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Abstract
This paper proposes an adaptation of session types to pro-

vide behavioural information about public functions in Elixir

modules. We formalise typechecking rules for the main con-

structs of the language. This allows us to statically determine

whether a function implementation observes its session end-

point specification. Based on this type system, we then con-

struct a tool that automates typechecking for Elixir modules.

CCS Concepts: • Theory of computation → Concurrency;
Program analysis; • Software and its engineering → Soft-

ware verification and validation.

Keywords: session types, concurrency, Elixir, functional pro-

gramming
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1 Introduction
The Elixir [41] programming language is a dynamically typed,

actor-based, functional language built on top of the Erlang

ecosystem [3]. It provides a modern Ruby-like syntax while

preserving most of Erlang’s concurrency features, taking

advantage of the BEAM’s well-established foundation. Elixir

concurrency permits computation to be split across multiple

actors [1] called processes. In Elixir, processes are spawned
by other processes to execute independently using a local

memory. Every process, when spawned, is dynamically as-

signed a unique process identifier (pid), which is used by
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other processes to interact with it by sending it asynchro-
nous messages. These messages are received at an incoming

message buffer called the mailbox, from where they can be

selectively read by the addressee process. Elixir processes are

very lightweight, and it is commonplace to have thousands

of them running concurrently on the same machine.

Even though the actor model disciplines concurrency,

Elixir programs are still susceptible to subtle concurrency

bugs that are hard to detect and reproduce. The language

provides support for detecting errors relating to the func-
tional part of the language: calling a function with incorrect

type parameters can be detected at compile-time via @spec
annotations and tools such as the Dialyzer [25]. However,

the execution of Elixir functions is often side-effectful due

to messaging, and existing tools are limited in this regard.

For example, differences in the types of messages that can be

received by a process and in their order of arrival can clearly

influence the behaviour of a process.

This paper proposes the use of session types [2, 17, 43] as a
means for statically checking and verifying communicating

Elixir programs. In its simplest form, a (binary) session type

defines a protocol between two processes, consisting of send
and receive statements, coupled with choices, recursion and

termination. Session types are used to guarantee that each

send statement matches a corresponding receive statement

(and vice versa) and can lead to systems that are free from

behavioural errors such as deadlocks and protocol infidelity.

Session types have been widely adapted in several program-

ming languages, either as static checkers (e.g., Rust [22, 24],
Scala [38], Go [8] and OCaml [20, 34]) or as runtimemonitors

(e.g., Python [32], Erlang [11], OCaml [28] and Scala [5]). In

this work, we apply session types to Elixir as a static checker.

Contribution. We propose a method to augment Elixir

modules with static information about the message inter-

actions of public functions within that module. Our pro-

posed method reuses existing mechanisms offered by Elixir,

which facilitates its integration within existing language de-

velopment workflows. The augmented static information

is expressed in terms of a (binary) session type, using the

designated @session annotation; together with the @spec
annotations, session type specifications act as a behavioural

API for the functions proffered by the module. We demon-

strate the realisability of our proposal by building a static

type checker that can verify whether an annotated public
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1 defmodule Counter do
2
3 @spec server(pid, number) :: atom
4 def server(client, tot) do
5 receive do
6 {:incr, val} -> server(client, tot + val)
7 {:stop} -> terminate(client, tot)
8 end
9 end
10
11 @spec terminate(pid, number) :: atom
12 defp terminate(client,tot) do
13 send(client, {:value, tot})
14 :ok
15 end
16
17 end # module

Listing 1. Counter written in Elixir

function adheres to the communication protocol specified

by the @session and @spec annotations.

The code for the type checker implementation, called

ElixirST, is available at:

https://github.com/gertab/ElixirST

Roadmap. Sec. 2 provides an example in Elixir and mo-

tivates the use of session types. Sec. 3 describes the formal

view, including the typing rules of our type checker. Sec. 4

explores the design details of our tool. Finally, we discuss

the related work in Sec. 5.

2 Motivating Example
Consider a simple counter system, adapted from [33], whereby

a (server) process stores a counter total which can be in-

creased by a (client) interacting process or else terminated

by this same (client) process. A sample Elixir Counter mod-

ule is shown in Listing 1. It offers one public function called

server on lines 4–9 taking two arguments: the pid of the

client, client , and the initial counter total, tot. A process

executing this function waits to receive client requests as

messages in its mailbox using the receive do ... end
statement; this construct is blocking, meaning that the pro-

cess stops until a message with the expected format is re-

ceived. The server function accepts two types of messages,

namely, increment requests with label :incr carrying pay-

load val, or termination requests denoted by the label :stop .
This function branches accordingly: for increment requests,

it recurses while updating the running total to tot+val on

line 6, whereas termination requests on line 7 are handled by

calling the private function terminate . Private functions,
defined using defp , are only visible from within a module. In

this case, the function terminate (defined on lines 12–15)

sends a :value message carrying the final total value tot
to the client process and terminates with the atom value

:ok. Assuming that a client process carrying a pid bound to

ClientServer

re
cu

rse

incr(number)

stop()

value(number)

choice

1

2

Figure 1. Counter protocol

variable cid already exists, a counter server linked to cid
initialised with a running total of 0 can be launched using

the statement:

sid = spawn( Counter , :server, [cid, 0]).

Elixir conducts dynamic typechecking to catch runtime er-

rors. In addition, @spec annotations such as those on lines 3

and 11 can help with detecting potential errors at compile-

time. However, the language offers limited support to assist

the static detection of errors relating to the concurrent mes-

saging. For instance, it might not be immediately apparent

that the payload carried by a :incr request should be a

number value. Similarly, the code in Listing 1 does not nec-

essarily convey the information that the intended interaction

with a server process should follow the protocol depicted

in Fig. 1. This abstract specification states that a server can

be incremented an arbitrary number of times, followed by

a single termination request (i.e., no further increment or

termination requests can succeed it).

From the perspective of the server, the entire session of

interactions can be formalised as the session type (called

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ) below:

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = &

{
?incr(number).𝑐𝑜𝑢𝑛𝑡𝑒𝑟, (1)

?stop().!value(number).end
}

The type states that the server can branch (i.e., &) in two

ways: if it receives (i.e., ?) an incr label with a number pay-
load, the server recurses back to the beginning; and if it

receives a stop label, it has to send (i.e., !) back a label value
with a payload of type number (i.e., !value(number)). No
further interactions are allowed when the end statement is

reached. Accordingly, the client has to follow the dual of the
same session type.

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = ⊕
{
!incr(number).𝑐𝑜𝑢𝑛𝑡𝑒𝑟, (2)

!stop().?value(number).end
}

Concretely, it can repeatedly make a choice (i.e., ⊕) to send
one of two labels, either increment or stop. The former

ensures that it recurses back to the beginning, while the

latter results in the client receiving a value of type number.
This paper proposes an approach whereby module defini-

tions are augmented with a @session annotation for public
2
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1 defmodule Counter do
2
3 @session "counter = &{?incr(number).counter,
4 ?stop().!value(number).end}"
5 @spec server(pid, number) :: atom
6 def server(client, value) do
7 ...
8 end
9
10 @spec terminate(pid, number) :: atom
11 defp terminate(client,tot) do
12 ...
13 end
14
15 ...
16
17 @dual "counter"
18 @spec client(pid) :: number
19 def client(server) do
20 ...
21 end
22
23 end # module

Listing 2. Counter annotated with session types

functions, as shown in Listing 2. Whereas line 3 requires

the function server to adhere to the session type 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ,

no session annotation is required for the private function

terminate on line 11. Lines 19–21 present a case in which

the client code is defined as a public function within the

same module; in such a case, we can annotate it with the

@dual information on line 17.

Our proposed session type annotations serve two impor-

tant purposes. On the one hand, they provide a high-level

(yet formal) specification as to how a public function is to

be interacted with, without the need to look inside its im-

plementation, as in the case of line 3. E.g., by glancing at

the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 session type on line 3 of Listing 2, one can im-

mediately tell that a process running function server ac-

cepts two types of messages with labels incr or stop . On
the other hand, they allow function implementations to be

typechecked against such specifications. E.g., we are able to
statically ascertain that the function server (and its ancil-

lary function terminate ) adheres to the protocol dictated

by session type counter on line 3. We can also reject the

problematic client implementation given in Listing 3 at

compile-time, on the grounds that it violates the dual ses-

sion type of 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 . Concretely, the client selects an illegal

choice decr on line 21; it also expects to receive a value with

a number (line 24) after ‘forgetting’ to send a termination

request (i.e., a message with a stop label). Both cases breach

the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 protocol.

3 A Formal Analysis
In this section we provide a formalisation of our approach

that underpins the typechecking tool presented in Sec. 4.

19 def client(server) do
20 send(server, {:incr, 5})
21 send(server, {:decr, 2})
22 # send(server, {:stop})
23
24 receive do
25 {:value, num} -> num
26 end
27 end

Listing 3. Counter client with issues

We outline the Elixir syntactic subset supported by our tool

(Sec. 3.1), together with the behavioural type system used

by our static type checker (Sec. 3.2).

3.1 Elixir Syntax
Fig. 2 presents a fragment of the Elixir syntax, including its

communication primitives and the new annotations. We let

𝑥 range over variable names,𝑚 over module names, 𝑓 over

function names and l over labels.

Session Types. As previewed in Sec. 2 our analysis will

rely on an interpretation of session types, adapted to (a subset

of) Elixir. The syntax is defined by the grammar in Fig. 2 and

assumes a standard set of expression types, 𝑇 , also defined

in Fig. 2. Expression types consist of base types boolean,
number, atom and pid, together with the inductive types for

tuples and lists.

Session types consist of the branching, choice, recursion

and termination constructs. The branching session type

&

{
?l𝑖

(
𝑇𝑖
)
.𝑆𝑖

}
𝑖∈𝐼 describes an interaction that receives a mes-

sage containing any one of the labels l𝑖 and respective

payloads of type 𝑇𝑖 , and proceeds as 𝑆𝑖 . The choice type

⊕
{
!l𝑖

(
𝑇𝑖
)
.𝑆𝑖

}
𝑖∈𝐼 describes an interaction that sends a mes-

sage indexed by any one of the labels l𝑖 with a payload of

type 𝑇𝑖 and continues as 𝑆𝑖 . In both branches and choices,

labels l𝑖 are assumed to be unique. In the case of singleton

choices or branching types, the ⊕ and & can be omitted, e.g.,
?hello().𝑆 can be used as the shorthand for the session type

&

{
?hello().𝑆

}
. The recursion type rec X . 𝑆 binds recursion

variable X in continuation 𝑆 . We adopt an equi-recursive [35]
approach, so rec X . 𝑆 and its unfolding 𝑆 [rec X . 𝑆/X] can be

used interchangeably. A session terminates when an end is

reached, which can also be omitted for brevity. The dual type
of 𝑆 , denoted as 𝑆 , is defined as follows:

&

{
?l𝑖

(
𝑇𝑖
)
.𝑆𝑖

}
𝑖∈𝐼 = ⊕

{
!l𝑖

(
𝑇𝑖
)
.𝑆𝑖

}
𝑖∈𝐼 X = X end = end

⊕
{
!l𝑖

(
𝑇𝑖
)
.𝑆𝑖

}
𝑖∈𝐼 = &

{
?l𝑖

(
𝑇𝑖
)
.𝑆𝑖

}
𝑖∈𝐼 rec X . 𝑆 = rec X . 𝑆

Modules and Functions. An Elixir program is defined

as a module of the form defmodule𝑚 do 𝑃 𝐷 end. A mod-

ule takes a sequence of private (𝑃 ) and public (𝐷) functions;

by convention, 𝑃 stands for the possibly empty sequence

𝑃1 . . . 𝑃𝑛 (similar for 𝐷). Functions are named, 𝑓 , and their

3
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Session types 𝑆 F &

{
?l𝑖

(
𝑇𝑖
)
.𝑆𝑖

}
𝑖∈𝐼 | ⊕

{
!l𝑖

(
𝑇𝑖
)
.𝑆𝑖

}
𝑖∈𝐼

| rec X . 𝑆 | X | end
Expression types 𝑇 F boolean | number | atom | pid

| {𝑇1, . . . , 𝑇𝑛} | [𝑇 ]

Module 𝑀 F defmodule𝑚 do 𝑃 𝐷 end

Function 𝐷 F 𝐾 𝐵 def 𝑓 (𝑥) do 𝑡 end
Private function 𝑃 F 𝐵 defp 𝑓 (𝑥) do 𝑡 end

Type ann. 𝐵 F @spec 𝑓
(
𝑇
)
:: 𝑇

Session ann. 𝐾 F @session “X = 𝑆” | @dual “X”

Basic values 𝑏 F 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 | 𝑛𝑢𝑚𝑏𝑒𝑟 | 𝑎𝑡𝑜𝑚 | 𝑝𝑖𝑑 | [ ]
Values 𝑣 F 𝑏 | [ 𝑣1 | 𝑣2 ] | {𝑣1, . . . , 𝑣𝑛}

Identifiers 𝑤 F 𝑏 | 𝑥
Patterns 𝑝 F 𝑤 | [𝑤1 | 𝑤2 ] | {𝑤1, . . . , 𝑤𝑛}
Terms 𝑡 F 𝑒

| 𝑥 = 𝑡1; 𝑡2

| send (𝑥, {:l, 𝑒1, . . . , 𝑒𝑛})
| receive do({

:l𝑖 , 𝑝
1

𝑖 , . . . , 𝑝
𝑛
𝑖

}
→ 𝑡𝑖

)
𝑖∈𝐼end

| 𝑓 (𝑒1, . . . , 𝑒𝑛)
| case 𝑒 do (𝑝𝑖 → 𝑡𝑖 )𝑖∈𝐼end

Expressions 𝑒 F 𝑤 | 𝑒1 ⋄ 𝑒2 | not 𝑒
| 𝑒1 and 𝑒2 | 𝑒1 or 𝑒2
| [ 𝑒1 | 𝑒2 ] | {𝑒1, . . . , 𝑒𝑛}

Operators ⋄F < | > | <= | >= | == | !=
| + | − | ∗ | /

Figure 2. Elixir syntax

body, 𝑡 , is parameterised by a variable sequence 𝑥 that de-

fines its arity. For instance, in the case of Listing 2, the pub-

lic function server and the private function terminate
have arity 2, whereas the public function client has ar-

ity 1; Elixir modules can have multiple functions with the

same name, as long as they have distinct arities. For ev-

ery public function def 𝑓 (𝑥) do 𝑡 end and private function

defp 𝑓 (𝑥) do 𝑡 end, every variable 𝑥𝑖 in the sequence of

parameters 𝑥 = 𝑥1, . . . , 𝑥𝑛 must be unique. Functions are

annotated by their specification type (@spec), denoted as 𝐵

in Fig. 2. It takes the form 𝑓 (𝑇 ) :: 𝑇 , where the parameters

are assigned types 𝑇 and the return type is 𝑇 . In addition,

public functions are also annotated with session types, 𝐾 in

Fig. 2. These can be either stated directly, @session “X = 𝑆”,

or indirectly, @dual “X”, whenever the session name X is

defined within the same module. The definition X = 𝑆 is

equivalent to the session type rec X . 𝑆 , but it also allows

the session type rec X . 𝑆 to be referenced from within the

module as the name X.

Terms and Expressions. A term 𝑡 can take the form of

either an expression 𝑒 , a let statement, a send statement, a

receive construct, a case statement or a function call. The let
statement 𝑥 = 𝑡1; 𝑡2 evaluates 𝑡1 and binds its result to 𝑥 in 𝑡2.

We can write 𝑡1; 𝑡2 as syntactic sugar for 𝑥 = 𝑡1; 𝑡2 where 𝑥

is a fresh variable. The term send (𝑥, {:l, 𝑒1, . . . , 𝑒𝑛}) sends
a message to 𝑥 (denoting the pid of some process); the mes-

sage consists of a tuple where the literal atom in the first

position of the tuple acts as a label for the message. The

term receive do
({
:l𝑖 , 𝑝

1

𝑖 , . . . , 𝑝
𝑛
𝑖

}
→ 𝑡𝑖

)
𝑖∈𝐼end allows a

process to receive a message and proceed as term 𝑡𝑖 . The

message has to match using the label and the patterns 𝑝

via pattern matching. A pattern 𝑝 can take the form of a

variable, basic value (e.g., true), tuple (e.g., {𝑥,𝑦}) or list

(e.g., [ 𝑥 | 𝑦 ] where 𝑥 is the head and 𝑦 is the tail). All vari-

ables within a pattern are assumed to be unique. The term

case 𝑒 do (𝑝𝑖 → 𝑡𝑖 )𝑖∈𝐼end matches 𝑒 with the patterns

𝑝𝑖 and proceeds as 𝑡𝑖 . A function call takes the form of

𝑓 (𝑒1, . . . , 𝑒𝑛).
An expression 𝑒 can be a variable, basic values (i.e., booleans,

numbers, atoms1 and pids) or other operations. The latter

include arithmetic (+, −, ∗, /), comparison (<, >, <=, >=,

==, !=) and boolean operations (𝑎𝑛𝑑 , 𝑜𝑟 , 𝑛𝑜𝑡 ). An expression

can also take the form of a list of expressions (all elements

having the same type) or a tuple (where elements can have

different types).

3.2 Session Typing
The module and term typing rules are defined in Figs. 3 and 4,

and use three types of environments:

Γ F ∅ | Γ, 𝑥 : 𝑇

Δ F ∅ | Δ, 𝑓𝑛 : 𝑆

Σ F ∅ | Σ, 𝑓𝑛 :

{
params = 𝑥, param_types = 𝑇,

body = 𝑡, return_type = 𝑇

}
The variable binding environment Γ maps variables to ex-

pression types (𝑥 : 𝑇 ). The function type environment Δ
maps function names (and arity) to their session type (𝑓𝑛 : 𝑆)

and is used to typecheck recursive calls. The function infor-
mation environment Σ is a static environment which stores

information regarding the functions in a module. When a

function named 𝑓 with arity 𝑛 is defined in a module, Σ(𝑓𝑛)
returns environment which stores the parameter names 𝑥

and their types 𝑇 , the function body 𝑡 and the return type 𝑇 .

1
An atom is defined as a colon followed by a label (:l), e.g., :dog.

4
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⊢ 𝑀

∀𝑓𝑛 ∈ functions
(
𝐷
)

Σ𝑓𝑛 (𝑓𝑛) = 𝜎 𝜎.params = 𝑥 𝜎.param_types = 𝑇 𝜎.body = 𝑡 𝜎 .return_type = 𝑇

Σ = details
(
𝑃
)

𝑆 = session (𝑓𝑛)
(
𝑓𝑛 : 𝑆

)
·
(
𝑥 : 𝑇

)
⊢Σ∪Σ𝑓𝑛

𝑆 ▷ 𝑡 : 𝑇 ◁ end
tModule

⊢ defmodule𝑚 do 𝑃 𝐷 end

Figure 3. Module typing

Δ · Γ ⊢Σ 𝑆 ▷ 𝑡 : 𝑇 ◁ 𝑆 ′
Δ · Γ ⊢ 𝑆 ▷ 𝑡1 : 𝑇 ◁ 𝑆 ′ Δ · (Γ, 𝑥 : 𝑇 ) ⊢ 𝑆 ′ ▷ 𝑡2 : 𝑇 ′ ◁ 𝑆 ′′

tLet

Δ · Γ ⊢ 𝑆 ▷ 𝑥 = 𝑡1; 𝑡2 : 𝑇
′ ◁ 𝑆 ′′

∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 1..𝑛 ⊢pat 𝑝 𝑗

𝑖
: 𝑇

𝑗

𝑖
▷ Γ 𝑗

𝑖
Δ ·

(
Γ, Γ1𝑖 , . . . , Γ

𝑛
𝑖

)
⊢ 𝑆𝑖 ▷ 𝑡𝑖 : 𝑇 ◁ 𝑆 ′

tBranch

Δ · Γ ⊢ &
{
?l𝑖

(
𝑇𝑖
)
.𝑆𝑖

}
𝑖∈𝐼 ▷ receive do

({
:l𝑖 , 𝑝𝑖

}
→ 𝑡𝑖

)
𝑖∈𝐼∪𝐽 end : 𝑇 ◁ 𝑆 ′

∃𝑖 ∈ 𝐼 l = l𝑖 Γ ⊢exp 𝑥 : pid ∀𝑗 ∈ 1..𝑛 Γ ⊢exp 𝑒 𝑗 : 𝑇 𝑗

𝑖
tChoice

Δ · Γ ⊢ ⊕
{
!l𝑖

(
𝑇𝑖
)
.𝑆𝑖

}
𝑖∈𝐼 ▷ send (𝑥, {:l, 𝑒1, . . . , 𝑒𝑛}) :

{
atom,𝑇 1

𝑖 , . . . , 𝑇
𝑛
𝑖

}
◁ 𝑆𝑖

Σ (𝑓𝑛) = 𝜎 𝜎.params = 𝑥 𝜎.param_type = 𝑇 𝜎.body = 𝑡 𝜎 .return_type = 𝑇

𝑓𝑛 ∉ 𝑑𝑜𝑚(Δ) (Δ, 𝑓𝑛 : 𝑆) ·
(
Γ, 𝑥 : 𝑇

)
⊢ 𝑆 ▷ 𝑡 : 𝑇 ◁ 𝑆 ′ ∀𝑖 ∈ 1..𝑛 Γ ⊢exp 𝑒𝑖 : 𝑇𝑖

tRecUnknownCall

Δ · Γ ⊢ 𝑆 ▷ 𝑓 (𝑒1, . . . , 𝑒𝑛) : 𝑇 ◁ 𝑆 ′

Σ (𝑓𝑛) = 𝜎 𝜎.return_type = 𝑇 𝜎.param_types = 𝑇

Δ (𝑓𝑛) = 𝑆 ∀𝑖 ∈ 1..𝑛 Γ ⊢exp 𝑒𝑖 : 𝑇𝑖
tRecKnownCall

Δ · Γ ⊢ 𝑆 ▷ 𝑓 (𝑒1, . . . , 𝑒𝑛) : 𝑇 ◁ end
Γ ⊢exp 𝑒 : 𝑈

∀𝑖 ∈ 𝐼 ⊢pat 𝑝𝑖 : 𝑈 ▷ Γ′𝑖 Δ ·
(
Γ, Γ′𝑖

)
⊢ 𝑆 ▷ 𝑡𝑖 : 𝑇 ◁ 𝑆 ′

tCase

Δ · Γ ⊢ 𝑆 ▷ case 𝑒 do (𝑝𝑖 → 𝑡𝑖 )𝑖∈𝐼end : 𝑇 ◁ 𝑆 ′
Γ ⊢exp 𝑒 : 𝑇

tExpression
Δ · Γ ⊢ 𝑆 ▷ 𝑒 : 𝑇 ◁ 𝑆

Figure 4. Term typing

A program is typechecked by starting from a module and

then checking that each public function behaves according

to the pre-defined session type, as shown in tModule. This

rule uses some auxiliary functions: details(𝑃) populates
the environment Σ; functions(𝐷) returns a set of all public
function names; and session(𝑓𝑛) obtains the session type

for 𝑓𝑛 (i.e., the function 𝑓 with arity 𝑛), either directly from

@session or by computing the dual session type whenever

@dual is used. tModule uses Σ𝑓𝑛 , which contains a mapping

of the public function 𝑓𝑛 to its function information, used

again when typechecking recursion. Each public function

is then checked using the term typing rules in Fig. 4. These

rules are syntax directed, having at most one rule for each

term 𝑡 . The term typing judgement has the form

Δ · Γ ⊢Σ 𝑆 ▷ 𝑡 : 𝑇 ◁ 𝑆 ′

which can be read as, “the term 𝑡 can produce a value of type

𝑇 after following an interaction protocol starting from the ini-

tial session type 𝑆 up to the residual session type 𝑆 ′, subject
to the session typing environment Δ, variable binding envi-

ronment Γ and function information environment Σ”. Since
the function information environment is static throughout a

term typing derivation, it is left implicit in the rules of Fig. 4.

Themost complex term typing rule in Fig. 4 is tBranch. A

receive statement expects a branching session type &

{
. . .

}
.

Each branch from the session type has to match with a

receive branch, meaning that both the labels and the mes-

sage types have to match. The message types are obtained

using the pattern typing rules in Fig. 6. All branches need to

end up with a common expression type𝑇 and session type 𝑆 ′

— this makes it possible to use the fork-join pattern described

in Sec. 4.2.

5
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Γ ⊢exp 𝑒 : 𝑇
type (𝑏) = 𝑇 𝑏 ≠ [ ]

tLiteral

Γ ⊢exp 𝑏 : 𝑇

Γ (𝑥) = 𝑇
tVariable

Γ ⊢exp 𝑥 : 𝑇

∀𝑖 ∈ 1..𝑛 Γ ⊢exp 𝑒𝑖 : 𝑇𝑖
tTuple

Γ ⊢exp {𝑒1, . . . , 𝑒𝑛} : {𝑇1, , . . . , 𝑇𝑛}

tEList

Γ ⊢exp [ ] : [𝑇 ]

Γ ⊢exp 𝑒1 : 𝑇 Γ ⊢exp 𝑒2 : [𝑇 ]
tList

Γ ⊢exp [ 𝑒1 | 𝑒2 ] : [𝑇 ]

⋄ ∈ {+, −, ∗, /}
Γ ⊢exp 𝑒1 : number Γ ⊢exp 𝑒2 : number

tArithmetic

Γ ⊢exp 𝑒1 ⋄ 𝑒2 : number

⋄ ∈ {<, >, <=, >=, ==, !=}
Γ ⊢exp 𝑒1 : 𝑇 Γ ⊢exp 𝑒2 : 𝑇

tComparisons

Γ ⊢exp 𝑒1 ⋄ 𝑒2 : boolean

★ ∈ {and, or}
Γ ⊢exp 𝑒1 : boolean Γ ⊢exp 𝑒2 : boolean

tBoolean

Γ ⊢exp 𝑒1 ★ 𝑒2 : boolean

Γ ⊢exp 𝑒 : boolean
tNot

Γ ⊢exp not 𝑒 : boolean

Figure 5. Expression typing

The rule tChoice expects an initial choice session type

⊕
{
. . .

}
which needs to have exactly one label matching the

message payload of the send construct. Similar to tBranch,

the respective message data needs to have the correct type,

as specified by the session type. Moreover, the send operator

expects the first parameter to have type pid. Although not

explicitly checked, this value represents the addressee of

the message and should be equivalent to the pid of the dual

process in the session.

Our typing prohibits public functions from calling other

public functions; they can call any private function as long

as the session protocol is respected, and they are also al-

lowed to call themselves to achieve recursive behaviour. Note

that these restrictions are introduced in tModule where the

only recognised functions are the private functions (in Σ)
and the public function itself (in Σ𝑓𝑛 ). Private functions are

allowed to call any other private function (including them-

selves) and the originating public function starting the call

chain as follows: the first time a function is called, its body

⊢pat 𝑝 : 𝑇 ▷ Γ
type (𝑏) = 𝑇 𝑏 ≠ [ ]

tpLiteral ⊢pat 𝑏 : 𝑇 ▷ ∅

tpVariable ⊢pat 𝑥 : 𝑇 ▷ 𝑥 : 𝑇

∀𝑖 ∈ 1..𝑛 ⊢pat 𝑤𝑖 : 𝑇𝑖 ▷ Γ𝑖
tpTuple ⊢pat {𝑤1, . . . , 𝑤𝑛} : {𝑇1, . . . , 𝑇𝑛} ▷ Γ1, . . . , Γ𝑛

tpEList ⊢pat [ ] : [𝑇 ] ▷ ∅

⊢pat 𝑤1 : 𝑇 ▷ Γ

⊢pat 𝑤2 : [𝑇 ] ▷ Γ′
tpList ⊢pat [𝑤1 | 𝑤2 ] : [𝑇 ] ▷ Γ, Γ′

Figure 6. Pattern typing

needs to be inspected by the type checker. In the case of

a public function, this is handled by the premises of the

rule tModule in Fig. 3, whereas private function bodies are

typed via tRecUnknownCall. Note that, in both cases, the

function type environment, Δ, is extended with an entry that

maps the function and its arity to the session type. This is

important for detecting that the body of the function has

already been inspected. More concretely, recursive calls to

a function are then handled by the rule tRecKnownCall,

which trigger only when the function and arity pair are part

of the domain of Δ.
The remaining rules make up the functional aspect of the

language. The let statement 𝑥 = 𝑡1; 𝑡2 is typechecked using

the rule tLet. The initial session type 𝑆 is first transformed

to 𝑆 ′ due to some actions in 𝑡1 and finally becomes 𝑆 ′′ after
the actions in 𝑡2. The rule tCase checks the case construct,

where each case has to match the corresponding type 𝑇 and

session type 𝑆 . Finally, tExpression checks all expressions 𝑒

using expression typing. Expressions do not have a side effect,
so the continuation session type 𝑆 remains unchanged.

Expression Typing. Expressions are typechecked using

the judgement Γ ⊢exp 𝑒 : 𝑇 , where expression 𝑒 has type 𝑇
subject to the variable environment Γ. The expressions typ-
ing rules (Fig. 5) are adapted from [7]. Rule tLiteral checks

the type of basic values using the function type, which
returns the type for any basic value, e.g., type (𝑡𝑟𝑢𝑒) =

boolean. Rule tVariable checks that variables have the cor-
rect type, as specified in Γ. Rules tTuple, tEList and tList

check the types of tuples, empty lists and lists, respectively.

Rule tArithmetic ensures that numbers are used when do-

ing arithmetic operations. The remaining rules, tBoolean,

tNot and tComparisons, are analogous.

6
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Pattern Typing. In the term typing rules tBranch and

tCase of Fig. 4, new variables are introduced as a result of

pattern matching. These need to be assigned to their respec-

tive type for typechecking purposes. This is obtained via the

judgement ⊢pat 𝑝 : 𝑇 ▷ Γ defined in Fig. 6, which states that

all variables in a pattern 𝑝 are collected (with their type) in

Γ. New variables are introduced in tpVariable, and basic

values are checked in tpLiteral. Each element in a tuple is

checked individually for either values or variables (tpTuple).

Lists are checked using tpEList and tpList. Multiple vari-

able environments Γ and Γ′ are joined together as Γ, Γ′ (their
domains must be distinct).

3.3 Typing in Action
Recall the counter system from Listing 2, which contains two

public functions, server and client , annotated with the

session types, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 and 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 , respectively defined in

eqs. (1) and (2). We discuss briefly how the type system of

Sec. 3.2 can be used to statically analyse this Elixir module.

Typechecking starts from the tModule rule (⊢ 𝑀 , Fig. 3),

and the judgement:

⊢ defmodule Counter do 𝑃 𝐷 end

where 𝐷 contains the functions server and client ,
while 𝑃 contains the private function terminate . The
premise of tModule requires that all public functions are

checked individually using the behavioural typing judge-

ment: Δ · Γ ⊢Σ 𝑆 ▷ 𝑡 : 𝑇 ◁ 𝑆 ′ (Fig. 4). Starting with 𝑓𝑛 =

server2, the initial session type, 𝑆 , is set to 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 and

the expected residual session type, 𝑆 ′, is end, since functions
are only well-typed if they fully consume the session type.

For the client function, the initial session type 𝑆 is com-

puted to get the dual type of 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 , given in eq. (2). We

focus on the behavioural typing of the server function. The

function body, 𝑡 , of server consists of the following:

𝑡 =


receive do

{:incr, val} -> server(client, tot + val)

{:stop} -> terminate(client, tot)

end

This receive statement is typechecked as the judgement

below, using the tBranch rule (from Fig. 4):

Δ · Γ ⊢ &
{
?incr(number).𝑐𝑜𝑢𝑛𝑡𝑒𝑟,
?stop() .𝑆1

}
▷ 𝑡 : atom ◁ end

where 𝑆1 = !value(number).end.
The session type in tBranch dictates that two branches

are required, labelled incr and stop. The terms inside the

branches must match with the continuation session type of

the corresponding session type (i.e., 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 and 𝑆1, respec-
tively). For the first branch (labelled incr), the continuation
term is a known function call (Δ(server2) = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ); there-
fore, we use the tRecKnownCall axiom:

Δ · Γ′ ⊢ 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ▷ server(client, tot+val) : atom ◁ end

Elixir Source Code +
Session Type Annotations Elixir AST

Macros Expanded

ErlangCore ErlangBEAM Code

ElixirST

Figure 7. Stages of Elixir compilation along with the session

type implementation (in red)

The term of the second branch (labelled stop) needs to

match with the session type 𝑆1. This branch makes a call

to a private function ( terminate ). Since terminate1 is

not in the domain of Δ, we proceed to inspect its body us-

ing the rule tRecUnknownCall. Recall that private func-

tions are not annotated with session types. Accordingly, rule

tRecUnknownCall requires us to inherit the outstanding

session 𝑆1 as the specification for typing this judgement:

Δ · Γ ⊢ 𝑆1 ▷ terminate(client, tot) : atom ◁ end

The derivation of this judgement is left to the interested

reader.

As a second example, consider the first two lines of the

misbehaving client function body from Listing 3, to be

typechecked against 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 from eq. (2):

send(server, {:incr, 5})

send(server, {:decr, 2})

The first send statement is checked successfully using the

tLet and the tChoice rules. The next send statement also

needs to be checked using tChoice:

Δ′ · Γ′′ ⊢ ⊕
{
!incr(number).𝑐𝑜𝑢𝑛𝑡𝑒𝑟,
!stop() .𝑆1

}
▷

send(server, {:decr, 2}) : number ◁ end

However, the tChoice rule attempts to match decr with a

nonexistent choice from the session type. Thus, this client
function is deemed to be ill-typed.

4 Elixir Implementation
This section describes how the type system of Sec. 3 is im-

plemented as the session type checker tool called ElixirST.
This tool is integrated in Elixir with minimal changes to the

syntax of the surface language.

7
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4.1 Elixir Compilation with Session Types
The Elixir source code is compiled in several steps (see Fig. 7).

The original Elixir source code is initially parsed into an Ab-

stract Syntax Tree (AST). Considering that Elixir is a macro-

full language, all non-special form2
macros need to be ex-

panded into the special form Elixir macros (e.g., if/unless
statements are converted into case constructs) [26]. Then,

the expanded Elixir AST is converted into Erlang abstract

format and Core Erlang. Finally, it is compiled into BEAM

code which can be executed on the Erlang Virtual Machine

(BEAM).

Our implementation integrates seamlessly within this

compilation pipeline (see Fig. 7, red). Inside the Elixir source

code, processes are described with a specific session type

using annotations (starting with @). Annotations are able to
hold information about a module during compile-time. We

provide normal labelled session types ( @session ) and their

dual (@dual , referenced by a label):

@session "X = !Ping().?Pong().X"

# ...

@dual "X" # Equivalent to X' = ?Ping().!Pong().X'

The annotations set up the rules of the session types, which

need to be enforced later on in the compilation process. Elixir

provides several compile-time hooks which provide a way

to alter or append to the compilation pipeline. In this im-

plementation, we initially use the on_definition hook to

parse the session type (from the annotations) and compute

the dual type where required; this is done using the Erlang

modules leex3 and yecc4, which create a lexer and a parser,

respectively, based on the session type syntax rules shown

in Fig. 2. Then, the after_compile hook is used to run

ElixirST right after the BEAM code is produced. Since the

BEAM code stores directly the expanded Elixir AST, ElixirST
is able to traverse this AST and verify its concurrent parts

using session types.

4.2 Bridging between Elixir and Our Model
Every construct in Fig. 2 maps directly to a corresponding

construct in the actual Elixir language. The @spec annota-

tion which decorates functions with types is already present

in the latest distribution of the language. It is typically used

for code documentation and to statically analyse programs

using the Dialyzer [25], a tool that detects potential (type)
errors in Core Erlang programs using success typing [33].

We use the @spec information to specify the types for the

parameters and the return type of the functions, supplement-

ing our session typechecking analysis. A similar approach

to ours was adopted by Cassola et al. [6] for a gradual static

type system for Elixir.

2Special formmacros cannot be expanded further, forming the basic building

blocks of the Elixir language.

3https://erlang.org/doc/man/leex.html
4https://erlang.org/doc/man/yecc.html

receive do

{:A} -> send(p, {:C})

:ok

{:B} -> send(p, {:C})

:ok

end

.

receive do

{:A} ->

:ok

{:B} ->

:ok

end .

send(p, {:C})

The typing rules of Fig. 4 are also designed in a way

to minimally alter common coding patterns in the lan-

guage. For instance, branches in session types might

have common continuations, such as !C().end in the type

&

{
?A() .!C().end, ?B().!C() .end

}
. Many type systems force

programs to structure their code as shown in the left-hand

side code snippet above (which performs the same send
action twice). However, in Elixir it is common to express

this as a fork-join pattern, with a single continuation per-

forming the common action once as shown in the right-hand

side code snippet. Our type system can typecheck both code

snippets.

The only aspect left to discuss is the mechanism used by

our implementation to guarantee an interaction between

the two processes implementing the respective endpoints of

binary session type. To achieve this end, we implemented

a bespoke spawning function that takes the code of the re-

spective endpoints and returns a tuple with the pids of the
two processes that are already linked. The implementation

of our session spawn is given below:

1 def spawn(leftFn, left_args, rightFn, right_args)
2 when is_function(leftFn)
3 and is_function(rightFn) do
4 left_pid =
5 spawn(fn ->
6 receive do
7 {:pid, right_pid} ->
8 apply(leftFn, [right_pid | left_args])
9 end
10 end)
11
12 right_pid =
13 spawn(fn ->
14 send(left_pid, {:pid, self()})
15 apply(rightFn, [left_pid | right_args])
16 end)
17
18 {left_pid, right_pid}
19 end

This modified spawn/4 function takes two pairs of argu-

ments: two references of function names (that should be

spawned) and their list of arguments. The code implements

the initialisation protocol depicted in Fig. 8. It first spawns

one process (pre-left in Fig. 8 for line 4) and passes its pid
to the second spawned process (pre-right in Fig. 8, as the

variable left_pid on lines 14 and 15). Then, the pre-right

process sends its pid to the pre-left process (line 14 and lines 6
and 7). At this point, both processes execute their respec-

tive functions to transform into the actual first and second

8
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pre-left

pre-right rightFn ( left_pid ,

arg2 ,

arg3 , . . . )

l e f t Fn ( right_pid ,

arg2 ,

arg3 , . . . )

left_pid right_pid

. . .

. . .

Figure 8. Spawning two processes (green boxes represent

spawned concurrent processes)

processes participating in the session, passing the respective

pids as the first argument of the executing functions (lines 8

and 15). In the case of the Counter module from Listing 2,

we can use the following function call to launch the two

processes of the session:

ElixirST .spawn(& server /2, [0], &client /1, [])

The spawn/4 function can only launch two processes at

a time, in line with the binary sessions. This can however,

be easily extended to handle more than two processes in the

case of multiparty sessions.

Our implementation still allows spawned processes to

receive messages from any other process. Unfortunately, un-

solicited messages can interfere with a session-typed process,

since the receiver is not able to distinguish where the mes-

sage is originating from in the present implementation. An

improvement would be exploiting Elixir’s ability to cherry-

pick messages out-of-order from the queue using pattern

matching. As soon as a session is launched, a unique session

ID would be shared with the two parties, and each message

exchanged between them would use this ID to identify the

source (and destination). This would enable selective reads to

filter unsolicited messages. Mostrous and Vasconcelos [29]

created a similar system to distinguish messages by attaching

a unique reference to each message.

5 Related Work
There are few tools that support development correctness

for Elixir. One can, in principle, migrate tools devised for the

Erlang ecosystem such as soft-typing checkers [33], model

checkers [13] or runtime verifiers [4], but this is rarely done

in practice. In fact, most guarantees are usually given via test-

driven tools such as ExUnit
5
. To the best of our knowledge,

this is the first implementation of session types for the Elixir

language. In what follows, we will take a look at session type

integration with other languages.

5.1 Session Types on Top of Actor-Based Languages
Python. Neykova and Yoshida [30, 31] introduced (mul-

tiparty) session types to dynamically typed languages, in

this case, Python (flavoured with an actor framework, Cell).
Using runtime verification, processes are dynamically moni-

tored to ensure that they follow the pre-defined session types

5https://hexdocs.pm/ex_unit/ExUnit.html

written in the Scribble protocol language [18]. Each process

is assigned different protocols and roles by the use of Python

annotations (e.g., @role) which decorate functions similar

to our work.

Erlang. Extending the work of Neykova and Yoshida,

Fowler [11] created an Erlang library which offers runtime

monitoring of actor communication in Erlang, based on mul-

tiparty session types. It allows for greater flexibility than our

work, since the Erlang/OTP behaviours (e.g., gen_server)
are used — these coordinate actors in a hierarchical man-

ner. To some extent, this also allows safe failure of actors,

adopting Erlang’s “let it crash” philosophy.

Closer to our work is [29], in which Mostrous and Vascon-

celos present a static session type verification mechanism for

a small fragment of the Core Erlang language. Core Erlang

is dynamically typed, akin to Elixir. In [29], each message

sent or received is labelled with unique references. Then,

using correlation sets, each message is matched with the

corresponding session, given that multiple sessions are al-

lowed to be running simultaneously. Its typing system is not

algorithmic, so there is no implementation. We take a more

pragmatic approach, adding more flexibility (e.g., inductive
types and infinite computation using recursion) and a larger

part of the language (e.g., variable binding with sequencing

and expressions).

Other works have statically analysed Erlang for compile-

time errors. Harrison [14] statically checks Core Erlang code

for message passing errors. For example, his tool matches

send statements with corresponding receive statements, thus

ascertaining that orphan messages (i.e., messages that are

never received) can never exist. The tool works fully auto-

mated, so no annotations are required. In another implemen-

tation, Harrison [15] performs static and runtime analysis in

Erlang. In [15], messages analysed were produced by OTP be-

haviours, e.g. gen_server or gen_statem behaviours, rather
than send or receive statements directly. It works by inter-

cepting messages dynamically and checks that each message

has the expected type. Malformed messages are caught ear-

lier, preventing any unexpected bahaviour.

Several works have been attempted to statically typecheck

fragments of Erlang. Rajendrakumar and Bieniusa [37] cre-

ated a bidirectional type system which uses both type infer-

ence and type checking to ensure that an Erlang program

is well-typed. Compared to our tool, this type system [37],

along with other Erlang type checkers [27, 42], tend to omit

static concurrency checks. For example, they do not check

whether the types of messages sent match the types of mes-

sages a process expects to receive.

Scala. Scalas and Yoshida [38] provide a library that

checks binary session types in the Scala language. By ab-

stracting session types as a set of Scala classes, the compiler

is able to statically detect protocol errors. Linearity checks

are performed at runtime. In another implementation, Scalas

9
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et al. [39, 40] extended Dotty (Scala 3) by utilising dependent

function types to verify programs at compile-time. Checking

conformance to the expected behaviour is done via model

checking. Bartolo Burlò et al. [5] synthesise runtime mon-

itors from session types. They leverage the work of Scalas

and Yoshida [38] to dynamically check binary sessions in

Scala at runtime.

Other Actor Languages. Harvey et al. [16] present a new
actor-based language, called EnsembleS, having native ses-

sion type features. It is able to statically guarantee correct-

ness while also allowing dynamic adaptation of actors. This

allows actors to establish a connection and terminate mid-

session, given that they obey a known protocol.

De’Liguoro and Padovani [10] used a different approach to

type concurrent processes. Instead of relying directly on ac-

tors, they introduced the mailbox calculus which treats mail-

boxes as first-class citizens. Using mailbox types, which are

a different kind of behavioural types, the state of mailboxes

are typechecked to ensure deadlock freedom of processes.

5.2 Other Session Type Implementations
The remaining implementations are built solely on channel-

based message passing, which contrast to our work, being

actor-based.

Rust. Jespersen et al. [21] leverage Rust’s affine type sys-

tem and annotations (e.g., #[must_use]) to implement bi-

nary session types. This implementation has some limita-

tions, including that branches and choices are limited to

binary options, and sessions can be unsafely dropped prema-

turely. Kokke’s [22] work improves on [21] by basing their

work on Exceptional GV [12], adding support for early can-

cellation of sessions. Lagaillardie et al. [24] extend [22] to im-

plement a multiparty session type implementation for Rust.

Another implementation for Rust was presented by Cutner

and Yoshida [9], in which they use asynchronous communi-

cation rather than synchronous.

Haskell and OCaml. There are several session type im-

plementations for Haskell, including [36] which uses monads

and [23] which makes use of Linear Haskell and priorities

guaranteeing compile-time linearity.

Padovani [34] presents FuSe, a simple library that per-

forms static session typechecking for OCaml. It enforces

linearity at runtime, similar to [38]. Melgratti and Padovani

[28] extend FuSe to perform additional runtime checks, re-

ferred to as contracts. Contracts can be written natively in

OCaml, so they can be inserted directly within the original

program to form an inline monitor. Another approach uses

parametric polymorphism, in which Imai et al. [20] propose

a static binary session type system for OCaml. This was later

expanded by the same authors in [19] by utilising global com-

binators to statically verify multiparty session types. The

approaches for OCaml and Haskell rely heavily on type-level

features of the language, which do not translate easily to

Elixir.

5.3 Type System for Elixir
There have been other attempts to statically type the Elixir

language, which is dynamically typed. In [6, 7], Cassola et al.

created a gradual static type system for Elixir, which stat-

ically typechecks part of Elixir while permitting untyped

parts. This work checks the functional part of the language,

rather than the concurrent part. They analyse the AST di-

rectly from the Elixir source without macro expansions. In

contrast, we statically analyse the AST with the macros fully

expanded, as discussed in Sec. 4.1. This gives us several ben-

efits, including having to explicitly check for less constructs,

e.g., analysing the case statement gave us other constructs

for free as a side effect – the if and unless macros are

directly expanded into a case construct. Also, this allows

for more flexibility, since we are able to use custom macros,

given that they will always be expanded during compila-

tion. Macros in Elixir are useful as they can extend the Elixir

language with first-class features, helping to create more

concise programs [26].

6 Conclusion
In this paper we presented our preliminary work towards

applying session types for Elixir. We focused on the adapta-

tion of binary session types for the concurrent part of the

Elixir language, making design decisions based on the lan-

guage itself (e.g., recursion in the form of function calls).

This resulted in a tool implementation called ElixirST, which
can statically typecheck public functions within a module

against session-type usage specifications.

Future Work. We plan to extend our type system to be

able to handle code across modules. A further natural ex-

tension of this work would then be the handling of mul-

tiparty session types. In order to achieve this, we can use

Scribble [18] to generate local session types for individual

functions and check them statically, similar to [16, 19, 24].

We also plan to prove a number of properties about our

type system, which may require tweaking certain typing

rules. We are in the process of formulating a reduction se-

mantics for our targeted language subset that faithfully mod-

els the runtime behaviour of Elixir programs; this will in turn

enable us to prove properties such as type preservation.

Acknowledgments
The work has been partly supported by the project MoVeMnt

(No: 217987-051) under the Icelandic Research Fund, the

project “Monitored Behavioural APIs for the API Economy”

(No: CPSRP01-21) under the University of Malta Research

Fund, and the BehAPI project funded by the EU H2020 RISE

under the Marie Skłodowska-Curie action (No: 778233).

10



Session Types in Elixir AGERE ’21, October 17, 2021, Chicago, IL, USA

References
[1] Gul A. Agha. 1990. ACTORS - a model of concurrent computation in

distributed systems. MIT Press.

[2] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos,

Giuseppe Castagna, Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert,

Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Mar-

tins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas

Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. 2016.

Behavioral Types in Programming Languages. Found. Trends Program.
Lang. 3, 2-3 (2016), 95–230. https://doi.org/10.1561/2500000031

[3] Joe Armstrong, Robert Virding, and Mike Williams. 1993. Concurrent
programming in ERLANG. Prentice Hall.

[4] Duncan Paul Attard, Luca Aceto, Antonis Achilleos, Adrian Fran-

calanza, Anna Ingólfsdóttir, and Karoliina Lehtinen. 2021. Better Late

Than Never or: Verifying Asynchronous Components at Runtime. In

FORTE (Lecture Notes in Computer Science, Vol. 12719). Springer, 207–
225.

[5] Christian Bartolo Burlò, Adrian Francalanza, and Alceste Scalas. 2021.

On the Monitorability of Session Types, in Theory and Practice. In

ECOOP (LIPIcs, Vol. 194). Schloss Dagstuhl - Leibniz-Zentrum für In-

formatik, 20:1–20:30.

[6] Mauricio Cassola, Agustín Talagorria, Alberto Pardo, andMarcos Viera.

2020. A Gradual Type System for Elixir. Proceedings of the 24th
Brazilian Symposium on Context-Oriented Programming and Advanced
Modularity (Oct 2020). https://doi.org/10.1145/3427081.3427084

[7] Mauricio Cassola, Agustín Talagorria, Alberto Pardo, andMarcos Viera.

2021. A Gradual Type System for Elixir. CoRR abs/2104.08366 (2021).

arXiv:2104.08366 https://arxiv.org/abs/2104.08366
[8] David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas

Ng, and Nobuko Yoshida. 2019. Distributed programming using role-

parametric session types in go: statically-typed endpoint APIs for

dynamically-instantiated communication structures. Proc. ACM Pro-
gram. Lang. 3, POPL (2019), 29:1–29:30.

[9] Zak Cutner and Nobuko Yoshida. 2021. Safe Session-Based Asynchro-

nous Coordination in Rust. In Coordination Models and Languages
- 23rd IFIP WG 6.1 International Conference, COORDINATION 2021,
Held as Part of the 16th International Federated Conference on Dis-
tributed Computing Techniques, DisCoTec 2021, Valletta, Malta, June
14-18, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12717),
Ferruccio Damiani and Ornela Dardha (Eds.). Springer, 80–89. https:
//doi.org/10.1007/978-3-030-78142-2_5

[10] Ugo de’Liguoro and Luca Padovani. 2018. Mailbox Types for Un-

ordered Interactions. In 32nd European Conference on Object-Oriented
Programming, ECOOP 2018, July 16-21, 2018, Amsterdam, The Nether-
lands (LIPIcs, Vol. 109), Todd D. Millstein (Ed.). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 15:1–15:28. https://doi.org/10.4230/
LIPIcs.ECOOP.2018.15

[11] Simon Fowler. 2016. An Erlang Implementation of Multiparty Session

Actors. In Proceedings 9th Interaction and Concurrency Experience, ICE
2016, Heraklion, Greece, 8-9 June 2016 (EPTCS, Vol. 223), Massimo Bar-

toletti, Ludovic Henrio, Sophia Knight, and Hugo Torres Vieira (Eds.).

36–50. https://doi.org/10.4204/EPTCS.223.3
[12] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019.

Exceptional asynchronous session types: session types without tiers.

Proc. ACM Program. Lang. 3, POPL (2019), 28:1–28:29. https://doi.org/
10.1145/3290341

[13] Qiang Guo, John Derrick, Clara Benac Earle, and Lars-Åke Fredlund.

2010. Model-Checking Erlang - A Comparison between EtomCRL2 and

McErlang. In TAIC PART (Lecture Notes in Computer Science, Vol. 6303).
Springer, 23–38.

[14] Joseph Harrison. 2018. Automatic detection of core Erlang message

passing errors. In Proceedings of the 17th ACM SIGPLAN International
Workshop on Erlang, ICFP 2018, St. Louis, MO, USA, September 23-29,
2018, Natalia Chechina and Adrian Francalanza (Eds.). ACM, 37–48.

https://doi.org/10.1145/3239332.3242765
[15] Joseph Harrison. 2019. Runtime type safety for erlang/otp behaviours.

In Proceedings of the 18th ACM SIGPLAN International Workshop on
Erlang, Erlang@ICFP 2019, Berlin, Germany, August 18, 2019, Adrian
Francalanza and Viktória Fördós (Eds.). ACM, 36–47. https://doi.org/
10.1145/3331542.3342571

[16] Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. 2021.

Multiparty Session Types for Safe Runtime Adaptation in an Ac-

tor Language. In 35th European Conference on Object-Oriented Pro-
gramming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual
Conference) (LIPIcs, Vol. 194), Anders Møller and Manu Sridharan

(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 10:1–10:30.

https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
[17] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR ’93, 4th

International Conference on Concurrency Theory, Hildesheim, Germany,
August 23-26, 1993, Proceedings (Lecture Notes in Computer Science,
Vol. 715), Eike Best (Ed.). Springer, 509–523. https://doi.org/10.1007/3-
540-57208-2_35

[18] Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen,

and Nobuko Yoshida. 2011. Scribbling Interactions with a Formal

Foundation. In Distributed Computing and Internet Technology - 7th
International Conference, ICDCIT 2011, Bhubaneshwar, India, February
9-12, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6536),
Raja Natarajan and Adegboyega K. Ojo (Eds.). Springer, 55–75. https:
//doi.org/10.1007/978-3-642-19056-8_4

[19] Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. 2020.

Multiparty Session Programming With Global Protocol Combinators.

In 34th European Conference on Object-Oriented Programming, ECOOP
2020, November 15-17, 2020, Berlin, Germany (Virtual Conference) (LIPIcs,
Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 9:1–9:30. https://doi.org/10.4230/
LIPIcs.ECOOP.2020.9

[20] Keigo Imai, Nobuko Yoshida, and Shoji Yuen. 2019. Session-ocaml: A

session-based library with polarities and lenses. Sci. Comput. Program.
172 (2019), 135–159. https://doi.org/10.1016/j.scico.2018.08.005

[21] Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis

Larsen. 2015. Session types for Rust. In Proceedings of the 11th ACM
SIGPLANWorkshop on Generic Programming, WGP@ICFP 2015, Vancou-
ver, BC, Canada, August 30, 2015, Patrick Bahr and Sebastian Erdweg

(Eds.). ACM, 13–22. https://doi.org/10.1145/2808098.2808100
[22] Wen Kokke. 2019. Rusty Variation: Deadlock-free Sessions with Failure

in Rust. In Proceedings 12th Interaction and Concurrency Experience,
ICE 2019, Copenhagen, Denmark, 20-21 June 2019 (EPTCS, Vol. 304),
Massimo Bartoletti, Ludovic Henrio, Anastasia Mavridou, and Alceste

Scalas (Eds.). 48–60. https://doi.org/10.4204/EPTCS.304.4
[23] Wen Kokke and Ornela Dardha. 2021. Deadlock-Free Session Types

in Linear Haskell. CoRR abs/2103.14481 (2021). arXiv:2103.14481

https://arxiv.org/abs/2103.14481
[24] Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. 2020.

Implementing Multiparty Session Types in Rust. In Coordination Mod-
els and Languages - 22nd IFIP WG 6.1 International Conference, CO-
ORDINATION 2020, Held as Part of the 15th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2020, Val-
letta, Malta, June 15-19, 2020, Proceedings (Lecture Notes in Computer
Science, Vol. 12134), Simon Bliudze and Laura Bocchi (Eds.). Springer,

127–136. https://doi.org/10.1007/978-3-030-50029-0_8
[25] Tobias Lindahl and Konstantinos Sagonas. 2006. Practical type infer-

ence based on success typings. In Proceedings of the 8th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Pro-
gramming, July 10-12, 2006, Venice, Italy, Annalisa Bossi and Michael J.

Maher (Eds.). ACM, 167–178. https://doi.org/10.1145/1140335.1140356
[26] Chris MacCord. 2015. Metaprogramming Elixir - Write Less Code, Get

More Done (and Have Fun!). O’Reilly. http://www.oreilly.de/catalog/
9781680500417/index.html

11

https://doi.org/10.1561/2500000031
https://doi.org/10.1145/3427081.3427084
https://arxiv.org/abs/2104.08366
https://arxiv.org/abs/2104.08366
https://doi.org/10.1007/978-3-030-78142-2_5
https://doi.org/10.1007/978-3-030-78142-2_5
https://doi.org/10.4230/LIPIcs.ECOOP.2018.15
https://doi.org/10.4230/LIPIcs.ECOOP.2018.15
https://doi.org/10.4204/EPTCS.223.3
https://doi.org/10.1145/3290341
https://doi.org/10.1145/3290341
https://doi.org/10.1145/3239332.3242765
https://doi.org/10.1145/3331542.3342571
https://doi.org/10.1145/3331542.3342571
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.4204/EPTCS.304.4
https://arxiv.org/abs/2103.14481
https://arxiv.org/abs/2103.14481
https://doi.org/10.1007/978-3-030-50029-0_8
https://doi.org/10.1145/1140335.1140356
http://www.oreilly.de/catalog/9781680500417/index.html
http://www.oreilly.de/catalog/9781680500417/index.html


AGERE ’21, October 17, 2021, Chicago, IL, USA Gerard Tabone and Adrian Francalanza

[27] Simon Marlow and Philip Wadler. 1997. A Practical Subtyping System

For Erlang. In Proceedings of the 1997 ACM SIGPLAN International
Conference on Functional Programming (ICFP ’97), Amsterdam, The
Netherlands, June 9-11, 1997, Simon L. Peyton Jones, Mads Tofte, and

A. Michael Berman (Eds.). ACM, 136–149. https://doi.org/10.1145/
258948.258962

[28] Hernán C. Melgratti and Luca Padovani. 2017. Chaperone contracts

for higher-order sessions. Proc. ACM Program. Lang. 1, ICFP (2017),

35:1–35:29.

[29] Dimitris Mostrous and Vasco Thudichum Vasconcelos. 2011. Ses-

sion Typing for a Featherweight Erlang. In Coordination Models and
Languages - 13th International Conference, COORDINATION 2011, Reyk-
javik, Iceland, June 6-9, 2011. Proceedings (Lecture Notes in Computer
Science, Vol. 6721), Wolfgang De Meuter and Gruia-Catalin Roman

(Eds.). Springer, 95–109. https://doi.org/10.1007/978-3-642-21464-6_7
[30] Rumyana Neykova. 2013. Session Types Go Dynamic or How to

Verify Your Python Conversations. In Proceedings 6th Workshop on Pro-
gramming Language Approaches to Concurrency and Communication-
cEntric Software, PLACES 2013, Rome, Italy, 23rd March 2013 (EPTCS,
Vol. 137), Nobuko Yoshida and Wim Vanderbauwhede (Eds.). 95–102.

https://doi.org/10.4204/EPTCS.137.8
[31] Rumyana Neykova and Nobuko Yoshida. 2017. Multiparty Session

Actors. Log. Methods Comput. Sci. 13, 1 (2017). https://doi.org/10.
23638/LMCS-13(1:17)2017

[32] Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. 2013. SPY:

Local Verification of Global Protocols. In Runtime Verification - 4th
International Conference, RV 2013, Rennes, France, September 24-27, 2013.
Proceedings (Lecture Notes in Computer Science, Vol. 8174), Axel Legay
and Saddek Bensalem (Eds.). Springer, 358–363. https://doi.org/10.
1007/978-3-642-40787-1_25

[33] Sven-Olof Nyström. 2003. A soft-typing system for Erlang. In Proceed-
ings of the 2003 ACM SIGPLAN Workshop on Erlang, Uppsala, Sweden,
August 29, 2003, Bjarne Däcker and Thomas Arts (Eds.). ACM, 56–71.

https://doi.org/10.1145/940880.940888
[34] Luca Padovani. 2017. A simple library implementation of binary

sessions. J. Funct. Program. 27 (2017), e4.

[35] Benjamin C. Pierce. 2002. Types and programming languages. MIT

Press.

[36] Riccardo Pucella and Jesse A. Tov. 2008. Haskell session types with

(almost) no class. In Proceedings of the 1st ACM SIGPLAN Symposium
on Haskell, Haskell 2008, Victoria, BC, Canada, 25 September 2008, Andy
Gill (Ed.). ACM, 25–36. https://doi.org/10.1145/1411286.1411290

[37] Nithin Vadukkumchery Rajendrakumar and Annette Bieniusa. 2021.

Bidirectional typing for Erlang. In Proceedings of the 20th ACM SIG-
PLAN International Workshop on Erlang, Erlang@ICFP 2021, Virtual
Event, Korea, August 26, 2021, Stavros Aronis and Annette Bieniusa

(Eds.). ACM, 54–63. https://doi.org/10.1145/3471871.3472966
[38] Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Pro-

gramming in Scala. In 30th European Conference on Object-Oriented
Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy (LIPIcs,
Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 21:1–21:28. https://doi.
org/10.4230/LIPIcs.ECOOP.2016.21

[39] Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Effpi: verified

message-passing programs in Dotty. In Proceedings of the Tenth ACM
SIGPLAN Symposium on Scala, Scala@ECOOP 2019, London, UK, July 17,
2019, Jonathan Immanuel Brachthäuser, Sukyoung Ryu, and Nathaniel

Nystrom (Eds.). ACM, 27–31. https://doi.org/10.1145/3337932.3338812
[40] Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Verifying

message-passing programs with dependent behavioural types. In Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June
22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM,

502–516. https://doi.org/10.1145/3314221.3322484
[41] Dave Thomas. 2018. Programming Elixir: Functional, Concurrent, Prag-

matic, Fun. Pragmatic Bookshelf.

[42] Nachiappan Valliappan and John Hughes. 2018. Typing the wild in

Erlang. In Proceedings of the 17th ACM SIGPLAN InternationalWorkshop
on Erlang, ICFP 2018, St. Louis, MO, USA, September 23-29, 2018, Natalia
Chechina and Adrian Francalanza (Eds.). ACM, 49–60. https://doi.org/
10.1145/3239332.3242766

[43] Vasco T. Vasconcelos. 2012. Fundamentals of session types. Inf. Comput.
217 (2012), 52–70. https://doi.org/10.1016/j.ic.2012.05.002

12

https://doi.org/10.1145/258948.258962
https://doi.org/10.1145/258948.258962
https://doi.org/10.1007/978-3-642-21464-6_7
https://doi.org/10.4204/EPTCS.137.8
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1145/940880.940888
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1145/3471871.3472966
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1145/3337932.3338812
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3239332.3242766
https://doi.org/10.1145/3239332.3242766
https://doi.org/10.1016/j.ic.2012.05.002

	Abstract
	1 Introduction
	2 Motivating Example
	3 A Formal Analysis
	3.1 Elixir Syntax
	3.2 Session Typing
	3.3 Typing in Action

	4 Elixir Implementation
	4.1 Elixir Compilation with Session Types
	4.2 Bridging between Elixir and Our Model

	5 Related Work
	5.1 Session Types on Top of Actor-Based Languages
	5.2 Other Session Type Implementations
	5.3 Type System for Elixir

	6 Conclusion
	Acknowledgments
	References

