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Abstract

We present Graft, a generic tool for creating distributed
consensus clusters running the Raft algorithm using state
machines in Elixir. Our tool exhibits performance that is
comparable to that of the Raft implementation supporting
the original proposal, as well as the performance of other
state-of-the-art Raft implementations running on the BEAM.
The correctness of our tool is also ascertained through a
number of complementary verification methods.
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cesses; Client-server architectures.
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1 Introduction

Consensus algorithms describe how a distributed group of
nodes can interact with one another to reach agreement in
the presence of failure [39]. This, in turn, allows external
entities to interact with a distributed system as if it were a
single-node application. The redundancy inherent to these
setups allows these consensus algorithms to provide a degree
of fault-tolerance up to some assumed level of failure [24, 39]
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(e.g. as long as a simple majority of its nodes are operational
without Byzantine faults).

Raft [42] is a consensus algorithm designed to simplify
the complexities of Paxos [37], a widely used distributed
consensus algorithm. It authors achieved this simplicity by
devising an algorithm that (i) is decomposable into smaller,
relatively independent sub-problems; (ii) uses strong leader-
ship, whereby an elected node (the leader) takes decisions for
the entire distributed cluster. These features streamline the
logical flow of the algorithm so that it (generally) stems from
the leader, making it easier to understand compared to Paxos.
In their seminal paper [42], the authors also implement the
algorithm in C++ as the tool LogCabin [40], and show that
its performance is comparable to that of Paxos. Raft has
been used in large-scale projects [28, 29], and now has a
plethora of open-source implementations in a wide variety
of languages available online (e.g., etcd [19] and raft [27] for
Go, TiKV [17] for Rust). Many of these implementations are
not only single purpose applications but general purpose
modules/libraries, allowing users to apply the consensus al-
gorithm to a variety of applications without having to recode
any of the consensus logic.

To the best of our knowledge, there is no general purpose
implementation of Raft for the language Elixir [31] that is
well-maintained. Such a library would fit the needs of a
number of concurrent programs written in this language:

o Elixir’s “let it fail” philosophy is in keeping with the
fail-stop failure model used by Raft to attain fault-
tolerance. There is less of an opportunity for Byzantine
faults to occur if the processes running Raft exit on
receiving unexpected messages.

e The battle-tested OTP Supervisor behaviour can be
used to manage Raft processes and automatically restart
crashed nodes if errors occur. The Raft algorithm in-
cludes a recovery protocol which can be pipe-lined
into a node’s restart procedure.

e Applications that employ Raft typically aim to attain
high availability. Elixir’s support for code hot-swapping
allows for updates to be made to the computation run-
ning on each node without any downtime.
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We present Graft, a tool for creating distributed consen-
sus clusters running generic state machines in Elixir. The
contributions of the paper are:

1. Following a brief overview of the Raft algorithm in
sec. 2, we describe the design choices that went into
the construction of our tool in sec. 3.

2. In sec. 4 we showcase the genericity of our tool, by dis-
cussing how the Graft library can be easily instantiated
to build applications that employ the Raft algorithm.

3. Sec. 5 details the verification methods used to provide
correctness assurances for our implementation. Specif-
ically, we elaborate on the two-pronged approach of
test-driven development and runtime verification.

4. We conduct an extensive performance comparison of
Graft in sec. 6. We measure it against the original per-
formance data reported by Ongaro and Ousterhout
[42], as well as to the state-of-the-art Raft implemen-
tations running on the BEAM.

Secs. 7-9 conclude the paper by summarising the contribu-
tions and by expanding on related and future work.

2 An Overview of Raft

Distributed consensus algorithms maintain consistency across
state machine instances replicated on different nodes in a

cluster [43]. The configuration of a state machine is stored

as a log containing the complete state transaction history

(i.e., state machine inputs) that when applied to the start state

of the machine, advance it to its latest state. The Raft [42]

algorithm offers a generic method to distribute these state

machine logs across cluster members. Nodes in the cluster,
henceforth referred to as servers, are managed by one such

designated server called the leader. A leader is elected by its

peers via the leader election protocol that establishes how a

server in the follower state transitions to the candidate state,
and finally, to the leader state. Cluster members vote by com-
municating in rounds until a server is elected to the leader

state, thereby concluding the election process. The elected

leader is charged with maintaining consensus over the repli-
cated state machine log. It accepts client requests that consist

of a command to be executed by the state machine replicas

in the cluster. Every client request that is processed by the

leader is appended to its log, and subsequently forwarded to

peers in the cluster for replication.

Raft organises its consensus logic into three sub-problems,
namely, leader election (sec. 2.1), log replication (sec. 2.2), and
safety (sec. 2.3). Cluster members participating in consensus
interact via asynchronous Remote Procedure Calls (RPCs).
Any server that issues a RPC always expects a corresponding
reply, but does not block while waiting, making it available
to handle other requests; RPCs are reissued by the server
upon request timeout. Servers handle RPCs depending on
the type of invocation and their current internal state, in
connection to the Raft protocol fragments discussed next.
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Figure 1. The Raft leader election protocol

2.1 Leader Election

Fig. 1 depicts the three states a server can transition to as it is
elected to the leader state. We refer to a server in a particular
state by its state name, i.e., follower, candidate, and leader,
when necessary. Initially, every server in the Raft cluster
defaults to the follower state, and is initialised with an election
timeout that determines when a leader election is called,
step @. Followers only reply to RPC invocations, and never
initiate communication with other cluster members. When
its election timeout elapses, a server in the follower state
assumes that there is no leader managing the Raft cluster,
and triggers the election protocol, step @. To minimise the
chances of simultaneous elections being called, the election
timeout is randomised for each follower.

Raft employs a logical notion of time via the term num-
ber that is incremented by the server calling a new leader
election. Servers share their term number with other servers
by embedding it in every RPC message issued. A server up-
dates its local copy of the term number to match that of
received RPCs only when the term number is larger than
that maintained by the server, and ignored otherwise. In the
case of a term number update, a server transitions back to
the follower state, steps ® and @ in fig. 1. A follower call-
ing a new election first transitions to the candidate state,
increments its local term number, votes for itself, and finally,
sends a RequestVoteRPC to every other member in the clus-
ter. When a follower receives a valid RequestVote message
(i.e., the term number embedded in the RPC is not outdated),
it replies by granting the vote. The candidate transitions
to the leader state whenever it receives a simple majority
concluding the election, step ®.

It is possible for the election timeouts of two (or more)
servers in the follower state to elapse at the same time, trig-
gering simultaneous elections. To avoid this situation, a fol-
lower is limited to one vote per term, granting its vote to
the candidate issuing the RequestVoteRPC on a first-come-
first-served basis. If no candidate obtains a simple majority
of votes, a new election is called: this is triggered via ran-
domised candidate election timeouts, as shown in step @.
In principle, servers can timeout together and trigger an
election that yields no leader (no candidate secures a sim-
ple majority of votes). However, parametrising the random
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Figure 2. The Raft log replication protocol

generator with a suitable range uniformly distributes the
election timeout values of servers, thereby minimising the
chances of elections being called indefinitely. An elected
leader periodically issues heartbeat RPCs to every member
in the cluster. This reinitialises the election timeout of fol-
lowers to new random values, and informs any servers in
the candidate state to transition back to follower, step ®.

2.2 Log Replication

The replicated state machine log maintained across cluster
members is an ordered list of entries in tuple form, that in-
clude the: (i) client command sent to be executed on the state
machine; (ii) election term number at which the command
was received by the leader; (iii) index that identifies the
position of the entry in the log. Fig. 2 overviews the log repli-
cation protocol enacted by the leader. In step @, the client
issues a request consisting of the command to be executed
on the state machine replica of the leader. Upon receiving the
client request, the leader appends a new entry with the client
command to its log, and sends AppendEntriesRPC messages
to all the servers in the cluster, step @. The RPC includes:

(i) the newly appended log entry,
(ii) the current election term number of the leader,
(iii) the index and election term number of the previous
entry in the log of the leader, and,
(iv) the commit index.

On receiving the AppendEntriesRPC, servers in the follower
state compare their latest entry against the one in the RPC.
If both entries share the same index and term number, the
follower appends the received entry to its log (step @) and
sends an AppendEntriesRPC reply to the leader, indicating
success, step @. Failing to effect this match indicates an
inconsistency between the logs of the follower and leader. The
follower rectifies this by initiating the log recovery phase:

(i) it issues a reply to the leader with unsuccessful;
(ii) the leader, in turn, replies with an AppendEntriesRPC
containing the previous log entry;
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(iii) the follower checks whether the index and term num-
ber of the entry in the AppendEntriesRPC sent by the
leader correspond to the ones it holds locally;

(iv) if these match, the follower appends the entry to its
log and acknowledges to the leader with success, oth-
erwise, it repeats step (i).

When the follower replies with success, the leader trans-
mits the remaining state machine log entries to enable the
follower to repopulate its log. The leader marks a newly-
appended log entry as committed once it receives successful
replies from a simple majority of followers in the cluster. It
also tracks this latest committed log entry in its commit index,
applies the entry to its state machine replica, and concludes
by issuing a reply to the client in step ®. The heartbeat RPC
that the leader sends to members of the cluster (sec. 2.1)
is encoded as an AppendEntriesRPC with an empty entry.
This serves the purpose of updating followers with the latest
commit index of the leader, informing them that it is safe to
apply the latest log entry to their local state machine replica.

2.3 Safety

The consensus logic of secs. 2.1 and 2.2 fails to account for
particular edge cases that arise due to race conditions. These
may lead to inconsistencies in the replicated log. The follow-
ing two rules are required to prevent these scenarios [42].

2.3.1 Election Restriction. It is possible for a server to
be down whilst log entries are being committed to the clus-
ter. Election restriction prevents such servers from becoming
leader until they recover their log. Failing to do so can result
in previously-committed log entries being overwritten by an
elected leader in possession of an outdated log replica. Con-
cretely, RequestVoteRPC messages also include the index
and election term of the last entry in the log of a server in
the candidate state. Recipient followers only grant their vote
to a candidate if the log of the candidate issuing the RPC is
at least as up-to-date as the ones followers hold locally. A log
is considered more up-to-date than a second log if the last
entry in the first log: (i) has a higher election term than the
one in the second log, or it, (ii) has a larger index whenever
the terms of both entires are equal [42].

2.3.2 Committing Restriction. A leader may crash be-
fore committing an entry to its log. Committing restriction
prevents leaders from explicitly committing the entries from
previous terms. Rather, once the leader commits a log entry
from the current term, all the preceding log entries are con-
sidered committed; this follows from the fact that the commit
index points to the entry with the latest term number.

3 Graft

We implement the abstract concepts introduced in sec. 2 in
the Elixir language to produce Graft — a generic purpose Raft
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library. Our design choices for the implementation are moti-
vated by a number of goals we wish the library to achieve:

G; Graft should be a generic purpose library, offering the
functionality of building custom-defined replicated
state machines.

G Thelibrary should feel similar to other commonly used
tools within the Elixir community (e.g. GenServer).

G3 Network-dependent parameters (e.g. election timeouts
and heartbeat frequency) should be easily configurable.

As the original Raft, our implementation process is sub-
divided into three parts, handling each subproblem of the
algorithm in isolation. The leader election and log replication
protocols are implemented in secs. 3.1 and 3.2 respectively,
whilst we account for introducing the safety restrictions in
sec. 3.3. Before delving into these subproblems, we define the
static components of the algorithm. Concretely, we declare
the attributes for AppendEntriesRPCs, RequestVoteRPCs,
their corresponding replies, and the internal data of a server
through Elixir structs. This provides the benefit of compile-
time checks on attributes attached to these components,
reducing potential development errors. The list of attributes
is taken from a summary of Raft provided in [42, fig. 2].

3.1 Leader Election

We begin by creating the Graft.Server module, encapsu-
lating the consensus logic. It uses the GenStateMachine be-
haviour, since the actions invoked by a server depends on
both its internal data and current state (i.e., follower, candi-
date or leader). This behaviour is a standard tool in the Elixir
language, and simplifies handling and sending messages
within processes that can be modelled as a state machine.

Implementing leader election using GenStateMachine in-
volves replicating the transitions depicted in fig. 1 as function
callbacks. Examples of this are given in Ist. 1. For instance,
line 5 sets the starting state for the server to follower, corre-
lating to step @ from fig. 1. On receiving a : start message,
the follower begins a random timeout (line 9), which when
triggered is handled by the callback on line 13. The function
return-value on lines 15 and 16 indicates the server to transi-
tion to candidate, step @, and to handle the : request_votes
event afterwards. This, in turn, instructs the candidate to
send RequestVoteRPCs to all other servers (lines 22 and 24).
In spite of expecting a reply, we implement this function-
ality through GenStateMachine.cast/2 (as opposed to the
call/2 variant), since RPCs are not blocking calls. Using this
method, RequestVoteRPCs can be sent out and received in
parallel. The rest of the leader election rules are implemented
in similar techniques to the methods described above.

3.2 Log Replication

We add the first function to the Graft APIL, Graft.request/2,
allowing client requests to be made to the consensus cluster.
The function accepts as parameters the process name of the
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recipient server, and a message of any pattern from which an
entry is created. The function attempts to send the request
to the specified server, and if rejected (when the server is
not the current leader), redirects the request as necessary.

Once the request reaches the leader, the operations in
sec. 2.2 are initiated. By sending Graft.AppendEntriesRPC
structs to the other servers, the leader attempts to replicate
the new log entry at a majority of the cluster. Similar to leader
election, callbacks are used to specify the functionality that
a server should employ whenever an AppendEntriesRPC
is received. Once the entry becomes committed, the leader
calls the apply_entry function and waits for a result. This,
in turn, communicates with the Graft.Machine process —
a GenServer that handles the applying of log entries.

In line with the goals set out for Graft, users should be able
to implicitly describe how log entries are applied to the ma-
chine. The standard method of providing this functionality is
through a behaviour. The Graf't.Machine module specifies a
behaviour with two callbacks: init/1 and handle_entry/2.

1 | defmodule Graft.Server do

2 use GenStateMachine

3

4 def init([...1), do:

5 {:0k, :follower, %Graft.State{...}}

6

7 def follower(:cast, :start, _data) do

8 {:keep_state_and_data,

9 [{{:timeout, :election_timeout},

10 generate_time_out(), :begin_election}]}
1 end

12

13 def follower({:timeout, :election_timeout},
14 :begin_election, data) do

15 {:next_state, :candidate, data,

16 [{:next_event, :cast, :request_votes}]}
17 end

18

19 def candidate(:cast, :request_votes,

20 data = %Graft.State{me: me,servers: servers,
21 log: [{last_index, last_term, _} | _tl1}) do
22 for server <- servers, server !== me do

23 GenStateMachine.cast(server,

24 %Graft.RequestVoteRPC{

25 term: data.current_term+1,

26 candidate_name: me,

27 last_log_index: last_index,

28 last_log_term: last_term

29 1))

30 end

31 # keep state, update term and votes in data
32 # start election_timeout

33 #...

34 end

35 #...

36 |end

Lst. 1. Sample GenStateMachine callbacks
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The init function is used to set up the initial state of the ma-
chine, whilst handle_entry allows users to pattern match
to log entries and specify their response and state updates.
Fig. 3 demonstrates how the server and machine processes
communicate, as well as how the user defined module is
used to apply log entries. Firstly, whenever the server pro-
cess identifies an entry to be applied (lines 1 and 2), it calls
apply_entry/3 (line 5). Lines 15 and 16 extract the entry

1 |def follower(:cast,
2 %Graft.RequestVoteRPC{term: t,
3 last_log_index: rpc_l1i,
4 last_log_term: rpc_1l1t,
5 candidate_name: candidate},
6 data = %Graft.State{
7 voted_for: voted_for,
8 log: [{11li, 11t, _3} | _taill})
9 when rpc_11t > 11t and voted_for in [nil,

< candidate] do
10 # reply with vote_granted: true
11 oo
12
13 |def follower(:cast,
14 %Graft.RequestVoteRPC{term: t,
15 last_log_index: rpc_l1li,
16 last_log_term: rpc_l1t,
17 candidate_name: candidate},
18 data = %Graft.State{
19 voted_for: voted_for,
20 log: [{11li, 11t, _3} | _taill})
21 when rpc_11t == 11t and rpc_11li >= 1li and

< voted_for in [nil, candidate] do
22 # reply with vote_granted: true
23 # ...

Lst. 2. Election restriction

1 | def leader(:cast,
2 rpc = %Graft.AppendEntriesRPCReply{},
3 data) do
4 # ...
5 # 111 = rpc.last_log_index
6 # 11t = rpc.last_log_term
7 # ci = data.commit_index
8 # mi = data.match_index
9 # t = data.current_term
10
11 commit_index = if (11li > ci) and (11t === t) do
12 number_of_matches =
13 Enum.reduce(mi, 1, fn {server, index}, acc ->
14 if (server !== data.me) and (index >= 11i),
15 do: acc+1, else: acc end)
16 if number_of_matches > (data.server_count/2),
17 do: 11i, else: ci
18 else
19 ci
20 end
21 # ...
22 |end

Lst. 3. Committing restriction
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from the log, which is then sent as a blocking call to the
machine process. The machine defines two callbacks on
lines 21 and 22, which are used to create the Graft.Machine
behaviour. To illustrate, the module implementing this be-
haviour is set as a module attribute on line 19. (In reality,
this is extracted from configuration settings.)

Upon starting, the GenServer init callback is invoked (line
24), which returns the value of the user defined init func-
tion on line 30. After initialisation, the process waits for an
{:apply, entry} message (line 26) and invokes the user
defined handle_entry callback (line 27), expecting a reply
and the new state to be returned. Finally, the reply is sent
back to the server, where it is forwarded to the client.

3.3 Safety

The safety restrictions introduced in 2.3 were implemented
by altering two of the previously defined callbacks. Firstly,
the election restriction is enforced by adding a conditional
statement that checks if the candidate is at least as up to date
as the recipient of the RequestVoteRPC (Ist. 2 lines 9 and 21).
Only if the conditions hold true can the follower reply with
a successfully granted vote. Otherwise, the reply is sent with
vote_granted: false. This prohibits any followers without
the latest updates from being elected leader (thereby enabling
them to erroneaously override previous client requests). Sec-
ondly, the committing restriction is added to the leader’s
AppendEntriesRPCReply handler. Concretely, line 11 of Ist. 3
restricts a leader from committing entries belonging to pre-
vious terms. If the condition holds, the leader determines
whether the commit index should be updated (lines 12-17).

4 Example Application

We build a number of applications atop of our tool to show-
case the genericity of Graft, and to demonstrate how effort-
lessly custom business logic can be integrated with the con-
sensus algorithm, . This section presents a distributed key-
value store (KV store) example, the source code for which is
publicly available [14]. The online documentation of Graft!
includes a distributed stack data structure using Graft.
Implementing a Graft KV store involves (i) creating an API
for client requests, (ii) defining how the requests are applied
to the replicated state machines using the Graft.Machine
behaviour, and, (iii) configuring the Graft application.

4.1 Set-up

To implement the KV store, Graft is installed as a dependency.
It is packaged with Elixir’s default package manager hex, and
can be installed as a dependency using Mix. Using the mix
new command with name diskv, a new Mix project is created

1 |$ mix new diskv
2 |'$ cd diskv/

Uhttps://hexdocs.pm/graft/api-reference.html
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SERVER PROCESS

Graft.Server use GenStateMachine

(j:g/:;ader(:cast, event, data)

when data.commit_ index > data.last_applied

~

do
apply_index = data.last_applied+l
reply = apply entry(apply index,
data.log,

a s W N e

J o

data.machine)
{:keep_state,
9 $Graft.State{ data | last_applied: apply_index},
[{:reply, data.requests[apply index], {:0k, reply}},
{:next_event, :cast, event}]}
end
def apply entry(apply index, log, machine) do
{"apply_index, _term, entry} = log
|> Enum.at (apply_index)
GenServer.call machine, {:apply, entry}

@

end

/

MACHINE PROCESS

Graft.Machine use GenServer

//"

9 | @module

‘\\\

UserDefinedModule
20
@callback init(args)

@callback handle_entry(entry, state)
24 |def init (args),

do: @module.init args

6| def handle call ({:apply, entry}, _from, state) do

{reply, state} @module.handle_entry entry, state

{:reply, reply, state}

end

\_

UserDefinedModule use Graft.Machine

30(def init(args), do: {:0k, state}
31

32| def handle_entry(entry, state) do
33 {reply, new_state}

ena

Figure 3. Communication between the server and machine processes.

This generates the Mix default folder structure and boiler-
plate code. Graft is added as a dependency from the deps
function in the mix. exs file. This example uses Graft version
0.3.0, and should remain compatible for all future versions.

1 | defp deps do

2 [ {:graft, "~> 0.3.0"} ]
3 |end
To ensure Graft starts correctly, it can be added to the list of

extra_applications in the application function.

1 | defp application do
2 [ extra_applications:
3 |end

[:logger, :graft] 1]

To conclude the set-up, we call the mix deps.get function
to install the Graft dependency within the current project.

1 | defmodule Diskv do

2 def start, do: Graft.start

3

4 def put(server, key, value) do

5 Graft.request(server, {:put, key, value})
6 end

7 def fetch(server, key) do

8 Graft.request(server, {:fetch, key})
9 end

10 def delete(server, key) do

11 Graft.request(server, {:delete, key})
12 end

13 |end

Lst. 4. API to interact with the distributed KV store

4.2 Creating an API

This KV store is to support start, put, fetch and delete
functions. Lst. 4 shows how Graft is used to create a new
API specific to Diskv with the aforementioned operations.
Diskv.start on line 2 initiates the consensus protocol, al-
lowing client requests to be made, whilst the remaining
Diskv.{put,fetch,delete} specify the structure of the re-
quests (lines 4, 7 and 10). The latter functions accept a server
parameter, representing a participant of the consensus clus-
ter to which the request is made. The remaining arguments
are specific to the respective function.

4.3 Replicated Machine

As demonstrated in fig. 3, the supported client requests of
a Graft application are described using the Graft.Machine
behaviour. Lst. 5 demonstrates the use of the behaviour to
specify how the put, fetch and delete requests are han-
dled. Within 1ib/machine.ex, the Diskv.Machine module
is set to use Graft.Machine, informing the compiler that the
module should contain the function definitions init/1 and
handle_entry/2. Then, the initial state of the machine is set
to an empty map on line 5. Finally, handle_entry/2 pattern
matches to the client requests defined in Ist. 4 and specifies a
response and state update for each. For instance, Diskv.put
makes a request with the tuple { :put, key, value}.Hence,
Diskv.Machine pattern matches to this tuple on line 8, cal-
culates the new state of the machine by inserting the new key
and value, line 9, and returns { : ok, new_state}, represent-
ing the response to the client and updated state respectfully.
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1 | defmodule Diskv.Machine do

2 use Graft.Machine

3

4 @impl Graft.Machine

5 def init([]), do: {:ok, %{}}

6

7 @impl Graft.Machine

8 def handle_entry({:put, key, value}, state) do
9 {:0k, Map.put(state, key, value)}

10 end

11 def handle_entry({:fetch, key}, state) do
12 {Map.fetch(state, key), state}

13 end

14 def handle_entry({:delete, key}, state) do
15 {:0k, Map.delete(state, key)}

16 end

17 |end

Lst. 5. Distributed KV store using Graft.Machine

1 | import Config

2

3 |config :graft,

4 cluster: [

5 {:server1, :sl@localhost},
6 {:server2, :s2@localhost},
7 {:server3, :s3@localhost}
8 1,

9 machine: Diskv.Machine,

10 machine_args: [],

11 server_timeout: fn -> :rand.uniform(151)+149 end,
12 heartbeat_timeout: 75

Lst. 6. Configuration for the Graft application

4.4 Configuration

The final step is to configure the Graft application, which is
done through Elixir’s Config module. Inside a config.exs
file, we define a key-value list for the :graft application.
The required keys are described below:

:cluster A list of servers making up the consensus cluster.
Each server is defined as a tuple containing the name
to be assigned to the Graft.Server process, and the
node on which it resides.

:machine The module with the Graft.Machine callbacks.

:machine_args A list of arguments passed to init/1.

:server_timeout Generates the leader election timeout.

:heartbeat_timeout Frequency at which the leader sends
out heartbeat RPCs.

Lst. 6 provides the sample configuration used for diskv. This
example uses a consensus cluster comprising of three dis-
tributed nodes running on a single physical machine.

4.5 Running the Project

Each node in the cluster can be started by using the command
line function iex --sname <node> -S mix from within the
project directory. Once all nodes are started, the consensus
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1 | iex(1)> Diskv.start

2 | #=> [:0k, :0k, :0k]

3 |iex(2)> [s1, s2, s3] = [{:serverl, :s1@localhost},
4 {:server2, :s2@localhost},
5 {:server3, :s3@localhost}]
6 |#=> ...

7 |iex(3)> Diskv.put s1, :erlang, 2021

8 | #=> :0k

9 |iex(4)> Diskv.fetch s2, :erlang

10 | #=> {:ok, 2021}

11 | iex(5)> Diskv.delete s3, :erlang

12 | #=> :ok

13 | iex(6)> Diskv.fetch s1, :erlang

14 | #=> :error

Lst. 7. Using diskv

protocol is initiated by calling Diskv.start from any node.
Lst. 7 demonstrates Diskv being used within the interactive
Elixir session from one of the started nodes. To demonstrate
the fault-tolerance provided via Graft, one of the nodes can
be terminated with <ctrl-c>. Client requests continue to
return as expected, unless a request is made to the killed node,
in which case an error is raised due to the failed connection.

5 Correctness Validation

We validate Graft using a two-pronged strategy that ad-
dresses correctness aspects of our implementation. Graft
is developed following a test-driven approach [12, 45], to
ensure that the consensus logic strictly conforms to the one
detailed in sec. 3. We also verify a subset of the properties
identified by Ongaro and Ousterhout [42, fig. 3] for our im-
plementation of Graft. Unit testing typically focusses on the
local functionality of the implemented logic, but makes it
challenging to ascertain global properties such as the ones
in the aforementioned paper. This partly stems from our
concurrent setting, where tests are obliged to account for
the interleaved execution of Graft components. We mitigate
this issue by complementing our testing with a verification
method that checks the consensus logic of Graft against
these global properties at runtime.

5.1 Testing

Since the server implementation, Graft.Server, instanti-
ates the abstract GenStateMachine behaviour, our suite of
tests focus on the Graft consensus logic concretised as be-
haviour callbacks. In particular tests assert that:

(i) the Graft.Server state transitions that correspond
to the callbacks of follower/3, candidate/3, and
leader/3, follow those of fig. 1;

(ii) the server issues the correct responses for the messages
it receives while in these states.

In this exposition, we limit ourselves to the tests in Ists. 8
and 9; for the full ExUnit suite, readers are referred to the
Graft code repository [15].
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1 |test "candidate transitions to follower on receiving
<> an AERPC from a new leader" do

2 leader = self()

3

4 rpc = %Graft.AppendEntriesRPC{ # Emulated ldr RPC

5 term: 1,

6 leader_name: leader,

7 prev_log_index: @,

8 prev_log_term: 0,

9 entries: [],

10 leader_commit: @

11 3}

12

13 c_data = %Graft.State{ # Mocked candidate state.

14 me: {:test_server, :nonode@nohost},

15 current_term: 1,

16 voted_for: {:test_server, :nonode@nohost},

17 votes: 1

18 3}

19

20 assert {:next_state, :follower, _, _} =

21 Graft.Server.candidate :cast, rpc, c_data

22 |end

Lst. 8. Asserting server state function inputs/outputs

Lst. 8 tests the case where a “candidate transitions to the
follower state when receiving an AppendEntriesRPC from
a new leader”. On line 2, the invocation to self/@ obtains
the process ID (PID) of the test runner process that emulates
the Graft server in the leader state. This PID is used to fabri-
cate the AppendEntriesRPC message (line 4) that the leader
issues to the candidate, whose internal state is mocked on
line 13. Note that the mocked candidate server process state
and RPC payload of line 4 share the same term number, i.e., 1.
Function candidate/3 on line 21 simulates the reception
and processing of the AppendEntriesRPC message sent by
the leader to the server in candidate state. The assertion on
line 20 confirms that the next state returned by candidate/3
obliges Graft. Server to transition to the follower state.

Whereas Ist. 8 operates on the arguments and return val-
ues of the GenStateMachine state callbacks implemented
by Graft.Server, Ist. 9 tests the exchange of messages be-
tween the server components of Graft. Lst. 9 replicates the
scenario where a “follower replies with false to voting re-
quests containing an outdated term number”, i.e., the term in
the RPC < follower term. The PID of the test runner obtained
on line 2 emulates the candidate process. Line 4 shows the
creation of the voting request that the candidate submits to
the follower; the internal state of the follower is mocked on
line 11. The invocation of follower/3 on line 16 simulates
the server in follower state receiving the voting request of
line 4 issued by the candidate. The corresponding statement
on line 18 asserts that the reply to the voting request does
not grant the vote.
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1 | test "follower replies with false to vote request
< containing outdated term number" do

2 candidate = self()

3

4 rpc = %Graft.RequestVoteRPC{ # Emulated can. RPC

5 term: 1,

6 candidate_name: candidate,

7 last_log_index: 0,

8 last_log_term: @

9 }

10

11 f_data = %Graft.State{ # Mocked follower state.

12 me: {:test_server, :nonode@nohost},

13 current_term: 2

14 }

15

16 Graft.Server.follower :cast, rpc, f_data

17

18 assert_receive {_, %Graft.RequestVoteRPCReply{

19 term: 2,

20 vote_granted: false

21 33

22 |end

Lst. 9. Asserting message requests received by server

5.2 Runtime Verification

Our difficulty in testing scenarios comprised of interacting
Graft server components is reflected in the relatively low line
coverage of ~ 51% (obtained using the utility ExCoveralls).
We thus complement tests with a post-deployment verifica-
tion technique called Runtime Verification (RV) to redress
this shortcoming. RV [11, 20] is a lightweight approach that
uses monitors to analyse the current system execution ob-
served as a stream of runtime events, known as the trace. RV
monitors® are encapsulated software components that are
typically synthesised automatically from formal descriptions
of correctness properties. These are instrumented with the
system under scrutiny to analyse its execution, processing
trace event sequences to reach a verdict (relating to the prop-
erty being checked). The monitors we consider for verifying
Graft are synthesised from safety properties, i.e., properties
stating that “nothing bad ever happens” [5], flagging either
rejection or inconclusive verdicts [1, 3, 9, 22]. A rejection ver-
dict corresponds to a property violation (similar to a failed
assertion in unit testing); inconclusive verdicts are issued
when the execution trace does not provide enough evidence
to conclude that the system violates the property.

We use the RV tool called detectEr [7, 8] to verify a subset
of the properties identified by Ongaro and Ousterhout [42].
detectEr is developed in Erlang, and targets asynchronous
component systems that execute on the Erlang Virtual Ma-
chine [6, 16] (BEAM). To the best of our knowledge, it is the
only RV tool available for this ecosystem that is still sup-
ported. detectEr synthesises executable monitor code from

2These are unrelated to OTP monitors.
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properties specified in terms of the logic sHML [2, 4, 21],
the safety fragment of the modal p-calculus [35, 38]. sHML
describes the properties of systems based on the events they
exhibit; the logic has been shown to be maximally expressive
for describing safety properties [21, 22]. At runtime, moni-
tors observe system events in the form of an execution trace.
detectEr instruments the monitor code it synthesises to exe-
cute with the system, collecting trace events by leveraging
the tracing infrastructure of the BEAM. Monitors analyse
these events incrementally to reach a verdict. In the sequel,
we omit the full detail regarding detectEr and limit ourselves
to the particulars that illustrate how the verification of Graft
is conducted. For a comprehensive exposition, the interested
reader should consult Attard et al. [8].

Our analysis of the Graft implementation presented in
sec. 3 considers the following subset of properties identified
by Ongaro and Ousterhout [42]:

P1 Election safety: at most one leader can be elected in a
given term;

P, Leader append-only: leaders never overwrite or delete
entries in their logs — they only append new entries;

Ps Log matching: if two logs contain an entry with the
same index and term, then the logs are identical in all
entries up to the given index;

P4 Leader completeness: if a log entry is committed in a
given term, then that entry will be present in the logs
of the leaders for all higher-number terms.

The remaining fifth property, stated below, is not verified
using detectEr because we encountered observability issues
when attempting to monitor the invariant.

Ps State machine safety: if a server applies a log entry
for a particular index, no other server ever applies a
different entry for the same index.

Runtime verifying this property necessitates the moni-
toring of function calls and function returns, which are not
supported by the current version of the RV tool. This pro-
hibits the observation of key state changes of a process in
relation to the property. We leave the verification of this
property for future work.

Consider property Py, formalised as the sHML formula ¢,
below:

max x. A @

[Ldry : 2! (:AE, Trm;) when true] max y. A
[Ldry:_! (:AE, Trmy) when Ldry # Ldry A Trmy = Trmy] ff,
[y

[]
— ® (p1)
@

[=

The key construct in sHML is the modal formula [p when c] ¢,
where: (i) p is an event pattern that corresponds to events the
system exhibits; (ii) ¢ is a constraint on the variables bound
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by p; (iii) ¢ is the continuation formula. In formula ¢; we
only use the event pattern Snd: Rev! Msg that matches send
actions. Variables inside patterns are instantiated with data
values learnt at runtime, e.g. Snd and Rcv are assigned the
PIDs of the sender and receiver processes, whereas Msg is
instantiated with the message payload of the send action. Pat-
tern variables also bind the free variables inside constraints,
and this binding scope extends to the continuation formula
. To facilitate specification, pattern matching in detectEr
follows that of Elixir and Erlang, where atoms are matched
directly, and the ‘don’t care’ pattern (_) matches any value.
We say that a system satisfies the formula [p when c] ¢ when-
ever it exhibits an event that matches pattern p, fulfils the
constraint ¢, and the ensuing system behaviour satisfies ¢.

Formula ¢; expresses the invariant P; via the recursion
binder maxx. The action pattern in the modality of sub-
formula @ matches send actions whose message payload
consists of tagged pairs of the form (:AE, Trmy). Variables
Ldry, and Trm, are respectively instantiated with the PID of
the Graft server process in the leader state, and the term
number embedded in the RPC message. Receiver PIDs are
unimportant in formula ¢, and disregarded via the pattern _.
Sub-formula @ acts as a filter that ‘eats up’ non-matching
events by recursing on variable x to unfold formula ¢;.

The nested recursion binder max y guarding sub-formula
® serves a similar purpose to the outer max x. When a send
action satisfies modality @, its continuation maxy A(...) ei-
ther leads to a violation or to an unfolding of sub-formula ®.
This depends on the subsequent events analysed. The pattern
Ldr, :_! (:AE, Trmy) in the first modality of sub-formula @
matches send actions, instantiating variables Ldr, and Trm,
as before. Ldr, and Trm;, whose binding scope in modality
@ extends to @, are compared against Ldr, and Trm, in the
constraint when Ldry # Ldr, A Trmy = Trmy. Since no sys-
tem can satisfy falsehood, ff, formula ¢, is violated when
the constraint is satisfied, i.e., there are two different leader
PIDs for the same term number. Property formula ¢; is not
violated when the system action that satisfies the modality
[Ldry:_' :AE, Trmy) when Ldry # Ldr, A Trmy; = Trmy] is
not performed. This case is handled by [_]y.

For the sake of our exposition, formula ¢; omits the aux-
iliary clauses that account for the interleaved execution of
Graft components, and extraneous trace events due to OTP
libraries. We also simplify the Graft RPC message payloads
in formula ¢, denoting them by tagged tuples, and use the
shorthand AE in lieu of AppendEntriesRPC. The full sHML
specification of formula ¢, together with the formalisations
of properties P,—P, can be found in the Graft code reposi-
tory [15]. The present Graft implementation has never vio-
lated any of these properties at runtime; the only exception is
when faults were intensionally injected for testing purposes.
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6 Performance

We evaluate Graft by comparing its performance against two
implementations. The first, LogCabin, is developed by On-
garo and Ousterhout [42] and features as the C++ implemen-
tation behind their performance metrics. This comparison
allows us to expose any performance benefits or detriments
resulting from architectural and paradigmatic differences
between the implementations. The second comparison is
against Ra, a battle-tested state-of-the-art implementation
developed by RabbitMQ in Erlang. Their project is well main-
tained, thoroughly tested, and (it records 150,000+ downloads
to date). Since Ra runs on the BEAM, the potential biases
of the first comparison are eliminated, allowing for a more
precise evaluation of performance.

6.1 Methodology

A key performance parameter for Raft is the time a cluster
takes to elect a leader. This metric is important because it
correlates closely to the period in which the cluster is un-
responsive (i.e.,, unable to handle client requests). Ongaro
and Ousterhout [42] measure how quickly elections in their
implementation converge based on a variety of election time-
out ranges. These ranges refer to a minimum and maximum
time a follower waits before starting an election (e.g. a time-
out range of 150-300ms implies that followers will choose a
timeout value randomly and uniformly within this range).
The experiments of Ongaro and Ousterhout [42] are run on
five nodes, use heartbeat timeouts equal to half the minimum
election timeout value, and make some nodes ineligible for
leadership through log inconsistencies.

We replicate each of these parameters for both Graft and
Ra, but simulate ineligible nodes by crashing them, as op-
posed to tampering with their logs; Ra does not offer the func-
tionality of forcefully manipulating the log of a server. Con-
cretely, our experiments run multiple simulations for each
timeout range, where the consensus cluster (i) elects a leader,
(ii) crashes it, and (iii) records the time taken to notice the
crash and elect a replacement. More precisely, leader down-
time is measured by taking timestamps at specific points
in the algorithm’s operations. The start time is recorded
exactly prior to calling Supervisor.terminate_child/2
(used to simulate a crashing node), whereas the end time is
taken at the entry point for the leader callback in the mod-
ule using the GenStateMachine behaviour. The difference
is calculated and persisted by a separate node to minimise
performance overheads. This described process reflects the
actions of a single iteration within its respective simulation.
Our simulations are conducted with a cluster of 5 servers
and repeated 1000 times for each timeout range — destroying
and rebuilding the cluster after each iteration. Servers run in
distributed OTP nodes on a single machine housing a 6-core
CPU with 12 threads of execution.
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6.2 Results

Fig. 4 plots leader downtimes for the Graft and Ra experi-
ments against a cumulative probability distribution (average
case results are seen at the 50% mark). The results for our
experiments follow the same curve as those presented in On-
garo and Ousterhout [42]. We note that for both LogCabin
and Graft, a number of results indicate that a leader is elected
before the minimum election timeout value (e.g. for Graft,
this occurs with 55% probability for the 12-24ms range, 74%
for 150-155ms, and 10% for 150-300ms). This behaviour de-
pends on the arrival of the last heartbeat before the initial
leader is crashed. In the best case scenario, half a follower’s
election timeout elapses before the leader is halted. Hence,
this phenomenon occurs more often for timeout ranges with
a small difference between upper and lower bounds.

Ra never elects a new leader before the minimum timeout
value, unlike Graft and LogCabin. This is due to Ra not using
heartbeat RPCs to maintain the leadership of a server, in-
stead opting for the use of OTP monitors. With this approach,
each time a leader is elected, an exit-trapping Erlang monitor
process is spawned to inform the remainder of the cluster
whenever the leader goes down. This modification helps to
prevent unnecessary elections in the presence of network
latency, at the cost of delayed elections. The drawback of
delayed elections is primarily pronounced in simulations
with a small upper and lower bound difference, since these
are the most likely to be elected before the minimum timeout
value; for timeout ranges with a larger interval, the perfor-
mance difference becomes negligible. We conjecture that
this observation may be due to the optimisations introduced
by RabbitMQ over the years of Ra’s development, in order
to make up for the shortcomings of their monitor-based
approach.

From the experiments reported in Fig. 4, we can conclude
that Graft performs comparably to both LogCabin and Ra.
In the average case, Graft performs better for each time-
out range when compared to the former, while exhibiting
comparable results when compared against the latter.

7 Future Work

Graft provides a foundation on which a more robust generic
purpose library can be built. The following gives some in-
sight into possible future work and upgrades for the tool.

7.1 Implementation Correctness

This paper employed rudimentary methods of providing
correctness assurances to Graft that are geared more towards
uncovering errors as opposed to ascertaining their absence
(i.e., testing and RV). Although effective, the next step would
be to employ more exhaustive verifications methods. These
are typically based on model-checking techniques [10, 26,
34, 44], logic and theorem provers [13, 18, 46] and process
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Figure 4. Performance evaluation results

calculi modelling [23, 25, 36]. We believe that our current
implementation lends itself well to this extended analysis.

7.2 Raft Extensions

In Ongaro and Ousterhout [42], two extensions to the algo-
rithm are provided that aim to increase Raft’s practicality.
The membership changes extension allows the cluster to be
dynamically reconfigured during runtime, and log snapshots
provide a safe method for logs to be persisted to secondary
storage. Graft’s practicality would benefit from implement-
ing these extensions. One could also integrate log snapshots
with Ecto [47] to provide customisation for data persistence.

7.3 Monitor Overhead

Although RV is a lightweight verification technique, the

instrumentation of runtime monitors comes with a perfor-
mance overhead. We believe this overhead to be insignifi-
cant when compared to the execution of the election process

for small clusters. However, it may be beneficial to deter-
mine at what cluster size the observed overhead begins to

significantly interfere with elections (which rely on time-
outs). Additionally, future work may consider taking per-
formance metrics based on the time taken to handle client
requests, both with and without the instrumented monitors.
This should give further insight into any performance over-
head introduced by the RV tool.
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7.4 Machine Fault-tolerance

By placing the machine process under a supervisor, Graft can
very quickly re-spawn it if runtime errors occur whilst apply-
ing entries. However, Raft’s specification dictates that entries
be committed before they are applied, thus a fault-causing
entry would already be replicated across a majority of nodes
before the system suffers from its fault. A further degree
of fault-tolerance may be provided if Raft were extended
to cater for these errors (possibly by devising a method for
leaders to warn other servers of potentially harmful entries).

7.5 Parallelising Processes

Currently, Graft spawns two processes per node, these be-
ing the server and machine. So far, communication amongst
these processes is synchronous. Future work may consider
exploring the safety and performance difference of non-
blocking calls between these processes.

8 Related Work

Graft is not the only Elixir implementation of Raft. A list of
open-source implementations [41] of the algorithm identi-
fies at least three other Elixir implementations. Rafute [30]
implements Raft’s leader election and log replication pro-
tocols for a specific key-value store purpose. RaftKV [33]
is another special purpose implementation of Raft, that it
is widely used (8,000+ downloads) and extensively tested.
Raft [32] (not to be confused with Raft, the algorithm) is an
Elixir implementation allowing for custom defined replicated
machines, similar to Graft; they also achieve this genericity
through a behaviour that allows users to define how client
requests are handled. However, this project appears not to be
maintained any longer: it appears not to have been heavily
tested, nor is there any information available regarding its
performance.

As previewed in Sec. 6, Ra is a notable general purpose im-
plementation in Erlang. Apart from providing leader election
and log replication, it also implements extensions of the algo-
rithm supporting cluster membership changes (one server at
a time), log compaction (tailored for RabbitMQ-specific use)
and snapshot installation. This project is thoroughly tested,
has 150,000+ downloads and is used internally by RabbitMQ
to maintain replicated queues. As a consequence, we treated
Ra as our benchmark for BEAM Raft implementations. When
compared to Ra, Graft provides post-deployment guarantees
(through the instrumentation of runtime monitors) which,
to our knowledge, is not offered by any other BEAM imple-
mentation. Moreover, since the Graft.Machine behaviour is
natively constructed in terms of existing Elixir behaviours,
we believe that our implementation is more readily accessible
to the Elixir community.

The benchmark data used for our performance evaluation
of sec. 6, taken from Ongaro and Ousterhout [42], has been
validated by other studies. In Howard et al. [29], the authors
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successfully reproduce the original performance metrics ob-
tained from [42] using an OCaml implementation. This work
supports the claim that Raft is easier to understand than
Paxos at a high level, but also states that the description
provided in Ongaro and Ousterhout [42] omits subtleties
that hinder the development process. Finally, Verdi [46] is
a framework that extracts OCaml implementations out of
formal specifications of such algorithms, and checks for their
correctness against a fault-model. This was used to create
the first formally verified implementation of Raft [48], a
process which involved discovering and proving 90 system
invariants. Graft, although not as robust, attempts to pro-
vide similar correctness guarantees for an implementation
built on the BEAM, whilst maintaining performance levels
comparable to the state-of-the-art.

9 Conclusion

This paper presents Graft, a generic tool for creating dis-
tributed consensus clusters running the Raft algorithm us-
ing state machines in Elixir. Our work describes the process
of developing such an algorithm using the actor paradigm
adopted by Elixir, and details our main design choices and
use of OTP behaviours (sec. 3). This is coupled with a demon-
stration showcasing how the tool can be used to implement
a distributed key-value store (sec. 4).

We employ a two-pronged approach to verify aspects of
Graft’s correctness — consisting of a test-driven development
phase (sec. 5.1), and a formal verification by means of runtime
monitors (sec. 5.2). Finally, we evaluate the performance of
the tool by comparing it against two other implementations
(sec. 6). Graft is observed to perform comparably against
both the C++ implementation developed by Ongaro and
Ousterhout [42], and Ra, a state-of-the-art implementation
built in Erlang by RabbitMQ.
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