SDMA → Space Division Multiple Access

→ FDMA review

→ Radio channel review
 - Transmitter
 - Receiver

→ Voice Switching review

Radio Channel Review

Voice → BW → 4kHz

Sample at 8k Sps / 8kHz sample

Base band bit-rate = \(\frac{8 \text{ bits} \times 8000 \text{ samples}}{\text{sec}} \) = 64 kbps

Consider PSK

Radio BW = 80kHz

Channel Rate = 64 kbps
Consider receiver

\[\text{LNA} \quad \text{\[x\] } \quad \text{\(S(t)\) } \quad 64\text{kbps} \]

Power considerations in Rx
sensitivity = ? or MDS = ?

Defn: the power at the input such that the (SNR)output satisfies a given level.

\[
(\text{SNR})_{\text{output}} = \frac{\text{Average Information Power (I)}}{\text{Average Noise Power (N)}}
\]

Example:

- Class noise

\[
(\text{SNR})_0 = \frac{I}{N} = \frac{10}{1} = 10 = 10\log_{10}10 = 10\text{dB}
\]

\[
= \frac{200}{2} = 100 = 10\log_{10}100 = 20\text{dB}
\]

E.g. MDS = -100dBm \(\Rightarrow\) GS\(\approx\) 900

-105dBm \(\Rightarrow\) GS\(\approx\) 1800
Questions

\[P_T = 1 \text{ W} \]
\[P_T = 30 \text{ dBm} \]

\[L_p = 50 + 35 \log d \text{ (m)} \ [\text{dB}] \]

Calculate \(D_{\text{max}} \)

\[P_T = 1 \text{ W}, \quad 10 \log 1 \text{ W} = 0 \text{ dBW} \]
\[= 30 \text{ dBmW} \]

\[P_R = P_T - L_p \]
\[-95 \text{ dBmW} = 30 \text{ dBmW} - [50 + 35 \log d] \text{ dB} \]
\[\frac{-125 + 50}{-35} = \log d = \frac{-75}{-35} \]
\[d = 139 \text{ m} \]

An Important Concept in Networks

Understanding dBs
Understanding dBs

\[\text{Pin} \quad \rightarrow \quad \text{Gain} = 10,000 \quad \rightarrow \quad \text{Pout} \]

\[\text{Pout} = \text{Pin} \times \text{Gain} = 20\,\text{mW} \times 10,000 = 200,000\,\text{mW} = 200\,\text{W} \]

or \[\text{Pout} = 0.02\,\text{W} \times 10,000 = 200\,\text{W} \]

Consider dBs

\[20\,\text{mW} \rightarrow \text{dB scale} \rightarrow 10\log(20\,\text{mW}) = 13\,\text{dBm} \]

\[\text{dBm} \quad \rightarrow \quad \text{Pout} = \text{Pin} + \text{Gain} = 13\,\text{dBm} + 10\log(10,000) = 53\,\text{dBm} \rightarrow 200\,\text{W} \]

\[\text{dBW} \quad \rightarrow \quad \text{Pin} = 10\log(0.02\,\text{W}) = -17\,\text{dBW} \]

\[\text{Pout} = \text{Pin} + \text{Gain} = -17\,\text{dBW} + 40\,\text{dB} = +23\,\text{dBW} \rightarrow 200\,\text{W} \]
What is the implication of the above?
Consider a service area

Frequency Re-Use

SDMA

Hire a frequency \(\rightarrow \text{FCA} \rightarrow \text{Lm2000 pa} \)

one frequency at \(951 \text{ MHz} \)

consider a cross-section in the elevation

co-channel interference
Do not use the same frequencies in adjacent cells.
FDMA
Frequency Division Multiple Access

ESTI decides to allocate
900 MHz \rightarrow 901 MHz for radio telephony

Assume that one single Radio Channel = 80 kHz
Total no of RCs = \(\frac{1000 \text{ kHz}}{80 \text{ kHz}} = 12 \text{ channels} \)

We are considering telephony \rightarrow Full duplex
\rightarrow two virtual channels (FWD, REV) (DL, UL)

Divide 12 Channels $\frac{12}{2} = 6$ Duplex channels

Uplink Downlink

\[
\begin{array}{cccccccc}
\text{U1} & \text{U2} & \text{U3} & \text{U4} & 5 & 6 & \text{D1} & \text{D2} & 3 & 4 & 5 & 6
\end{array}
\]

FDD
Full Duplex Channel
Frequency Division Duplex
Voice Switching Review

The 6 FD channels are dynamically assigned to parties wishing to communicate.

Example:

109 \Rightarrow 102 Intra-cell call

Probability of Blocking
Given a finite no. of channels and a calling statistics.
The cellular approach

20 FD VCs available
area to be covered with radio telephony
15km

Assume that 1 VC is required to service one telephone call.

Self-Mobile ↔ PSTN (1 VC)
Self-Mobile ↔ other-Mobile (1 VC)
Mobile ↔ Mobile (need 2 VCs)

Statistics
A = \lambda \times S
S = 65 sec
A = 13.18

N=20 \quad \lambda = 730 \text{ cells/hr} \quad P(B) = 2\%

One year later subscribers increased

N=20 \quad \lambda = 2000 \text{ cells/hr} \quad P(B) > 40\%

Solutions
1. Increase tariffs
2. Increase cells (more BSs)
3. More...
Increase no of cells

<table>
<thead>
<tr>
<th>N₁ = 10</th>
<th>N₂ = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>B₁</td>
<td>B₂</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>λ₁ = 1000</td>
<td>λ₂ = 1000</td>
</tr>
<tr>
<td>Pₖ₁ > 40%</td>
<td>Pₖ₂ > 40%</td>
</tr>
</tbody>
</table>

Advantage

- lower Tx Power
- Battery lasts longer
- less absorption of EM Energy in human body tissue.

Above system is even worse in terms of P(k)

Improved situation

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₁ = 10</td>
<td>N₂ = 10</td>
<td>N₃ = 10</td>
<td>N₄ = 10</td>
</tr>
<tr>
<td>B₁ X</td>
<td>B₂ X</td>
<td>B₃ X</td>
<td>B₄ X</td>
</tr>
<tr>
<td>λ₁ = 500</td>
<td>λ₂ = 500</td>
<td>λ₃ = 500</td>
<td>λ₄ = 500</td>
</tr>
<tr>
<td>Pₖ₁ = 15%</td>
<td>Pₖ₂ = 15%</td>
<td>Pₖ₃ = 15%</td>
<td>Pₖ₄ = 15%</td>
</tr>
</tbody>
</table>

Split 20 VC's into two sets

Set A = \{1, 2, \ldots, 10\}

Set B = \{11, 12, \ldots, 20\}
Another try?

4 sets of channels
A = \{1, 2, \ldots, 5\} \quad B = \{6, 7, \ldots, 10\}
C = \{11, 12, \ldots, 15\} \quad D = \{16, 17, \ldots, 20\}

Total no of cells = 32
Total traffic = 36.11
traffic/cell = \frac{36.11}{32} = 1.128 \text{ Erl/cell}

N = 5 / cell \quad A = 1.128 \text{ Erl/cell}
P(B) = 0.5\%

Good but expensive!

What is the optimal no of cells?

From table traffic/cell = 1.66 Erl
Total no of cells = \frac{36.11}{1.66} = 22
Problems & Complexities in SDMA

1. Limit on the size of a cell
 * Co-channel Interference
 * Backhaul cost
 * Handover overhead

2. The physical boundaries of a cell is not also circular
 * Calculation of co-channel interference is not simple
 * Frequency assignment is more & more difficult

3. We therefore need robust computer algorithms & optimisation
 * Neural network
 * Adaptive systems
 * Search
 * Self-learning
 * Game Theory

 → applied R&D topics

 → AI techniques
The need of a control channel

Channel 1 from Set A is dedicated to a common control channel.
MS builds up a table of CCs

<table>
<thead>
<tr>
<th>CC</th>
<th>dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-70</td>
</tr>
<tr>
<td>6</td>
<td>-120</td>
</tr>
<tr>
<td>11</td>
<td>-95</td>
</tr>
<tr>
<td>16</td>
<td>-105</td>
</tr>
</tbody>
</table>

MS will contact BS on CC-1
BS sends the cell identity to MS

We need an ALOHA-style MAC on the UL
For the DL we do not this.
Re-sketch service area

Frequency re-use factor = 4
4 sets of Frequency channel
A = \{1, 2, ... 5\} B = \{6, 7, ... 10\}
C = \{11, 12, ... 15\} D = \{16, 17, ... 20\}

Channel Data Rate = 64 kbps

Functions for CC
1) Mobile Phone registration
2) Initiating a call
3) Receiving a call
4) Sending/Receiving SMS
5) Handovers partially

The CC carries a substantial amount of traffic. There is a limit on the amount of traffic.
Calculation of Traffic on CC

1. Mobile phone registration
 registration packet = 500 bits → Hey I am here!
 transmitted over the uplink CC
 pure-Aloha → ≈ 18–22%
 slotted-Aloha ≈ 36%
 ISMA ≈ 60–80%
 This implies that the effective data rate for the uplink CC
 ≈ 64 kbps × 0.65 = 42 kbps

 How many mobile phone registrations can be supported.
 \[\frac{42000}{500} = 84/sec \]

2. Call initiation
 packet = 800 bits
 \(n \) if CC is used exclusively for calls
 \[n = \frac{42000}{800} = 52/sec \]
(3) Sending/Receiving SMS

GSM → 160 characters

\[160 \times 8 = 1280 \text{ bits} \]

→ say 2000 bits
down to 500 bits

average → 1000 bits / SMS

If CC is used exclusively for SMS

then \[\frac{42000}{1000} = 42/\text{sec} \]

can be serviced

(4) A combination of all

if

\(1 \) registrations 5/sec
\(2 \) Calls 21/sec
\(3 \) SMS 15/sec

Can the CC support the above traffic?

Yes/No

\(1 \) → 5 \times 500 → 2500 bits
\(2 \) → 21 \times 800 → 16800 bits
\(3 \) → 15 \times 1000 → 15000 bits

\[\frac{34300}{\text{bits/sec}} \]
The need of a Backhaul Infrastructure

Consider again the service area

MSC → mobile Switching Centre

How is the call switched?

We need a backhaul connection

We could use

- optical fibre → WDM
- microwave links → 2 Mbps
- DSL connections
- leased copper connections

The call is then routed over the backhaul/backbone
Call switching

Consider two cells & the MSC

MSC network operations

1. Home subscriber database
2. Mobile phone registration data → locating the mobile
3. Billing functions
4. Routing of traffic
5. Visitor’s database
6. Gateway connections
7. Frequency allocation
8. Handover of calls