
A Monitoring Tool for Linear-Time
µHML

Luca Aceto2,3 , Antonis Achilleos2 , Duncan Paul Attard1,2(B) ,
Léo Exibard2 , Adrian Francalanza1 , and Anna Ingólfsdóttir2

1 University of Malta, Msida, Malta
{duncan.attard.01,afra1}@um.edu.mt

2 Reykjavik University, Reykjavik, Iceland
{luca,antonios,duncanpa17,

leoe,annai}@ru.is
3 Gran Sasso Science Institute,

L’Aquila, Italy
luca.aceto@gssi.it

Abstract. We present the implementation of a prototype tool that run-
time checks specifications written in a maximally-expressive safety frag-
ment of the linear-time modal μ-calculus called maxHML. Our technical
development is founded on previous results that give a compositional syn-
thesis procedure for generating monitors from maxHML formulae. This
paper instantiates this synthesis to a first-order setting, where systems
produce executions containing events that carry data. We augment the
logic with predicates over data, and extend the synthesis procedure to
generate executable monitors for Erlang, a general-purpose programming
language. These monitors are instrumented via inlining to induce min-
imal runtime overhead. Our monitoring algorithm also maintains infor-
mation, which it uses to explain how verdicts are reached.

Keywords: Runtime verification · Linear-time specifications · Monitor
synthesis

1 Introduction

Runtime Verification (RV) [13,17,36,52] is a lightweight verification technique
that dynamically checks the current execution to determine whether a Sys-
tem under Scrutiny (SuS) satisfies or violates some correctness stipulation.
These stipulations are generally expressed using a specification logic to formally
describe the behaviour the SuS should observe. RV synthesises specifications
into monitors: computational entities that are instrumented with the SuS to

Supported by the doctoral student grant (No: 207055) and the MoVeMnt project
(No: 217987) of the Icelandic Research Fund, the BehAPI project funded by the
EU H2020 RISE of the Marie Sk�lodowska-Curie action (No: 778233), the ENDEAV-
OUR Scholarship Scheme (Group B, national funds), and the MIUR project PRIN
2017FTXR7S IT MATTERS.

c© IFIP International Federation for Information Processing 2022
M. H. ter Beek and M. Sirjani (Eds.): COORDINATION 2022, LNCS 13271, pp. 200–219, 2022.
https://doi.org/10.1007/978-3-031-08143-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08143-9_12&domain=pdf
http://orcid.org/0000-0002-2197-3018
http://orcid.org/0000-0002-1314-333X
http://orcid.org/0000-0002-2448-5394
http://orcid.org/0000-0003-0318-1217
http://orcid.org/0000-0003-3829-7391
http://orcid.org/0000-0001-8362-3075
https://doi.org/10.1007/978-3-031-08143-9_12

A Monitoring Tool for Linear-Time μHML 201

analyse its execution (expressed as a trace of events) incrementally, and reach
verdicts that cannot be retracted when observing future events. Figure 1 depicts
this set-up.

The vast majority of existing work and tooling efforts on RV focus on checking
specifications that describe properties of system executions (Fig. 1a). Most of
these studies are conducted in the context of temporal logics that are based on
LTL (e.g., [19,21,23–25,41,58–60]). Despite its widespread use, LTL has limited
expressiveness. For instance, it cannot express properties such as ‘every even
position in the execution satisfies some proposition p’ [4,62].

The modal μ-calculus with a linear-time interpretation [49] has been shown to
embed several other standard logics, including LTL, making it suitable to express
a wider range of properties. Recent work [3,4] studies monitors for μHML [7,51],
a reformulation of the μ-calculus. One aspect that sets that work apart from the
ones cited above is the modular approach the authors adopt in their technical
development. Rather than redefining the semantics of the logic to assimilate the
notion of monitoring verdicts, their study identifies runtime monitorable syntac-
tic fragments of μHML, delineating between its semantics on the one hand, and
the operational semantics of monitors on the other. The authors define a synthe-
sis procedure that generates correct monitors from these fragments. They also
establish a correspondence between monitor acceptance (resp. rejection) verdicts
and satisfactions (resp. violations) in the logic, and show that the fragments iden-
tified are maximally-expressive, i.e., characterise all monitorable properties. This
separation of concerns provides a principled approach to RV tool construction.

This paper presents the implementation of a prototype tool that builds on
the theoretical foundations of [3,4]. It adopts the fragment maxHML of μHML
that is used to specify safety properties on the current system execution. The
study in [3,4] considers regular properties, which arguably limits its applicability
to a broader setting where executions contain events that carry data [17,35].
We, therefore, lift the results of that study to a first-order setting, and extend
the logic and synthesis procedure with predicates over data. Our adaptation of
the monitor synthesis closely follows the one of [3,4], giving us high assurances
that the corresponding monitors are correct. A facet that is often overlooked in
RV is verdict explainability, where tools justify how monitoring judgements are
reached [39]. Instantiations of this concept are commonplace in related fields.
For example, model checking tools [48] produce diagnostic traces that explain
why a model fails to satisfy some specification; in the same spirit, programming
language frameworks capture runtime information and present it in the form of
stack traces or core dumps. We take a first step in this direction, and engineer
our monitoring algorithm to derive an explanation that is constructed using
the monitor operational semantics of [3,4]. Since our prototype tool does not yet
perform space optimisations for the purposes of explainable verdicts, this feature
is intended for debugging or offline use.

In a parallel research direction, we study other monitorable μHML frag-
ments in a branching-time setting [1,2,37,38], where the logic describes prop-
erties about the computation graph of programs (Fig. 1b). Much of this body

202 L. Aceto et al.

Fig. 1. RV of linear- and branching-time property ϕ by analysing the SuS trace

of work is concretised as detectEr [12–14,26], a runtime monitoring tool for
concurrent Erlang programs. The material we propose in this paper comple-
ments the one in detectEr, contributing towards one tool that can runtime check
specifications under their linear- and branching-time interpretations. Our con-
tributions are:

(i) We extend the logic maxHML with data support, and show how this is
used to specify properties on the current system execution, Sect. 2;

(ii) adapt the monitor synthesis and operational semantics of [3,4] to enable
monitors to reach verdicts based on the data carried by trace events, Sect. 3;

(iii) discuss the challenges encountered when instantiating the synthesis in
Sect. 3 to a general-purpose programming language, and overview the tech-
nique we use to instrument monitors that induce minimal runtime overhead,
Sect. 4.

2 The Logic

We overview our chosen logic, maxHML, a maximally-expressive syntactic frag-
ment of μHML used to describe safety properties of system executions [3]. It
assumes a set of external actions α, β ∈Act, together with a distinguished inter-
nal action τ �∈Act that represents one internal step of computation. External
actions range over values taken from some (potentially infinite) data domain, D.
Executions, also referred to as traces, are infinite sequences of external system
actions that abstractly represent complete system runs. We reserve the metavari-
ables t, u ∈Actω to represent infinite traces, and use αt to denote an infinite
trace that starts with α and continues with t.

Figure 2 shows our extension of maxHML, called maxHMLd, with pred-
icates over data. Its syntax assumes a denumerable set of logical variables,

A Monitoring Tool for Linear-Time μHML 203

Fig. 2. Syntax and linear-time semantics for the logic maxHMLd

X,Y ∈LVar. In addition to the standard Boolean constructs, the logic can
express recursive properties as greatest fixed point formulae, max X.(ϕ), that
bind the free occurrences of X in ϕ. The existential and universal modalities
〈x, e〉ϕ and [x, e]ϕ express the dual notions of possibility and necessity respec-
tively. We augment these two modal constructs with symbolic actions, (x, e), to
enable the reasoning on the data carried by external actions. Symbolic actions
are pairs consisting of data variables, x, y ∈DVar, and decidable Boolean con-
straint expressions, e, f ∈BExp. Data variables range over the domain D of data
values, and bind the free occurrences of x in the expression e of the modality
and in the continuation formula ϕ. The set BExp, defined over D and DVar,
consists of the usual Boolean operators ¬ and ∧, together with a set of rela-
tional operators that depends on D, which we leave unspecified. For clarity, we
omit writing the Boolean constraint expression e in modalities when e = true,
and use bold lettering to identify binders in symbolic actions. In the sequel,
the standard notions of open and closed expressions, and formula equality up to
alpha-conversion are used. A formula is said to be guarded if every fixed point
variable X appears within the scope of a modality that is itself in the scope
of X. For example, max X.([x]ff ∧ [y]X) is guarded, as is max X.([x]([y]ff ∧ X)),
while [x]max X.([y]ff ∧ X) is not. Without loss of expressiveness [50], we assume
all formulae to be guarded.

The linear-time interpretation of maxHMLd is given by the denotational
semantic function �−� that maps a formula to a set of traces. The function �−�
uses valuations, σ : LVar → 2Actω

, to define the semantics inductively on the
structure of formulae. The value σ(X) is the set of traces that are assumed
to satisfy X. In �−�, modal formulae are interpreted w.r.t. symbolic actions. A
symbolic action (x, e) describes a set of external system actions. An action α is in
this set when the data value it carries satisfies the Boolean constraint expression
e that is instantiated with the applied substitution [α/x], i.e., e[α/x] ⇓ true (see
Fig. 2). The possibility formula 〈x, e〉ϕ denotes all the traces αu where α is
in the action set (x, e) and u satisfies the continuation ϕ[α/x]. Dually, [x, e]ϕ
denotes all the traces αu that, if prefixed by some α from the action set (x, e),

204 L. Aceto et al.

u then satisfies ϕ[α/x]. The set of traces satisfying the greatest fixed point formula
max X.(ϕ) is the union of all the post-fixed point solutions, S ⊆ Actω, of the
function induced by the formula ϕ. Since the interpretation of closed formulae
does not depend on the environment σ, we may use �ϕ� in lieu of �ϕ, σ�. A trace
t satisfies (the closed) formula ϕ when t ∈ �ϕ�, and violates ϕ when t �∈ �ϕ�.

To facilitate our exposition in this section and Sect. 3, we let D = Z, and fix
the set of operators used in BExp to ¬, ∧ and =. Sect. 4 considers the general
case where the data carried by external actions can consist of composite data
types. Henceforth, the terms action and event are used synonymously.

Fig. 3. Token server that issues integer identifier tokens to client programs

2.1 Trace Properties

Consider the model of a reactive token server, p1 in Fig. 3, that issues client
programs with identifier tokens that they use as an alias to write logs to a
remote logging service. Clients request an identifier by sending the command 0,
which the server then fulfils by replying with a new token, n∈N. Since the server
is itself a program that also uses the remote logging service, it is launched with
its (reserved) identifier token 1. Figure 3 shows that from its initial state p1, the
token server either: (i) starts up with the token 1 and transitions to p3, where
it waits for incoming client requests, or, (ii) fails to start and transitions with a
status of −1 to the sink p2, thereafter exhibiting undefined behaviour. There are
a number of properties we want executions of this token server to observe.

Example 1. One rudimentary property the current execution of server p1 should
uphold is that ‘no failure occurs at start up’. This safety requirement is expressed
in terms of the maxHMLd formula:

[x, x = −1]ff (ϕ1)

The symbolic action (x, x = −1) defines the singleton set {−1}⊂Z of external
system actions. Necessity modal formulae [x, e]ϕ state that, for any trace prefix
α in the set defined by (x, e), the trace continuation u must then satisfy ϕ.
However, no trace satisfies ff. This means that, in order for server traces not
to violate formula ϕ1, they must start with actions α �∈ {−1}. The set of traces
1 . (0 .N)ω exhibited by p1 satisfies this property, whereas −1 .Zω does not. �

A Monitoring Tool for Linear-Time μHML 205

Example 2. Further to the stipulation of Example 1, we require that ‘the server
is initialised with the identifier token 1’, expressed as:

[x, x = −1]ff ∧ 〈x, x = 1〉tt (ϕ2)

The conjunct [x, x = −1]ff guards against traces of p1 exhibiting failure when
loading; 〈x, x = 1〉tt asserts that the trace exhibits 1 at start up, indicating a
successful initialisation of the server. Formula ϕ2 is satisfied exactly by server
traces of the form 1 .Nω. Note that the binders x in [x, x = −1] and 〈x, x = 1〉
of ϕ2 bind the variables x in different scopes. �

The symbolic actions of Examples 1 and 2 define sets of external actions
w.r.t. literal values (e.g. −1, 1). More generally, action sets can be defined using
constraint expressions that refer to other data variables within the same scope.

Example 3. Amongst the executions satisfying ϕ2 are those where the server
accidentally returns its identifier token 1 in reply to client requests. We there-
fore demand that ‘the server private token 1 is not leaked in client replies’. For-
mula ϕ3 expresses this recursive property in a general way (note that Boolean
constraint expressions e = true are elided):

[x]max X.
(
[y]([z, x = z]ff ∧ [z, x �= z]X)

)
(ϕ3)

The symbolic action (x, true) in the first necessity defines the set of actions
Z. Its binder, x, binds the variable x in max X.

(
[y]([z, x = z]ff ∧ [z, x �= z]X)

)
.

For some initial server action α ∈ Z, applying the substitution [α/x] to this con-
tinuation and unfolding the recursion variable once, gives the residual formula:

[y]
(
[z, α = z]ff ∧ [z, α �= z]max X.

(
[y]([z, α = z]ff ∧ [z, α �= z]X)

))
(ϕ3

′)

The necessity [y]maps y to the second server action β in the trace, i.e., [β/y].
Applying [β/y] to [z, α = z]ff and [z, α �= z]maxX

(
[y]([z, α = z]ff ∧ [z, α �= z]X)

)

leaves both sub-formulae unchanged, since y binds no variables. For the third
server action γ, the modalities [z, α = z] and [z, α �= z]map z to γ. Formula ϕ3

is violated, ff, when the constraint α = z[γ/z] holds, i.e., α ∈ {n ∈ Z | α = γ}.
Crucially, a fresh scope for data variables is created upon each unfolding of

X, such that y and z can be mapped to new values. By contrast, the value in x
is substituted for once in ϕ3

′ and remains fixed when X is unfolded. Concretely,
formula ϕ3 compares actions at every odd position in the trace against the one at
the head. Interpreting ϕ3 over traces that the token sever exhibits on successful
initialisation ensures that in particular, 1 . (0 . {n ∈ N | n �= 1})∗ . (0 . 1) .Nω are
violating. We remark that this property is not expressible in LTL. �

206 L. Aceto et al.

3 Monitor Synthesis

The logic maxHMLd is interpreted over infinite traces that represent complete
system runs (refer to Sect. 2). In (online) RV where the SuS is reactive, obtaining
complete runs is typically not possible [17,52], since the current trace corresponds
to a prefix that is incrementally extended as the system execution unfolds. The
notions of good and bad prefixes for monitorable properties provide sufficient
evidence to determine acceptance or rejection. Informally, a good (resp. bad)
prefix is a finite trace for which every extension satisfies (resp. violates) a prop-
erty ϕ [10,24]. Monitors capture this principle through irrevocable verdicts that,
once reached, cannot be retracted when observing future events.

Monitors may be viewed as processes via the syntax given in Fig. 4. This syn-
tax differs from its regular counterpart of [3,4] in that it augments the prefixing
construct with symbolic actions, (x, e). Besides the prefixing, external choice,
and recursion constructs of CCS [54], the syntax of Fig. 4 includes disjunctive,
⊕, and conjunctive, ⊗, parallel composition. We use the symbol to refer to
both ⊕ and ⊗ when needed. Monitor verdict states, v ∈ Vrd, are expressed as
yes and no, respectively denoting acceptance and rejection.

Fig. 4. Syntax, synthesis, and small-step semantics for parallel monitors

A Monitoring Tool for Linear-Time μHML 207

Figure 4 outlines the behaviour of monitors, where the transitions rules
mRec, mChsL, and its symmetric case mChsR (omitted), are standard. Rule
mAct describes the analysis monitors perform, where the binder x in the sym-
bolic action (x, e) is mapped to an external system action α, yielding the substi-
tution [α/x] that is applied to the Boolean constraint expression e. The monitor
(x, e).m analyses α only if the instantiated constraint e[α/x] is satisfied, where-
upon α is substituted for the free variable x in the body m. Verdict irrevocability
is modelled by mVrd, where once in a verdict state v, any action can be anal-
ysed by monitors without altering v. Rule mPar enables parallel sub-monitors to
transition in lock-step when they analyse the same action α. The rest of the rules
(omitting the obvious symmetric cases) cater for the internal reconfiguration of
monitors. For instance, rules mDisYL and mDisNL state that in disjunctive par-
allelism, yes supersedes the verdicts of other monitors, whilst no does not affect
the verdicts of other monitors; mConYL and mConNL express the dual case
for parallel conjunctions. Finally, mTauL and its symmetric analogue permit
sub-monitors to execute internal reconfigurations independently.

Our adaptation �−� of the compositional synthesis procedure for regular mon-
itors [3,4] is also given in Fig. 4. It generates monitors for ϕ ∈ maxHMLd, follow-
ing the inductive structure of formulae. The translation for truth and falsehood,
and the greatest fixed point and recursion variable constructs is direct; disjunc-
tion and conjunction are transformed to their parallel counterparts. Modal con-
structs are mapped to deterministic external choices, where the left summand
handles the case where a system action α is in the set described by the symbolic
action (x, e), and the right summand, the case where α is not in this set. This
embodies the duality of possibility and necessity: when α is not in the action set
(x, e), the formula 〈x, e〉ϕ is violated, whereas [x, e]ϕ is trivially satisfied.

Example 4. The monitor m2 synthesised from formula ϕ2 is:

�ϕ2� = �[x, x = −1]ff ∧ 〈x, x = 1〉tt� = �[x, x = −1]ff� ⊗ �〈x, x = 1〉tt� (m2)

=
(
(x, x = −1).no + (x, x �= −1).yes

) ⊗ (
(x, x = 1).yes + (x, x �= 1).no

)

When analysing the server traces −1 .Zω, monitor m2 reduces to no⊗no via
the rule mPar. Its premises are obtained by applying the mChsL and mAct to
the left sub-monitor, and mChsR and mAct to the right sub-monitor, giving:

(x, x = −1).no+ (x, x �= −1).yes
−1−→ no and (x, x = 1).yes+ (x, x �= 1).no

−1−→ no

Monitor no⊗no afterwards transitions internally, no⊗no
τ−→ no, via either

rule mConNL or mConNR. Analogously, m2 reaches the verdict yes when
analysing the server traces 1 .Nω. Recall that when in a verdict state, the mon-
itor can always analyse future events by virtue of mVrd, flagging the same
outcome. The behaviour of monitor m2 corresponds to the property that ϕ2

describes (refer to [3,4] for details). �

208 L. Aceto et al.

Example 5. Consider the recursive monitor m3 synthesised from formula ϕ3:

(x).rec X. (y).
((

(z, x = z).no + (z, x �= z).yes
) ⊗ (

(z, x �= z).X + (z, x = z).yes
))

(m3)

For the server traces 1 . 0 . 2 . 0 . 1 . (0 .N)ω, m3 instantiates x to the value 1
at the head, and applies the substitution [1/x] to the residual monitor, giving:

rec X. (y).
((

(z, 1 = z).no + (z, 1 �= z).yes
) ⊗ (

(z, 1 �= z).X + (z, 1 = z).yes
))

(m′
3)

Hereafter, m′
3 unfolds continually, ensuring that no event carries the value

1 observed at the head of the trace. At every even position, y is instantiated
with 0, whereas the binders z in each of the sub-monitors composed in parallel
compare the value carried by events occurring at odd trace positions against 1.
Monitor m′

3 reaches the verdict no via these reductions:

m′
3

τ−→ (y).
((

(z, 1 = z).no+ (z, 1 �= z).yes
) ⊗ (

(z, 1 �= z).m′
3 + (z, 1 = z).yes

))
(m′′

3)
0−→ (

(z, 1 = z).no+ (z, 1 �= z).yes
) ⊗ (

(z, 1 �= z).m′
3 + (z, 1 = z).yes

)
(m′′′

3)
2−→ yes ⊗ m′

3
τ−→ m′

3
τ−→ m′′

3
0−→ m′′′

3
1−→ no ⊗ yes

τ−→ no
n−→ no

n−→ . . .

For the non-rejecting server traces 1 . (0 . {n ∈ N | n �= 1})ω, monitor m′
3 visits

the state yes⊗m′
3 indefinitely, where m′

3 supersedes the uninfluential verdict yes
following the rule mConYL. �

4 Implementation

We implement our tool in Erlang [11,27], a general-purpose programming lan-
guage that adopts the actor model of concurrency [8,44]. In this model, processes
communicate exclusively by addressing asynchronous messages to one another
via their uniquely-assigned Process ID (PID). Besides sending and receiving
messages, processes can also fork other processes. This concurrency paradigm is
tailored to reactive systems, making it ideal for our study.

4.1 Refining the Model

We refine the logic of Sect. 2 and monitor model of Sect. 3 to fit the Erlang
use-case, where data can consist of composite types, such as tuples and lists.
Accordingly, we generalise our definition of external actions as follows. Let l ∈ L
be a finite set of action labels, and d1, d2, . . . be data values taken from a set of
data domains D =

⋃
i∈N

Di (e.g. integers, PIDs, tuples, etc.). An external action

A Monitoring Tool for Linear-Time μHML 209

α is a tuple, (l , d1 , . . . , dn), where the first element is the label, and d1, . . . , dn

is the data payload carried by α. We use the notation l(d1 , . . . , dn) to write α.
Patterns, p ∈ Pat, are counterparts to external system actions. These are

defined as tuples, (l ,x1 , . . . ,xn), where x1, x2, . . . are data variables ranging
over D. Our revised definition of symbolic actions in the modal constructs 〈p, e〉ϕ
and [p, e]ϕ uses these patterns instead of variables (cf. Sect. 2). The binders
x1, . . . ,xn in p bind the free occurrences of x1, . . . , xn in the Boolean constraint
e, and in the continuation ϕ. We define the function, match(p,α), to handle
pattern matching. This function returns a substitution, π :DVar⇀ D, that maps
the variables in p to the corresponding data values in the payload carried by α,
when the shape of the pattern matches that of the action, or ⊥ if the match
is unsuccessful. Analogous to the symbolic actions of Sect. 2, (p, e) describes a
set of actions: an action α is in this set if (i) the patten match succeeds, i.e.,
match(p, α) = π, and, (ii) the instantiated Boolean constraint expression eπ
holds.

To instantiate our tool to Erlang, we use the action label set L =
{�,�,
, !, ?}, that captures the lifecycle of, and interaction between processes.
The fork action, �, is exhibited by a process when it creates a child; its dual, �,
is exhibited by the child process upon initialisation. An error action,
, signals
abnormal process behaviour; send and receive, respectively ! and ?, denote inter-
action. Table 1 details the actions related to these labels, and the data payload
they carry.

Fig. 5. Client-server interaction of the Erlang token server implementation

Our token server of Fig. 3 is readily translatable to Erlang, as shown in
Fig. 5. The server starts when its main function, lp, in the Erlang module ts
is invoked, state p1. From p1, it transitions to p3, exhibiting the initialisation
event �(PIDS, PIDP, ts, lp, 1); the placeholders PIDS and PIDP respectively denote
the PID values of the token server process and of the parent process forking the
server. At p3, the server accepts client requests, consisting of the tuple {PIDC, 0},
where PIDC denotes the PID of the client, and 0 is the command requesting a
new token. From state p4, the server replies with n, and transitions back to
p3. This client-server interaction results in the server events ?(PIDS, {PIDC, 0})
and !(PIDS , PIDC , n). When the server fails at startup, it exhibits abnormal
behaviour, shown as the error events
(PIDS , -1) and
(PIDS , m).

Example 6. Formula ϕ2 w.r.t. the Erlang server of Fig. 5 is expressed as follows:

[�(x1 , x2), x2 = -1]ff ∧ 〈�(x1 , x2 , x3 , x4 , x5), x5 = 1〉tt (ϕ4)

210 L. Aceto et al.

Table 1. Actions capturing the behaviour exhibited by Erlang processes
Action α Action pattern p Variables Description

fork �(x1 , x2 , y1 , y2 , y3) x1 PID of the parent process

initialise �(x2 , x1 , y1 , y2 , y3) forking x2

x2 PID of the child process forked
by x1

y1, y2, y3 Function signature forked by x1

error �(x1 , y1) x1 PID of the erroneous process

y1 Error datum, e.g. error reason,
etc.

send !(x1 , x2 , y1) x1 PID of the process sending the
message

x2 PID of the recipient process

y1 Message datum, e.g. integer,
tuple, etc.

receive ?(x2 , y1) x2 PID of the recipient process

y1 Message datum, e.g. integer,
tuple, etc.

The patterns in the left and right conjuncts of ϕ4 match the
error and initialisation events. When p1 exhibits an error at start up,
match

(

(x1 , x2),
(PIDS , -1)

)
, yields the substitution π = [PIDS/x1 , -1/x2], and

the instantiated Boolean constraint (x2 = -1)π holds. For the same event,
match

(
�(x1 , x2 , x3 , x4 , x5),
(PIDS , -1)

)
= ⊥ in the right conjunct, leading

to a violation of formula ϕ4. The reverse argument applies for when p1 loads
successfully, where ϕ4 is satisfied. In ϕ4, the pattern variables x1 in
(x1 , x2),
and x1, x2, x3, x4 in �(x1 , x2 , x3 , x4 , x5) are redundant.

[�(, , , , x5)]max X
(

[]
(
[!(, , z3), x5 = z3]ff ∧ [!(, , z3), x5 �= z3]X

))
(ϕ5)

Formula ϕ5 restates ϕ3 with pattern matching. It uses the ‘don’t care’ pattern
, that matches arbitrary values, eliding redundant patterns and variables. �

4.2 The Monitor Synthesis

Our synthesis from maxHMLd specifications to executable Erlang monitors fol-
lows that of Fig. 4. Figure 6 omits the cases for the falsity, necessity and conjunc-
tion constructs, as these are analogous to the ones for tt, 〈p, e〉ϕ and ϕ ∨ ψ. The
translation from specifications to monitors is executed in three stages. First, a
formula is parsed into its equivalent Abstract Syntax Tree (AST). This is then

A Monitoring Tool for Linear-Time μHML 211

Fig. 6. Translation from maxHMLd formulae to Erlang code (excerpt)

passed to the code generator that visits each of its nodes, mapping it to a mon-
itor description as per the rules of Fig. 6. The monitor description is encoded
as an Erlang AST to simplify its handling. In the final stage, this AST is pro-
cessed by the Erlang compiler to emit the monitor source code or a BEAM [27]
executable.

In this definition of �−�, tt (resp. ff) is translated to the Erlang atom yes
(resp. no) that indicates acceptance (resp. rejection). The remaining cases gen-
erate Erlang tuples whose first element, called the tag, is an atom that identifies
the kind of monitor. Disjunctions (resp. conjunctions) are translated to the tuple
tagged with or (resp. and), combining two sub-monitor descriptions. Greatest
fixed point constructs, max X.(ϕ), are mapped to rec tuples consisting of named
functions, fun X() → �ϕ� end, that can be referenced by �X�. Modal constructs
are synthesised as a choice with left and right actions. An action tuple, act,
combines a predicate function and an associated monitor body that is unfolded
when the predicate is true. The predicate function encodes the pattern matching
and Boolean constraint evaluation as one operation, using two clauses. Its first
clause, fun(p) when e, tests the constraint e w.r.t. the variables in the pattern p
that become dynamically instantiated with the data values carried by an action
α at runtime. The second catch-all clause () covers the remaining cases, namely
when: (i) either the action under analysis fails to match the pattern, or, (i) the
pattern matches but the Boolean constraint does not hold. For the left action,
the predicate clause fun(p) when e returns true when the pattern match and
guard test succeed, and false otherwise, i.e., (). This condition is inverted
for the right action, modelling cases (i) and (ii) just described. Our encoding
of the aforementioned predicate in terms of Erlang function clauses spares us
from implementing the pattern matching and constraint evaluation mechanism.
It also enables monitors to support most of the Erlang data types and its full
range of Boolean constraint expression syntax [11]. For similar reasons, �〈p, e〉ϕ�
encodes the monitor body as fun(p) → �ϕ�end to delegate scoping to the Erlang
language. This facilitates our synthesis and optimises the memory management
of monitors by offloading this aspect onto the language runtime.

212 L. Aceto et al.

1 def DeriveAct(α, mon)
2 match mon do
3 case yes ∨ no
4 print ‘Verdict reached’

5 case {act,Pred,m}
6 return m(α) #Apply m to event α

7 case {chs,m,n}
8 if Holds(α, m) ∧ ¬Holds(α, n)
9 return DeriveAct(α, m)

10 else if
¬Holds(α, m)∧Holds(α, n)

11 return DeriveAct(α, n)
12 end if
13 case {Op,m,n} ∧Op ∈ {or, and}
14 m′ = DeriveAct(α, m)
15 n′ = DeriveAct(α, n)
16 return {Op, m′, n′}
17 end def

Expect: Monitor must be in ready state
18 def AnalyseAct(α, m)
19 m′ = DeriveAct(α, m)
20 return ReduceTau(m′)
21 end def

22 def DeriveTau(mon)
23 match mon do
24 case {or, yes,m} return yes

25 case {or, no,m} return m

26 case {and, yes,m} return m

27 case {and, no,m} return no

28 case {rec,m} return m() #Unfold

29 case {Op,m,n} ∧Op ∈ {or, and}
30 if m′ =DeriveTau(m)∧m′ �= ⊥
31 return m′

32 else
33 return DeriveTau(n)
34 end if
35 case Otherwise return ⊥
36 end def

37 def ReduceTau(m)
38 if m′ =DeriveTau(m)∧m′ �= ⊥
39 return ReduceTau(m′)
40 else
41 return m #No more τ reductions
42 end if
43 end def

Alg. 1. Algorithm that reduces monitors following the small-step rules of Fig. 4

4.3 The Monitoring Algorithm

The synthesis procedure of Fig. 4 generates monitors that can runtime check
formulae in parallel against the same position in the trace via disjunctive and
conjunctive parallel composition. Our tool is however engineered to emulate par-
allel monitors, rather than forking processes and delegate their execution to the
Erlang runtime. While the latter method tends to simplify the synthesis and
runtime monitoring, we adopt the former approach for two reasons:

(i) Previous empirical evidence suggests that parallelising via processes may
induce high overhead when the RV set-up is considerably scaled [15]. A
process-free design may render this overhead more manageable [5,6].

(ii) Emulating parallel monitors requires us to tease apart the synthesised mon-
itor description from its operational semantics. By separating these two
aspects, our monitoring algorithm can track the operational rules it applies
to reduce the monitor state, and use these to justify how verdicts are reached.

Our monitoring algorithm (Algorithm1) takes a monitor description m gen-
erated by �−�, and performs successive reductions by applying m to events from
the trace until a verdict is reached. Simultaneously, the algorithm maintains all
the possible active states of the monitor as this is evolved from one state to the

A Monitoring Tool for Linear-Time μHML 213

next. Algorithm 1 encodes this reduction strategy using a series of case state-
ments (lines 2–16 and 23–35), following the operational semantics of Fig. 4. Each
case maps the first part of a rule conclusion to a pattern, enabling the monitor-
ing algorithm to unambiguously match the rule to apply. The body of cases
consists of a return statement that corresponds to the outcome dictated by the
rule. Rules with premises (e.g. mChsL, mPar, etc.) are reduced recursively by
reapplying rules until an axiom is met, whereas axioms (e.g. mVrd, mDisNL,
etc.) reduce immediately. For example, the pattern {chs,m,n} on line 7 speci-
fies that mChsL and mChsR only apply to monitors of the form m+n. Selecting
whether to reduce the left or right sub-monitor by analysing α is delegated to
the function Holds. This instantiates the predicate encoded in act tuples with
the data from α (see Fig. 6), returning the result of the predicate test. When
the condition Holds(α,m)∧ ¬Holds(α, n) is true, m + n is reduced to m,
equivalent to the application of mChsL; the argument for mChsR is symmetric.

The function AnalyseAct of Algorithm 1 conducts the runtime analysis.
It ensures that once an action is analysed, the monitor is left in a state where
it is ready to analyse the next action. We implement this logic by organising
the application of the operational rules of Fig. 4 into two functions, DeriveAct
and DeriveTau, according to the kind of action used to reduce the monitor.
DeriveAct on line 19 reduces the monitor once by applying it to the action
under analysis, yielding m′. Subsequently, ReduceTau reapplies the function
DeriveTau until all the internal transitions of the monitor are exhausted (lines
38–42). The cases on lines 24–27, corresponding to the axioms mDisYL, mDisNL,
mConYL, mConNL, terminate redundant monitor states, and may be seen as
a form of garbage collection. Due to space constraints, DeriveTau omits the
cases symmetric to those of lines 24–27.

Every single application of DeriveAct and DeriveTau results in a deriva-
tion that shows how a monitor evolves from one state to the next according to
the operational rules of Fig. 4. The function AnalyseAct keeps a complete his-
tory of these derivations internally. Derivations are represented as trees, rooted
at the conclusion and terminating at the axiom nodes, that for each step: (i)
maintain the monitor state consisting of the substitution π, and, (ii) the name
of the rule used to derive the step. Maintaining the variable-value mapping in π
across derivation steps demands that we track the changes in these variables for
every active monitor state. This includes accounting for different binding scopes,
variable shadowing, and the creation of fresh scopes when recursion variables, X,
are unfolded. Our Erlang implementation of the functions listed in Algorithm1
in the tool incorporate this described logic. We are aware that storing the com-
plete history ultimately impacts the performance of the runtime analysis. Our
tool compromises by offering two operating modes, normal and debug, where in
the latter, the full derivation history is stored in memory for the purpose of
explainability.

214 L. Aceto et al.

4.4 Monitor Instrumentation

Our tool leverages the existing inlining [34] mechanism implemented in detectEr
to instrument the SuS with monitors. While this approach assumes access to the
source code of the SuS, it has been shown to induce lower overhead, by contrast
to its outline counterpart [5,32,33]. The tool provides the meta keyword with, to
identify the SuS components against which maxHMLd specifications are runtime
checked. Readers are referred to [12] for more details.

5 Case Study

We show the usability of our tool by applying it to an off-the-shelf Erlang web-
server called Cowboy [45]. Cowboy delegates its socket management to Ranch
(a socket acceptor pool for TCP protocols [46]), but forwards incoming HTTP
client requests to protocol handlers that are forked dynamically by the webserver
to service requests independently. We use our tool to runtime check maxHMLd

specifications describing fragments of the interaction protocol between the Cow-
boy and Ranch components. Our aim is to: (i) demonstrate the expressiveness of
our logic by capturing properties of real-world software, (ii) validate the appli-
cability of our monitoring and instrumentation techniques to third-party code,
namely to applications built on top of the Erlang OTP middleware libraries, and,
(iii) explore the utility of explainable verdicts for diagnosing software issues.

We redesign the token server of Fig. 5 as a REST web service deployed on
Cowboy. The server generates identifier tokens using one of two formats, UUIDs,
or short alphanumeric strings. Clients request tokens by issuing a GET request
with parameter, type=uuid or type=short, specifying the token format required.
The web service offers a standard interface: (i) it returns HTTP 400 when the
type parameter is omitted from the request, and, (ii) HTTP 500 when an unsup-
ported type is used. We also simulate intermittent faults in the Cowboy compo-
nents by injecting process crashes based on a fair Bernoulli trial [55].

For our case study, we consider a selection of properties describing the Cow-
boy-Ranch interaction protocol. One such property, ϕrp, concerns Cowboy request
processes that service client requests. It states that in its (current) execution, ‘a
request process does not issue HTTP responses with code 500, nor does it crash’.

max X.

⎛

⎝
[!(rprc , , {tag, code, ...}), tag = resp∧ code = 200]X ∧
[!(rprc , , {tag, code, ...}), tag = resp∧ code = 500]ff ∧
[�(rprc , stat), stat = crash]ff

⎞

⎠ (ϕrp)

In ϕrp, the binders tag and code become instantiated with the atom resp
designating a response message, and the HTTP code of the response returned
to requesting clients. Besides ensuring that response messages sent by request
processes do not contain the code 500, i.e., tag = resp∧ code = 500, formula
ϕrp also asserts that these processes do not crash, i.e., stat = crash. The
binder rprc, referring to the request process PID, is included in ϕrp for clarity.

A Monitoring Tool for Linear-Time μHML 215

While the monitor synthesised from ϕrp flags the corresponding rejection, the
verdict (alone) does not indicate the source of the error. This may suffice for
verifying small-scale systems where errors are manually-trackable, but becomes
impractical in realistic settings such as this case study. Our algorithm addresses
this shortcoming by giving a justification showing how a monitor reaches its
verdict.

6 Conclusion

This paper presents the implementation of a RV tool that runtime checks speci-
fications written in a safety-fragment of the linear-time modal μ-calculus, called
maxHML, augmented with predicates over data. Our work builds on previous
theoretical results for the regular setting [3,4] that give a compositional synthesis
procedure which generates monitors from maxHML formulae. We extend the
logic, synthesis, and monitor operational semantics of [3,4] to enable the tool to
handle events that carry data. We discuss the implementability of this synthesis
procedure, and overview the approach our monitoring algorithm takes towards
providing justifiable monitoring verdicts. Our tool is validated via a realistic case
study that uses an off-the-shelf, third-party Erlang webserver. We show how our
augmented logic flexibly expresses properties involving data, and argue for the
utility of explainable verdicts for diagnosing software issues.

Related Work. The synthesis procedure in this paper contrasts with another
by a line of work that investigates the monitorable safety fragment of the
branching-time modal μ-calculus, called sHML [37,38]. The latter synthesis
generates monitors with non-deterministic behaviour that, while sufficient for
the theoretical results required in op. cit., may lead to missed detections in
practice. An early materialisation of [37,38] as the tool detectEr [13,14,26,40]
addresses this shortcoming by parallelising monitors using processes, enabling
them to reach verdicts along all possible paths. While effective, this approach
scales poorly [15]. Ongoing work on detectEr [12] indicates that a process-free
approach could lead to more efficient runtime monitoring that scales consider-
ably better [5,6].

There are other ways to monitoring systems with events that carry data
besides the ones cited in Sect. 1 (see e.g., [18,20,22,41–43,61]). One work that
shares characteristics with ours is Parametric Trace Slicing (PTS) [29,57], where
the global trace is projected into local sub-traces called slices, based on para-
metric specifications. These are properties specified in terms of symbolic events
whose parameters are instantiated to values from events in the global trace. We
use similar means to identify the SuS components to be instrumented, thus filter-
ing out events and obtain trace slices (see Sect. 4.4). PTS is adopted by a number
of RV tools that handle data (see e.g., [9,28,31,47,53]), notably MarQ [16,56]
for Java, and Elarva [30] for Erlang. Elarva takes a näıve strategy to PTS, rely-
ing on a central process to collect trace events that are demultiplexed between
monitors to obtain slices. This makes it susceptible to single point of failures,

216 L. Aceto et al.

and does not scale in practice. The design we use is more robust, as it directly
instruments components of the SuS, giving us a modicum of fault containment
when monitoring independently-executing components that can fail in isolation.

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A framework for param-
eterized monitorability. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS,
vol. 10803, pp. 203–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89366-2 11

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.:
Determinizing monitors for HML with recursion. JLAMP 111 (2020)

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adven-
tures in monitorability: from branching to linear time and back again. Proc. ACM
Program. Lang. 3(POPL), 52:1–52:29 (2019)

4. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: An opera-
tional guide to monitorability with applications to regular properties. Softw. Syst.
Model. 20(2), 335–361 (2021)

5. Aceto, L., Attard, D.P., Francalanza, A., Ingólfsdóttir, A.: A Chore-
ographed outline instrumentation algorithm for asynchronous components. CoRR
abs/2104.09433 (2021)

6. Aceto, L., Attard, D.P., Francalanza, A., Ingólfsdóttir, A.: On benchmarking
for concurrent runtime verification. In: FASE 2021. LNCS, vol. 12649, pp. 3–23.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71500-7 1

7. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, Cambridge (2007)

8. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor compu-
tation. JFP 7(1), 1–72 (1997)

9. Allan, C., et al.: Adding trace matching with free variables to AspectJ. In: OOP-
SLA, pp. 345–364. ACM (2005)

10. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985)

11. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

12. Attard, D.P., Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen,
K.: Better late than never or: verifying asynchronous components at runtime. In:
Peters, K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS, vol. 12719, pp. 207–225.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78089-0 14

13. Attard, D.P., Cassar, I., Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Introduction
to Runtime Verification. In: Behavioural Types: From Theory to Tools, pp. 49–76.
Automation, Control and Robotics, River (2017)

14. Attard, D.P., Francalanza, A.: A monitoring tool for a branching-time logic. In:
Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 473–481. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 31

15. Attard, D.P., Francalanza, A.: Trace partitioning and local monitoring for asyn-
chronous components. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017. LNCS, vol.
10469, pp. 219–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66197-1 14

https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-030-71500-7_1
https://doi.org/10.1007/978-3-030-78089-0_14
https://doi.org/10.1007/978-3-319-46982-9_31
https://doi.org/10.1007/978-3-319-66197-1_14
https://doi.org/10.1007/978-3-319-66197-1_14

A Monitoring Tool for Linear-Time μHML 217

16. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 9

17. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

18. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015)

19. Basin, D.A., Klaedtke, F., Zalinescu, E.: Failure-aware runtime verification of dis-
tributed systems. In: FSTTCS. LIPIcs, vol. 45, pp. 590–603. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2015)

20. Basin, D., Klaedtke, F., Zălinescu, E.: Runtime verification of temporal properties
over out-of-order data streams. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 356–376. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9 18

21. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. FMSD 48(1–2), 46–93
(2016)

22. Bauer, A., Küster, J., Vegliach, G.: The ins and outs of first-order runtime verifi-
cation. Formal Methods Syst. Des. 46(3), 286–316 (2015)

23. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651–674 (2010)

24. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

25. Bonakdarpour, B., Fraigniaud, P., Rajsbaum, S., Rosenblueth, D.A., Travers,
C.: Decentralized asynchronous crash-resilient runtime verification. In: CONCUR.
LIPIcs, vol. 59, pp. 16:1–16:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2016)

26. Cassar, I., Francalanza, A., Attard, D.P., Aceto, L., Ingólfsdóttir, A.: A suite of
monitoring tools for Erlang. In: RV-CuBES. Kalpa Publications in Computing,
vol. 3, pp. 41–47 (2017)

27. Cesarini, F., Thompson, S.: Erlang Programming: A Concurrent Approach to Soft-
ware Development. O’Reilly Media (2009)

28. Chen, F., Rosu, G.: MOP: an efficient and generic runtime verification framework.
In: OOPSLA, pp. 569–588 (2007)

29. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: Kowalewski, S.,
Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-00768-2 23

30. Colombo, C., Francalanza, A., Gatt, R.: Elarva: a monitoring tool for Erlang. In:
Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 370–374. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-8 29

31. Decker, N., Harder, J., Scheffel, T., Schmitz, M., Thoma, D.: Runtime monitoring
with union-find structures. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016.
LNCS, vol. 9636, pp. 868–884. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49674-9 54

32. Erlingsson, Ú.: The inlined reference monitor approach to security policy enforce-
ment. Ph.D. thesis, Cornell University (2004)

33. Erlingsson, Ú., Schneider, F.B.: SASI enforcement of security policies: a retrospec-
tive. In: NSPW, pp. 87–95 (1999)

https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-63387-9_18
https://doi.org/10.1007/978-3-319-63387-9_18
https://doi.org/10.1007/978-3-642-00768-2_23
https://doi.org/10.1007/978-3-642-29860-8_29
https://doi.org/10.1007/978-3-662-49674-9_54
https://doi.org/10.1007/978-3-662-49674-9_54

218 L. Aceto et al.

34. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying run-
time verification tools. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol.
11237, pp. 241–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03769-7 14

35. Francalanza, A.: A theory of monitors. Inf. Comput. 281, 104704 (2021)
36. Francalanza, A., et al.: A foundation for runtime monitoring. In: Lahiri, S., Reger,

G. (eds.) RV 2017. LNCS, vol. 10548, pp. 8–29. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67531-2 2

37. Francalanza, A., Aceto, L., Ingolfsdottir, A.: On verifying Hennessy-Milner logic
with recursion at runtime. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 71–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23820-3 5

38. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy-
Milner logic with recursion. FMSD 51(1), 87–116 (2017)

39. Francalanza, A., Cini, C.: Computer says no: verdict explainability for runtime
monitors using a local proof system. J. Log. Algebraic Methods Program. 119,
100636 (2021)

40. Francalanza, A., Seychell, A.: Synthesising correct concurrent runtime monitors.
FMSD 46(3), 226–261 (2015)

41. Havelund, K., Peled, D.: Runtime verification: from propositional to first-order
temporal logic. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237,
pp. 90–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 7

42. Havelund, K., Peled, D.: BDDs for representing data in runtime verification.
In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 107–128.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60508-7 6

43. Havelund, K., Reger, G., Thoma, D., Zălinescu, E.: Monitoring events that carry
data. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS,
vol. 10457, pp. 61–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75632-5 3

44. Hewitt, C., Bishop, P.B., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: IJCAI, pp. 235–245. William Kaufmann (1973)

45. Hoguin, L.: Cowboy (2020). https://ninenines.eu
46. Hoguin, L.: Ranch (2020). https://ninenines.eu
47. Jin, D., Meredith, P.O., Lee, C., Rosu, G.: JavaMOP: efficient parametric runtime

monitoring framework. In: ICSE, pp. 1427–1430 (2012)
48. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-

bridge (1999)
49. Kozen, D.: Results on the propositional μ-calculus. In: Nielsen, M., Schmidt, E.M.

(eds.) ICALP 1982. LNCS, vol. 140, pp. 348–359. Springer, Heidelberg (1982).
https://doi.org/10.1007/BFb0012782

50. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47(2), 312–360 (2000)

51. Larsen, K.G.: Proof systems for satisfiability in Hennessy-Milner logic with recur-
sion. TCS 72(2&3), 265–288 (1990)

52. Leucker, M., Schallhart, C.: A brief account of runtime verification. JLAP 78(5),
293–303 (2009)

53. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP
runtime verification framework. STTT 14(3), 249–289 (2012)

54. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
55. Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw

Hill (1991)

https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/978-3-030-03769-7_7
https://doi.org/10.1007/978-3-030-60508-7_6
https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1007/978-3-319-75632-5_3
https://ninenines.eu
https://ninenines.eu
https://doi.org/10.1007/BFb0012782

A Monitoring Tool for Linear-Time μHML 219

56. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 55

57. Reger, G., Rydeheard, D.: From first-order temporal logic to parametric trace
slicing. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 216–
232. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3 14

58. Scheffel, T., Schmitz, M.: Three-valued asynchronous distributed runtime verifica-
tion. In: MEMOCODE, pp. 52–61 (2014)

59. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: ICSE, pp. 418–427 (2004)

60. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Decentralized runtime analysis of mul-
tithreaded applications. In: IPDPS. IEEE (2006)

61. Stolz, V.: Temporal assertions with parametrized propositions. J. Log. Comput.
20(3), 743–757 (2010)

62. Wolper, P.: Temporal logic can be more expressive. Inf. Control. 56(1/2), 72–99
(1983)

https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/978-3-319-23820-3_14

	A Monitoring Tool for Linear-Time HML
	1 Introduction
	2 The Logic
	2.1 Trace Properties

	3 Monitor Synthesis
	4 Implementation
	4.1 Refining the Model
	4.2 The Monitor Synthesis
	4.3 The Monitoring Algorithm
	4.4 Monitor Instrumentation

	5 Case Study
	6 Conclusion
	References

