1 Objects and Morphisms

A category is a class of objects A with morphisms $f : A \rightarrow B$ (a way of comparing/substituting/mapping/processing A to B) such that,

(i) given morphisms $f : A \rightarrow B$, $g : B \rightarrow C$, $gf : A \rightarrow C$ is also a morphism,

(ii) for compatible morphisms, $h(gf) = (hg)f$, and

(iii) each object A has a morphism $a : A \rightarrow A$ satisfying $af = f$, $ga = g$.

(Note: in a sense, an object A is the morphism a; so we can even do away with objects.)

Sets can be considered as 0-categories (only objects or elements), or as discrete categories with each object A having one morphism a.

The class of morphisms from A to B is denoted $\text{Hom}(A, B)$; thus $\text{Hom}(A, A)$ is a monoid.

Even at this abstract level there are at least three important categories:

1. logic (with statements as objects and \Rightarrow as morphisms),
2. sets (with functions as morphisms),
3. computing (with data types and algorithms).

1.1 Morphisms

A monomorphism $f : A \rightarrow B$ satisfies

$$\forall C, \forall x, y \in \text{Hom}(C, A), \quad fx = fy \Rightarrow x = y.$$

$$C \xrightarrow{x} A \xrightarrow{f} B$$

An epimorphism $f : A \rightarrow B$ satisfies

$$\forall C, \forall x, y \in \text{Hom}(B, C), \quad xf = yf \Rightarrow x = y.$$

$$A \xrightarrow{f} B \xrightarrow{x} C$$

1. In particular, for a monomorphism f, $fg = f \Rightarrow g = \iota_A$; for an epimorphism $gf = f \Rightarrow g = \iota_B$.

2. The composition of monomorphisms is a monomorphism, and of epimorphisms an epimorphism.

3. Conversely, if \(fg \) is a monomorphism then so is \(g \), and if it is an epimorphism then so is \(f \).

A monomorphism \(f : A \to B \) is also called a sub-object of \(B \). Monomorphisms with the same codomain have a pre-order: let \(f \leq g \) for \(f : A \to C \), \(g : B \to C \) when \(f = gh \) for some (mono)morphism \(h : A \to B \);

\[
\begin{array}{c}
A \\
\downarrow^f \\
B \\
\downarrow^g \\
C
\end{array}
\]

It can be made into a poset by using the equivalence relation \(f \cong g \) when \(f \leq g \leq f \).

An isomorphism is an invertible morphism, i.e., \(f \) has an inverse \(g \) such that \(fg = \iota_B, gf = \iota_A \). In this case, \(A \) and \(B \) are called isomorphic (an equivalence relation); iff \(f \leq g \leq f \). An isomorphism \(f : A \to A \) is called an automorphism; for example, any \(\iota_A \); the automorphisms of \(A \) form a group.

If \(gf = \iota \) then \(f \) is called a split monomorphism or section (has a left-inverse), and \(g \) a split epimorphism or retraction (has a right-inverse). A morphism with left and right inverses is an isomorphism (since then, \(g_1 = g_1 f g_2 = g_2 \)).

An extremal monomorphism is a monomorphism \(f \) such that the only way \(f = ge \) with \(e \) an epimorphism is that \(e \) is an isomorphism (and \(g \) a monomorphism). An extremal epimorphism is an epimorphism \(f \) such that \(f = eg \) with \(e \) a monomorphism \(\Rightarrow e \) is an isomorphism (and \(g \) an epimorphism). Thus a monomorphism which is an extremal epimorphism, or an epimorphism which is an extremal monomorphism, is an isomorphism.

Let \(f \perp g \) mean \(gx = yf \Rightarrow \exists u x = uf, y = gu \). A strong monomorphism is one such that \(\text{Epi} \perp f \).

Isomorphisms \(\subseteq \text{SplitMono} \subseteq \text{StrongMono} \subseteq \text{ExtremalMono} \subseteq \text{Monomorphisms} \)

Isomorphisms \(\subseteq \text{SplitEpi} \subseteq \text{StrongEpi} \subseteq \text{ExtremalEpi} \subseteq \text{Epimorphisms} \)

Proof. If \(f \) is a split monomorphism with \(gf = \iota \), then \(f \) is a monomorphism and \(g \) an epimorphism. If \(f = hk \) with \(k \) an epimorphism, then \(ghk = \iota \) and \(kghk = k \), so \(kgh = \iota \); thus \(k \) has the inverse \(gh \).

If \(f = ge \) is a strong monomorphism and \(e \) epi, then \(e \perp f \), so \(f \iota = ge \Rightarrow \exists u \iota = ue, g = fu \). So \(e \) is split and an epi, hence an isomorphism.

A morphism \(f : A \to A \) is called idempotent when \(f^2 = f \); for example, the split idempotents \(f = gh \) where \(hg = \iota \).

An object is called finite, when every monomorphism \(f : A \to A \) is an automorphism. In particular, if \(B \subseteq A \cong B \) then \(A = B \).

Example: For Sets, a monomorphism is a 1-1 function; an epimorphism is an onto function; such functions are automatically split; an isomorphism is thus a
bijective function; isomorphic sets are those with the same number of elements; a set is finite in the category sense when it is finite in the set sense.

Functors (or actions) are maps between categories that preserve the morphisms (and so the objects),

\[Ff : FA \rightarrow FB, \quad F_{FA} = \iota_{FA}, \quad F(fg) = FfFg \]

They preserve isomorphisms.

1.2 Constructions

Subcategory: a subset of the objects and morphisms; a full subcategory is a subset of the objects, with all the corresponding morphisms.

Dual category: \(C' \) has the same objects but with reversed morphisms \(f^\top : B \rightarrow A, \) and \(g^\top f^\top := (fg)^\top; \) so \(C'' = C. \) Every concept in a theorem has a co-concept in its dual (eg monomorphisms correspond to epimorphisms); every theorem in a category has a dual theorem in the dual category. A functor between dual categories is called a dual functor; a functor from a dual category to a category is called contra-variant, \(F(fg) = F(g)f(f). \)

A dagger category is one for which there is a functor \(\dagger : C \rightarrow C', \) where

\[(fg)^\dagger = g^\dagger f^\dagger, f^{\dagger\dagger} = f. \]

(Set cannot be made into a dagger category because there is a morphism \(\emptyset \rightarrow 1 \) but not vice-versa).

Product of Categories: \(C \times D \) the objects are pairs \((X,Y)\) with \(X \in C \) and \(Y \in D, \) and the morphisms are \((f,g),\) where

\[(f_1, g_1)(f_2, g_2) := (f_1f_2, g_1g_2), \quad \iota_{(X,Y)} = (\iota_X, \iota_Y). \]

The projection functors are \(C \times D \rightarrow C, (f,g) \mapsto f, \) and \(C \times D \rightarrow D, (f,g) \mapsto g. \)

\[(C \times D)' \sim C' \times D' \]

(The product is the categorical product in Category)

Quotient Category: given a category and an equivalence relation on morphisms (of same objects) \(\sim, \) then \(C/ \sim \) is that category with the same objects and with equivalence classes of morphisms. The map \(C \rightarrow C/ \sim \) defined by \(F : A \mapsto A, f \mapsto [f], \) is a functor.

Arrow Category: \(C\rightarrow \) consists of the morphisms of \(C \) (as objects), with the morphisms \(f \rightarrow g \) being pairs of morphisms \((h,k)\), such that \(kf = gh, \)

\[\begin{array}{ccc}
 f & \downarrow & g \\
 h & \rightarrow & k
 \end{array} \]

and composition \((h_1, k_1)(h_2, k_2) := (h_1h_2, k_1k_2),\) and identities \((\iota_A, \iota_B).\) Monomorphisms are those pairs \((h,k)\) where \(h \) and \(k \) are monomorphisms. For example, the arrow category of sets is the category of functions.
Slice Category (or comma category): $C \downarrow B$ is the subcategory where the morphisms have the same codomain B and $k = \iota$; the morphisms simplify to h where $f = gh$; similarly for the morphisms with the same domain. An object A is called projective when every morphism $f : A \to B$ factors through any epimorphism $g : C \to B$, $f = gh$. Dually, A is called injective when $f : B \to A$ factors through any monomorphism $f = hg$.

1.3 Functors

Functors can be thought of as higher-morphisms acting on objects and morphisms; or as a model of C in D.

(Examples: the constant functor, mapping objects to a single one, and morphisms to its identity; the mapping from a subcategory to the parent category; forgetful functor (when structure is lost) and inclusion functor (when structure is added, minimally); the mapping which sends A to the set $\text{Hom}(B, A)$ and a morphism f to the function $g \mapsto f \circ g$ is a functor from any category to the category of sets; similarly for $A \mapsto \text{Hom}(A, B)$ and $f \mapsto (g \mapsto g \circ f)$ (contra-variant).)

A functor is called faithful when it is 1-1 on morphisms (and hence objects) It is full when it is onto all morphisms in $\text{Hom}(FA, FB)$; it is called dense, when it is onto all objects up to isomorphism. It is an isomorphism on categories when it is bijective on the morphisms $\text{Hom}(FA, FB)$. A dense isomorphism is called an equivalence, and the two categories are said to be equivalent $A \sim B$.

A (left) adjoint of a functor is $F^* : D \to C$ with natural isomorphisms e, i such that $e : FF^* \to 1, i : 1 \to F^*F$ and $\text{Hom}(F^*A, B) \sim \text{Hom}(A, FB)$; hence $(FG)^* = G^*F^*$. (For example, a forgetful functor and inclusion functor are adjoints, with i being the embedding)

2-Categories: Categories with functors as morphisms form a Category; the identity functor is the one which leaves objects and morphisms untouched; (there is an initial object namely \emptyset, and a terminal object, $\{ \}$. It has the additional structure of a 2-functor, called a “natural transformation” (or ‘homotopy’), between functors on the same categories, $\tau : F \to G$; two such functors map an object $A \in C$ to two objects FA and GA in D, and a natural transformation determines a morphism $\tau_A : FA \to GA$ between the two, such that $\forall f : A \to B, (Gf)\tau_A = \tau_B(Ff)$ (so $Ff \sim Gf$). A natural isomorphism is a natural transformation for which τ_A are isomorphisms.

With these notions, two categories are equivalent when there are functors F and F^* such that $F^*F \sim 1, FF^* \sim 1$ (or equivalently when F and F^* are isomorphisms with $F^*F \sim 1$). The auto-equivalences of a category form a symmetric monoidal category.

More generally, a 2-category is a set of objects A, with morphisms $f : A \to B$, and 2-morphisms $\tau : f_1 \to f_2$ (for some $f_1, f_2 \in \text{Hom}(A, B)$); 2-morphisms can be combined either “vertically” by composition $\tau_2 \tau_1$, (and must be associative,
with an identity), or “horizontally” \(\sigma \circ \tau : \sigma(g) \tau(f) \), such that

\[
\begin{array}{c}
\tau_1 \downarrow \\
g \downarrow \\
\tau_2 \downarrow \\
\end{array}
\begin{array}{c}
\tau_1 \downarrow \\
\tau_2 \downarrow \\
\end{array}
\begin{array}{c}
\sigma_1 \downarrow \\
\sigma_2 \downarrow \\
\end{array}
\begin{array}{c}
\tau_2 \tau_1 \circ \sigma_2 \sigma_1 = (\sigma_2 \circ \tau_2)(\sigma_1 \circ \tau_1).
\end{array}
\]

A 2-category with 1 object gives rise to a monoidal category (of the morphisms and 2-morphisms of the object); a 2-category with 1 object and 1 morphism gives a commutative monoid (of 2-morphisms).

The functors themselves form a category \(\mathcal{D}^C \) where morphisms are the natural transformations. \(C^1 \sim C; C^2 \) is the category of arrows on \(C \).

2 Limits

When a category maps under a functor \(F : C \to D \) to another category, the image of an object may have morphisms that were not present in \(C \); an object \(A \in D \) may sometimes determine a unique (up to isomorphism) object (called a universal) \(U_A \) in \(C \), which makes \(F(U_A) \) closest to \(A \) in the sense that there is a unique morphism \(\phi_A : F(U_A) \to A \), such that

\[
\forall f : F(B) \to A, \exists! g : B \to U_A, f = \phi_A F(g).
\]

\(A \) co-universal is similarly an object \(U_A \in C \) with a morphism \(\phi_A : A \to F(U_A) \) such that \(\forall f : A \to F(B), \exists! g : U_A \to B, f = F(g) \phi_A \).

In particular, sub-categories \(C \) may have universal properties:

- **Terminal object 1:** \(\forall A, \exists! f : A \to 1 \) (for the empty sub-category). **Initial object 0:** \(\forall A, \exists! f : 0 \to A \).

\((0, 0)\) is an initial object in \(C \times D \). For example, \(\{0\} \) and \(\emptyset \) are the terminal and initial objects of sets; \(\text{TRUE} \) and \(\text{FALSE} \) are the ones for logic.

Isomorphism The closest objects for an object \(A \) with its identity morphism (the category 1), are its isomorphic copies. For example, sets with the same cardinality are isomorphic, while statements \(A \Leftrightarrow B \) are so in logic.

Products: For the subcategory 2 (with only the identity morphisms), the closest object of \(A \) and \(B \) is \(A \times B \), with morphisms \(\pi_A : A \times B \to A, \pi_B : \)
$A \times B \to B$ such that any other morphisms $p_A : C \to A$, $p_B : C \to B$ factor out through a unique morphism $g : C \to A \times B$, $p_A = \pi_A g$, $p_B = \pi_B g$.

\[\begin{array}{c}
A \\
|\quad| \\
|\quad| \\
|\quad| \\
C \xrightarrow{g} A \times B \\
|\quad| \\
|\quad| \\
|\quad| \\
B \\
\end{array} \]

$1 \times A \cong A; A \times B \cong B \times A; (A \times B) \times C \cong A \times (B \times C)$.

For example, the usual product $A \times B$, and the statement A and B are the products for sets and logic respectively.

More generally, starting with a discrete category, the closest object of A_i is $\prod_i A_i$, with $\pi_i : \prod_i A_i \to A_i$ i.e., if $p_i : X \to A_i$ are morphisms then there is a morphism $h : X \to \prod_i A_i$ with $p_i = \pi_i h$. A repeated product gives $A \times C$ (starting with a constant functor from a discrete category).

A relation on objects A, B is a monomorphism $R : \rho \to A \times B$.

Sums (or Co-products): $\coprod_i A_i$ is the dual of the product in the dual category i.e., it is the closest object with morphisms $\pi_i : A_i \to \coprod_i A_i$. For example, $A + B$ (disjoint union) and A or B.

Equalizer: starting from the category with two objects A, B, and morphisms $f_i : A \to B$, their equalizer is the closest object E with (extremal mono-)morphism

\[eq : E \to A, \quad \forall i, j, f_i eq = f_j eq. \]

\[E \xrightarrow{eq} A \xleftarrow{f_1 \ f_2} B \]

For example, for Sets, $\{ x : f_1(x) = f_2(x) \}$.

Equalizers are monomorphisms: let $e = eq$, if $xe = ye$ then $xef = xeg$, so $\exists u, xeue = xu = x$; similarly $y = u = x$.

Co-equalizer: similarly an (extremal epi-)morphism

\[coeq : Y \to E, \quad \forall i, j, coeqf_i = coeqf_j. \]

For example, the co-equalizer of a relation on a set X is the partition on it (for an equivalence relation, this partition is compatible with the relation).

Pullback (fibre product): starting from the category with objects X_i and morphisms $f_i : X_i \to Z$, then the pullback is the (unique...) closest object $\prod_Z X_i$ with morphisms

\[\pi_i : \prod_i X_i \to X_i, \quad f_i \pi_i = \pi_Z. \]
The equalizer is a special case when the morphisms start from the same object. If Z is the terminal object, then $\prod_Z X_i = \prod_i X_i$. For example, the pullback on sets is $X \times_Z Y = \{ (x, y) : f(x) = g(y) \}$; in particular when g is the identity, $X \times_Z Y = f^{-1}Y$.

Pullback lemma: pullbacks form squares $(X \times_Z Y, X, Z, Y)$; if two adjacent squares form pullbacks, then so does the outer rectangle; if the outer rectangle and the right (or bottom) square are pullbacks, then so is the left (or upper) square.

Pullbacks preserve monomorphisms: If $f \circ u = g \circ v$ with f mono, and $g \circ x = g \circ y$, then $f \circ u \circ x = g \circ v \circ x = g \circ u \circ y$, so $u \circ x = u \circ y$ and $x = y$ by uniqueness of pullbacks.

Push-out is that closest object $\bigvee_i X_i$ with $\pi_i : X_i \to \bigvee_i X_i$, $\pi_i \circ f_i = \pi_Z$.

For example, for sets, the push-out $X \cup_Z Y$ is the set $X \cup Y$ with the elements $f(z) \in X$ and $g(z) \in Y$ identified.

Inverse Limit: starting from the subcategory of a chain of objects A_i with morphisms $f_{j,i}$ (such that $f_{k,i} = f_{k,j} \circ f_{j,i}$), the inverse limit is the closest object $\lim_{\leftarrow} A_i$ with morphisms

$$
\pi_i : \lim_{\leftarrow} A_i \to A_i, \quad \pi_j \circ f_{j,i} = \pi_i.
$$

$$
\lim_{\leftarrow} A_i \xrightarrow{\pi_i} A_3 \xrightarrow{f_{32}} A_2 \xrightarrow{f_{21}} A_1
$$

(More generally, can start with a topology of objects rather than a chain.) The pullback is a special case. For example, the inverse limit of sets X_i is the set of sequences $x_i \in X_i$ such that $x_j = f_{j,i}(x_i)$.

Co-limit (Direct Limit) is similar with $\lim_{\rightarrow} A_i$ and morphisms

$$
\pi_i : A_i \to \lim_{\rightarrow} A_i, \quad \pi_i \circ f_{j,i} = \pi_j.
$$

More generally, for any subcategory, or any functor, $F : C \to D$ there may be a limit object $\lim F$ in D with (unique) morphisms $\pi_A : \lim F \to A$ ($A \in C$) such that for any $f : A \to B$, $A, B \in C$,

$$
\begin{align*}
 f \circ \pi_A &= \pi_B \\
 \lim F \xrightarrow{\pi_A} A \xrightarrow{f} B
\end{align*}
$$
and it is the closest such object in the sense that for any other \(C \in \mathcal{D} \) with \(f_{PA} = p_B \) then \(\exists u : C \rightarrow \lim F, \pi_A u = p_A \). A limit, if it exists, is unique up to isomorphism.

A **co-limit** is similar with \(f_A : F(A) \rightarrow \mathrm{colim}F \) such that

\[
\forall f : A \rightarrow B, \quad f_B F(f) = f_A.
\]

In general, any functor from a category with an initial object to \(\mathcal{C} \) has a limit; and any functor from a category with a terminal object has a co-limit.

A **complete** category is one in which every subcategory (or functor) has a limit. For example, the category of sets is complete and co-complete.

A **pre-sheaf** is a contra-variant functor from a pre-order (or topology) to a category \(F : \mathcal{O} \rightarrow \mathcal{C} \) (the \(F(x) \) are called sections of \(F \) over \(x \)) such that \(x \leq y \Rightarrow \) there is a restriction morphism \(F(x) \rightarrow F(y) \) with \(\mathrm{res}_{x,y} = \iota_{F(x)} \) and \(x \leq y \leq z \Rightarrow \mathrm{res}_{y,z} \\mathrm{res}_{z,y} = \mathrm{res}_{z,x} \).

A **sheaf** is a continuous pre-sheaf (preserves limits). On a topological space \(X \), the **stalk** at \(x \in X \) is the direct limit of the open neighborhoods of \(x \). So there is a morphism \(F(U) \rightarrow F_x \) for \(x \in U \) open (if the morphism is a function \(f \mapsto f_x \), where \(f_x \) is called the germ at \(x \)). The **etale** space \(E \) is the space of stalks, with the continuous map \(E \rightarrow X, F_x \rightarrow x \). (The set of sheaves form
a topos, with \(\Omega = \) the disjoint union of all open sets) The space \(E \) is locally homeomorphic to \(X \) (i.e., there are isomorphic open sets in \(E \) and \(X \) that cover \(F \) and \(x \)).

For example, a sheaf of sets is a bundle, i.e., a collection of disjoint sets \(A_i \) with a map \(\pi : \bigcup_i A_i \to I \), \(\pi^{-1}(i) = A_i \); the category of bundles over \(I \) is the same as the comma category.

2.1 Monoidal Categories

Objects have an associative functor tensor product \(A \otimes B \) and an object \(I \) (called unit) such that

\[
I \otimes A \cong A \cong A \otimes I \\
(A \otimes B) \otimes C \cong A \otimes (B \otimes C) \\
(A \otimes I) \otimes B \cong A \otimes B \cong A \otimes (I \otimes B)
\]

(the isomorphisms in the first two lines are called the two unitor and one associator natural isomorphisms; more generally, any product of \(n \) objects are isomorphic to each other). Product of morphisms \(f \otimes g : A \otimes B \to C \otimes D \).

The tensor product is like treating two objects in parallel; so a morphism \(f : A \otimes \ldots \otimes B \to C \otimes \ldots \otimes D \) takes \(n \) objects and “maps” them to \(m \) objects, and looks like a Feynman diagram. The unit object is null, so \(f : I \to A \) “creates” one object. The tensor product is different from the categorical product in that there need not be projections.

The morphisms \(\text{Hom}(I,I) \) now have two operations: \((f \otimes g)(h \otimes k) = (fh) \otimes (gk) \); but from universal algebras, this implies that \(f \otimes g = fg \) and is commutative.

Set with \(\times \) is monoidal (in fact cartesian-closed); Set with disjoint union is also monoidal.

The (right) dual of an object \(A \) is another object \(A^* \) (unique up to isomorphism), such that there are “annihilation/creation” morphisms

\[
A \otimes A^* \to I, \quad I \to A^* \otimes A,
\]

called the co-unit of \(A \) and the unit of \(A \), respectively, satisfying the zig-zag equations, i.e., creating then annihilating \(A \) and \(A^* \) leaves nothing \(I \); \(A^* \) can be represented as a line in the opposite direction of \(A \); \(A \) is called the left dual of \(A^* \).

2.1.1 Braided Monoidal categories

A monoidal category in which there is a natural isomorphism that switches objects around,

\[
A \otimes B \cong B \otimes A,
\]
such that all permutations of products become isomorphic, e.g. \((A \otimes B) \otimes C \cong C \otimes (B \otimes A)\), i.e.,

\[
\begin{array}{ccc}
A & B \\
\downarrow & \downarrow \\
B & A
\end{array}
\quad \begin{array}{ccc}
A & C \\
\downarrow & \downarrow \\
B & A
\end{array}
\quad \begin{array}{ccc}
C & A \\
\downarrow & \downarrow \\
A & B
\end{array}
\]

It need not be its own inverse! Its inverse is:

\[
\begin{array}{ccc}
B & A \\
\uparrow & \uparrow \\
A & B
\end{array}
\]

The Yang-Baxter equation states

\[
\begin{array}{ccc}
A & C & A \\
B & \rightarrow & B \\
C & A & C \\
\rightarrow & \rightarrow & \rightarrow
\end{array}
\]

Left duals are duals.

A braided monoidal category is called \textit{symmetric} when the switching isomorphism is its own inverse.

\section{2.2 Closed Monoidal Categories}

A monoidal category is \textbf{closed} when every set of morphisms \(\text{Hom}(A, B)\) has an associated object \(B^A\), with

\[
\text{Hom}(A \otimes B, C) \cong \text{Hom}(B, C^A)
\]

(or alternatively \(\text{Hom}(A \otimes B, C) \cong \text{Hom}(A, C^B)\)) (via “currying” natural isomorphisms). That is, every morphism can be treated as an object (without inputs). In particular \(f : A \rightarrow B\) is associated to \(I \rightarrow B^A\).

For example, in sets, the powerset axiom asserts that \(\text{Hom}(A, B)\) is a set \(B^A\); in logic the distinction is between the morphism \(A \vdash B\) and the object \(A \Rightarrow B\).

A monoidal category is \textbf{compact} (or \textit{autonomous}) when every object has a dual and a left dual. In this case it is closed, with \(A^B := B^* \otimes A\), i.e., \(A^* \cong \text{Hom}(A, I)\); in particular the unit \(I\) corresponds to a unit inside \(A^* \otimes A\).

The reverse of currying, changing an object into a morphism, is an \textit{evaluation} morphism

\[
\text{eval} : A \otimes B^A \rightarrow B, \quad \text{eval}(f \otimes \iota_A) = f.
\]
(So morphisms of two variables become morphisms of one variable.)

For example, in sets (and functional programming languages), \(\text{eval}(f, x) = f(x) \); in logic, it is modus ponens, \(A \land A \Rightarrow B \) gives \(B \).

2.3 Cartesian-closed categories

Finite products exist and are closed, i.e., every functor \(\times A \) has a right-adjoint \(A \), called exponentiation,

\[
\text{Hom}(A \times B, C) \cong \text{Hom}(B, C^A)
\]

This means that every morphism \(f : \prod_i A_i \to C \) can be represented by an ordered set of morphisms \(f_i : A_i \to C \).

It is thus symmetric braided monoidal, with \(\otimes \) being \(\times \) and the unit being the terminal object \(1 \); but has more properties in that it can duplicate objects via \(\Delta : A \to A \times A \); and delete objects by mapping to \(1 \), i.e., \(! : A \to 1 \); every morphism \(f : 1 \to A \times B \) is of the type \((1, 1) : 1 \to A, 1 \to B \). (e.g. the adjoint of \(X \mapsto X \times X \) is \(X \mapsto X \times Y \).)

\(f \times g : A \times B \to C \times D \) can be defined as that unique morphism induced by \(f \pi_A, g \pi_B \). In particular, \((1_a, 1_b) = 1_{a \times b} \). Similarly, can define the sum \(f + g \).

2.3.1 Evaluation

\[
\text{eval} : A \times B^A \to B, \quad \text{eval}(f \times \iota_A) = f.
\]

An element or point of \(A \) is a morphism \(x : 1 \to A \); so \(\text{eval}(f, x) = fx \).

In particular a morphism \(f : A \to B \) corresponds to an element \(1 \to B^A \) (called the name of \(f \)).

In such categories, dual concepts lose their symmetry:

There are no morphisms \(A \to 0 \) unless \(A \cong 0 \), in particular if \(0 \cong 1 \), then all objects are isomorphic; \(0 \to A \) is monic.

\[
0 \times A \cong 0, \quad A^1 \cong A, \quad A^0 \cong 1, \quad 1^A \cong 1
\]

(proofs: there is only one morphism \(0 \to B^A \), so only one morphism \(0 \times A \to B \) so \(0 \cong 0 \times A \), and \(A \to 0 \times A \cong 0 \to A \) forces them to be isomorphisms; \(\text{eval} : A^1 \to A \) is an isomorphism; \(1 \to A^0 \) corresponds to \(0 \cong 1 \times 0 \to A \) which is unique, so \(1 \to A^0 \) and \(A^0 \to 1 \) are inverses; \(1^A \to 1 \) must be \(\iota \) and \(1 \to 1^A \) corresponds to \(A \to 1 \) also unique; any map \(B \to 0 \) is a unique isomorphism so \(fg = fh \Rightarrow g = h \))

\[
X^{A+B} \cong X^A \times X^B, \quad (A \times B)^C \cong A^C \times B^C,
\]
\[(C^A)^B \cong C^{A \times B}; \quad X \times (A + B) \cong X \times A + X \times B\]

(Proves: the inclusions \(A, B \rightarrow A + B\) give \(X^{A+B} \rightarrow X^A \times X^B\); conversely, \(X^A \times X^B \rightarrow X^{A+B}\) correspond to \(A + B \rightarrow X^{A \times X^B}\), i.e., to two inclusion maps, and hence the projections \(X^A \times X^B \rightarrow X^A, X^B\).

The projections \(A \times B \rightarrow A, B\) give rise to a map \((A \times B)^C \rightarrow A^C \times B^C\); its inverse is \(A^C \times B^C \rightarrow (A \times B)^C\) which corresponds to \(C \times A^C \times B^C \rightarrow A \times B\) i.e., to \(C \times A^C \times B^C \rightarrow A, B\), i.e., the projections \(A^C \times B^C \rightarrow A^C, B^C\);

\((C^A)^B \rightarrow (C^A)^B\) corresponds to \(B \times C^A \times B \rightarrow C^A\), i.e., the evaluation map \(A \times B \times C^A \times B \rightarrow X\), similarly \((C^A)^B \rightarrow C^A \times B\) corresponds to the double evaluation \(B \times A \times (C^A)^B \rightarrow C;\)

The maps \(A + B \rightarrow (X \times A + X \times B)^X\) correspond to the inclusions \(X \times A, X \times B \rightarrow X + A \times X \times B\) There is a functor mapping morphisms \(f : X_1 \rightarrow X_2\) to \(Ff : X_1^\Omega \rightarrow X_2^\Omega\) defined by \((Ff)\Omega = fg\) for \(g : Y \rightarrow X_1\). There is another contra-variant functor (restriction?) mapping morphisms \(f : Y_1 \rightarrow Y_2\) to \(Ff : Y_1^\Omega \rightarrow Y_2^\Omega\), defined by \((Ff)\Omega = gf\).

2.4 Topos

A category with finite limits, exponentials (i.e., cartesian-closed), and a sub-object classifier.

A **sub-object classifier** is an object \(\Omega\) (unique up to isomorphism) and a morphism \(\text{True} : 1 \rightarrow \Omega\) such that monomorphisms \(f : A \rightarrow B\) (“sub-objects”) correspond to unique morphisms

\[\chi_f : B \rightarrow \Omega, \quad \chi_f f = A \rightarrow 1 \rightarrow \Omega\]

In particular \(\text{True}\) corresponds to \(\chi_{\text{True}} = \iota_\Omega\), and the unique monomorphism \(0 \rightarrow \Omega\) corresponds to a morphism \(- : \Omega \rightarrow \Omega\); hence \(\text{False} := -\text{True} : 1 \rightarrow \Omega\).

For example, for sets \(\Omega = 2\); sub-objects \(B : I \rightarrow X\) correspond to subsets \(B \subseteq X\); subsets are maps \(A \rightarrow 2\) and correspond to the characteristic maps \(\chi_A : 1 \rightarrow 2^A\); a **singleton** is a map \(A \rightarrow 2^A\).

Other logical connectives are defined in terms of their characteristic maps:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{AND} : \Omega \times \Omega \rightarrow \Omega)</td>
<td>((\text{True, True}) : 1 \rightarrow \Omega \times \Omega)</td>
</tr>
<tr>
<td>(\text{OR} : \Omega \times \Omega \rightarrow \Omega)</td>
<td>((\text{True}\Omega, \iota\Omega), (\iota_\Omega, \text{True}_\Omega) : \Omega + \Omega \rightarrow \Omega \times \Omega)</td>
</tr>
<tr>
<td>(\Rightarrow : \Omega \times \Omega \rightarrow \Omega)</td>
<td>(2 \rightarrow \Omega \times \Omega\text{(where 2 is the category 0 \leq 1)})</td>
</tr>
<tr>
<td>(\sim \chi_f)</td>
<td>(\chi_f)</td>
</tr>
<tr>
<td>(\chi_f \circ g := \chi_f \text{ AND } \chi_g)</td>
<td>(\text{complement of } f)</td>
</tr>
<tr>
<td>(\chi_f \cap g := \chi_f \text{ OR } \chi_g)</td>
<td>(\text{intersections } f \cap g)</td>
</tr>
<tr>
<td>(\text{unions } f \cup g)</td>
<td>(\text{unions } f \cup g)</td>
</tr>
</tbody>
</table>
But there may be several truth values, i.e., Ω may have several elements $1 \to \Omega$, not just True and False.

Ω is injective, i.e., for any monomorphism $f : A \to B$ and any morphism $g : B \to \Omega$ there is a morphism $g : B \to \Omega$ such that $g = \hat{g}f$. Ω^A can be thought of as a “dual” of A; the Fourier map $\hat{\cdot} : A \to \Omega^A$ defined by $\hat{\cdot}(f) = fx$.

$f \cong g \iff \chi_f = \chi_g$; the sub-objects of A form a bounded lattice, $Sub(A) \cong Hom(A, \Omega)$. A morphism is an isomorphism \iff it is both mono and epi (called a bi-morphism) (since an epi monomorphism $f : A \to B$ is the equalizer of χ_f and True$_B$). Every morphism factors as $f = gh$ where h is epi and g is mono (via the object fA obtained by the pushout of f with itself). The pull-back of an epimorphism is also epi. Coproducts preserve pullbacks. (implies finite co-limits also exist)

Every category can be extended to a topos. The product of topoi is a topos. A comma category C/A of a topos is also a topos; its elements are bundles of elements (i.e., sections) of A.

Every topos has power objects $P(A) := \Omega^A$, meaning objects $P(A)$ and ϵ_A and a monomorphism $\in : \epsilon_A \to P(A) \times A$ such that every relation (i.e., monomorphism) $r : R \to B \times A$ has an associated unique morphism $f_r : B \to P(A)$ such that $R \to B \times A \to P(A) \times A = R \to \epsilon_A \to P(A) \times A$.

$$
\begin{array}{ccc}
\epsilon_A & \longrightarrow & A \times P(A) \\
\uparrow & & \uparrow \\
R & \longrightarrow & A \times B
\end{array}
$$

$\Omega \cong P(1)$. Conversely every category with finite limits and power objects is a topos.

2.4.1 Well-pointed topos

A topos that satisfies the extensionality axiom, elements are epi:

$$
\forall x : 1 \to A, fx = gx \Rightarrow f = g.
$$

A morphism is mono \iff it is 1-1, i.e., $fx = fy \Rightarrow x = y$ for all $x, y : 1 \to A$. A morphism is epi \iff it is onto, i.e., $\forall y : 1 \to B, \exists x : 1 \to A, fx = y$.

The only non-empty object (i.e., without any elements $1 \to A$) is the initial object (since $\chi_1 \neq \chi_0$). The only elements of Ω are True and False (bivalent), and $\Omega \cong 1 + 1$ (Boolean). In fact a topos is well-pointed \iff the only non-empty object is the initial one, and $\Omega \cong 1 + 1$.

The arrow category Set^\to is neither Boolean nor bivalent; Set^2 is Boolean but not bivalent; the category of actions of a monoid (that is not a group) is bivalent but not Boolean.

2.4.2 With Axiom of Choice

A category is called **balanced** when f is an isomorphism \iff it is a monomorphism and an epimorphism.
A category satisfies an **Axiom of Choice** when every epimorphism is right-invertible (splits). So balanced.

For example, in sets, every monomorphism has a left-inverse, except for \(0 \to A\); the axiom of choice says that every epimorphism has a right-inverse.

Strong Axiom of Choice: \(\forall f, \exists g, f = fgf\).

A topos with the axiom of choice has the **localic** property: \(\exists i : C \to 1\) monomorphism and \(g_1 \neq g_2 \Rightarrow \exists f : C \to A, g_1f \neq g_2f\).

Also every object has a complement \(X = A + A'\).

2.5 Pre-additive Categories

When \(\text{Hom}(A, B)\) is an abelian group, distributive over composition of morphisms ie \(f(g + h) = fg + fh, (f + g)h = fh + gh\). (then \(\text{Hom}(A, A)\) is a ring)

Can be extended to an Abelian category.

2.5.1 Additive Categories

A pre-additive category with finite products and sums;

2.5.2 Abelian Categories

an additive category in which every morphism has a kernel and a co-kernel (so there is a zero object), and every monomorphism is a kernel and every epimorphism is a co-kernel.

2.6 Concrete category

one in which the objects are sets and the morphisms are functions; ie a category which has a faithful functor \(C \to \text{Sets}\) (called the forgetful functor).

2.6.1 Category of Sets

One can even consider set theory from the categorical point of view with the following axioms:

1. Sets and functions form a category;
2. Sets have finite limits and co-limits;
3. Sets allow exponentiation;
4. Sets have a sub-object classifier (so form a topos); this is a form of comprehension axiom;
5. With a morphism \(T : 1 \to 2\);
6. Sets are Boolean in the sense that the truth-value object 2 is given by \(1 + 1\);
7. 2 has two elements (up to isomorphism);
8. Axiom of Choice (every epimorphism has a right-inverse);
9. There is an infinite (inductive) set.

It then follows that for every \(A \neq 0 \), \(\exists A \rightarrow 1 \) epimorphism and \(\exists x : 1 \rightarrow A \) morphisms (since \(A \rightarrow 1 \) is unique, which gives \(A \rightarrow B \rightarrow 1 \) where \(A \rightarrow B \) is an epimorphism; but \(A \neq 0 \Rightarrow B \neq 0 \), so \(B = 1 \); the axiom of choice gives a morphism \(x : 1 \rightarrow A \)); every monomorphism \(A \rightarrow B \) induces a “complement” monomorphism \(A' \rightarrow B \) (the pullback of \(B \rightarrow \Omega \) along \(F : 1 \rightarrow \Omega \)).

3 Research Questions

Most grand questions in pure mathematics are of the following type:

1. Syntax: given a set of mathematical structures/examples, to find a minimal set of axioms common to all.
2. Semantics: given a set of axioms, to discover all mathematical examples satisfying them; classify all possible spaces \(X \) in a category i.e., give a concrete description of the spaces, up to isomorphism.

This problem may be too hard or even impossible to answer, so the first attempt is to restrict \(X \) to the smaller ones, or else ask an easier question

2a. Find a way of distinguishing spaces: given any two spaces \(X \), \(Y \) is there a way of showing whether they are isomorphic or not?
2b. Can one show whether \(X \) is isomorphic to a known space?
2c. In particular is \(X \) isomorphic to the trivial space?