
The best a monitor can do
Luca Aceto
Reykjavik University, Iceland and GSSI, Italy
luca@ru.is

Antonis Achilleos
Reykjavik University, Iceland
antonios@ru.is

Adrian Francalanza
University of Malta, Malta
afra1@um.edu.mt

Anna Ingólfsdóttir
Reykjavik University, Iceland
annai@ru.is

Karoliina Lehtinen
University of Liverpool, United Kingdom
k.lehtinen@liverpool.ac.uk

Abstract

Existing notions of monitorability for branching-time properties are fairly restrictive. This, in
turn, impacts the ability to incorporate prior knowledge about the system under scrutiny—which
corresponds to a branching-time property—into the runtime analysis. We propose a definition of
optimal monitors that verify the best monitorable under- or over-approximation of a specification,
regardless of its monitorability status. Optimal monitors can be obtained for arbitrary branching-time
properties by synthesising a sound and complete monitor for their strongest monitorable consequence.
We show that the strongest monitorable consequence of specifications expressed in Hennessy-Milner
logic with recursion is itself expressible in this logic, and present a procedure to find it. Our procedure
enables prior knowledge to be optimally incorporated into runtime monitors.

2012 ACM Subject Classification Software Verification; Testing and Debugging→Monitors; Theory
of computation → Modal and temporal logics

Keywords and phrases monitorability, branching-time logics, runtime verification

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.17

Funding Research supported by the Icelandic Research Fund projects “Theoretical Foundations
for Monitorability” (No:163406-051) and “Epistemic Logic for Distributed Runtime Monitoring”
(No:184940-051), the MIUR project PRIN 2017FTXR7S IT MATTERS, project BehAPI, funded by
the EU H2020 RISE programme under the Marie Skłodowska-Curie grant agreement No:778233,
and project FouCo, funded by EU H2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No:892704.

1 Introduction

Branching-time properties, as described by logics such as CTL, CTL* and the modal µ-
calculus, are normally verified using well-established pre-deployment techniques like model
checking [18, 10]. However, there are cases where the system model is either unavailable (e.g.,
due to third-party intellectual property restrictions), or not fully understood (e.g., when
parts of the system logic is governed by machine-learning tools). In these cases, monitors
can be used effectively to observe the execution of a system (rather than its state space) for

© Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, Karoliina Lehtinen;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 17; pp. 17:1–17:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org
mailto:luca@ru.is
https://orcid.org
mailto:antonios@ru.is
https://orcid.org
mailto:afra1@um.edu.mt
https://orcid.org
mailto:annai@ru.is
https://orcid.org
mailto:k.lehtinen@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.CSL.2021.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 The best a monitor can do

verification purposes, as demonstrated in [26, 1, 4]; this technique is broadly referred to as
runtime verification (RV) [25, 11].

RV is a best-effort strategy since it is limited to the incremental analysis of a single
execution. The study of monitorability [4, 5] asks what correctness guarantees RV can provide
and what properties can be monitored adequately with these guarantees. A wide body of
work [46, 29, 50, 21, 26, 1, 28, 2, 4] primarily considers safety properties [7] (“something bad
never happens”) as those worth monitoring for, as they correspond to properties for which
violations can always be identified from some finite prefix of an execution. However, limiting
monitoring to this class of properties severely restricts the utility of RV. The restriction
is particularly acute for branching-time properties [26, 1], which explains, in part, why
RV tools generally restrict themselves to linear-time properties. But there are cases where
formal specifications (a scarce resource in verification) have already been expressed in a
branching-time logic and perhaps formally verified for some subcomponents. In such cases, a
systematic method to incorporate such prior knowledge about the system into the runtime
analysis would be beneficial.

A number of alternatives can be used to mitigate the shortcomings of RV for branching-
time properties. One method would be to increase the observational powers of the monitor
or employ multiple runs of the same system [2]. Alternatively, one can weaken the monitor
guarantees expected during RV. The latter approach is the one explored in this paper.
We propose the use of optimal monitors, which flag all violations that can be determined
from execution prefixes contradicting the property (and ignore the violations that cannot).
Although such monitors may fail to identify all violations, they represent the best monitors
can do, and do not impose any restrictions on the considered class of properties. We show
how these optimal monitors can be obtained systematically by computing the strongest
monitorable consequence of the property to be dynamically verified.

I Example 1. A system with two (enumerated) components produces the events open, oi,
write, wi, and close, ci, for i ∈ {1, 2}. A specification for the first component states that:

“In all executions, w1 (write) occurs, but only after an open, o1.” (Spec 1)

According to the existing notion of branching-time monitorability [26], a specification is
monitorable if there is monitor that correctly identifies all violating processes from some
prefix they produce. In other words, all violating processes must produce an execution
prefix such that any process that produces this prefix also violates the property. This is one
way of generalising the notion of safety property to the branching-time setting. (Spec 1) is
not monitorable because there is no monitor which correctly identifies all violations of this
specification. In particular, a first component that never reaches w1 violates this property,
but this cannot be determined from any finite prefix of its executions. However, there
are other violations of (Spec 1) than can be detected. For instance, monitors can detect
executions where w1 occurs before o1. Consider the (weaker) specification

“In all executions, w1 (write) does not occur before an open, o1.” (Spec 2)

Since there is a monitor that detects all violations for (Spec 2), it is monitorable. More
importantly, this monitor also turns out to be optimal with respect to (Spec 1) since these
violations are the only ones that can be detected in (Spec 1). Conveniently, [26] also describes
a procedure to synthesise the complete monitor from the logical formula describing (Spec 2)
which could, in turn, also be used as the optimal monitor for (Spec 1). J

L. Aceto et al. 17:3

I Example 2. The previous example illustrates the difficulty of monitoring for unbounded
or infinite behaviour (“In all executions, w1 occurs . . . ”) which applies equally to linear and
branching-time properties. Branching-time properties present additional challenges relating
to the branching structure of computation. Consider the following specification:

“After o2 (opening the second component), (closing it) c2 is reachable
but always via w2 (by writing to the second component beforehand).” (Spec 3)

This is intrinsically a branching time property as it concerns the state space of the system.
In particular, no single execution can provide information about whether c2 is reachable
from all states entered via o2. This property is therefore classified as unmonitorable. It turns
out that its strongest monitorable consequence is the following property:

“After o2, c2 is only reachable via w2.” (Spec 4)

A sound and complete monitor for this specification flags a violation when it witnesses
an execution in which o2 is followed by c2 without first seeing w2. Such a monitor is also
the optimal monitor for (Spec 3). Computing the strongest monitorable consequence of a
property allows us to extract the part of the property amenable to runtime analysis. J

Our proposed methodology allows us to address another common weakness found in
existing RV approaches. Specifically, these approaches often treat the system under scrutiny
as a black box, without leveraging any prior partial knowledge about the system.

I Example 3. Recall the system in Ex. 1 and consider the property:

“In all executions, c1 (close) is never immediately followed by a write, w1.” (Spec 5)

(Spec 5) is monitorable according to [26]: a monitor can flag a violation whenever it observes
c1w1 during an execution. On the other hand, if the monitor observes the sequence of events
c1w2w1 in an execution, it cannot determine whether the system violates (Spec 5) or not.

But, suppose we have prior knowledge that the executions of the first and second
components are completely independent. Then events such as w2 and w1—coming from
independent concurrent components—can be interleaved arbitrarily. A monitor that observes
c1w2w1 can then infer that the system can also produce the sequence of events c1w1w2,
meaning that observing c1w2w1, or more generally c1w∗2w1, provides enough evidence to flag
that the system violates (Spec 5). In other words, the prior knowledge allows the monitor to
infer violations from executions which by themselves wouldn’t suffice to reach a verdict. J

When synthesising monitors from a property P , such as (Spec 5), we would like to
systematically incorporate any prior knowledge on the system, such as the independence
of components or state-reachability information, that can be expressed as a branching-
time property K. To do this, we build a monitor based on the conjunction K ∧ P rather
than just P . Then, if an execution of a system known to satisfy K is inconsistent with
K ∧ P , we can deduce that the system violates P . However, as K ∧ P can be an arbitrary
branching-time property, it might not itself be monitorable, even if P is monitorable, and the
known monitor synthesis procedures might not apply. Again, we can adopt the procedure
discussed earlier to obtain an optimal monitor for K ∧ P instead. Note that while P might
be designed to be a monitorable property, or even a linear-time property, K typically cannot
be restricted in this way. In particular, properties such as those in Ex. 3 describing the
possible interleavings of concurrent components, and those in Ex. 2 describing the system

CSL 2021

17:4 The best a monitor can do

state-space, are inherently unmonitorable branching-time properties. Yet, so far, approaches
to incorporate prior knowledge into runtime monitoring, referred to as grey-box monitoring or
monitoring with assumptions, has restricted itself to knowledge representable as a linear-time
property [49, 17, 39].

Our contribution is twofold. First, we propose a general procedure to obtain optimal
monitors for arbitrary branching-time properties (Sec. 3): following the intuition of Ex. 1
and 2, we find the strongest monitorable consequence, e.g., (Spec 2), of an arbitrary branching-
time property, e.g., (Spec 1), which allows us to use existing synthesis procedures (e.g., those
in [9, 8]) to produce the sound and complete monitor from this monitorable consequence.
We show that the resulting monitor is optimal for the original specification. This approach
allows arbitrary branching-time specifications, for instance those originally designed for
model checking, or those combining a monitorable property with prior knowledge, to be
verified at runtime. We show that this is indeed the best a monitor can do with prior
knowledge. Note that although we use an existing definition of branching-time monitorability
to define the strongest monitorable consequence, our optimality result proves that using a
different definition cannot improve the procedure. Our result can be seen as the generalisation
of the notion of bad prefixes [35], i.e. prefixes that monitors can use to reach a negative
verdict, to the branching-time setting. Although the set of bad prefixes appears frequently
in various works in RV, its generalisation to the branching-time setting and the proposed
disciplined methodology for obtaining optimal monitors from non-monitorable properties via
the strongest monitorable consequence is, to the best of our knowledge, new.

Our second contribution is technical: we show in Sec. 5 how to compute the strongest
monitorable consequence of an arbitrary property expressed in the Hennessy–Milner logic
with Recursion, a variant of the modal µ-calculus. This is a popular verification logic
that captures all regular tree languages, embeds other popular modal and temporal logics,
such as LTL, CTL and CTL*, and corresponds to the bisimulation invariant fragment of
monadic second order logic [31]. The size of the strongest monitorable consequence that
we compute is bounded by a double exponential in the size of the original formula. This
matches the bound on the size of a deterministic automaton that recognises the bad prefixes
of an LTL formula [35]. In contrast, the transformation from an LTL formula to its strongest
monitorable consequence, also expressed in LTL, is non-elementary (see Sec. 5.5).

We discuss related work, and in particular how this work compares to monitoring in the
linear-time setting, in Sec. 6. Omitted proofs can be found in the appendix.

2 Preliminaries

Actions, Processes, Properties and Traces. Fix a finite set Act of actions where a, b ∈ Act,
a set of process states p, q, r, . . . ∈ Prc (sometimes called processes), and a transition relation,
−→ ⊆ (Prc×Act×Prc). The triple 〈Prc,Act,−→〉 forms a Labelled Transition System
(LTS) [33] where the suggestive notation p a−→ q denotes (p, a, q) ∈ −→. For simplicity, we
assume that all the processes that we refer to in this paper can be found in the same fixed
infinite LTS, such as the one obtained from the set of CCS processes [43]. Specifications,
or properties, are subsets of Prc, ranged over by P,Q,R. A property P is a consequence
of property Q whenever Q ⊆ P . Actions may be sequenced to form finite or infinite traces
t, u ∈ (Act∗ ∪ Actω); the trace prefix-ordering t ≤ u denotes that t is a prefix of u. We
say that a process p produces a trace t, or that t is a trace of p, if there is a sequence of
transitions p a−→ q

b−→ · · · , such that t = ab · · · ; the trace t is also referred to as an execution
of p. Note that if t is a trace of p, then so are all of its prefixes.

L. Aceto et al. 17:5

Runtime Monitoring, Verification and Monitorability. Runtime monitors are computational
entities that reach a verdict after observing a finite prefix of an execution. A verdict,
once reached, is irrevocable [5]. We only consider single-verdict monitors, namely rejection
monitors, which flag violations of a property, and acceptance monitors, which validate a
property. Although mixed-verdict monitors can be used in a linear-time setting [4], only
single-verdict monitors make sense in a branching-time setting1. Rejection and acceptance
monitors are dual to one another in this setting. Our technical development thus focuses on
rejection monitors, and obtains results for acceptance monitors by duality.

A monitor, denoted by m,n, . . ., may be abstractly described as a (possibly infinite) set
of finite traces, m ⊆ Act∗, that satisfies the following condition: if t ∈ m, then for any
u ∈ Act∗ where t ≤ u it holds that u ∈ m. Intuitively, the traces in m are those that witness
a violation of a property. The closure condition describes the irrevocability of verdicts. The
collection of upward-closed subsets of Act∗, denoted by Mon, is therefore the set of all
possible monitors. Often we restrict our discussion to a subset of Mon, M ⊆Mon.

I Definition 4. Monitor m rejects process p, rej(m, p), if p produces a trace t in m. J

Earlier work [23, 26, 24, 4] provides an operational interpretation of Def. 4 via an
instrumentation of the monitor m executing with process p. Soundness and completeness
relate monitors to the specifications they are expected to monitor [26, 4, 5]. Soundness
requires that a monitor give only correct verdicts, while completeness demands that a monitor
reject whenever the specification is violated.

I Definition 5 (Soundness and Completeness). A monitor m ∈Mon is:
1. sound for specification P if for all p ∈ Prc, rej(m, p) implies p /∈ P ;
2. complete for specification P if for all p ∈ Prc, p /∈ P implies rej(m, p). J

I Definition 6 (Monitorability). A specification P is monitorable in a monitor set M if there
exists some m ∈M that is sound and complete for P . J

The notion of monitorability given in Def. 6 comes from [26]; although it is one of
many possible definitions [5], it is the only one that has been extensively studied in the
branching-time setting [26, 3, 1, 2, 4]. It also turns out to be the right one to use in the
quest for optimal monitors, as argued in Sec. 3. One important consequence of Def. 6 is that
there are some properties that are not monitorable.

I Example 7. The monitor from Ex. 3 that rejects all traces containing the consecutive
events c1w1 is sound and complete for Spec 5, whereas Spec 1 in Ex. 1 is not monitorable.
In the sequel, we simplify our example and assume that there is only one component in the
system generating events o,w, c. Another property that is not monitorable is the following:

“cw never occurs and on all infinite executions, w occurs.” (Spec 6)

Indeed, a process whose only maximal trace is oω is not in this property but there is no
monitor that is sound for Spec 6 and rejects it. J

In practice, we often have (prior) knowledge about the type of process the monitor will
be analysing at runtime, and the definition of monitorability should take such information
into account, i.e., grey-box monitoring. For our setting, we can express this prior knowledge
as a set of processes, denoted as R ⊆ Prc, i.e., the processes satisfying that prior knowledge.

1 Multi-verdict monitors are necessarily unsound in the branching-time setting [26].

CSL 2021

17:6 The best a monitor can do

I Definition 8 (Soundness/Completeness with Knowledge). The monitor m ∈Mon is:
Sound for specification P with knowledge R if for all p∈R, rej(m, p) implies p/∈P .
Complete for specification P with knowledge R if for all p∈R, p/∈P implies rej(m, p). J

I Definition 9 (Monitorability with Knowledge). A specification P is monitorable in a monitor
set M , with prior knowledge R, if there exists a monitor m ∈ M that is both sound and
complete for P with knowledge R. J

3 The Strongest Monitorable Consequence

Since not all specifications have a sound and complete monitor, we are interested in computing
an optimal monitor: a monitor which is sound for the specification, and rejects all violations
that can be flagged. In this section we argue that to find the optimal monitor of a specification,
we first need to compute its strongest monitorable consequence.

Although we focus on rejection monitors, optimal acceptance monitors are dual. An
optimal monitor for a property P is a sound monitor for P that rejects each trace rejected
by some sound monitor for that property.

I Definition 10 (Optimality). For a fixed monitor set M ⊆Mon, monitor m ∈M is optimal
in M for the property P whenever:

it is sound for P and
for all n ∈M , if n is sound for P then n ⊆ m. J

Since the definition of a monitor as a set of finite traces does not guarantee computability,
it is useful to parameterise this definition with the set of monitors M that determines the
computational power of the monitors under scrutiny.

We now aim to characterise optimal monitors in terms of the properties they monitor for.
First, for every monitor m, we can easily define a property for which it is both sound and
complete:

Pm = { p | p does not produce any trace t ∈ m }.

It is not hard to see that such a property Pm is unique for every monitor m.

I Lemma 11. Monitor m is sound and complete for P if and only if P = Pm. J

I Proposition 12. For all m,n ∈Mon, m ⊆ n iff Pn ⊆ Pm.

Proof. For the if case, assume Pn ⊆ Pm and pick a t ∈ m and the process p that produces
only t. Then, p /∈ Pm, which implies p /∈ Pn from Pn ⊆ Pm. By definition of Pn, this implies
t ∈ n. We conclude that m ⊆ n. For the only-if case, assume m ⊆ n and pick a p /∈ Pm that
produces some t ∈ m. By inclusion t ∈ n and therefore p /∈ Pn. J

We can now characterise optimal monitors, Def. 10, in terms a notion of a strongest
monitorable consequence.

I Definition 13 (Strongest Monitorable Consequence). Let M ⊆Mon. The strongest monit-
orable consequence of a specification P with respect to M is a property Q that is monitorable
in M such that:

it is a consequence of P , i.e., P ⊆ Q, and
for any R monitorable in M , P ⊆ R implies Q ⊆ R. J

L. Aceto et al. 17:7

Note that the exitence of a strongest monitorable consequence and of an optimal monitors,
depends onM . We establish the correspondence between strongest monitorable consequences
and optimal monitors (Thm. 16) using the following two lemmas.

I Lemma 14. A sound monitor for a consequence of P is sound for P .

Proof. Pick a consequence Q of P , i.e., P ⊆ Q, and a sound monitor m for Q. If rej(m, p)
for some p, then p /∈ Q by Def. 5. By P ⊆ Q we obtain p /∈ P , so m is sound for P . J

I Lemma 15. If m is complete for P and sound for Q then Q ⊆ P .

Proof. Pick a process p 6∈ P ; for P to be a consequence of Q, i.e., Q ⊆ P , we need to show
that p 6∈ Q. By Def. 5.2 we know rej(m, p) and by Def. 5.1 we obtain p 6∈ Q. J

I Theorem 16. A monitor m ∈M that is sound for P is optimal for P in M iff it is sound
and complete for the strongest monitorable consequence of P with respect to M .

Proof. For the if case, assume that m is sound and complete for Q, the strongest monitorable
consequence of P with respect to M . We must show that m is optimal for P in M . Pick any
other monitor n ∈M that is also sound for P . From Lem. 11, Pn is monitorable in M , and
by Lem. 15 we know P ⊆ Pn. Since Q is the strongest monitorable consequence of P , we
also know Q ⊆ Pn, and by Prop. 12 we obtain n ⊆ mQ as required.

For the only-if case, let m be an optimal monitor for P . By Lem. 11 and the soundness
of m for P , it follows that Pm is a consequence of P , i.e., P ⊆ Pm. Next, we show that Pm
is the strongest monitorable consequence of P , from which the claim follows because m is
sound and complete for Pm. Let Q be a monitorable consequence of P and let mQ be a
monitor for it. Since m is optimal (Def. 10), we know that mQ ⊆ m. Thus by Prop. 12 we
obtain Pm ⊆ Q. This implies that Pm is the strongest monitorable consequence of P .

J

To find the optimal monitor of an arbitrary property, it therefore suffices to compute the
sound and complete monitor of its strongest monitorable consequence. We can also extend
this result for the cases with prior knowledge about the process to be monitored, Thm. 19.

I Definition 17 (Optimality with Knowledge). For a fixed monitor set M ⊆Mon, monitor
m ∈M is optimal in M for property P with knowledge R whenever:

it is sound for P with knowledge R and
for all n ∈M , if n is sound for P with knowledge R then n ⊆ m. J

Soundness and completeness with prior knowledge can be characterised with respect to
soundness and completeness in the setting with no prior knowledge, Prc.

I Proposition 18. Monitor m is sound with knowledge R for P iff it is sound for P ∩R.

I Theorem 19. For a fixed monitor set M ⊆Mon, a monitor m ∈M is optimal in M for
the property P with knowledge R iff m is optimal in M for property P ∩R.

Proof. For the only-if case, assume that m is optimal for P with knowledge R. From Def. 17,
we know that m is sound for P with knowledge R, and therefore, by Prop. 18, m is sound
for P ∩R. From Def. 17, we also know that if some n is sound for P with R, then n ⊆ m;
again, by Prop. 18, if n is sound for P ∩ R, then n ⊆ m. Therefore, m is also optimal for
P ∩R. The if case is symmetric. J

CSL 2021

17:8 The best a monitor can do

Syntax

ϕ,ψ ∈ recHML ::= tt (truth) | ff (falsehood)
| ϕ∨ψ (disjunction) | ϕ∧ψ (conjunction)
| 〈a〉ϕ (existential modality) | [a]ϕ (universal modality)
| minX.ϕ (least fixpoint) | maxX.ϕ (greatest fixpoint)
| X (recursion variable)

Branching-Time Semantics

Jtt, ρK def= Prc Jff, ρK def= ∅

Jϕ1∨ϕ2, ρK
def= Jϕ1, ρK ∪ Jϕ2, ρK Jϕ1∧ϕ2, ρK

def= Jϕ1, ρK ∩ Jϕ2, ρK

J〈a〉ϕ, ρK def=
{
p | ∃q · p a−→ q and q ∈ Jϕ, ρK

}
JX, ρK def= ρ(X)

J[a]ϕ, ρK def=
{
p | ∀q · p a−→ q implies q ∈ Jϕ, ρK

}
JminX.ϕ, ρK def=

⋂
{P | Jϕ, ρ[X 7→ P]K ⊆ P} JmaxX.ϕ, ρK def=

⋃
{P |P ⊆ Jϕ, ρ[X 7→ P]K}

Figure 1 recHML Syntax and Branching-Time Semantics

4 Monitorability in recHML

Following Thms. 16 and 19, we investigate how to compute the strongest monitorable con-
sequence for properties expressible in the Hennessy–Milner logic with recursion, recHML [37],
as a means to obtain optimal monitors for such properties. recHML is a specification
logic describing regular properties of processes, and can be seen as a reformulation of the
well-studied modal µ-calculus [13, 14]. Since there are standard translations from CTL and
CTL* [34] into recHML, our investigation extends to these logics as well. The appeal of
recHML comes from its generality, the pre-existence of procedures to compute sound and
complete monitors for its monitorable fragment and its good closure properties. Indeed, we
show that the strongest monitorable consequence of recHML formulae is itself expressible in
recHML. It is unclear whether this is also the case for other branching-time logics, although
in the linear time setting, this question is settled positively for LTL in [40].

recHML formulae are generated from the syntax given in Fig. 1, according to the
following order of precedence: the existential and universal modal operators (〈a〉ϕ and [a]ϕ),
conjunctions, disjunctions, and fixpoint operators (minX.ϕ and maxX.ϕ). The negation of
a formula ϕ can be constructed with the duality rules in the usual way, and we use ¬ϕ as
a shorthand for it. In a formula minX.ϕ or maxX.ϕ, the fixpoint operator binds all free
occurrences of X in ϕ. The subformula ϕ is then said to be the binding formula of X. We
assume that for each variable X, there is exactly one formula minX.ϕ or maxX.ϕ that binds
X, denoted ϕX . Furthermore, without loss of generality, all formulas are assumed to be
guarded [36]: every occurrence of a fixpoint variable within its binding is within the scope of
a modal operator. We extend the notion of subformula and say that ϕX is the immediate
subformula of X. We write sf (ϕ) for the set of subformulas of ϕ. We take the size of a
formula to be the number of its distinct subformulae, up to α-conversion.

A formula ϕ from recHML is evaluated on a state of an LTS. In addition to true, false and
boolean connectives—which have their usual semantics—recHML has modal and fixpoints

L. Aceto et al. 17:9

operators. The existential modality 〈a〉ϕ holds at a state if there is an a-successor in which
ϕ holds, whereas the universal modality [a]ϕ holds if ϕ holds in all the a-successors of that
state. The least fixpoint minX.ϕ and its dual maxX.ϕ add recursion to the logic, allowing
for the description of temporal properties such as reachability and invariance. Formally, the
semantics is defined with respect to an interpretation ρ of the free variables of the formula.
We write Jϕ, ρK for the set of process states in an LTS which satisfy ϕ according to ρ. This
set is defined by induction on the structure of the formula ϕ, following the semantics given in
Fig. 1. Two formulas are equivalent if they agree on all processes. We often consider closed
formulas—namely those without free variables. In these cases, we can ignore the environment
from the semantics and simply write JϕK instead of Jϕ, ρK.
I Remark 20. A system state p trivially satisfies a specification [a]ϕ if it cannot transition
with action a. Consequently the basic formula [a]ff describes states that cannot perform
a-transitions; the dual basic formula 〈a〉tt denotes states that can perform a-transitions.

I Example 21. Property Spec 6 from Ex. 7 for Act = {o,w, c} can be expressed as:

ϕ1 = (maxX.([o]X ∧ [c]X ∧ [w]X ∧ [c][w]ff)) ∧ minY.([o]Y ∧ [c]Y).

The first conjunct in ϕ1 prohibits the occurrence of cw while the second conjunct requires w
to eventually occur on infinite traces (the sub-formula 〈w〉tt disjuncted with [o]Y ∧ [c]Y can
be left implicit since Act = {o,w, c}). A variation of Spec 1 from Ex. 1 on one component
(for Act = {o,w, c}) is Spec 7, described below and formalised as the formula ϕ2:

“On all infinite executions, w occurs, but w only occurs after o.” (Spec 7)

Whereas the outermost fixpoint formula in ϕ2 below prohibits w from occurring before o,
the innermost fixpoint formula requires w to occur eventually in any infinite execution.

ϕ2 = minX.([w]ff ∧ [c]X ∧ [o](minY.[c]Y ∧ [o]Y)). J

Monitorability for recHML was investigated in [26, 1], where monitors are specified as
regular processes and monitorable properties have a syntactic characterisation:

I Theorem 22. [26, Theorems 1 and 4] A formula of recHML is (violation) monitorable
iff it is equivalent to a formula in the fragment sHML defined as follows:

ϕ,ψ ∈ sHML ::= tt | ff | [a]ϕ | ϕ ∧ ψ | maxX.ϕ | X J

A synthesis function that generates a regular (sound and complete) monitor from a sHML
formula is also presented; such monitors are also shown to be finite state [4].

I Example 23. Since ϕ1 and ϕ2 are not sHML formulas, we cannot use the synthesis
function from [26] to obtain runtime monitors for them. In fact, neither formula is monitorable
according to [26]. Although Spec 5 from Ex. 3, with Acti={oi,wi, ci} and Act=Act1∪Act2,
can be expressed as the sHML formula ϕ3, the knowledge (component independence) can
be only expressed using formulas like ϕ4, which are neither in sHML nor monitorable [26].

ϕ3 = maxX.
(

[c1][w1]ff ∧
∧

a∈Act
[a]X

)
ϕ4 = maxX.

∧
a∈Act1
b∈Act2

([a][b]ff ∨ 〈b〉〈a〉tt) ∧
∧

a∈Act2
b∈Act1

([a][b]ff ∨ 〈b〉〈a〉tt) ∧
∧

a∈Act
[a]X

CSL 2021

17:10 The best a monitor can do

The sub-formula ([a][b]ff ∨ 〈b〉〈a〉tt) in ϕ4 encodes the implication (〈a〉〈b〉tt⇒ 〈b〉〈a〉tt). The
strongest monitorable consequence of ϕ3 ∧ ϕ4 is expressed by ϕ5:

ϕ5 = maxX.[c1](max Y.
∧

b∈Act2

[b]Y ∧ [w1]ff) ∧
∧

a∈Act
[a]X

A sound and complete monitor for this property will reject a process based on executions
containing c1Act∗2w1, rather than just c1w1. J

In cases such as Ex. 23, we can obtain the optimal monitor of an arbitrary recHML
specification ϕ by: (i) computing the strongest monitorable consequence ψ ∈ sHML of ϕ;
(ii) synthesising a sound and complete monitor for ψ using the synthesis function from [26].

5 Computing Strongest Monitorable Consequences in recHML

In this section, we describe a method for computing the strongest monitorable consequence
of a recHML formula. The full proofs for this section can be found in the appendix. Our
constructions rely on a disjunctive representation of formulas, as given in Def. 24.

I Definition 24 (Disjunctive Form [51]). The set of disjunctive formulas of recHML is
given by the following grammar:

ϕ,ψ ∈ disHML ::= tt | ff | ϕ ∨ ψ |
∧
a∈A

(
(
∧
ϕ∈Ba

〈a〉ϕ) ∧ [a]
∨
ϕ∈Ba

ϕ
)

| maxX.ϕ | minX.ϕ | X,

where A ⊆ Act and, for each action a in A, the set Ba ⊆ disHML is a finite set of
formulas. J

In disjunctive formulas, conjunctions occur to express that for each a∈A, every a-successor
satisfies a formula in some set Ba and every formula in Ba is satisfied by some a-successor.

I Lemma 25 ([51]). Every recHML formula is equivalent to a disjunctive one. J

In [51], Walukiewicz provides a way to construct an equivalent disjunctive formula from a
recHML one, based on a tableau method. He also shows that the satisfiability of disjunctive
recHML formulas is decidable in linear time. Thus, we assume that, with the exception of
ff, all subformulas of disjunctive formulas are satisfiable. This pre-processing accounts for
one exponential in the complexity of our transformation.

We now establish a fundamental property of sHML formulas: if a process q does not
satisfy θ ∈ sHML, then no process p that can produce all traces of q satisfies θ.

I Definition 26. Process p covers process q when all traces of q are traces of p. J

I Lemma 27. If process p covers process q, then for closed θ∈sHML, q /∈JθK implies p/∈JθK.

Proof. From [26] there is a sound and complete m for θ. By q /∈ JθK and the completeness
of m, there is a trace of q (and of p), rejected by m. By the soundness of m, p /∈ JθK. J

We present the construction of the strongest monitorable consequence of a given formula
Ψ in three stages. We first eliminate the existential modalities in a formula. Then we
eliminate least fixpoints. Finally, we use a more involved tableau method to remove all
disjunctions.

L. Aceto et al. 17:11

5.1 Eliminating Existential Modalities
I Definition 28. The operator f1 : recHML→ recHML is defined such that f1(〈a〉ϕ) = tt,
while commuting with all other logical connectives. J

That is, f1(Ψ) results from Ψ by replacing every occurrence of a subformula 〈a〉ϕ by tt.

I Lemma 29. For every Ψ ∈ disHML, f1(Ψ) has the same sHML consequences as Ψ.

(Proof outline). We show that every sHML formula is a consequence of Ψ iff it is a
consequence of f1(Ψ). For the if direction, it suffices to prove JΨK ⊆ Jf1(Ψ)K using the
monotonicity of recHML operators resulting from the absence of negation.

For the only-if direction, the intuition is as follows (see App. A). Let θ be a sHML formula
such that JΨK ⊆ JθK. To show Jf1(Ψ)K ⊆ JθK, we proceed by contradiction: starting from a
process p ∈ Jf1(Ψ)∧¬θK we build a cover q of p such that q ∈ JθK, which contradicts Lem. 27.
To obtain this cover, we use the fact that f1 turns the conjunctions

∧
a∈A

((
∧
ψ∈Ba

〈a〉ψ) ∧
[a]
∨
Ba) of a disjunctive formula into conjunctions of the form

∧
a∈A [a]

∨
Ba. The cover is

obtained by finding the states r in which conjunctions of the latter form must be true for
f1(Ψ) to be true in p, and adding an a-successor sϕ to r for each ϕ ∈ Ba and a ∈ A. This is
possible, because all subformulae of disjunctive formulas are assumed to be satisfiable. The
state r with these additional successors then satisfies

∧
a∈A

((
∧
ψ∈Ba

〈a〉ψ) ∧ [a]
∨
Ba), which

allows us to argue that q ∈ JΨK ⊆ JθK. J

I Remark 30. Disjunctive form is key here: Applying f1 to formula ϕ4 from Ex. 23, which
is not disjunctive, yields

(∧
a∈Act1

∧
b∈Act2

([a][b]ff ∨ tt)
)
∧
(∧

a∈Act2

∧
b∈Act1

([a][b]ff ∨ tt)
)

which can be simplified to tt and does not provide any useful information for monitoring.

5.2 Eliminating Least Fixpoints
IDefinition 31. The operator f2 : recHML→ recHML is defined such that f2(minX.ϕ) =
maxX.ϕ, while commuting with all other logical connectives. J

I Lemma 32. For every closed formula Ψ ∈ recHML without existential modalities, f2(Ψ)
has the same sHML consequences as Ψ.

(Proof outline). One direction follows from JminX.ϕK ⊆ JmaxX.ϕK: since recHML is
negation-free, it behaves in a monotone way, and therefore f2(Ψ) is a consequence of Ψ.

The intuition for the other direction is as follows (see App. A). If a process p violates a
consequence θ ∈ sHML of Ψ but satisfies f2(Ψ), then, due to the monitorability of θ, there
is a finite trace t of p, where every process producing t must also violate θ. Thus, there is
a finite process q that violates θ, but also satisfies f2(Ψ) due to the absence of existential
modalities in f2(Ψ). Since f2(Ψ) and Ψ only differ with respect to their fixpoint operators,
they agree on all finite processes: q satisfies Ψ and its consequence θ, a contradiction. J

I Remark 33. Lem. 32 does not hold for formulas with existential modalities. For instance, the
formula minX.〈a〉X is equivalent to, and thus implies, ff; yet f2(minX.〈a〉X) = maxX.〈a〉X,
which is satisfiable by a system producing the infinite trace aω.

I Example 34. Formula ϕ2 from Ex. 21 becomes maxX.([w]ff∧ [c]X∧ [o](max Y.[c]Y ∧ [o]Y))
under f2(−), which simplifies to maxX.([w]ff ∧ [c]X) as max Y.[c]Y ∧ [o]Y simplifies to tt.
Since Act={o, c,w} this formula expresses the property that “w does not occur before o.” J

CSL 2021

17:12 The best a monitor can do

Γ ∪ {ψ ∨ ϕ}
(∨)

Γ ∪ {ϕ,ψ}
Γ ∪ {ψ ∧ ϕ}

(∧)
Γ ∪ {ϕ} Γ ∪ {ψ}

Γ ∪ {maxX.ϕ}
(max)

Γ ∪ {ϕ}
Γ ([a])

{ψ | [a]ψ ∈ Γ}

Γ ∪ {X}
(X)

Γ ∪ {ϕX}
Γ ∪ {tt}

(tt)
{tt}

Γ ∪ {ff}
(ff)Γ

Γ ∪ {[a]ψ, [b]ϕ} a 6= b
([a, b])

{tt}

Figure 2 Tableau rules where Γ is a set of formulas.

5.3 Eliminating Disjunctions

The final and hardest step turns a formula without existential modalities and least fixpoints
into its strongest sHML consequence. The intuition is that a violation of a specification of
the form [a]ψ ∨ [a]ϕ can only be monitored if there is an a-successor in which violations for
both ψ and ϕ can be detected. Hence, we turn [a]ψ ∨ [a]ϕ into [a](ψ ∨ ϕ). In contrast, no
violation of [a]ψ ∨ [b]ϕ can be identified from a single branch, so we rewrite it to tt.

To transform fixpoint-free formulas, it suffices to recursively push disjunctions through
the formula. The transformation in the presence of fixpoints is roughly dual to that for
disjunctive form presented by Janin and Walukiewicz in [32] and, like theirs, uses a set of
tableau rules, but this time to eliminate disjunctions rather than conjunctions. Our rules
differ significantly from those in [32] in how they deal with modalities; in particular, our
transformation does not preserve the semantics of formulae, but only sHML consequences.

I Definition 35 (Tableau elimination of disjunctions). Given a closed formula Ψ with neither
min operators nor existential modalities, we build a tableau T (Ψ) consisting of a tree with
back edges, where each node n is labelled with a set LΨ(n) of subformulae of Ψ, such that:

The root is labelled {Ψ},
For each node n and its children, there is a tableau rule (Fig. 2) such that n is labelled
with the premise and its children are labelled with its conclusions,
This tableau rule is the rule [a] only if LΨ(n) matches the premise of no other tableau-rule.

The disjunction-free formula equivalent to Ψ is then retrieved from T (Ψ) by defining the
labelling L′ as follows and applying it to each node. For each leaf node n:

If it has a back-edge to an inner node m, it is labelled Xm;
If it does not have a back-edge, it is labelled with tt, if it contains tt, and ff, otherwise.

For each inner node n that is not the target of a back-edge:
If n has a child m via the rules ∨, tt, [a, b], X,max, then l has the label L′(m);
If n has children m,m′ via rule ∧, then l is label L′(m) ∧ L′(m′);
If n has a child m via [a], then l is label [a]L′(m).

In a second pass, if n is the target of back-edges, then its label is maxXn.l, and otherwise it
is l, where l = L′(n) as defined above. Let f3(Ψ) be the L′-label of the root of T (Ψ).

I Example 36. Consider the bespoke formula maxX.[a]([a]X ∧ [b]ff)∨ [a]([a]ff ∧ [b]X). The
tableau for this formula labelled with subsets of subformulas using Def. 35 is given below.

L. Aceto et al. 17:13

maxX.[a]([a]X ∧ [b]ff) ∨ [a]([a]ff ∧ [b]X)
(max)

[a]([a]X ∧ [b]ff) ∨ [a]([a]ff ∧ [b]X)
(∨)

[a]([a]X ∧ [b]ff), [a]([a]ff ∧ [b]X)
([a])

[a]X ∧ [b]ff, [a]ff ∧ [b]X
(∧)

[a]X, [a]ff ∧ [b]X
(∧)

[a]X, [a]ff
([a])

X,ff (ff)
X

[a]X, [b]X
([a, b])tt

[b]ff, [a]ff ∧ [b]X
(∧)

[b]ff, [a]ff
([a, b])tt

[b]ff, [b]X
([b])ff, X (ff)

X

The corresponding tableau relabelled as L′ yielding the strongest sHML consequence is:

maxX1.[a]([a]X1 ∧ tt ∧ tt ∧ [b]X1)
(max)

[a]([a]X1 ∧ tt ∧ tt ∧ [b]X1)
(∨)

[a]([a]X1 ∧ tt ∧ tt ∧ [b]X1)
([a])

[a]X ∧ tt ∧ tt ∧ [b]X1 (∧)
[a]X1 ∧ tt

(∧)
[a]X1 ([a])
X1 (ff)
X1

tt ([a, b])tt

tt ∧ [b]X1 (∧)tt ([a, b])tt
[b]X1 ([b])
X1 (ff)
X1 J

I Lemma 37. Given a closed formula Ψ of recHML without min operators or existential
modalities, f3(Ψ) has the same sHML consequences as Ψ.

Proof sketch. The proof of this lemma rests on the observation that all violations of f3(Ψ)
and Ψ correspond to a single path in T (Ψ). We can then use the two labellings of T (Ψ) to
move between the witnesses that we use for the violation of f3(Ψ) and Ψ. J

5.4 The strongest sHML consequence
I Theorem 38. f3 ◦ f2 ◦ f1(Ψ) is the strongest sHML consequence of any closed Ψ ∈
recHML.

Proof. Follows from Lems. 29 and 37 and Def. 31. By construction f3 ◦ f2 ◦ f1(Ψ) ∈ sHML.
Moreover, f3 ◦ f2 ◦ f1(Ψ) has the same sHML consequences as Ψ, making it the strongest
sHML consequence of Ψ. J

We can symmetrically compute the weakest satisfaction-monitorable antecedent of Ψ, in
order to synthesize an optimal acceptance-monitor, or construct the weakest satisfaction-
monitorable antecedent by negating f3 ◦ f2 ◦ f1(¬Ψ) where ¬Ψ is the negation of Ψ in
disjunctive form. In principle, one could also consider constructing optimal monitors from
both violations and satisfactions of a property Ψ, by deducing the strongest violation-
monitorable consequence ϕV of Ψ and the weakest satisfaction-monitorable antecedent ϕS of
Ψ; the monitors could be used in tandem to detect all possible satisfactions or violations for
Ψ. However, in a branching-time setting either ϕV or ϕS must be trivial:

I Proposition 39. For any branching-time property P , its strongest monitorable consequence
PV and its weakest monitorable antecedent PS, we either have PV = Prc or PS = ∅. J

Proof. If there is a process p /∈ PV and a process q ∈ PS , then by merging the initial states
of p and q we obtain a process that covers p and therefore violates PV and therefore also P ,
and that covers q and therefore satisfies PS and therefore also P , a contradiction. J

CSL 2021

17:14 The best a monitor can do

5.5 Complexity
Eliminating existential modalities and fixpoints does not increase the size of a formula.
However, the two tableau constructions used—the first one required to turn the initial
formula into disjunctive form, and the second one used to eliminate disjunctions—each can
cause an exponential blow-up.

Morally, this is just the cost of determinising alternating automata (already double
exponential for finite automata [16]): the automaton corresponding to our final formula,
obtained via standard formula-automata correspondences [20], is deterministic (even though
automata over trees are not in general determinisable). Indeed, the synthesis from [26], when
applied to the formulas we obtain, yields deterministic monitors, in the sense of [6], because
our formulas contain no disjunctions, and only conjunctions over disjoint modalities (of the
form

∧
a∈A[a]ψa). Whether a more compact non-deterministic monitor can be synthesised

instead, or whether the last step, of constructing f3(−), can be implemented on-the-fly (in
the spirit of [35]) is left for future work.

This double-exponential complexity is already present, and necessary, in the corresponding
linear-time problem computing a deterministic automaton that recognises the bad prefixes of
a linear-time property [35]. As Kupferman and Vardi write, this procedure has the flavour of
determinisation, hence its double-exponential complexity. Our procedure, despite the added
complications associated with branching-time, follows the same principle without a significant
additional cost. Interestingly, obtaining the strongest monitorable consequence of an LTL
formula in LTL form is much harder. While the (counter-free) non-deterministic automaton
that recognises executions without bad prefixes, i.e., the strongest monitorable consequence
of an LTL formula, requires exponential blow-up, the best procedure known to date to go
from a (counter-free) non-deterministic automaton to an LTL formula uses star-free regular
expressions and does not have an elementary complexity upper bound [41, 45].

On a more pragmatic note, both f1 and f2 only simplify formulas while f3 eliminates
subformulae containing mixed modalities [a]ψ ∧ [b]ϕ, so blow-ups can only occur in f3 if
disjunctions and modalities over the same action interact in a pathological way.

6 Related Work

Linear- vs. Branching-time Runtime monitoring can be used to verify whether an
execution satisfies a linear-time property, for example before the output of a third party
component is used as input for a critical component. It can also be used to verify whether a
system satisfies a branching-time property, for example as a best-effort light-weight verification
strategy. The branching-time properties that one verifies at runtime often consist of properties
of the form “on all paths, ϕL holds”, where ϕL is a linear-time property. For these kinds of
properties, the distinction between the branching-time and linear-time cases can be subtle.
In particular, the branching-time case is then implicitly reduced to the linear-time case, i.e.,
just checking for violations of ϕL. However, in this situation it only makes sense to check for
violations of ϕL, as satisfactions do not give enough information to deduce anything about
the system itself. In contrast, if we are interested in truly linear-time properties, then a
monitor can simultaneously check both for violations and satisfactions, as it is done in [27].

Here we are in the branching-time setting: the prior knowledge can be an arbitrary
branching-time property, and the property to be monitored can either be a linear-time
property quantified universally over all branches, or any other branching-time property. Note
that given an LTL formula ϕL, there are standard translations to build a recHML formula
ϕB such that ϕB holds in a system if and only if ϕL holds in all of its executions [15]. These

L. Aceto et al. 17:15

can be used to combine a linear-time property, to verify at runtime, with a branching-time
property representing the prior knowledge.

As discussed in Sec. 5.5, finding optimal monitors for properties over infinite traces
corresponds to computing the good/bad prefixes of the property. Kupferman and Vardi [35]
describe how to do this for safety properties described as LTL formulas or Büchi automata.
Havelund and Peled [28] describe the same procedure for arbitrary trace properties.
Hierarchies of monitorability. There are many definitions of monitorability (surveyed
in [5]) and property classifications (for instance [28, 44]) that help us understand the
guarantees we can expect from RV tools for different properties. However monitorable a
property is, its optimal monitor is by definition the gold standard to which any RV tool can
aspire. Optimal monitors might help determine the degree of monitorability of a property.
Monitoring with prior knowledge Most recently, Henzinger and Saraç [30] studied how
assumptions (prior knowledge) can make non-monitorable linear-time properties monitorable.
Interestingly, in their setting a property P is not monitorable under assumption K if and
only if P ∧ K is monitorable without assumptions, as is the case in our setting. This is
because they study a different definition of monitorability, which is not as well behaved
under assumption as the notion we use. (Our choice of notion of monitorability is utilitarian:
it enables us to compute optimal monitors.) Independently, Cimatti et al. and Leucker
have considered a form of monitoring with prior knowledge in [17, 38]. In both cases,
the prior knowledge is a set of traces, i.e., a linear-time property. Leucker proposes an
LTL semantics parameterised by this prior knowledge while Cimatti et al. incorporate
the assumption directly into the monitoring algorithm, thereby treating violations of the
assumptions and violations of the property to be monitored differently. Stucki et al. [49]
parameterise monitorability for hyperproperties with the system under consideration. Their
notion of perfect monitor corresponds to our optimal monitor. Although the authors in [22]
study the decidability of monitorability for hyperproperties, neither work describes methods
for computing the optimal monitors of hyperproperties. To our knowledge, this is still an
open problem.
Multi-valued logics. Logics with three-valued semantics (yes, no, indecisive) can be used
to describe monitors [12, 21, 19]. However, whether monitor semantics are given by a
many-valued logic or other means, questions of soundness, completeness and optimality with
respect to the (two valued) specification formula remain the same.
Monitoring for under-specified components. In orthogonal work that has similarities
with ours, Sistla and co-authors [42, 48, 47] address the following problem: given an under-
specification ϕ, and a goal specification ψ, compute a safety property θ such that ϕ∧θ =⇒ ψ.
The intuition for this is that if ϕ is assumed, and violations of θ can be monitored at runtime,
then ψ can be assumed whenever the monitor does not detect a violation of θ. This problem
then reduces to computing a safety antecedent of a specification, namely ¬ϕ ∧ ψ. Unlike the
strongest monitorable consequence, there is no weakest safety antecedent: properties can be
approximated from below with arbitrary precision using a safety formula.

7 Conclusion

We have shown how to compute optimal monitors for arbitrary regular branching-time
properties, following a procedure which is sound for arbitrary (not just regular) properties.
Our core insight is that the theory of runtime monitors can be extended to the (partial)
verification of specifications previously dismissed as unmonitorable, such as most branching-
time properties. In particular, this enables us to integrate any prior contextual knowledge of

CSL 2021

17:16 The best a monitor can do

the system into our monitors. We show that this is indeed the best a monitor can do.

References
1 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. Monitoring for

silent actions. In Satya Lokam and R. Ramanujam, editors, FSTTCS, volume 93 of LIPIcs,
pages 7:1–7:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

2 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. A framework
for parameterized monitorability. In Christel Baier and Ugo Dal Lago, editors, Foundations
of Software Science and Computation Structures - 21st International Conference, FOSSACS
2018, volume 10803 of Lecture Notes in Computer Science, pages 203–220. Springer, 2018.
URL: https://doi.org/10.1007/978-3-319-89366-2_11.

3 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Sævar Örn
Kjartansson. On the complexity of determinizing monitors. In Arnaud Carayol and Cyril
Nicaud, editors, Implementation and Application of Automata - 22nd International Conference,
CIAA 2017, volume 10329 of Lecture Notes in Computer Science, pages 1–13. Springer, 2017.
URL: https://doi.org/10.1007/978-3-319-60134-2_1.

4 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
Adventures in monitorability: From branching to linear time and back again. Proceedings
of the ACM on Programming Languages, 3(POPL):52:1–52:29, 2019. URL: https://dl.acm.
org/citation.cfm?id=3290365.

5 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
An operational guide to monitorability. In Software Engineering and Formal Methods - 17th
International Conference, SEFM 2019, Oslo, Norway, September 18-20, 2019, Proceedings,
volume 11724 of LNCS, pages 433–453. Springer, 2019. URL: https://doi.org/10.1007/
978-3-030-30446-1_23, doi:10.1007/978-3-030-30446-1_23.

6 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Sævar Örn
Kjartansson. Determinizing monitors for HML with recursion. Journal of Logical and Algebraic
Methods in Programming, 111:100515, feb 2020. doi:10.1016/j.jlamp.2019.100515.

7 Bowen Alpern and Fred B Schneider. Defining liveness. Information processing letters,
21(4):181–185, 1985.

8 Duncan Paul Attard, Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingolfsdottir.
Behavioural Types: from Theory to Tools, chapter A Runtime Monitoring Tool for Actor-Based
Systems, pages 49–74. River Publishers, 2017.

9 Duncan Paul Attard and Adrian Francalanza. A monitoring tool for a branching-time logic. In
Yliès Falcone and César Sánchez, editors, Runtime Verification - 16th International Conference,
RV 2016, volume 10012 of Lecture Notes in Computer Science, pages 473–481. Springer, 2016.
URL: https://doi.org/10.1007/978-3-319-46982-9_31.

10 Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of model checking.
MIT press, 2008.

11 Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to Runtime
Verification, pages 1–33. Springer International Publishing, Cham, 2018. URL: https:
//doi.org/10.1007/978-3-319-75632-5_1, doi:10.1007/978-3-319-75632-5_1.

12 Andreas Bauer, Martin Leucker, and Christian Schallhart. The good, the bad, and the ugly,
but how ugly is ugly? In Oleg Sokolsky and Serdar Taşıran, editors, Runtime Verification,
pages 126–138, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

13 Julian Bradfield and Colin Stirling. Chapter 4 - Modal logics and mu-calculi: An in-
troduction. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Pro-
cess Algebra, pages 293 – 330. Elsevier Science, Amsterdam, 2001. URL: http://www.
sciencedirect.com/science/article/pii/B9780444828309500229, doi:https://doi.org/
10.1016/B978-044482830-9/50022-9.

14 Julian Bradfield and Colin Stirling. Modal µ-calculi. Studies in Logic and Practical Reasoning,
3:721–756, 2007.

https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-60134-2_1
https://dl.acm.org/citation.cfm?id=3290365
https://dl.acm.org/citation.cfm?id=3290365
https://doi.org/10.1007/978-3-030-30446-1_23
https://doi.org/10.1007/978-3-030-30446-1_23
http://dx.doi.org/10.1007/978-3-030-30446-1_23
http://dx.doi.org/10.1016/j.jlamp.2019.100515
https://doi.org/10.1007/978-3-319-46982-9_31
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
http://dx.doi.org/10.1007/978-3-319-75632-5_1
http://www.sciencedirect.com/science/article/pii/B9780444828309500229
http://www.sciencedirect.com/science/article/pii/B9780444828309500229
http://dx.doi.org/https://doi.org/10.1016/B978-044482830-9/50022-9
http://dx.doi.org/https://doi.org/10.1016/B978-044482830-9/50022-9

L. Aceto et al. 17:17

15 Julian Bradfield and Igor Walukiewicz. The mu-calculus and Model Checking, pages 871–919.
05 2018. doi:10.1007/978-3-319-10575-8_26.

16 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, jan 1981. doi:10.1145/322234.322243.

17 Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Assumption-based runtime verification
with partial observability and resets. In International Conference on Runtime Verification,
pages 165–184. Springer, 2019.

18 Edmund M Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT press, 1999.
19 Volker Diekert and Martin Leucker. Topology, monitorable properties and runtime verification.

Theoretical Computer Science, 537:29 – 41, 2014. Theoretical Aspects of Computing (ICTAC
2011). URL: http://www.sciencedirect.com/science/article/pii/S0304397514002035,
doi:https://doi.org/10.1016/j.tcs.2014.02.052.

20 E Allen Emerson and Charanjit S Jutla. Tree automata, mu-calculus and determinacy. In
FoCS, volume 91, pages 368–377. Citeseer, 1991.

21 Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can you verify and enforce
at runtime? International Journal on Software Tools for Technology Transfer, 14(3):349–382,
2012.

22 Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Monitoring
hyperproperties. Formal Methods in System Design, 54(3):336–363, 2019.

23 Adrian Francalanza. A Theory of Monitors (Extended Abstract). In FoSSaCS, volume 9634
of LNCS, pages 145–161, 2016.

24 Adrian Francalanza. Consistently-detecting monitors. In Roland Meyer and Uwe Nestmann,
editors, 28th International Conference on Concurrency Theory (CONCUR 2017), volume 85
of LIPIcs, pages 8:1–8:19, Dagstuhl, Germany, 2017. Schloss Dagstuhl. doi:10.4230/LIPIcs.
CONCUR.2017.8.

25 Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar,
Dario Della Monica, and Anna Ingólfsdóttir. A foundation for runtime monitoring. In
Shuvendu K. Lahiri and Giles Reger, editors, Runtime Verification - 17th International Con-
ference, RV 2017, volume 10548 of Lecture Notes in Computer Science, pages 8–29. Springer,
2017. URL: https://doi.org/10.1007/978-3-319-67531-2_2.

26 Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the Hennessy-
Milner logic with recursion. Formal Methods in System Design, 51(1):87–116, 2017. URL:
https://doi.org/10.1007/s10703-017-0273-z.

27 M.C.W. Geilen. On the construction of monitors for temporal logic properties. Electronic
Notes in Theoretical Computer Science, 55(2):181 – 199, 2001. RV’2001, Runtime Verification
(in connection with CAV ’01). URL: http://www.sciencedirect.com/science/article/pii/
S157106610400252X, doi:https://doi.org/10.1016/S1571-0661(04)00252-X.

28 Klaus Havelund and Doron Peled. Runtime Verification: From Propositional to First-Order
Temporal Logic. In Runtime Verification - 18th International Conference, RV 2018, Limassol,
Cyprus, November 10-13, 2018, Proceedings, volume 11237 of LNCS, pages 90–112. Springer,
2018. URL: https://doi.org/10.1007/978-3-030-03769-7_7.

29 Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety properties. In TACAS,
volume 2, pages 342–356. Springer, 2002.

30 Thomas A Henzinger and N Ege Saraç. Monitorability under assumptions. In International
Conference on Runtime Verification, pages 3–18. Springer, 2020.

31 David Janin and Igor Walukiewicz. On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In International Conference on
Concurrency Theory, pages 263–277. Springer, 1996.

32 David Janin and Igor Walukiewicz. On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In CONCUR '96: Concurrency
Theory, pages 263–277. Springer Berlin Heidelberg, 1996. doi:10.1007/3-540-61604-7_60.

CSL 2021

http://dx.doi.org/10.1007/978-3-319-10575-8_26
http://dx.doi.org/10.1145/322234.322243
http://www.sciencedirect.com/science/article/pii/S0304397514002035
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2014.02.052
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.8
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/s10703-017-0273-z
http://www.sciencedirect.com/science/article/pii/S157106610400252X
http://www.sciencedirect.com/science/article/pii/S157106610400252X
http://dx.doi.org/https://doi.org/10.1016/S1571-0661(04)00252-X
https://doi.org/10.1007/978-3-030-03769-7_7
http://dx.doi.org/10.1007/3-540-61604-7_60

17:18 The best a monitor can do

33 Robert M. Keller. Formal verification of parallel programs. Commun. ACM, 19(7):371–384,
1976. URL: http://doi.acm.org/10.1145/360248.360251, doi:10.1145/360248.360251.

34 Dexter C. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

35 Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Formal Methods
in System Design, 19(3):291–314, 2001.

36 Orna Kupferman, Moshe Y Vardi, and Pierre Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, 2000.

37 Kim G. Larsen. Proof Systems for Satisfiability in Hennessy-Milner Logic with
recursion. Theoretical Computer Science, 72(2):265 – 288, 1990. URL: http:
//www.sciencedirect.com/science/article/pii/030439759090038J, doi:http://dx.doi.
org/10.1016/0304-3975(90)90038-J.

38 Martin Leucker. Sliding between model checking and runtime verification. In International
Conference on Runtime Verification, pages 82–87. Springer, 2012.

39 Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and Daniel Thoma.
Runtime verification for timed event streams with partial information. In Bernd Fink-
beiner and Leonardo Mariani, editors, Runtime Verification - 19th International Confer-
ence, RV 2019, Porto, Portugal, October 8-11, 2019, Proceedings, volume 11757 of LNCS,
pages 273–291. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-32079-9_16,
doi:10.1007/978-3-030-32079-9_16.

40 Grgur Petric Maretić, Mohammad Torabi Dashti, and David Basin. Ltl is closed under
topological closure. Information Processing Letters, 114(8):408–413, 2014.

41 Grgur Petric Maretić, Mohammad Torabi Dashti, and David Basin. Ltl is closed under
topological closure. Information Processing Letters, 114(8):408–413, 2014.

42 Tiziana Margaria, A. Prasad Sistla, Bernhard Steffen, and Lenore D. Zuck. Taming interface
specifications. In Martín Abadi and Luca de Alfaro, editors, CONCUR 2005 – Concurrency
Theory, pages 548–561, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

43 R Milner. A calculus of communicating systems. Lecture Notes in Comput. Sci. 92, 1980.
44 Doron Peled and Klaus Havelund. Refining the safety–liveness classification of temporal

properties according to monitorability. In Models, Mindsets, Meta: The What, the How, and
the Why Not?, pages 218–234. Springer, 2019.

45 A Peuli and Lenore Zuck. In and out of temporal logic. In [1993] Proceedings Eighth Annual
IEEE Symposium on Logic in Computer Science, pages 124–135. IEEE, 1993.

46 Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security, 3(1):30–50, 2000.

47 A Prasad Sistla and Abhigna R Srinivas. Monitoring temporal properties of stochastic systems.
In International Workshop on Verification, Model Checking, and Abstract Interpretation, pages
294–308. Springer, 2008.

48 A Prasad Sistla, Min Zhou, and Lenore D Zuck. Monitoring off-the-shelf components. In
International Workshop on Verification, Model Checking, and Abstract Interpretation, pages
222–236. Springer, 2006.

49 Sandro Stucki, César Sánchez, Gerardo Schneider, and Borzoo Bonakdarpour. Gray-box
monitoring of hyperproperties. In Formal Methods–The Next 30 Years: Third World Congress,
FM 2019, Porto, Portugal, October 7–11, 2019, Proceedings, volume 11800, page 406. Springer
Nature, 2019.

50 Mahesh Viswanathan and Moonzoo Kim. Foundations for the run-time monitoring of reactive
systems - fundamentals of the MaC language. In Zhiming Liu and Keijiro Araki, editors,
Theoretical Aspects of Computing - ICTAC 2004, First International Colloquium, volume
3407 of Lecture Notes in Computer Science, pages 543–556. Springer, 2004. URL: https:
//doi.org/10.1007/978-3-540-31862-0_38.

http://doi.acm.org/10.1145/360248.360251
http://dx.doi.org/10.1145/360248.360251
http://www.sciencedirect.com/science/article/pii/030439759090038J
http://www.sciencedirect.com/science/article/pii/030439759090038J
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(90)90038-J
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1007/978-3-030-32079-9_16
http://dx.doi.org/10.1007/978-3-030-32079-9_16
https://doi.org/10.1007/978-3-540-31862-0_38
https://doi.org/10.1007/978-3-540-31862-0_38

L. Aceto et al. 17:19

51 Igor Walukiewicz. Completeness of Kozen's axiomatisation of the propositional µ-calculus.
Information and Computation, 157(1-2):142–182, February 2000. doi:10.1006/inco.1999.
2836.

CSL 2021

http://dx.doi.org/10.1006/inco.1999.2836
http://dx.doi.org/10.1006/inco.1999.2836

17:20 The best a monitor can do

A Technical Proofs

In our proofs, instead of working with the classical semantics, we use consistent annotations
and counter-annotations which respectively witness that a property holds or does not hold
for a process. The intuition is that an evaluation of ψ ∨ ϕ to true must also evaluate either
ψ or ϕ to true, and an annotation indicates which one. Similarly, for 〈a〉ψ to be true at a
state, one of the state’s a-successors must be annotated with ψ.

I Example 40. The witness of the reachability specification minX.(〈a〉X ∨ 〈b〉tt) (there is a
sequence of a-transitions that leads to a b-transition) for a process p would consist of the
following annotation: p is annotated with

{minX.〈a〉X ∨ 〈b〉tt, 〈a〉X ∨ 〈b〉tt, 〈a〉X},

a finite sequence of a-successors will be annotated with

{X,minX.〈a〉X ∨ 〈b〉tt, 〈a〉X ∨ 〈b〉tt, 〈a〉X}

and finally an a-successor will be annotated with

{X,minX.〈a〉X ∨ 〈b〉tt, 〈a〉X ∨ 〈b〉tt, 〈b〉tt}

and its b-successor will be annotated with tt. J

In the following, for each formula ϕ with free variables we consider the closure c(ϕ) of ϕ,
which results by replacing in ϕ all free variables X by ϕX . We use JϕK for an open formula
ϕ, to mean Jc(ϕ)K. We say that a formula ϕ is satisfiable when JϕK 6= ∅.

I Definition 41 (Locally consistent annotation). An annotation A : P → P(sf (Ψ)), where
P ⊆ Prc is a labelling of P (a partial labelling of Prc) with sets of subformulae of a closed
formula Ψ of recHML. An annotation is locally consistent if for all states s ∈ P :

ff 6∈ A(s);
If minX.ϕ ∈ A(s) or maxX.ϕ ∈ A(s) then ϕ ∈ A(s);
If X ∈ A(s) then minX.ϕ ∈ A(s) if X is a least fixpoint variable and maxX.ϕ ∈ A(s)
otherwise;
If ϕ ∧ ψ ∈ A(s) then ϕ ∈ A(s) and ψ ∈ A(s);
If ϕ ∨ ψ ∈ A(s) then ϕ ∈ A(s) or ψ ∈ A(s);
If 〈a〉ϕ ∈ A(s) then ϕ ∈ A(s′) for some s′ ∈ P , such that s a−→ s′;
If [a]ϕ ∈ A(s) then ϕ ∈ A(s′) for all s′ ∈ Prc, such that s a−→ s′. J

I Definition 42. For annotation A, an annotated sequence is a (finite or infinite) sequence
π = (ϕ0, s0)(ϕ1, s1) · · · , such that

for each i, ϕi ∈ A(s0);
for all i, i+ 1 that appear as indexes in π, ϕi is of the form ϕi+1 ∧ψ, ψ ∧ϕi+1, ϕi+1 ∨ψ,
ψ ∨ ϕi+1, [a]ϕi+1, 〈a〉ϕi+1, minX.ϕi+1, minX.ϕi+1, or X, where ϕi+1 = minX.ψ or
minX.ψ;
if ϕi = [a]ϕi+1 or 〈a〉ϕi+1, then si

a−→ si+1, and otherwise si = si+1; J

It is not hard to see that if two fixpoint formulas ϕ1, ϕ2 appear in an annotated sequence,
then in the subsequence between (but including) the respective appearances of ϕ1 and ϕ2,
there appears a fixpoint formula ϕ3, such that ϕ1 and ϕ2 are subformulae of ϕ3. Therefore,
in every infinite annotated sequence there appears infinitely often a fixpoint formula ψ, such
that all other fixpoint formulas that appear infinitely often are subformulae of ψ. Then, ψ is
called the outermost fixpoint formula that appears infinitely often in the sequence.

L. Aceto et al. 17:21

I Definition 43 (Consistent Annotation). An annotation is consistent if it is both locally
consistent and for every infinite annotated sequence, the outermost fixpoint formula that
appears infinitely often in the sequence is a max-formula. J

It is a standard result (see for example [14] for a more thorough discussion) that for a
process p and a subformula ϕ of Ψ, we have that p ∈ JϕK if and only if there is a consistent
annotation such that ϕ ∈ A(p). We call this a consistent ϕ-annotation of p.

We observe that, because formulas are assumed to be guarded, every annotation on
processes with no infinite traces is consistent if and only if it is locally consistent. The same
is true if no min-fixpoints appear in the annotation.

For convenience, we also define the dual, a consistent counter-annotation, which witnesses
that a computation tree violates a property.

I Definition 44 (Consistent counter-annotation). A counter-annotation C : P → P(sf (Ψ)) is
a labelling of P ⊆ Prc with sets of subformulae of a formula Ψ of recHML. A counter-
annotation is locally consistent if for all states s ∈ P :

tt 6∈ C(s);
If minX.ϕ ∈ C(s) or maxX.ϕ ∈ C(s) then ϕ ∈ C(s);
If X ∈ C(s) then minX.ϕ ∈ C(s);
If ϕ ∧ ψ ∈ C(s) then ϕ ∈ C(s) or ψ ∈ C(s);
If ϕ ∨ ψ ∈ C(s) then ϕ ∈ C(s) and ψ ∈ C(s);
If 〈a〉ϕ ∈ C(s) then ϕ ∈ C(s′) for all s′ ∈ Prc, such that s a−→ s′;
If [a]ϕ ∈ C(s) then ϕ ∈ C(s′) for some s′ ∈ P , such that s a−→ s′.

Counter-annotated sequences are defined similarly to annotated sequences. A counter-
annotation is consistent if it is both locally consistent and for every infinite annotated sequence
of subformulae, the outermost fixpoint formula that appears infinitely often in the sequence is
a µ-formula. J

Then, a process p violates a subformula ϕ of Ψ if and only if there is a consistent
counter-annotation C, such that ϕ ∈ C(p).

Eliminating existentials
Lemma 29. For every closed disjunctive recHML formula Ψ, the formula f1(Ψ) has the
same sHML consequences as Ψ.

Proof. Observe that we can construct a consistent annotation for f1(Ψ) from a consistent
annotation for Ψ, by simply replacing each ψ in the annotation by f1(ψ). Then, all conditions
for a consistent annotation are satisfied, and therefore Ψ implies f1(Ψ).

Let θ ∈ sHML be a consequence of Ψ. We show that f1(Ψ) also implies θ.

Assume otherwise: let p be a process such that p ∈ Jf1(Ψ) ∧ ¬θK. Let A1 be an annotation
that witnesses p ∈ Jf1(Ψ)K.

We know, by Thm. 22, that θ is monitorable, so there is a finite trace t = a1a2 . . . ak of p,
such that for every p′, if t is a trace of p′, then p′ ∈ J¬θK. Let p = p0

a1−−→ p1
a2−−→ · · · ak−−→ pk

be states reachable from p while producing t, and let q0, q1, . . . , qk be processes with only
the following transitions: q0

a1−−→ q1
a2−−→ · · · ak−−→ qk. From the above, we see that q0 /∈ JθK.

Furthermore, we can define an annotation A2 on {q0, q1, . . . , qk}, such that for all i = 1, . . . , k,
A2(qi) = A1(pi). It is not hard to see, exploiting the absence of existential modalities in

CSL 2021

17:22 The best a monitor can do

f1(Ψ), that A2 is a consistent annotation, witnessing that q0 ∈ Jf1(Ψ)K.

Let A3 be a minimal consistent annotation witnessing that q0 ∈ Jf1(Ψ)K. Let us observe
that by the definition of Ψ and f1, all formulas in A3 can be of the form tt, X, minX.ψ,
maxX.ψ, ψ1 ∨ ψ2, or

∧
a∈B[a]

∨
Ba. The last kind of formula we call a conjunction. We

say that
∧
a∈B[a]

∨
Ba ∈ A3(qi) is maximal in A3(qi) if it is not a conjunct in any other

conjunction in A3(qi). We also define recursively for two formulas ψ1, ψ2 ∈ A3(qi) what is a
path from ψ1 to ψ2: {ψ1} is a path from ψ1 to ψ1; and if F is a path from ψ1 to ψ2, then:

if ψ1 ∨ ψ′1 ∈ A3(qi), then F ∪ {ψ1 ∨ ψ′1} is a path from ψ1 ∨ ψ′1 to ψ2;
if ψ′1 ∨ ψ1 ∈ A3(qi), then F ∪ {ψ′1 ∨ ψ1} is a path from ψ′1 ∨ ψ1 to ψ2;
if maxX.ψ1 ∈ A3(qi), then F ∪ {maxX.ψ1} is a path from maxX.ψ1 to ψ2; and
if minX.ψ1 ∈ A3(qi), then F ∪ {minX.ψ1} is a path from minX.ψ1 to ψ2.

Finally, for each
∧
a∈B [a]

∨
Ba ∈ A3(qi), we define

ss

(∧
a∈B

[a]
∨
Ba ∈ A3(qi)

)
=
{∧
a∈C

[a]
∨
Ba ∈ A3(qi) | ∅ 6= C ⊆ B

}
.

We are now ready to prove the following claim on the minimal annotation A3, which will
allow us to focus on a single maximal conjunction per state:

Claim: for every i, if
∧
a∈B[a]

∨
Ba ∈ A3(qi) and

∧
a∈B′ [a]

∨
B′a ∈ A3(qi), are maximal

in A3(qi), then B = B′ and for all a ∈ B, Ba = B′a — in other words, there is at
most one maximal conjunction in A3(qi).

We prove the claim by induction on i. For the case where i = 0, we first observe that
f1(Ψ) ∈ A3(q0). Since our formulas are guarded and f1(Ψ) is closed, there is no path from
f1(Ψ) to a variable X. Therefore, according to the conditions for local consistency, there
must be a path F from f1(Ψ) to either tt or to a conjunction ψc. In the first case, we observe
that there can be no conjunction in F (by the definition of a path), substituting A3(q0) by F
results in a locally consistent annotation, and therefore, A3(q0) = F . In the second case, we
observe that there can be no other conjunction in F (by the definition of a path), and that
substituting A3(q0) by F ∪ ss(ψc) results in a locally consistent annotation, and therefore,
A3(q0) = F ∪ ss(ψc). Therefore, in both cases, there is at most one maximal conjunction in
A3(q0).

We now tackle the case for i > 0. By the inductive hypothesis, there is at most one
maximal conjunction

∧
a∈B′′ [a]

∨
B′′a ∈ A3(qi−1). If there is none, or if ai /∈ B′′, then

A3(qi) = ∅ and we are done. Otherwise, let ψ1 =
∨
B′′ai

. By the requirements of local
consistency, ψ1 ∈ A3(qi), and there is a path F1 from ψ1 to tt, to a conjunction ψ2, or to
a variable X1. We can handle the first two cases similarly for the case of i = 0. For the
last case, from the requirements of local consistency, for some k > 0, we can construct k
paths, Fj , 1 ≤ j ≤ k, such that F1 is as defined above, and for 1 < j < k, Fj is a path
from maxXj−1.ψj to Xj , and, due to the guardedness of our formulas and the finiteness of
A3(qi), (for j 6= j′, Xj 6= Xj′ , and) Fk is a path from maxXk−1.ψk to ψk, where ψk = tt
or ψk is a conjunction. Let F =

⋃k
i=1. We can see that, with the possible exception of ψk,

there is no conjunction in F . In the first case, we can see that substituting A3(q0) by F
results in a locally consistent annotation, and therefore, A3(q0) = F . In the second case,
substituting A3(q0) by F ∪ ss(ψ2) results in a locally consistent annotation, and therefore,
A3(q0) = F ∪ ss(ψ2). Therefore, in both cases, there is at most one maximal conjunction in
A3(q0).

L. Aceto et al. 17:23

We have assumed that all subformulae of disjunctive formulas (except for ff) are satisfiable.
Therefore, for every subformula 〈a〉ψ of Ψ, we can fix a process sψ ∈ JψK, and assume a
consistent annotation A4 that witnesses these facts. We now construct a process r ∈ JΨK,
such that t is a trace of r. For each qi, i = 0, . . . , k, we construct a process q′i with exactly
the following transitions: q′i

ai+1−−−−→ q′i+1, if i < k, and q′i
a−→ sψ for every ψ ∈ Ba, for every

f1((
∧
ψ∈Ba

〈a〉ψ) ∧ [a]
∨
Ba) ∈ A3(qi). We can now construct a consistent annotation A5 to

witness that q′i ∈ JψK, for every f(ψ) ∈ A3(qi). For each subformula (
∧
ψ∈Ba

〈a〉ψ) ∧ [a]
∨
Ba

of Ψ and every ψ ∈ Ba, A5(sψ) = A4(sψ) ∪ {
∨
Ba}; for i = 0, . . . , k, A5(q′i) = {ψ ∈ sf(Ψ) |

f1(ψ) ∈ A3(q′i)}, and for every other state s, A5(s) = A4(s) if A4 is defined on s. It is then
not hard to see that all conditions for a consistent annotation are satisfied by A5. Therefore,
A5 witnesses that r def= q′0 ∈ JΨK. Furthermore, it is immediately evident that t is a trace of
r, and therefore r /∈ JθK, and therefore θ cannot be a consequence of Ψ, contradicting our
assumptions. This completes the proof of the lemma. J

I Example 45. The necessity of disjunctive form can be seen from the following example:
ψ = (〈a〉[b]ff) ∧ ([a]〈b〉tt ∨ [a][c]ff). For F = {[b]ff ∧ [c]ff, [c]ff}, the equivalent disjunctive
formula is: ∧

ϕ∈F
〈a〉ϕ ∧ [a]

∨
F.

In ψ, replacing existentials with tt would yield a formula itself equivalent to tt. However,
from its disjunctive form we can extract its strongest sHML consequence [a][c]ff (rather than
tt). J

Eliminating least fixpoints
Lemma 32. For every closed formula Ψ of recHML without existentials, f2(Ψ) has the
same sHML consequences as Ψ.

Proof. First, observe that Ψ implies f2(Ψ): an annotation for Ψ is locally consistent, so by
replacing all occurrences of min by max, we are certain to have no sequences with infinite
occurrences of min-formulas, so we have a consistent annotation for f2(Ψ).

Now, let θ ∈ sHML, such that θ is not a consequence of f2(Ψ). We prove that θ is
also not a consequence of Ψ, which completes the proof of the lemma. Since θ is not a
consequence of f2(Ψ), there is a p ∈ Jf2(Ψ) ∧ ¬θK. Similarly to the proof of Lem. 29, we
know, by Thm. 22, that θ is monitorable, so we can construct a process q that has no infinite
traces and satisfies f2(Ψ) ∧ ¬θ. Let A be a consistent annotation that witnesses the fact.
From A, we can then construct an annotation A′: A′(s) = {ψ ∈ sf(Ψ) | f2(ψ) ∈ A(s)}, when
A(s) is defined. It is straightforward to see that A′ is locally consistent, using the fact that
A is locally consistent. It is also consistent, because q has no infinite traces. Therefore, A′
witnesses that q ∈ JΨK, which completes the proof. J

A.1 Eliminating disjunctions
Lemma 37. Given a closed formula Ψ of recHML with neither min operators nor existen-
tials, f3(Ψ) has the same sHML consequences as Ψ.

Proof. We fix a tableau T (Ψ) and the corresponding labellings L and L′ of its nodes, as
defined in Def. 35.

We first show that f3(Ψ) is a consequence of Ψ, i.e., ¬f3(Ψ) implies ¬Ψ. Let p be
a process such that p /∈ Jf3(Ψ)K. Since f3(Ψ) is a sHML formula, and similarly to the

CSL 2021

17:24 The best a monitor can do

proofs of Lems. 29 and 32, we can assume that process p has a single maximal trace t. Let
C : P → P(sf (f3(Ψ))) be a counter-annotation that witnesses the fact that p /∈ Jf3(Ψ)K.
Since p only has finite traces and f3(Ψ) is guarded, C has no infinite counter-annotated
sequences. Therefore, ff appears somewhere in C. We now define C ′, a counter annotation
for Ψ that is defined on the set P ⊆ Prc of processes that are reachable from p by a (possibly
empty) sequence of transitions:

C ′(q) = {ψ ∈ L(n) | n is a tableau node s.t. L′(n) ∈ C(q)},

for every q ∈ P . It is then, not hard to verify that C ′ is locally consistent, and therefore it is
also consistent, thus witnessing that p /∈ JΨK.

We now show that if Ψ implies a formula θ ∈ sHML, then f3(Ψ) also implies θ. Assume
that Ψ implies θ ∈ sHML. Let p be a process such that p 6∈ JθK — therefore, p 6∈ JΨK. Since
θ is a sHML formula, as above, we can assume that process p has a single maximal trace t.
Let C be a consistent counter-annotation that witnesses that p /∈ JΨK, defined over P ⊆ Prc.
We now define C ′, a counter annotation for f3(Ψ) that is defined on P ′ = {q ∈ P | C(q) 6= ∅}:

C ′(q) = {L′(n) | n is a tableau node s.t. L(n) ⊆ C(q)},

for every q ∈ P ′. Again, it is not hard to verify that C ′ is locally consistent — and since p has
no infinite traces and our formulas are guarded, C ′ is also consistent. Therefore, p 6∈ Jf3(Ψ)K,
so we have showed that f3(Ψ) implies all sHML consequences of Ψ, which completes the
proof. J

	Introduction
	Preliminaries
	The Strongest Monitorable Consequence
	Monitorability in recHML
	Computing Strongest Monitorable Consequences in recHML
	Eliminating Existential Modalities
	Eliminating Least Fixpoints
	Eliminating Disjunctions
	The strongest sHML consequence
	Complexity

	Related Work
	Conclusion
	Technical Proofs
	Eliminating disjunctions

