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Abstract. Monitorability is a characteristic that delineates between the
properties that can be runtime verified by a monitor and those that can-
not. Existing notions of monitorability for branching-time specifications
are quite restrictive, limiting the set of monitorable properties to a small
logical fragment. A recent study has enlarged the set of monitorable
branching-time properties by weakening the requirements expected of
the monitors effecting the verification: it defines a novel notion of opti-
mal monitor that carries out the maximum number of detections that can
be effected for any property, thereby turning a branching-time property
into a monitorable one. The study also outlines a method for obtaining a
unique optimal monitor from any branching-time property but falls short
of providing an automation for this procedure. In this paper, we present
a prototype tool that generates monitorable properties for branching-
time properties expressed in a variant of the modal μ-calculus, based on
this procedure. We also assess the performance of the prototype tool by
evaluating its performance against several specifications.

Keywords: Runtime Verification · Monitor Synthesis ·
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1 Introduction

Runtime Verification (RV) is a lightweight verification technique that checks
whether a system satisfies some correctness property [11]. This is achieved using
monitors [18], which are computational entities that run alongside the system
to incrementally observe its behaviour, flagging acceptance or rejection verdicts
whenever they detect property satisfactions or violations. When compared to
other verification techniques, RV is constrained by the fact that monitors base
their analysis on the current system execution being observed. This complicates
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the verification of correctness properties describing aspects such as infinite exe-
cutions or alternative execution paths, the evidence of which is hard to represent
in a (finite) execution trace.

These monitorability limits were extensively studied in [19] for branching-
time properties expressed in recHML [5], a variant of the modal μ−calculus.
There, the authors describe what should be demanded of monitors to adequately
runtime verify properties. The first monitor requirement is soundness, meaning
that whenever a monitor flags an acceptance or a rejection verdict, the system
must respectively satisfy or violate the property. Since monitors that may flag
both acceptance and rejection verdicts (called multi-verdict monitors) are gener-
ally inconsistent in the branching-time setting [19], the second monitor require-
ment is a weaker form of the dual of soundness, termed partial completeness.
This means that monitors must be able to either reach a verdict for all property
satisfactions or all property violations.

In this study, we focus on monitors that can only flag rejections. The prop-
erties for which such monitors can reject all violations are called rejection-
monitorable (hereafter simply called monitorable), and they are precisely the
known class of safety properties [6] as all of their violations can be detected
within a finite sequence of events. This set of monitorable properties is char-
acterised by a maximally expressive syntactic fragment of recHML, termed
sHML [19]. In other words, a formula is semantically equivalent to another one
in this fragment if and only if it can be runtime verified.

Example 1. A system operating a coffee machine produces three events; insert
money (m), output coffee (c), and grind more coffee beans (g). Suppose that this
system is expected to satisfy the following specification:

“The coffee machine cannot produce event g (grind) immediately
after event c (coffee).”

(S1)

Specification S1 can only be violated if the system can exhibit event c followed
by event g. Such a violation can always be witnessed by a finite execution, which,
in turn, implies that S1 is monitorable.

“In all executions, the coffee machine eventually produces event c,
but not before m (money).”

(S2)

Consider specification S2 above. It can be violated either (i) if the system
never generates event c or (ii) it generates c before m. Suppose the monitor
observes the sequence of events mgmgmg · · · . Although event c will never be
generated, a monitor runtime verifying this property cannot flag a violation
because despite not having observed c yet, it cannot tell whether it might observe
it in the future. Put otherwise, observing a finite execution does not provide the
monitor with enough information to detect the violation in (i). This implies that
S2 is not monitorable since no monitor can detect all violating systems. �

As indicated by the limited syntax of sHML, restricting RV to monitorable
properties severely limits its applicability. Indeed, many properties (such as S2
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above) still fall outside of this scope as some violations cannot be determined
from finite system executions. Two possible approaches to extend these moni-
torability limits are weakening the correctness requirements expected of the mon-
itors effecting the verification or increasing the monitors’ observational power.
We focus on the first approach, which was studied in [4]. In that work, the authors
define a novel notion of optimal monitors, which flag all possible violations that
can be determined with a finite sequence of events. More concretely, these mon-
itors runtime verify the part of the property that is monitorable, termed the
strongest monitorable consequence.

Example 2. Although specification S2 from Example 1 is not monitorable, it
turns out that some of its violations can be detected. In particular, a violation
can be flagged from a finite execution whenever a sequence of events with prefix
g · · · gc is observed since c occurs before m. Rather than ruling out S2 as not
monitorable and disregarding its runtime verification altogether, we extract its
strongest monitorable consequence, informally described by specification S3.

“In all executions, the coffee machine never produces c before m.” (S3)

Clearly, specification S3 is weaker than S2, but it gives the best monitorable
approximation of the original specification. �

The work in [4] outlines a two-step procedure to effectively construct an opti-
mal monitor for branching-time recHML properties, expressed in disjunctive
form [30]. This procedure first extracts the strongest monitorable consequence,
which is formulated in sHML, then synthesises a sound and complete monitor to
effect the runtime verification. However, the work in [4] falls short of providing
an automation for this procedure.

In this study, we investigate whether the procedure in [4] is amenable to
mechanisation. To date, there are several automated monitor synthesis proce-
dures that generate sound and complete monitors: one such tool is detectEr [7].
However, like all known synthesis procedures [7,8,19], this tool is only defined
for sHML, and thus fails to generate monitors for properties that are either
unmonitorable or not expressed in this fragment. To this end, our final aim is
to build a toolchain that takes an arbitrary recHML formula ϕ, generates its
disjunctive form ϕ′, and after extracting its strongest monitorable consequence
ϕ′′, synthesises an optimal monitor m, as outlined in Fig. 1. We leave the first
phase for future work and focus on the second one, represented by the compo-
nent labelled SMC. The third phase will be handled by the detectEr tool. Our
contributions are two-fold:

1. In Sect. 3, we present a prototype tool that generates the strongest moni-
torable consequence for arbitrary branching-time properties expressed in dis-
junctive recHML, based on the procedure proposed in [4].

2. In Sect. 5, we assess the performance of the implemented prototype tool
against several specifications.
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Fig. 1. Toolchain

2 Preliminaries

We assume a finite set of actions a, b, . . . ∈ Act and processes p, q . . . ∈ Prc.
The triple 〈Prc,Act,−→〉 forms a Labelled Transition System (LTS), where
−→⊆ (Prc,Act,Prc) is a transition relation and (p, a, q) ∈−→ is denoted by
the suggestive notation p

a−→ q. Traces are finite or infinite sequences of actions,
t, u ∈ Act

∗∪Act
w, and we say that process p produces trace t if there exists a

sequence of transitions p
a−→ q

b−→ · · · for t = ab · · · . Specifications (or properties)
are defined as sets of processes, P,Q,R ∈ P(Prc), where P is a consequence of
Q when Q ⊆ P .

2.1 The Specification Logic

In this RV set-up, we presuppose a specification logic to unambiguously describe
the behaviour expected from the system under scrutiny, i.e., the properties of
states in the respective LTS. Properties are formulated in recHML, allowing
a good level of generality of the obtained results. This set of formulae assumes
a countably infinite supply of recursion variables X,Y, . . . ∈ LVar and is built
using the actions in Act, as described in Fig. 2. On the other hand, the semantics
of recHML is given by the set of processes that satisfy each formula. We write
�ϕ, ρ� to denote the set of processes that satisfy ϕ given an interpretation ρ
of the free variables of the formula ϕ where ρ :LVar ⇀ P(Prc). The notation
ρ[X �→ P ] represents an interpretation ρ′ such that ρ′(X) = P and ρ′(Y ) = ρ(Y )
for all Y 	= X. A process satisfies the universal modality [a]ϕ if all the states
that it can reach after performing an a-labelled transition satisfy ϕ. Conversely,
the existential modality 〈a〉ϕ is satisfied by the processes that can perform at
least one a-labelled transition and reach a state that satisfies ϕ. The fixed point
in min X.ϕ and max X.ϕ binds all the free occurrences of X in ϕ, and we assume
that for each recursion variable, there is only one such formula binding it. We
call the subformula ϕ the binding formula of X and denote it as ϕX . Intuitively,
these least and greatest fixed points allow for recursion, whereby they can be
respectively interpreted as reachability and invariance.

Example 3. Specification S2 from Example 1 for Act = {c, g,m} is formalised
as formula ϕ2 below.

ϕ2 = min Y .[c]ff ∧ [g]Y ∧ [m]ϕ1

where ϕ1 = min X.([m]X ∧ [g]X) ∨ 〈c〉tt
While the inner least fixed point in ϕ2 (i.e., formula ϕ1) ensures that the system
eventually produces a c event, the outermost least fixed point prohibits it from
happening before the first occurrence of m. �
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Fig. 2. The syntax and semantics of recHML in the branching-time setting.

2.2 Monitorability in RecHML

A translation procedure known as monitor synthesis generates computational
entities, termed monitors, from correctness specifications. These monitors are
then instrumented to run alongside the system and flag a verdict once they have
observed sufficient runtime behaviour: an acceptance if the system satisfies the
specification and a rejection if it violates it. These monitoring outcomes are
assumed to be definite and irrevocable. In the branching-time setting, multi-
verdict monitors (i.e., monitors that may output both acceptance and rejection
verdicts) are inconsistent [19, Theorem 2]. Therefore, we restrict our study to
single-verdict monitors. To simplify the exposition, we focus on rejection mon-
itors, i.e., monitors that can only flag rejections. Monitors m,n ∈ Mon can be
described as suffix-closed sets of traces m,n ⊆ Act

∗ that witness property vio-
lations [3,15], where Mon is the set of all possible monitors. More concretely,
monitor m rejects process p, denoted as rej(m, p), if p produces a trace in m.

Definition 1 (Monitorability [19]). A specification P is monitorable if there
exists some m ∈ Mon that is:

1. sound for specification P, i.e., for all p ∈ Prc, rej(m, p) implies p /∈P ;
2. complete for specification P, i.e., for all p ∈ Prc, p /∈P implies rej(m, p).

Since monitors can only observe finite prefixes of a trace, several logical formulae
from Fig. 2, such as property ϕ2 in Exmaple 3, are not monitorable. Indeed, the
work in [19] shows that the subset of formulae in recHML that is monitorable
is characterised by the syntactic fragment sHML.
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Theorem 1 (Safety Fragment [19]). Formula ϕ ∈ recHML is monitorable
iff it is equivalent to a formula in the syntactic fragment sHML defined as below:

ϕ,ψ ∈ sHML ::= tt | ff | [a]ϕ | ϕ ∧ ψ | max X.ϕ | X �

2.3 Extending the Limits of Monitorability

The syntax of sHML is restricted and, indeed, many recHML formulae are not
monitorable [19]. However, this should not deter our efforts, since, in general, a
part of those properties could be amenable to monitoring. For instance, although
specification S2 from Example 2 is not monitorable, specification S3 (which is
its consequence) is monitorable. Following a best-effort strategy, the work in [4]
defines the notion of an optimal monitor that aims at capturing the best monitor
among all possible sound monitors for a given property. There, the authors also
show that such a monitor actually runtime verifies the strongest monitorable
consequence of that property. In the rest of this section, we give an overview of
those results as they form the theoretical foundation of our prototype tool.

Definition 2 (Optimal Monitor [4]). Monitor m is optimal for property P
whenever:

1. it is sound for P;
2. for all n ∈ Mon, if n is sound for P then n ⊆ m.

Optimal monitors can be characterised in terms of the strongest monitorable
consequence of the specification for which they are monitoring. In turn, this
allows us to establish a correspondence between the two.

Definition 3 (Strongest Monitorable Consequence [4]). The strongest
monitorable consequence of specification P is a property Q that is monitorable
such that:

1. it is a consequence of P, i.e., P ⊆ Q;
2. for any R that is monitorable, if P ⊆ R then Q ⊆ R.

Example 4. Properties ϕ1 and ϕ2 from Example 3 are not monitorable, and
thus cannot be expressed in sHML. However, their strongest monitorable con-
sequences can be respectively formalised as ϕ3 = tt and ϕ4 = max Y .[c]ff ∧ [g]Y .
In such cases where the strongest monitorable consequence of a property is tt,
then it is impossible to detect any violations from a finite prefix. �

Theorem 2 ([4]). A monitor m ∈ M that is sound for P is optimal for P iff
it is sound and complete for the strongest monitorable consequence of P . �

From Theorem 2, we elaborate a two-step procedure to construct the optimal
monitor for a property that first extracts its strongest monitorable consequence
and then synthesises a sound and complete monitor for it. In this study, we focus
on the former as the latter will be handled by the detectEr tool.
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3 Design and Implementation

In this section, we give a detailed overview of the algorithm that constructs the
strongest monitorable consequence of arbitrary recHML formulae, following
closely the procedure laid out in [4]. This construction consists of three steps:
eliminating existential modalities, eliminating least fixed points, and eliminating
disjunctions. Since these constructs are sources of non-monitorability, remov-
ing them from a recHML formula yields a formula which can be shown to
be the strongest monitorable consequence. This procedure relies on two crucial
assumptions, namely that formulae are in disjunctive form and all subformulae
are satisfiable, with the exception of ff. We thus proceed to give all the necessary
technical developments before delving into the implementation details.

3.1 Disjunctive Form

For a finite set of formulae Γ , we use the standard notation
∧

Γ to denote the
conjunction of all the formulae in Γ . Similarly,

∨
Γ denotes the disjunction of

all the formulae in Γ . As usual,
∧

∅ denotes tt and
∨

∅ denotes ff.

Definition 4 (Disjunctive Form [30]). The set of recHML formulae in dis-
junctive form is given by the following grammar:

ϕ,ψ ∈ disHML ::= tt | ff | ϕ ∨ ψ |
∧

a∈A

⎛

⎝(
∧

ϕ∈Ba

〈a〉ϕ) ∧ [a]
∨

ϕ∈Ba

ϕ

⎞

⎠

| min X.ϕ | max X.ϕ | X

where A ⊆ Act and Ba ⊆ disHML is a finite set of formulae, where a ∈ A.

The conjunctions in disjunctive form denote that for each action a ∈ A, all
formulae in Ba are satisfied by some a-successor, and all a-successors satisfy a
formula in Ba. The intuition behind this representation is to push conjunctions
as far as possible towards the modalities to explicitly describe the interaction
between conjuncts. As will be demonstrated in Sect. 3.2, this is crucial for con-
structing the strongest monitorable consequence.

Example 5. Consider formula ϕ5 = [c][g]ff ∧ [c](〈g〉tt ∨ [c]ff), whereby the sub-
formula 〈g〉tt ∨ [c]ff represents the implication [g]ff =⇒ [c]ff. The conjuncts in
ϕ5 respectively describe the specifications “ g cannot occur immediately after c”
and “if after c, g cannot occur, then c cannot occur either.” This property is
not in disjunctive form, but it is equivalent to the disjunctive formula ϕ6 below,
which describes the local behaviour “after c, neither c nor g can occur.”

ϕ6 = [c]ff ∨ (〈c〉([g]ff ∧ [c]ff) ∧ [c]([g]ff ∧ [c]ff)
)

�

Walukiewicz [30] presents a procedure for constructing an equivalent
disHML formula from any recHML one. However, in this paper, we focus on the
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computation of the strongest monitorable consequence and leave the conversion
to disjunctive form for future work. The work in [30] also shows that satisfiability
checking is linear; in our tool, all unsatisfiable subformulae are reduced to ff in
a single pass.

Example 6. For the rest of this section, we use the following running example.
Assume that Act = {c,m} and consider ϕ7 = (max X.[c]X ∧ [m]ff) ∧ (〈c〉tt ∨
[m]ff). This formula describes the property “m never occurs, and if c cannot
occur, then m cannot occur either.” Its equivalent disjunctive form is given by
ϕ8 below.

ϕ8 = ([c]ff ∧ [m]ff) ∨ ([m]ff ∧ 〈c〉ϕ′
8 ∧ [c]ϕ′

8)
where ϕ′

8 = max X.([c]ff ∧ [m]ff) ∨ (〈c〉X ∧ [c]X ∧ [m]ff) �

3.2 Step 1: Eliminating Existential Modalities

In the first step, all occurrences of the existential modalities in the disjunctive
formula are eliminated by replacing them with tt. Intuitively, this step is neces-
sary since the non-existence of an a-successor, which would violate formulae of
the form 〈a〉ϕ, cannot be identified by observing a single execution.

Remark 1. Disjunctive form is crucial for this step. Applying this transformation
to ϕ5 from Example 5 yields [c]

(
[g]ff ∧ (tt ∨ [c]ff)

)
, which can be simplified to

[c][g]ff. However, this is not the best approximation as the strongest monitorable
consequence obtained from its disjunctive form, ϕ6, is [c][c]ff ∧ [c][g]ff. �
Example 7. Given formula ϕ8 from Exmaple 6, the algorithm automating this
step returns the formula ϕ9 below.

ϕ9 =
(
[c]ff ∧ [m]ff

) ∨ (
[m]ff ∧ tt ∧ [c]max X.([c]ff ∧ [m]ff) ∨ (tt ∧ [c]X ∧ [m]ff)

)

It is not hard to see that this induces several redundant terms. However, we
ignore them for now as they will be handled in the ensuing step. �

3.3 Step 2: Eliminating Least Fixed Points

The second step consists of transforming all least fixed points into greatest fixed
points. Indeed, the only way to detect a violation of a least fixed point at runtime
is to find a violation with a finite sequence of events, which is equivalent to
detecting a violation of a greatest fixed point. We directly automate this by
replacing all subformulae of the form min X.ϕ with max X.ϕ.

This step, together with the previous one, induces several redundant subfor-
mulae, which, in turn, introduce a significant amount of unnecessary computa-
tion in the ensuing step. To this end, our algorithm recursively simplifies the
resulting formula based on the axioms below, where A ⊆ Act, in the following
order of precedence: (A1), (A2), . . ., (A6).

(A1) ϕ ∨ tt � tt (A2) ϕ ∧ tt � ϕ (A3) [a]tt � tt

(A4) max X.tt � tt (A5) max X.X � tt (A6) max X.
∧

a∈A

[a]X � tt
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Fig. 3. Tableau rules where Γ is a formula set.

Example 8. Formula ϕ9 from Exmaple 7 does not have any least fixed points.
Therefore, during the first pass, the algorithm automating this transformation
leaves the formula unchanged. The second pass then returns the simplified for-
mula with respect to the axioms (A1) to (A6), resulting in ϕ10 below.

ϕ10 =
(
[c]ff ∧ [m]ff

) ∨ (
[m]ff ∧ [c]max X.([c]ff ∧ [m]ff) ∨ ([c]X ∧ [m]ff)

)
�

3.4 Step 3: Eliminating Disjunctions

The final and most challenging step is to obtain a disjunction-free formula. This
can be decomposed into two parts: apply the tableau rules in Fig. 3 to obtain
a tree with back edges (i.e., edges from leaves to inner nodes), and relabel the
nodes of the tree. These are respectively automated by Algorithms 1 and 2.

Definition 5 (Tableau for Disjunction Elimination [4]). Given a formula
ϕ, its tableau is a pair 〈T,L〉, where T is a tree with back edges and L is a
labelling function such that:

1. the root of T is labelled as {ϕ}, and
2. each internal node and its children are labelled according to a rule in Fig. 3.

Internal nodes are labelled with the premise, while their children are labelled
with the conclusion. Additionally, rule [a] is applied only when L(n) matches
the premise of no other rule and it contains at least one [a]ϕ′ for some ϕ′.

The interpretation of the tableau in Definition 5 is that the formulae in Γ are
disjuncted, whereas the branches are conjuncted. The rules are read top-down to
form a tree, with the topmost premise being the root and the conclusions being
the branches. Since formulae might not have unique tableaux, rule ([a]) must
be left for last to synchronises the different tableaux of the same formula. This
means that irrespective of the order of rule application, all children derived using
rule ([a]) are identical. Additionally, although all the rules except for regener-
ations, i.e., rule (X), reduce the formula size, the order of application directly
influences the size of the tableau, which, in turn, affects the tool’s performance.

Example 9. Consider the set of formulae {[a]ϕ1 ∧ [a]ϕ2, tt} for some ϕ1, ϕ2. This
set pattern matches with the premise of two rules, namely (tt) and (∧). Applying
the former, the formula set is immediately reduced to {tt}. However, if the latter
rule is applied, the tree branches into {[a]ϕ1, tt} and {[a]ϕ2, tt}, both of which
induce further proof obligations. �
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1 def CreateTableau(F , V, count)
2 if F = {tt} then
3 return Leaf(F , −1)
4 else if F = {ff} then
5 return Leaf(F , −1)
6 else
7 〈children, rule〉 ← ApplyRule(F)
8 if children = [c] and ∃〈c, x〉∈V for some x then
9 return Leaf(F , x)

10 else
11 V ← V ++ [〈F , count〉]
12 c trees ← CreateTableau(c, V, count+1) for each c in children
13 return Node(count, F , c trees, rule, false)
14 def SetBackedgeTargets(t)
15 targets ← [ ]
16 for each Leaf l in t where l.backedge target �= −1 do
17 targets ← targets ++ [l.backedge target]

18 for each Node n in t where n.node id ∈ targets do
19 n.backedge ← true

20 return t

Alg. 1. Pseudocode for Building the Tableau

Our implementation circumvents the unnecessary computation steps induced
by the application order of the rules by assuming the following order of priorities:
(tt), ([a, b]), (ff), (max), (∨), (∧), (X), ([a]). We chose this ordering based on the
fact that the first two rules simplify the formula set, rule (∨) increases the size
of the formula set and thus the chance of applying (tt) or ([a, b]), whereas rules
(∧) and (X) respectively increase the width and depth of the tree.

We implement the tableau in Definition 5 as a polymorphic tree: this allows
us to use the same tree structure albeit with different implementations. Nodes
are composed of (i) a node id, (ii) a node label, (iii) a list of children, where
each child is a tree, (iv) a rule of type string, and (v) a boolean value, backedge,
indicating whether that node is the target of some back edge. Leaves have two
elements: (i) a leaf label, and (ii) an integer value, backedge target, to store the
node id of the back edge target; when there is no back edge, this is set to −1. For
convenience, we use the suggestive dot notation (.) to access specific elements.
E.g., the rule applied at node n is accessed via the field n.rule.

The algorithm automating the tableau construction is described in Algo-
rithm 1. The procedure starts from the root of the tableau, which is the sin-
gleton element {ϕ}, applies the rule with a matching premise, and then repeats
this procedure for each resulting child. Since each node is a set of formulae, our
algorithm implements the tableau as a tree of formula sets. The algorithm uses
a set F and a list V. The former is initialised to {ϕ} and stores the formula
set waiting to be analysed. The latter, initialised to empty, stores pairs 〈S, x〉,
where S is a formula set that has been already generated and x is its identifier.
When each set S in 〈S, x〉 ∈ V can reach some other set S ′ in 〈S ′, x′〉 ∈ V via
some rule, the algorithm terminates as no new leaves or nodes can be created.
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Function CreateTableau( ) is the main function. If F is the singleton
element {tt} or {ff}, a leaf with no back edges is created on lines 3 and 5.
Otherwise, the algorithm checks whether it needs to create a new node or add a
back edge to some previous node in the tree by calling ApplyRule( ) on line 7.
This function returns a pair containing a list of formula sets, which represent
the current node’s children, and the rule applied to derive them. If there is only
one child c and 〈c, x〉 is in V, then some node n with label c has already been
generated. Thus, a leaf with a back edge to n is created on line 9 by setting
backedge target to x. Otherwise, the tree for each resulting child is constructed
on line 12. Once the entire tree is constructed, SetBackedgeTargets( ) on
line 14 performs two passes: it first retrieves the list of identifiers of the back edge
targets from the leaves (lines 16, 17), then traverses the tree again to update
n.backedge to true for all nodes n that are target of some back edges (lines 18,
19).

Example 10. Recall property ϕ10 in Example 8. Since tableaux tend to grow
relatively in size, we focus on subformula ϕ11 = max X.([c]ff ∧ [m]ff) ∨ ([c]X ∧
[m]ff), whose tableau is depicted by the left tree in Fig. 4 and forms a subgraph of
the tableau for ϕ10. We omit the outer curly brackets denoting that the formulae
form a set and only include specific elements for better readability.

Starting with the initial formula, Algorithm 1 creates a node with identifier 0
and a child with label {([c]ff ∧ [m]ff) ∨ ([c]X ∧ [m]ff)}, obtained via rule max.
Since the latter formula set has not been generated yet, its tree is created via a
recursive call to CreateTableau( ) on line 12. This tree generation continues
until the fifth recursive call, where a node with label {ff,X} and identifier 5 is
created, whose child is the tree for formula set {X}. The latter has not been
generated yet, but its child, obtained via rule X, has label {ϕX} where ϕX is
given by ([c]ff ∧ [m]ff) ∨ ([c]X ∧ [m]ff): this is precisely the same as that of the
node with identifier 1. Therefore, a leaf with backedge target 1 is created (line 9).

Fig. 4. The tableau for formula ϕ11 before and after relabelling.
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1 def RelabelTableau(t)
2 if t = Leaf l then
3 m ← l.backedge target
4 if m �= −1 then return Leaf(Xm, m)
5 else if tt ∈ l.leaf label then return Leaf(tt, −1)
6 else return Leaf(ff, −1)

7 else t = Node n
8 children ← RelabelTableau(c) for c in n.children
9 if n.rule = (∧) then

10 [c1, c2] ← children
11 f ← Label(c1) ∧ Label(c2)
12 else if n.rule = [a] for some a then
13 [c] ← children
14 f ← [a]Label(c)
15 else
16 [c] ← children
17 f ← Label(c)

18 if n.backedge then
19 m ← n.id
20 return Node(m, max Xm.f , children, n.rule, true)
21 else
22 return Node(m, f , children, n.rule, false)

Alg. 2. Pseudocode for Relabelling the Tableau

Once the entire tree is generated, SetBackedgeTargets( ) then updates the
field backedge of the node with identifier 1 to true. �

The algorithm implementing the tableau relabelling is described in Algo-
rithm2. Given a tree of formula sets, RelabelTableau( ) recursively constructs
a new tree of the same shape, whose root label is the strongest monitorable con-
sequence. Each leaf of the inputted tree is relabelled to either Xm (where m
is the identifier of the back edge target), tt or ff (lines 4, 5, 6). Each node is
relabelled in two steps: the algorithm first relabels its children via a recursive
call to RelabelTableau( ) on line 8, then it relabels the node according to
which rule was applied to derive its children. For rule (∧), the new label is the
conjunction of its two children c1 and c2, whereas for rule ([a]), it is that of its
child prefixed by [a] (lines 11, 14). Otherwise, the label is identical to that of its
child (line 17). Before creating a node with these values, line 18 checks whether
it is the target of a back edge: if it is, the label is turned into a greatest fixed
point by prefixing it with max Xm where m is the node’s identifier. The function
Label( ) retrieves the value of node label or leaf label, depending on the node
type.

Remark 2. Implementing line 11 naively results in formulae with several redun-
dant terms, where one of the conjuncts (or both) is tt. Our implementation
sidesteps this by conjuncting c1 and c2 only if both are different from tt, and
sets the label to c1 when c2 is equivalent to tt and vice versa. Also, all labels
in the relabelled tableau consist a single formula. Arguably, such a tableau still
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can be implemented as a tree of formula sets, but it would impinge on the tool’s
performance as the algorithm would repeatedly have to retrieve the formula from
the set. To this end, we implement the relabelled tableau as a tree of formulae,
justifying why we opted to define the tree structure as a polymorphic type. �
Example 11. The relabelled tableau for formula ϕ11 from Example 10 is depicted
by the right tree in Fig. 4. Since its internal structure is analogous to that of the
left tree, we omit the node identifiers and rules used to derive the children.

Starting from the root of the left tree, Algorithm 2 creates a new node with
label max X1.[c]X1 ∧ [m]ff on line 17. This is obtained by inheriting the label of
its child, generated via a recursive call to RelabelTableau( ) on line 8. Since
the node with identifier 1 is the target of a back edge, a new node is created on
line 18 where its label is obtained in two steps. First, it retrieves the label of
its child on line 17, and then transforms it into a greatest fixed point label by
prefixing it with max X1. This tree generation continues until the leaves of the
tree are reached: for the leaf with label {X} and a back edge to node 1, a new
leaf with label X1 is created, whereas all the other leaves are left untouched. �

Once Algorithm 2 returns the relabelled tableau, our prototype tool outputs
its root label, which describes the strongest monitorable consequence of the
initial formula.

4 The Tool

The previous section presented a thorough overview of the algorithms for con-
structing the strongest monitorable consequence. In this section, we give more
details on the tool’s internal architecture and how it can be used in practice.

4.1 Internal Architecture

The algorithms in Sect. 3 are implemented in OCaml (version 4.08.0) in a
straightforward fashion, resulting in a prototype tool that takes as input a for-
mula and outputs its strongest monitorable consequence. This is achieved by
first building a parse tree for the inputted formula, using the Menhir parser
generator, and then successively calling the functions automating the three steps
in Sect. 3. The OCaml code is organised into several modules in the src/ directory,
which can be further decomposed into three folders; definitions, parsing and utils.
The first directory stores two modules, strongestMonCons.ml and SMCTableau-
Rules.ml. The former implements the first two steps in Sects. 3.2 and 3.3, while
the latter implements Algorithms 1 and 2 and the tableau rules as the func-
tions create tableau(), relabel tableau(), and apply rules() respectively, preserving
the naming conventions from Sect. 3.4. The second directory then contains the
modules that handle the parsing, whereas the last stores all modules containing
user-defined types and helper functions.
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4.2 Usage

The tool can be invoked from the terminal, where the formula is inputted either
by passing it as a command line argument or by providing the path of the
file containing the formula when prompted. For instance, in the first approach,
the strongest monitorable consequence of ϕ8 from Example 6 is generated by
executing the command below, where the logical or’s and and’s are respectively
substituted by the | and & operators.

./main.native "([c]ff & [m]ff) | ([m]ff & <c>(max X.([c]ff & [m]ff) |

(<c>X & [c]X & [m]ff)) & [c](max X.([c]ff & [m]ff) | (<c>X & [c]X

& [m]ff)))"

Conversely, the second approach involves omitting the formula altogether: this
is especially appealing when formulae are more complex, while facilitating inte-
gration with the first component in the toolchain of Fig. 1 once it is realized.
The output returned by both methods can be decomposed into four parts;
(i) the parse tree of the inputted formula, (ii) elimination of existential modal-
ities, (iii) elimination of least fixed points, and (iv) elimination of disjunctions.
Inputting formula ϕ8 from Example 6, our tool returns the following, where the
formulae outputted in (ii) and (iii) respectively correspond to ϕ9 and ϕ10 from
Examples 7 and 8.

================================ STEP 1 ================================

The formula after eliminating existential modalities is:

[c]ff & [m]ff | [m]ff & tt & [c](max X.[c]ff & [m]ff | tt & [c]X & [m]ff)

================================ STEP 2 ================================

The formula after eliminating minimal fixed points is:

[c]ff & [m]ff | [m]ff & tt & [c](max X.[c]ff & [m]ff | tt & [c]X & [m]ff)

The simplified formula is:

[c]ff & [m]ff | [m]ff & [c](max X.[c]ff & [m]ff | [c]X & [m]ff)

The fourth part of the output consists of two trees, representing the tableau of
the formula returned in (iii) before and after relabelling. In our example, the
output below shows a subtree of the tableau for ϕ10 before the relabelling, which
corresponds to the tableau for ϕ11 from Example 10, depicted in Fig. 4. We omit
the output after the relabelling as it possesses a similar format.

(max)6 max X.[c]ff & [m]ff | [c]X & [m]ff;

(or)7 [c]ff & [m]ff | [c]X & [m]ff; back edge target

(and)8 [c]ff & [m]ff; [c]X & [m]ff;

(and)9 [c]X & [m]ff; [c]ff;

([c])10 [c]ff; [c]X;

(ff)11 ff; X;

(X)12 X;
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[c]ff & [m]ff | [c]X & [m]ff; back edge to 7

([a,b])13 [c]ff; [m]ff;

tt;

(and)14 [c]X & [m]ff; [m]ff;

([a,b])15 [c]X; [m]ff;

tt;

([m])16 [m]ff;

(ff)17 ff;

Our tool can also export the computed strongest monitorable consequence
to the format expected by detectEr tool and write it to file. This functionality
can be triggered using the keyword save, as shown below. In turn, this allow us
to input the file to detectEr, which will then synthesise the optimal monitor.

./main.native "([c]ff & [m]ff) | ([m]ff & <c>(max X.([c]ff & [m]ff) |

(<c>X & [c]X & [m]ff)) & [c](max X.([c]ff & [m]ff) | (<c>X & [c]X

& [m]ff)))" save

5 Evaluation

Sections 3 and 4 demonstrate that the procedure in [4] for computing the
strongest monitorable consequence of recHML formulae can be automated,
albeit with an exponential worst-case complexity upper bound. However, it
remains unclear whether this is fully-representative of the implemented pro-
totype. In this section, we evaluate the scalability our tool; in the absence of
standard benchmarks, we devise two strategies for our empirical evaluation. All
experiments were carried out on a Quad-Core Intel Core i5 64-bit machine with
16 GB memory, running OCaml version 4.08.0 on OSX Catalina. They can be
reproduced using the sources provided at https://github.com/jasmine97xuereb/
optimal-monitor.

Parametrisable Formulae. Since eliminating the existential modalities and
least fixed points is linear, the disjunction elimination step is responsible for
the overall complexity of the algorithm. We thus construct a family of disHML

formulae aimed at maximizing the width and depth of the tableau that is con-
structed in Algorithm 1. More concretely, P1(k) below defines a family of for-
mulae with a high branching-factor, resulting in a high level of branching in
the tableau. The formulae generated by the skeleton P2(k) consist of several
disjunctions and modalities over the same action, which blow-up the size of the
formula sets. Additionally, several of these sets are composed of recursion vari-
ables X1, . . . , Xn, inducing further iterations in Algorithms 1 and 2. We contend
that these skeletons adequately stress test our tool since the tableau construc-
tion of the generated formulae heavily relies on the application of rules (∧), (∨),
and (X), which induce the highest increase in tableaux size and complexity.

https://github.com/jasmine97xuereb/optimal-monitor
https://github.com/jasmine97xuereb/optimal-monitor
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Fig. 5. Performance of the tool against different formulae

P1(k)=max X.
∧

i∈k

( ∧

ϕ∈Bai

〈a〉ϕ ∧ [a]
∨

ϕ∈Bai

ϕ
)

where Ba = {[a]ff,X}

P2(k)=
∨

i∈k

max Xi.
(∧

j∈k

〈aj〉Xi ∧ [aj ]Xi

) ∧ [bi]ff

We evaluate the mean running time (over 5 repeated runs) for these prop-
erty instances over an increasing parameter k. The results, reported in the left
graph of Fig. 5, show that for this set of properties, our implementation runs in
quadratic time. We remark that, at this point, it is open to investigation whether
the exponential worst-case complexity can be reached.

Random Formulae. Since the parametrised instances only target specific fea-
tures of the algorithm, we also evaluate it against formulae that are randomly
generated following a uniform distribution on the grammar of disHML for bet-
ter coverage. The plotted results in the right graph of Fig. 5, which show the
mean running time (over 500 repeated runs) of random formulae with increas-
ing size, indicate that the average running time remains considerably lower than
that for the family of formulae generated by the parameterised instances. Indeed,
formulae are drastically simplified before reaching the third step, and modalities
rarely interact in a way that make the tableau grow. We note that it is not clear
how close the distribution adopted here is to the one obtained from uniformly
chosen recHML formulae that are then converted to disjunctive form.

Although there is no guarantee that the results obtained in this section carry
over to the toolchain in Fig. 1, they give preliminary evidence that our prototype
tool scales well in the general case.

6 Conclusion

This paper investigates the implementability aspects of the procedure outlined
in [4]. In particular, our prototype tool takes arbitrary branching-time properties
expressed in disjunctive recHML and constructs their best monitorable approx-
imation according to [1,20]. This enables us to extend the known synthesis tools
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to generate optimal monitors for arbitrary branching-time properties. The tool
and the accompanying demo video can be found at https://zenodo.org/badge/
latestdoi/420058357 and https://youtu.be/XI6GoG4MaNk.

6.1 Future Work

We plan to automate the translation from recHML formulae to their equivalent
disjunctive form as presented in [30] to complete the toolchain of Fig. 1. In turn,
this will allow us to investigate possible optimisations based on a more precise
evaluation of our tool. Finally, we note that the detectEr tool can handle actions
that carry data from an infinite domain. We plan to investigate to what extent
the techniques in [4] generalise to this setting. This is a challenging endeavour
as the automata-logic correspondence they rely on is far more complex in the
presence of data [13,16].

6.2 Related Work

Linear- vs Branching-Time. In linear-time monitoring, we are interested in a
property of the current execution, rather than the system as a whole. This is
particularly useful for checking in deployed systems whether the output of a
third-party component is safe to use in a critical component, for example. Then,
whether the non-trusted component can also produce unsafe executions is largely
irrelevant. Finding optimal monitors corresponds to computing the good and bad
prefixes of a linear-time property, that is, the prefixes of which either all or no
continuation satisfies the property, as done by Kupferman and Vardi [24] or by
Havelund and Peled [20]. In contrast, when RV is used as a best-effort alternative
to model-checking, we are trying to work out whether the system, rather than
the current execution, is correct. Since monitors still only observe one execution,
the proportion of monitorable properties is, unavoidably, smaller [2]. As a result,
the benefit of using optimal monitors is even greater, as it expands the realm
of properties that monitors can be used for. Note that the complexity of finding
optimal monitors is double-exponential already in the linear-time setting [24],
so the difficulty added by the branching-time setting is mostly conceptual.

Monitoring with Prior Knowledge. One of the use-cases for optimal monitors
is the incorporation of prior knowledge (assumptions) into the monitor, which
allows more violations to be identified. As argued in [4], computing the opti-
mal monitor is also an optimal way to incorporate prior knowledge into the
monitor. This problem has been studied in the linear-time setting (with linear-
time assumptions) by Henzinger and Saraç [22], by Cimatti et al. [14], and by
Leucker [25], and for hyperproperties by Stucki et al. [29].

Monitoring Tools. Among many RV tools, let us mention MaC [23], PathEx-
plorer [21], Eagle [9], and RuleR [10], Temporal Rover [17], and Java-
MOP [26], all runtime verification tools based on various specification languages.
Blech et al. [27], Schneider et al. [28] and Basin et al. [12] aim to generate verified

https://zenodo.org/badge/latestdoi/420058357
https://zenodo.org/badge/latestdoi/420058357
https://youtu.be/XI6GoG4MaNk
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monitors from specifications. The former uses proof assistant Coq and targets
regular properties, while the latter two use Isabelle/HOL and target metric first
order temporal logics; both produce executable monitors in OCaml. Typically,
these tools focus on linear-time specifications, which makes them harder to adapt
to properties generated primarily for model-checking rather than RV, and does
not lend them to incorporating prior knowledge of the system, expressed as
branching time properties, into the monitoring set-up.
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