simulations show that the wavelet context modeller, probability estimator,

and arithmetic coder can process a 256×256 code block in 5 ms. If required,

a number of code blocks can be processed in parallel, since each code block

can be encoded independently of other code blocks. The motion vector

palette encoder can encode a set of 4096 motion vectors in 2.5 ms, which

means that for bidirectional motion estimation, it will be able to process

one frame every 5 ms, making it possible to process up to 200 frames per

second. A 2048 × 2048 frame will give 4096 motion vectors using 32 × 32

macroblocks. For smaller frames, smaller macroblocks may be used.

The suitability of the designed components to process HD video se-

quences, with a 1920× 1080 Y channel, and 960× 540 U and V channels, at

a rate of 25 frames per second, was also verified. One frame has to be pro-

cessed every 40 ms. Eight wavelet context modellers in parallel will process
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all the pixel data of a YUV frame in

1920× 1080 + 2× 960× 540

256× 256
× 1

8
× 5 ms

which is around 30 ms. Since only 30 ms are required for 40 ms of data, and

since from Section 7.3.2 we know that eight context modellers in parallel will

use 50% of the memory bandwidth for that time, the context modelling will

require only 37.5% of the memory bandwidth. The wavelet transform and

the motion estimation engine can use the remaining memory bandwidth.

7.5 Validation

The designs were validated by processing test data sets and comparing the

output with output produced by the software implementation of the algo-

rithm. For the wavelet transforms and wavelet context modelling, the output

of the timing simulation and the output of a software implementation were

identical. For the motion vector palette encoder, the results were not identi-

cal, but virtually equivalent. Since the motion vector palette encoder makes

use of fixed point arithmetic in the hardware implementation, some of the

intermediate values used in the divisive clustering algorithm are not identi-

cal to the corresponding values of the software algorithm, which makes use

of double-precision floating point arithmetic. However, the resulting differ-

ence in the clustering of the motion vectors resulted in a negligible difference

in the size of the compressed video bitstream after temporal filtering and

wavelet compression.

7.6 Conclusion

In this chapter, the hardware amenability of the proposed scalable video

coding algorithm was demonstrated. Tools for the analysis and configuration

of the motion estimation engine were presented, and analysis of motion

estimation algorithms which leads to the proper configuration of the engine

was presented. Viable designs for the motion vector palette generator and

encoder, as well as for spatial wavelet transforms and context modelling,

were presented. The hardware cost of these components was analysed, and

the algorithms’ amenability to hardware implementation was demonstrated.
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Chapter 8

Conclusion

This chapter summarizes the main achievements of this work. Section 8.1

shows how the objectives listed in Chapter 1 were achieved. Section 8.2

suggests some areas which can be investigated further in the future.

8.1 Achieved objectives

In Section 1.4, five main objectives were listed. The objectives follow be-

low, with some discussion to show how the objectives were achieved. The

objectives were

1. to investigate the existing universal compression system, and how an

SVC algorithm can be incorporated into it,

Chapter 3 investigated which blocks of the existing universal compres-

sion system can be used by the SVC algorithm and gave an overview

of how the universal compression system can be reconfigured for SVC.

The SVC algorithm follows the same basic stages of the existing com-

ponents, that is, preprocessing and context modelling, probability es-

timation, and arithmetic coding. It also uses the same motion esti-

mation engine as the lossless video component of the existing system.

Thus, it can be used to extend the existing universal compression sys-

tem.

2. to investigate the scalable encoding of motion vectors such that they

can be included in the video bitstream generated by the scalable video

system,
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In order to enable scalability down to very low bit rates, the pre-

sented video compression algorithm makes use of layered motion vec-

tor palettes to encode the motion vector side information of the video

in a scalable manner, as shown in Chapter 4. The multi-layer motion

vector palettes provide a flexible system for scalable encoding of the

motion vectors that can retain high precision for some motion vec-

tors while using lower precision for other motion vectors according to

their frequency. This makes it possible to scale the transmitted video

bitstream to very low bit rates. At high bit rates, the overhead of en-

coding the motion vectors in layers only causes a negligible increase in

the bit rate. At low bit rates, the layered motion vector palette scheme

improves the rate-distortion characteristic of the coding scheme by al-

lowing the bit rate of the side information to be decreased together

with the bit rate of the frame information.

3. to investigate and analyse an SVC algorithm that generates a video

bitstream which is scalable through a large range of bit rates, from low

bit rates to high bit rates, without the need of reencoding, and that is

compatible with the existing universal compression system,

As well as its suitability for very low bit rates thanks to the scalable

motion vector encoding, the algorithm includes scalable video coding

methods suitable for a large range of bit rates as demonstrated in

Chapter 5. Encoding the video sequence at the highest possible bit

rate does not have any side-effects on the compression performance

at low bit rates. If very high quality is required, the reversible 5/3

wavelet filter can be used in the spatial coding stage, which enables

the compressed video bitstream to be scaled all the way up to lossless.

4. to analyse the compression performance of the algorithm to ensure it

has good compression performance comparable to other SVC systems,

The analysis in Chapter 6 showed that the scheme outperforms Motion

JPEG 2000, which is a wavelet-based algorithm that does not make use

of motion compensation. The proposed SVC scheme was also shown

to offer compression performance that compares well to the state-of-

the-art JSVM encoder, outperforming it when compressing a number

of video sequences. In addition to this, the proposed scheme gives a

finer and larger range of scalability.
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5. to design for low complexity so that the algorithm is amenable to hard-

ware implementations, and demonstrate the suitability of the algorithm

for hardware implementations.

While designing the algorithm, care was taken to keep the complexity

in check so that the scheme is suitable for hardware implementations.

Since the algorithm was kept as simple as possible, the processing and

memory requirements of the designed method were much lower than

the requirements of the JSVM encoder. As indicated in Chapter 7, the

suitability of the developed algorithms for reconfigurable hardware was

demonstrated by the design, implementation and simulation of all the

main components of the system. The motion vector palette generator

and encoder, and the wavelet transform, context modeller, probability

estimator and arithmetic coder, were synthesized and simulated tar-

geting a Xilinx Virtex 5 FPGA at a clock frequency of 133 MHz, and

the algorithm was shown to be more than suitable for the real time

encoding of 1920× 1080 YUV video sequences.

During the design, specialized components were designed to lower the

hardware complexity and circuit size of the system. For example, a

specialized divisive clustering component, a carefully pipelined statis-

tics calculator, and an accumulator capable of accumulating two sums

using only one adder, were developed. Using these specialized com-

ponents instead of adopting generic equivalents led to lower hardware

cost of the system.

8.2 Future work

EBCOT [11] and ICER [12] provide error containment by splitting an image

into code blocks. Errors in a code block do not affect other code blocks in

the same image. While the image is still split into code blocks, errors in

a code block of a frame might still cause errors in different code blocks

of a different frames owing to motion compensation. This effect could be

investigated, and ways to maintain the error containment capabilities of the

mentioned algorithms could be explored.

The contexts used for context modelling of wavelet sub-bands after spa-

tial coding are borrowed from ICER, and are already optimized. However,

the contexts used to encode the motion vector palettes are not optimized.
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While their performance was demonstrated to be good, further study could

be done to see if different context selection can lead to an improvement in

the compression of motion vectors using the motion vector palettes.

In this work, motion vector palettes were used for wavelet-based SVC.

The effect of using motion vector palettes as a method to encode the mo-

tion vector side information in other hybrid video coding systems can be

investigated.

The hardware components designed in this work were meant to demon-

strate that it is possible to implement the algorithms in hardware, but are

not optimized. Future work might include optimizing the critical paths of

the designed components such that the speed of the reconfigurable system

is not limited by the SVC components.

Wavelet sub-bands can be encoded in parallel in hardware, which means

that they are easy to parallelize. After the critical path optimization men-

tioned above, the other components can be investigated to see if there is

room for more parallelization, which can lead to faster execution times after

the.
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T. Spiteri and J. L. Núñez-Yáñez, “Scalable video coding with multi-layer
motion vector palettes,” IET Image Processing, vol. 6, no. 9, pp. 1319–1330,
Dec. 2012.

145



PUBLICATIONS

146


	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Introduction
	Aim
	Scalable video coding
	Reconfigurable universal compression system
	Objectives
	Outline

	Background and Related Work
	Image compression
	Satellite image compression
	Lossy image compression

	Wavelet coding
	Wavelet filtering
	Wavelet filtering using lifting
	Two-dimensional wavelet transforms

	Progressive image coding
	Bit plane coding and context modelling

	Video compression
	Motion estimation
	Scalable video compression
	Hybrid video coding
	Systems based on wavelets
	Scalable motion vector coding

	Hardware amenability
	Conclusion

	Reconfigurable Universal Compression
	Dynamic reconfiguration
	Statistical compression in three stages
	Context modelling
	Probability estimation
	Arithmetic coding

	Different kinds of data
	Images
	Video

	System architecture
	Scalable video coding
	Scalable motion vector coding
	Motion-compensated temporal filtering
	Spatial wavelet filtering
	Entropy coding of frames

	Conclusion

	Scalable Motion Vectors
	Motion vectors as side information
	No side information
	Extracting motion vectors from a base layer
	Scalable encoding of the motion vectors

	Generating motion vector palettes
	Encoding the motion vector palette
	Encoding integers
	Encoding the palette

	Encoding the motion vector indices
	Splitting the motion vectors into layers
	Where to split the motion vector palette layers

	The effect of using motion vector layers
	Palettes versus wavelets for motion vectors
	Conclusion

	Scalable Video Coding
	Motion-compensated temporal filtering
	Memory requirements for temporal filtering
	Motion compensation for the prediction step
	Motion compensation for the update step
	Temporal filtering after motion estimation

	Encoding the temporally filtered frames
	Spatial filtering
	Context modelling
	Probability estimation

	Conclusion

	Performance Analysis
	Comparison to Motion JPEG 2000
	Comparison to JSVM
	Memory requirements and execution duration
	Rate-distortion characteristics

	Conclusion

	Hardware Amenability
	Motion estimation
	Motion estimation engine
	Motion estimation algorithms
	Cycle-accurate simulation
	Analysis of motion estimation algorithms

	The motion vector palettes
	Input of original motion vectors
	Divisive clustering of motion vectors
	Output of the quantized motion vectors
	Encoding of the motion vector palettes
	Split accumulator
	Calculating the statistics

	The temporally filtered frames
	Two-dimensional wavelet transforms
	Bit plane coding and context modelling

	Hardware cost
	Validation
	Conclusion

	Conclusion
	Achieved objectives
	Future work

	References
	Publications

