Mobile Communications Chapter 8: Routing Protocols

- Ad-hoc networks
- Routing protocols
Mobile ad hoc networks

Standard Mobile IP needs an infrastructure
- Home Agent/Foreign Agent in the fixed network
- DNS, routing etc. are not designed for mobility

Sometimes there is no infrastructure!
- remote areas, ad-hoc meetings, disaster areas
- cost can also be an argument against an infrastructure!

Main topic: routing
- no default router available
- every node should be able to forward
Solution: Wireless ad-hoc networks

Network without infrastructure

- Use components of participants for networking

Examples

- Single-hop: All partners max. one hop apart
 - Bluetooth piconet, PDAs in a room, gaming devices…

- Multi-hop: Cover larger distances, circumvent obstacles
 - Bluetooth scatternet, TETRA police network, car-to-car networks…

Internet: MANET (Mobile Ad-hoc Networking) group
Manet: Mobile Ad-hoc Networking
Problem No. 1: Routing

Highly dynamic network topology

- Device mobility plus varying channel quality
- Separation and merging of networks possible
- Asymmetric connections possible

![Network Diagram]

time = t_1

- Good link
- Weak link

time = t_2
Traditional routing algorithms

Distance Vector
- periodic exchange of messages with all physical neighbors that contain information about who can be reached at what distance
- selection of the shortest path if several paths available

Link State
- periodic notification of all routers about the current state of all physical links
- router get a complete picture of the network

Example
- ARPA packet radio network (1973), DV-Routing
- every 7.5s exchange of routing tables including link quality
- updating of tables also by reception of packets
- routing problems solved with limited flooding
Routing in ad-hoc networks

THE big topic in many research projects
- Far more than 50 different proposals exist
- The most simplest one: Flooding!

Reasons
- Classical approaches from fixed networks fail
 - Very slow convergence, large overhead
- High dynamicity, low bandwidth, low computing power

Metrics for routing
- Minimal
 - Number of nodes, loss rate, delay, congestion, interference …
- Maximal
 - Stability of the logical network, battery run-time, time of connectivity …
Problems of traditional routing algorithms

Dynamic of the topology

- frequent changes of connections, connection quality, participants

Limited performance of mobile systems

- periodic updates of routing tables need energy without contributing to the transmission of user data, sleep modes difficult to realize
- limited bandwidth of the system is reduced even more due to the exchange of routing information
- links can be asymmetric, i.e., they can have a direction dependent transmission quality
DSDV (Destination Sequenced Distance Vector)

Early work
- on demand version: AODV

Expansion of distance vector routing

Sequence numbers for all routing updates
- assures in-order execution of all updates
- avoids loops and inconsistencies

Decrease of update frequency
- store time between first and best announcement of a path
- inhibit update if it seems to be unstable (based on the stored time values)
Dynamic source routing I

Split routing into discovering a path and maintaining a path

Discover a path
- only if a path for sending packets to a certain destination is needed and no path is currently available

Maintaining a path
- only while the path is in use one has to make sure that it can be used continuously

No periodic updates needed!
Dynamic source routing II

Path discovery

- broadcast a packet with destination address and unique ID
- if a station receives a broadcast packet
 - if the station is the receiver (i.e., has the correct destination address) then return the packet to the sender (path was collected in the packet)
 - if the packet has already been received earlier (identified via ID) then discard the packet
 - otherwise, append own address and broadcast packet
- sender receives packet with the current path (address list)

Optimizations

- limit broadcasting if maximum diameter of the network is known
- caching of address lists (i.e. paths) with help of passing packets
 - stations can use the cached information for path discovery (own paths or paths for other hosts)
DSR: Route Discovery

Sending from C to O
DSR: Route Discovery

Broadcast

[O,C,4711]
DSR: Route Discovery
DSR: Route Discovery

(Figure showing a network of nodes connected by arrows with route discovery information, e.g., [O,C/G/I,4711] and [O,C/E/H,4711]. Alternative route information: [O,C/E/D,4711]).
DSR: Route Discovery

[Diagram of a network with nodes A to O and arrows indicating routes.

Route information:

- [O, C/B/D/F, 4711]
- [O, C/G/I/K, 4711]
- [O, C/E/H/J, 4711]
- [O, C/G/I/K, 4711]
DSR: Route Discovery

[O,C/G/I/K/M,4711]
(alternatively: [O,C/G/I/K/L,4711])
DSR: Route Discovery

[O,C/E/H/J/L/N,4711]
DSR: Route Discovery

Path: M, K, I, G
Dynamic Source Routing III

Maintaining paths

- after sending a packet
 - wait for a layer 2 acknowledgement (if applicable)
 - listen into the medium to detect if other stations forward the packet (if possible)
 - request an explicit acknowledgement

- if a station encounters problems it can inform the sender of a packet or look-up a new path locally
Interference-based routing

Routing based on assumptions about interference between signals

neighbors (i.e. within radio range)
Examples for interference based routing

Least Interference Routing (LIR)
- calculate the cost of a path based on the number of stations that can receive a transmission

Max-Min Residual Capacity Routing (MMRCR)
- calculate the cost of a path based on a probability function of successful transmissions and interference

Least Resistance Routing (LRR)
- calculate the cost of a path based on interference, jamming and other transmissions

LIR is very simple to implement, only information from direct neighbors is necessary
A plethora of ad hoc routing protocols

Flat

- proactive
 - FSL – Fuzzy Sighted Link State
 - FSR – Fisheye State Routing
 - OLSR – Optimised Link State Routing Protocol
 - TBRPF – Topology Broadcast Based on Reverse Path Forwarding

- reactive
 - AODV – Ad hoc On demand Distance Vector
 - DSR – Dynamic Source Routing

Hierarchical

- CGSR – Clusterhead-Gateway Switch Routing
- HSR – Hierarchical State Routing
- LANMAR – Landmark Ad Hoc Routing
- ZRP – Zone Routing Protocol

Geographic position assisted

- DREAM – Distance Routing Effect Algorithm for Mobility
- GeoCast – Geographic Addressing and Routing
- GPSR – Greedy Perimeter Stateless Routing
- LAR – Location-Aided Routing
Further difficulties and research areas

Auto-Configuration
- Assignment of addresses, function, profile, program, …

Service discovery
- Discovery of services and service providers

Multicast
- Transmission to a selected group of receivers

Quality-of-Service
- Maintenance of a certain transmission quality

Power control
- Minimizing interference, energy conservation mechanisms

Security
- Data integrity, protection from attacks (e.g. Denial of Service)

Scalability
- 10 nodes? 100 nodes? 1000 nodes? 10000 nodes?

Integration with fixed networks
Clustering of ad-hoc networks

- Internet
- Base station
- Cluster head
- Cluster
- Super cluster
The next step: Wireless Sensor Networks (WSN)

Commonalities with MANETs
- Self-organization, multi-hop
- Typically wireless, should be energy efficient

Differences to MANETs
- **Applications**: MANET more powerful, more general
 ↔ WSN more specific
- **Devices**: MANET more powerful, higher data rates, more resources
 ↔ WSN rather limited, embedded, interacting with environment
- **Scale**: MANET rather small (some dozen devices)
 ↔ WSN can be large (thousands)
- **Basic paradigms**: MANET individual node important, ID centric
 ↔ WSN network important, individual node may be dispensable, data centric
- Mobility patterns, Quality-of Service, Energy, **Cost per node** …

Example: www.scatterweb.net
A typical WSN

Integration of Sensor Nodes (SN) and Gateways (GW)
Example: ScatterWeb Sensor Nodes

Embedded Sensor Board

- **Sensors**
 - Luminosity, noise detection, gas, vibration, PIR movement detection, pressure…
- **Microphone/speaker, camera, display,**
 - IR sender/receiver, precise timing
- **Communication using 868 MHz radio transceiver**
 - Range up to 2 km LOS, 500 m indoor
- **Software**
 - Simple programming (C interface)
 - Optional: operating systems TinyOS, Contiki …
 - Optional: TCP/IP, web server …
 - Routing, management, flashing …

Further information:

www.scatterweb.net
Example: ScatterWeb Gateways

USB
- Simple Integration PC world
- Enables over-the-air programming either point-to-point or broadcast including reliable multi-hop

Ethernet
- RJ45 Adapter for 10/100 Mbit/s
- Power-over-Ethernet (802.3af)
- Standard Internet protocols (IP, TCP, HTTP, HTTPS, ARP, DHCP)
- Integrated Web server providing applets for sensor net control
- Secure access of ScatterWeb from any browser on the net

All-in-one
- WLAN, Ethernet, Bluetooth, GPS, GSM/GPRS, USB, serial…
Sensor Networks: Challenges and Research Areas

Long-lived, autonomous networks
- Use environmental energy sources
- Embed and forget
- Self-healing

Self-configuring networks
- Routing
- Data aggregation
- Localization

Managing wireless sensor networks
- Tools for access and programming
- Update distribution

Scalability, Quality of Service…
Routing in WSNs is different

No IP addressing, but simple, locally valid IDs

Example: directed diffusion

- **Interest Messages**
 - Interest in sensor data: Attribute/Value pair
 - Gradient: remember direction of interested node

- **Data Messages**
 - Send back data using gradients
 - Hop count guarantees shortest path
Energy-aware routing

Only sensors with sufficient energy forward data for other nodes

Example: Routing via nodes with enough solar power is considered “for free”
Solar-aware routing

Solar-powered node

- Send status updates to neighbors
 - Either proactive or when sniffing ongoing traffic
- Have neighbor nodes reroute traffic
Example: Software for controlling a sensor network
Today’s WSNs

First generation of WSNs is available
- Diverse sensor nodes, several gateways
- Even with special sensors: cameras, body temperature…
- Basic software
 - Routing, energy conservation, management

Several prototypes for different applications
- Environmental monitoring, industrial automation, wildlife monitoring …

Many see new possibilities for monitoring, surveillance, protection
- Sensor networks as a cheap and flexible new means for surveillance
- Monitoring and protection of goods
 - Chemicals, food, vehicles, machines, containers, …
- Large application area besides military
 - Law enforcement, disaster recovery, industry, private homes, …