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Abstract
Silent actions are an essential mechanism for system modelling and specification. They are
used to abstractly report the occurrence of computation steps without divulging their precise
details, thereby enabling the description of important aspects such as the branching structure of a
system. Yet, their use rarely features in specification logics used in runtime verification. We study
monitorability aspects of a branching-time logic that employs silent actions, identifying which
formulas are monitorable for a number of instrumentation setups. We also consider defective
instrumentation setups that imprecisely report silent events, and establish monitorability results
for tolerating these imperfections.
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1 Introduction

Runtime verification (RV) [17] is a lightweight verification technique that strives to determine
whether a system under scrutiny satisfies or violates a property—typically expressed as
a formula from some logic—by incrementally analysing its current execution. In general,
the runtime analysis is carried out by a monitor, a computational entity that observes the
exhibited system execution and reaches a verdict once sufficient evidence is observed; the
exhibited execution is characterised by a trace, a finite sequence of events describing the
discrete system computational steps. Although the technique may obtain additional (runtime)
information that could be useful for verification purposes, it is generally less expressive than
exhaustive approaches such as model checking since the verification analysis is limited to
the information inferred from the execution trace under consideration. Monitorability thus
concerns itself with identifying the properties that are analysable by this runtime analysis.

RV setups typically partition computational steps of systems into two groups. On the one
hand, observable events are those events that are visible (in full) to external entities such as
monitors; they are used in the specifications describing system properties and are reported
in the system trace. Observable events usually contain runtime data associated with that
event (e.g. a method-call event would carry information relating the receiver, the method
name and the arguments passed as parameters). On the other hand, unobservable events
broadly encompass the computational steps that are abstracted away either from system

∗ This research was supported by the project “TheoFoMon: Theoretical Foundations for Monitorability”
(grant number: 163406-051) of the Icelandic Research Fund.

© Luca Aceto Antonis Achilleos Adrian Francalanza Anna Ingólfsdóttir;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


XX:2 Monitoring for Silent Actions

modelling or from the respective property specifications; RV setups may occasionally remove
these events from a trace so as to allow for a smoother monitoring process [10,13].

In this work we investigate events that broadly fall somewhere in between these two
groups. Concretely, silent events (or actions) are computational steps whose specific nature
is not disclosed at the level of abstraction of the system model. Nevertheless the model
still provides enough evidence of their manifestation during execution, which may play an
important role in capturing vital behavioural aspects of the system: they may describe
the branching structure of the modelled system behaviour [14,18] or provide a measure of
computational cost and efficiency [4]. In practice, one comes across various instances of such
events. For example, the precise details of reported computational steps may be abstracted
away for confidentiality/security reasons. Alternatively, the monitoring setup may be unable
to report the details of certain computations due to limitations in the instrumentation
technology used. In cyber-physical systems, there are also cases where one could detect the
occurrence of certain (internal) computation by way of indirect means, such as via the sound
of a running motor or the increase in temperature of an enclosed object. For these reasons,
behavioural specifications often include descriptions involving silent actions. However, it is
unclear how these silent actions are best handled in an RV setup. It is even less clear to
what extent silent actions affect the monitorability of the respective specifications.

Our goals are to develop a foundational framework in which these questions may be
addressed, and to logically characterize the properties that are monitorable within this
framework. Following our work [1, 2, 10–12] and that of others [7, 20], we conduct our
investigations in a process-calculus setting, where internal actions have long been studied
from both behavioural and specification perspectives. Our study considers a standard labelled-
transition-system model that represents silent computational steps as τ -transitions [3,18],
and a variant of the modal µ-calculus [15, 16] with strong modal operators that also describe
τ -transitions. Our main contributions can be found in the middle sections of the paper:

Section 3 studies the monitorability of this logic w.r.t. a number of monitoring setups
that handle τ -actions differently, thus generalising the results obtained in [11,12].
Sections 4 and 5 investigate the monitorability of the logic for imperfect monitoring setups
that obscure aspects of the silent system behaviour expressed by the model, and establish
results for tolerating such imperfections.

The appendix collects the proofs of the main technical results.

2 Preliminaries

We assume the following disjoint sets: Act, a (possibly empty) set containing external
actions, and Sil, a finite set containing silent actions. We let α range over Act, δ over Sil,
and µ over Act ∪ Sil. A Labelled Transition System (LTS) on (Act,Sil) is a triple

L = 〈P, (Act,Sil),→L〉,

where P is a nonempty set of system states referred to as processes p, q, . . ., and →L ⊆
P × (Act ∪ Sil) × P is a transition relation. We write p µ−→L q instead of (p, µ, q) ∈ →L

and p →L q if p δ−→L q for some δ ∈ Sil. We use p µ=⇒L q to mean that, in L, p can derive
q using a single µ action and any number of silent actions, that is, p(→L)∗. µ−→L .(→L)∗q.
We distinguish between (general) traces s = µ1.µ2. . . . µr ∈ (Act ∪ Sil)∗ and external traces
t = α1.α2. . . . αr ∈ Act∗, and use p s=⇒L q to mean p µ1−→L .

µ2−→L . . .
µr−→L q and p t=⇒L q to

mean p α1=⇒L .
α2=⇒L . . .

αr=⇒L q. By p µ−→L we mean that there is some q such that p µ−→L q.
We occasionally omit the subscript L when it is clear from the context.
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I Example 1. The (standard) regular fragment of CCS [18] with grammar:

p, q ∈ Proc :: = nil | µ.p | p+ q | recx.p | x,

with x from some countably infinite set of variables, and the transition relation defined as:

Act
µ.p

µ−→ p
Recp[

recx.p/x] µ−→ q

recx.p
µ−→ q

SelL p
µ−→ p′

p+ q
µ−→ p′

SelR q
µ−→ q′

p+ q
µ−→ q′

constitutes the LTS 〈Proc, (Act, {τ}),→〉 where τ is the only silent action. J

Properties about specific processes may be specified via the logic µHML [16], a reformu-
lation of the modal µ-calculus [15].

I Definition 2. µHML formulae on (Act,Sil) are defined by the grammar:

ϕ,ψ ∈ µHML ::= tt | ff | ϕ ∧ ψ | ϕ ∨ ψ
| 〈µ〉ϕ | [µ]ϕ | minX.ϕ | maxX.ϕ | X

where X comes from a countably infinite set of logical variables LVar. For a given LTS
L = 〈P, (Act,Sil),→〉, an environment ρ is a function ρ : LVar→ 2P . Given an environment
ρ, X ∈ LVar, and S ⊆ P , ρ[x 7→ S] denotes the environment where ρ[X 7→ S](X) = S and
ρ[X 7→ S](Y ) = ρ(Y ), for all Y 6= X. The semantics of a µHML formula ϕ over an LTS L
relative to an environment ρ, denoted as Jϕ, ρKL, is defined as follows:

Jtt, ρKL = P Jff, ρKL = ∅ JX, ρKL = ρ(X)
Jϕ1∧ϕ2, ρKL = Jϕ1, ρKL ∩ Jϕ2, ρKL Jϕ1∨ϕ2, ρKL = Jϕ1, ρKL ∪ Jϕ2, ρKL

J[µ]ϕ, ρKL=
{
p
∣∣ ∀q. p µ−→ q implies q ∈ Jϕ, ρKL

}
J〈µ〉ϕ, ρKL=

{
p
∣∣ ∃q. p µ−→ q and q ∈ Jϕ, ρKL

}
JminX.ϕ, ρKL =

⋂{
S
∣∣ S ⊇ Jϕ, ρ[X 7→ S]KL

}
JmaxX.ϕ, ρKL=

⋃{
S
∣∣ S ⊆ Jϕ, ρ[X 7→ S]KL

}
Two formulae ϕ and ψ are equivalent, denoted as ϕ ≡ ψ, when Jϕ, ρKL = Jψ, ρKL for every
environment ρ and LTS L. We often consider closed formulae and simply write JϕKL for
Jϕ, ρKL, as their semantics is independent of ρ. J

Let [Sil]ϕ stand for
∧
δ∈Sil[δ]ϕ and 〈Sil〉ϕ for

∨
δ∈Sil〈δ〉ϕ. Then, the weak versions of

the modalities employed in [1, 11,12] may be expressed as follows:

[[µ]]ϕ ≡ maxX.([µ]ϕ ∧ [Sil]X) 〈〈µ〉〉ϕ ≡ minX.(〈µ〉ϕ ∨ 〈Sil〉X).

Readers should consult [3, 16], or more recently [1, 12], for more details on µHML.

3 Monitorability

The logic µHML of Section 2 is very expressive. It is also agnostic of the technique to be
employed for verification. This level of generality provides an ideal basis for investigating the
interplay between silent actions and the RV technique, and permits us to extend our findings
to other specification logics (e.g. CTL and CTL∗ [8] can be encoded in µHML [15]). The
property of monitorability, however, fundamentally relies on the monitoring setup considered.
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Monitor Semantics

mRecm[recx.m/x] µ−→ m′

recx.m
µ−→ m′

mSel m
µ−→ m′

m+ n
µ−→ m′

mAct
µ.m

µ−→ m
mVrd

v
µ−→ v

Instrumentation Semantics

iMon p
µ−→L q m

µ−→M n

m / p
µ−→I(M,L) n / q

iTer p
µ−→L q m 6µ−→M

m / p
µ−→I(M,L) end / q

iAbs p
δ−→L q

m / p
δ−→I(M,L) m / q

where µ ∈ Act ∪ Sil, v ∈ {end, no}, and δ ∈ Sil.
Table 1 Behaviour and Instrumentation Rules for Monitored Systems

Monitoring Systems: A monitoring setup on (Act,Sil) is a triple S = 〈M, I, L〉, where L is
a system LTS on (Act,Sil), M is a monitor LTS on (Act,Sil), and I is the instrumentation
describing how to compose L and M into an LTS, denoted by I(M,L), on (Act,Sil). We
call the pair (M, I) a monitoring system on (Act,Sil). For M = (Mon, (Act,Sil),→M ),
Mon is a set of monitor states (ranged over by m) and →M is the monitor semantics
described in terms of the behavioural state transitions a monitor takes when it analyses trace
events µ ∈ Act ∪ Sil. The states of the composite LTS I(M,L) are written as m / p, where
m is a monitor state and p is a system state; the monitored-system transition relation is
here denoted by →I(M,L). We focus on rejection monitors, i.e., monitors with a designated
rejection state no, and hence safety fragments of the logic µHML. However, our arguments
apply dually to acceptance monitors and co-safety properties; see [11,12] for details.

I Definition 3. Fix a monitoring setup S = 〈M, I, L〉 on (Act,Sil) and let m be a monitor
of M and ϕ a formula of µHML on (Act,Sil). We say that m (M, I)-rejects (or simply
rejects, if M, I are evident) a process p in L, written as rejS(m, p), when there are a process
q in L and a trace s ∈ (Act ∪ Sil)∗ such that m / p

s=⇒I(M,L) no / q. We say that m
(M, I)-monitors for ϕ on L whenever

for each process p of L, rejS(m, p) if and only if p /∈ JϕKL.

Finally, m (M, I)-monitors for a formula ϕ when m (M, I)-monitors for ϕ on L for every
LTS L on (Act,Sil). The monitoring system (M, I) is often omitted when evident. J

Monitoring for Silent Actions: The first monitoring system we consider does not distinguish
between silent actions and external actions.

I Definition 4. A full monitor on (Act,Sil) is defined by the grammar:

m,n ∈Monδ :: = end | no | µ.m | m+ n | rec x.m | x,

where x comes from a countably infinite set of monitor variables. Constant no denotes the
rejection verdict state whereas end denotes the inconclusive verdict state. The rules in Table 1
describe the behaviour for full monitors (we elide the obvious symmetric rule for m+ n). J

Note that rule mVrd in Table 1 describes how verdicts are irrevocable; monitors can therefore
only describe suffix-closed behaviour.

I Definition 5. For any system LTS L and monitor LTS M agreeing on (Act,Sil), a full
instrumentation LTS, denoted by→I(M,L), is defined by rules iMon and iTer in Table 1. J
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In rule iMon, when the system produces a trace event µ that the monitor is able to
analyse by transitioning from m to n, the constituent components of a monitored system
m / p move in lockstep. Conversely, when the system produces an event µ that the monitor
is unable to analyse, the monitored system still executes, according to iTer, but the monitor
transitions to the inconclusive state, where it remains for the rest of the computation.

We refer to the monitor LTS in Definition 4 asMδ, the full instrumentation of Definition 5
as Iδ and the pair (Mδ, Iδ) as the full monitoring system. For each system LTS L that agrees
with the full monitoring system on (Act,Sil), we can show a correspondence between the
respective monitoring setup 〈Mδ, Iδ, L〉 and the following syntactic subset of µHML.

I Definition 6. The strong safety µHML is defined by the grammar:

θ, χ ∈ ssHML ::= tt | ff | [µ]θ | θ ∧ χ | maxX.θ | X J

As opposed to sHML from [11, 12], ssHML is defined using strong transitions p µ−→ q

(not weak ones, p µ=⇒ q) and the modalities [µ]θ employ any action µ, not just external ones.

I Definition 7. Fix a monitoring system (M, I), a fragment Λ of µHML, and an LTS L on
(Act,Sil). We say that (M, I) monitors for Λ on L whenever:

For all ϕ ∈ Λ, there exists some m ∈M that monitors for it on L.
For all m ∈M , there exists some ϕ ∈ Λ that is monitored by it on L.

We say that (M, I) monitors for Λ when it monitors for Λ on every LTS L. J

I Theorem 8. The full monitoring system (Mδ, Iδ) monitors for ssHML.

Proof. See Appendix A.2. J

Monitoring for External Actions: The results obtained in [11, 12] can be expressed and
recovered within our more general framework.

I Definition 9. Safety µHML, presented in [11,12], is defined by the grammar:

π, κ ∈ sHML ::=tt | ff | [[α]]π | π ∧ κ | maxX.π | X.

Note that [[α]]π uses external actions. Its semantics is given as in Definition 2. We can also
give a direct inductive definition, i.e., J[[α]]ϕ, ρK = {p

∣∣ ∀q. p α=⇒ q implies q ∈ Jϕ, ρK}. J

I Definition 10. An external monitor on (Act,Sil) is defined by the grammar:

m,n ∈Monα ::=end | no | α.m | m+ n | rec x.m | x.

Table 1 defines its LTS transition semantics, yieldingMα = 〈Monα, (Act,Sil),→〉. External
instrumentation, denote by Iα, is defined by the three rules iMon, iTer, and iAbs in Table 1;
in the case of iMon and iTer action µ is substituted by the external action α. We refer to
the pair (Mα, Iα) as the external monitoring system, amounting to the setup in [11, 12]. J

I Theorem 11. The external monitoring system (Mα, Iα) monitors for sublogic sHML. J

I Example 12. Consider a simple server interface that receives requests from a client,
represented by action req, and then sends a reply, represented by action ans. Between
req and ans, a server implementation may upload a copy of the request transcript; this
computation is represented as a sequence of silent τ -transitions that do not divulge information
relating to the upload. In LTS L1 of Figure 1, process 1 represents a server implementation
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L1:

1 2 3
req ans

4 5 6 7 8
req τ

τ

τ ans
L2:

1

4

2

5

3 6

7 8

req

req

ans

υ

υ

ans

Figure 1 LTS L1 depicts the two variations of the server from Example 12.

that never uploads anything, whereas process 4 represents an alternative implementation
that creates a transcript (the τ -transition from 5 to 6) and repeatedly attempts to upload
the copy until it succeeds (the τ -loop on 6 followed by the transition to 7). An external
monitor does not see processes 1 and 4 differently, as it does not observe the silent transitions.
On the other hand, a full monitor can observe all the silent transitions that occur during
an execution. We note that both process 1 and process 4 in L1 violate the specification
[[req]][[ans]]ff. Process 1 violates [req][ans]ff, while 4 does not. Conversely, process 1 does
not violate the ssHML-specification [req][[τ ]][ans]ff, but 4 does: this can be observed by
the full monitor req.rec x.(τ.(ans.no + x)). J

We conclude the section by commenting on other potential monitoring systems and their
expressive power. In particular, the monitoring system (M δ, Iα) yields monitoring setups
whereby monitor δ-transitions are suppressed by the instrumentation, effectively making full
monitors behave like external monitors from Definition 10. In the case of the monitoring
system (Mα, Iδ), the instrumentation forces the monitor to transition to the inconclusive
state more often since it does not abstract away from δ-transitions.

4 Obscuring the Silent Transitions

The full monitoring system (M δ, Iδ) presented in Section 3 is straightforward and powerful.
One might however argue that, in practice, it is too powerful: it is plausible that the visibility
of certain silent transitions be somehow more obscure than that of external transitions.
The external monitoring system (Mα, Iα) sits at the other end of the spectrum because it
completely ignores all silent transitions. We consider monitoring systems that fall between
these extremes: they can clearly observe certain silent transitions, but may receive imperfect
information on others i.e., observing that some number of transitions occurred, but not how
many. In this case, we say that the transitions were obscure.

4.1 A Preorder of Obscure LTSs and Reliable Monitoring

We consider two silent actions: τ is a silent action that can be clearly observed and υ is the
obscure silent action, representing an undetermined positive number of τ -transitions. In the
following, we consider only monitoring setups on (Act, {τ, υ}) and, whenever we say that L
is an LTS, we mean that it is a system LTS on (Act, {τ, υ}), unless otherwise stated; if L
reports perfect information, it is assumed to be an LTS on (Act, {τ}).

We consider a preorder ≤o on LTSs, where L ≤o L′ intuitively means that L and L′

have the same processes, but the silent transitions in L′ are somehow more obscure than
in L. Although we do not identify a specific such preorder, in Subsection 4.2, we introduce
properties that we require of it. We say that L′ is an obscuring of L when L ≤o L′. We
also introduce the obscuring preorder ≤ on Act ∪ {τ, υ}: µ1 ≤ µ2 iff µ1 = µ2 or µ1 = τ and
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µ2 = υ. The intuition is that, whenever µ1 ≤ µ2 and the system performs a µ1-transition,
the monitor may observe a (more obscure) µ2-transition.

I Example 13. Consider a simple LTS L which contains exactly one maximal path:

p
µ1−→L p1

µ2−→L · · ·
µi−→L pi

τ−→L q1
τ−→L · · ·

τ−→L qr
µi+1−−−→L pi+1

µi+2−−−→L · · ·
µk−−→L pk

of k+r transitions, where r > 0; note that states q2 . . . qr−1 have no outgoing external actions.
An obscuring of L may result from replacing pi

τ−→L q1 by a direct transition pi
υ−→L′ qr,

thus obscuring the path pi
τ−→L q1

τ−→L · · ·
τ−→L qr and leaving the remaining path unchanged.

Thus in L′ we have:

p
µ1−→L′ p1

µ2−→L′ · · · µi−→L′ pi
υ−→L′ qr

µi+1−−−→L′ pi+1
µi+2−−−→L′ · · · µk−−→L′ pk

This would mean that as the system progresses from p to pk, µ1 through µk are clearly
observed, but when the system performs pi

τ−→L q1
τ−→L · · ·

τ−→L qr, we only observe that at
least one silent transition occurred, without discerning the exact number. J

I Definition 14. Let m be a monitor of a monitoring system (M, I); ϕ a formula of µHML
on (Act, {τ}); L an LTS on (Act, {τ}); and L′ an obscuring of L. We say that m (M, I)-
monitors for ϕ on L from L′ iff

for every process p of L′, p /∈ JϕKL if and only if rej〈M,I,L′〉(m, p).

We say that m reliably (M, I)-monitors for ϕ on L if m (M, I)-monitors for ϕ on L from any
obscuring of L. Monitor m reliably (M, I)-monitors for ϕ if m reliably (M, I)-monitors for ϕ
on any LTS L. We often omit the the monitoring system (M, I) whenever it is evident. J

I Definition 15. Fix a monitoring system (M, I) and a fragment Λ of µHML on (Act, {τ, υ}).
(M, I) reliably monitors for Λ on LTS L iff

For every ϕ ∈ Λ, there is a monitor m of M such that m reliably monitors for ϕ on L.
For every a monitor m of M , there is a ϕ ∈ Λ such that m reliably monitors for ϕ on L.

(M, I) reliably monitors for Λ when (M, I) reliably monitors for Λ on every LTS. J

4.2 Requirements on Obscuring Preorders
We identify certain properties of the obscuring ordering ≤o that we consider natural. These
properties suffice to prove the results of Section 5. Consequently, the conclusions we draw
about reliably monitorable formulas of µHML are proven for every ≤o that has these
properties. Our intuition is that if L ≤o L′, then L′ is the same LTS as L, but seen with less
precision with respect to the silent transitions. So, every transition we observe in L′ is either
a transition from L, or an obscure view of a sequence of transitions from L.

Natural Properties of Obscurings. We fix two LTSs L ≤o L′. Since L′ should at most
provide imperfect information on the silent transitions of the system, external transitions
should be unaffected:

A. α−→L′= α−→L for every α ∈ Act.
As L′ obscures the information on the silent transitions of L, τ -transitions will become fewer:
L′ should have at most the τ -transitions of L (Property B). Furthermore, every υ-transition
in L′ represents a non-empty sequence of silent transitions from L (Property C).

B. τ−→L′⊆ τ−→L and
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C. υ−→L′⊆ ( τ−→L ∪
υ−→L)+.

The following properties ensure that a certain level of information is retained in L′. In
particular, if a state has a silent transition in L, it should still have a silent transition in L′
(Property D). Moreover, if a state p has a sequence of silent transitions in L that lead to a
state q that can perform an external action, then this observation should be preserved in L′.
Following Property A, it suffices to require that q is reachable from p in L′ via a sequence of
silent actions (Property E).

D. For all p if p τ−→L or p υ−→L, then p
τ−→L′ or p υ−→L′ .

E. For all p, p′, if p( τ−→L ∪
υ−→L)+p′

α−→ for some α ∈ Act, then p( τ−→L′ ∪ υ−→L′)+p′.

The Strength of Obscuring. Properties F, G, and H capture the kind of obscuring ordering
considered in this paper. We assume that there is a certain level of obscuring, beyond which
adequate monitoring is deemed infeasible. In Property F below, obscuring can reach a point,
represented as an LTS Lo, where all the silent-action information is hidden. That is, if
p
υ−→Lo

υ−→Lo p
′, then process p can also perform the more obscure transition p υ−→Lo p

′ and
furthermore, at no point does Lo reveal any clear τ -transition. We call such an obscuring Lo,
as described by Property F, a total obscuring.

F. Each L has an obscuring Lo, such that τ−→Lo= ∅ and
υ−→Lo is transitive.

For an LTS L, let Lτ be the LTS on (Act, {τ}) with the same set of processes, so that
for α ∈ Act, α−→Lτ= α−→L and τ−→Lτ= τ−→L ∪

υ−→L. Property G assures us that we can always
obscure any selection of τ -transitions by turning them into υ-transitions, thus “forgetting”
how many transitions were taking place at certain points. Property G can also be interpreted
to mean that υ-transitions may indeed just represent single τ -transitions.

G. Lτ ≤o L for each LTS L.

For the last requirement, we need the following definitions. For a process p in L and
a trace s ∈ (Act ∪ {τ, υ})∗, we say that p represents s in L when s is the only maximal
trace that p can produce — that is, when ∀s′.

(
∃q. p s′

=⇒L q iff s′ is a prefix of s
)
. For a trace

s ∈ (Act ∪ {υ})∗, we define the total obscuring of s, denoted as o(s), as follows: o(ε) = ε;
o(υk) = υ and o(υkαs) = υα o(s) for k > 0; and o(αs) = α o(s). Property H ensures that any
sequence of silent transitions can be obscured into an υ-transition at least for some LTSs:

H. for every trace s ∈ (Act∪{υ})∗, there are LTSs L ≤o L′ and a process p in L, such that
p represents s in L and o(s) in L′.

Property H may seem arbitrary, but it is not hard to justify that it is an immediate consequence
of our intuition, as depicted in Example 13. Consider a maximal-path LTS L as in Example
13, but with τ -transitions replaced by υ-transitions, such that s1 = µ1 · · ·µi ∈ Act∗ and
s2 = µi+1 · · ·µk ∈ Act∗. Then, p represents s = s1υ

ks2 in L and o(s) = s1υs2 in L′.

4.3 An Ordering of Obscurings
We provide a natural instance of an ordering that has all the properties of Subsection 4.2.

I Definition 16. Relation ≤c is the transitive closure of ≤1, where for LTSs L1 and L2 on
(Act, {τ, υ}), L1 ≤1 L2 when for every α ∈ Act, α−→L1= α−→L2 and one of the following holds:

1. τ−→L1 = τ−→L2 and υ−→L1 ⊆
υ−→L2 ⊆

υ−→L1 ∪
τ−→L1 ;

2. υ−→L1 = υ−→L2 and τ−→L2 ⊆
τ−→L1 ⊆

υ−→L2 ∪
τ−→L2 ;
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3. τ−→L1 = τ−→L2 and υ−→L1 ⊆
υ−→L2 ⊆ ( υ−→L1)+; or

4. τ−→L1 = τ−→L2 ,
υ−→L2 ⊆

υ−→L1 , and for all p υ−→L1 p
′, if p 6 υ−→L2 p

′, then
p′ 6 α−→ for all α ∈ Act,
p′

υ−→L1 p
′′ or p′ τ−→L1 p

′′ for some p′′ 6= p′, and
p
υ−→L2 p

′′ for every p′′ such that p′ υ−→L1 p
′′ or p′ τ−→L1 p

′′. J

The cases presented in Definition 16 give a set of moves we can apply to construct a more
obscure LTS from a given one. Informally:

1. According to move 1, for any transition p τ−→ q, we can add transition p υ−→ q.
2. Following move 1, we can remove transition p τ−→ q.
3. For transitions p υ−→ p′

υ−→ p′′, we can insert a new transition p υ−→ p′′.
4. For transition p υ−→ p′, if move 3 has already been applied to p υ−→ p′

υ−→ p′′ for all possible
and at least one p′ δ−→ p′′, where p′ 6= p′′ and δ ∈ {τ, υ}, and p′ 6 α−→ for all α ∈ Act then
we can remove p υ−→ p′.

I Example 17. We revisit Example 12 of a simple server. The LTS L2 of Figure 1 presents
a maximal obscuring of L1, according to ≤c. Moves 1 and 2 can replace all τ -transitions
by υ-transitions; move 3 can be used to introduce a transition from process 2 directly
to process 5; and move 4 can eliminate incoming transitions to process 4, including the
self-loop. Thus, the LTS retains the information that the server uploads the transcript
to a remote location, but not any information of intermediate steps. We observe that
formula ψ = [req][[τ ]][ans]ff is reliably monitorable on L1 from L2 by the full monitor
req.rec x.(τ.(ans.no + x) + υ.(ans.no + x)). J

I Proposition 18. Relation ≤c has all the properties listed in Subsection 4.2. J

5 Reliable Monitorability

In this section, we identify a maximal reliably monitorable fragment of µHML — up to logical
equivalence — and a monitoring system that monitors for it. The results of this section are
relative to any fixed preorder ≤o that satisfies the properties presented in Subsection 4.2.

I Example 19. Let ϕ1 = [τ ][α]ff (i.e., after any τ -action, a process cannot perform an
α-action), ϕ2 = [τ ]ff (i.e., a process cannot perform a τ -action), and ϕ3 = maxX.([τ ][α]ff∧
[τ ]X) (i.e., a process cannot perform an α-action after any non-empty sequence of τ -actions).
Notice that ϕ3 ≡ [[τ ]][α]ff . Let L1, L2 be the LTSs described below, where L1 ≤o L2.:

L1 : p0
τ−→ p1

τ−→ p2
α−→ p3 L2 : p0

υ−→ p2
α−→ p3 and p1

υ−→ p2.

L2 is a ≤o-maximal obscuring of L1: any LTS L′ with L2 ≤o L′ will have to be exactly L2
according to Properties B through E. LTSs L1 and L2 are really instances of LTSs L and L′
from Example 13, resp. Consider L3 described below:

L3 : p0
τ−→ p2

α−→ p3 and p1
τ−→ p2

where L2 is also an obscuring of L3, L3 ≤o L2. We observe that ϕ1 is not reliably monitorable
according to Definition 14: p0 ∈ Jϕ1KL1

and p0 /∈ Jϕ1KL3
, so a monitor that reliably monitors

for ϕ1 would need to reject and not reject p0 in L2. On the other hand, both ϕ2 and ϕ3 are
reliably monitorable w.r.t. ≤o. Let

m2 = υ.no + τ.no and m3 = rec x.(υ.α.no + υ.x+ τ.α.no + τ.x)
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iMonp
µ−→L p

′ m
µ′

−→M m′ µ ≤ µ′

m / p
µ′
−→I(L,M) m′ / p′

iTerp
µ−→L p

′ ∀µ′ ≥ µ. m 6 µ
′

−→M

m / p
µ−→I(L,M) end / p′

iTran
m / p

υ−→I(L,M) m
′ / p′ p′

µ−→L p
′′ µ ≤ υ

m / p
υ−→I(L,M) m′ / p′′

Table 2 Instrumentation rules for myopic monitors.

be monitors from the full monitoring system (Mδ, Iδ). According to Properties B, C, and D,
for all LTSs L ≤o L′, where L is an LTS on (Act, {τ}), and every process p in L we have
that p τ−→L if and only if p τ−→L′ or p υ−→L′ ; therefore, m2 monitors for ϕ2 on L from L′. A
process p of L violates ϕ3 iff p( τ−→L)+q

α−→L for some q; by Properties A, B, C, p( τ−→L)+q
α−→L

iff p( τ−→L′ ∪ υ−→L′)+q
α−→L′ , and therefore, m3 monitors for ϕ3 on L from L′. J

We first introduce myopic monitors, that are equivalent to full monitors on total obscurings.

I Definition 20. A myopic monitor on (Act,Sil) is defined by the grammar:

m,n ∈Monυ :: = end | no | α.m | υ.m | m+ n | rec x.m | x.

A myopic monitor’s LTS semantics is defined by the transition rules in Table 1; the resulting
monitor LTS is Mυ = 〈Monυ, (Act, {υ}),→〉. The instrumentation Iυ of myopic monitors
is then defined by the rules in Table 2. J

Rules iMon and iTer are similar to those for Iδ. The difference is that when the monitor
is expecting a more obscure action (i.e., υ), the instrumentation can pass along a possibly less
obscure process action. So, the instrumentation may interpret τ -transitions as υ-transitions.
Rule iTran is new, but the intuition behind it is similar: the instrumentation may interpret
a (possibly mixed) sequence of τ - and υ-transitions as a single υ-transition, if that is what
the monitor was expecting. On total obscurings, myopic monitors behave like full monitors.

I Lemma 21. If L is a total obscuring on (Act, {τ, υ}), then for every m ∈ Monυ and
process p of L, rej〈Mυ,Iυ,L〉(m, p) iff rej〈Mδ,Iδ,L〉(m, p). J

Lemma 21 allows us to further restrict the syntax of myopic monitors while preserving
monitorability with respect to reliably monitorable formulas. The υ-alternating myopic
monitors are the myopic monitors restricted to the following syntax:

m,n ∈Monalt ::=end | no | υ.no | α.m | υ.α.m | m+n | rec x.m | x.

The resulting monitor LTS is called Malt and it is a fragment of Mδ.

I Corollary 22. If ϕ is a reliably monitorable formula on (Act, {τ}), then there is an
υ-alternating myopic monitor that monitors for ϕ on every LTS L on (Act, {τ}) from every
total obscuring of L. J

I Example 23. We revisit the LTSs L1 ≤o L2 from Example 19. Let m4 = υ.υ.α.no be a
myopic monitor but not an υ-alternating one. We see that m4 rejects process p0 in L1, but
not in L2 since m4 flags processes that perform at least two silent actions before performing
α; this is not the case for p0 in L2. The constraint of υ-alternation ensures that the monitors
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are not allowed to count silent actions and thus rely on information that may be hidden in
a further obscuring of the LTS: the information that a monitor of the form υ.no or υ.α.m
can analyse is “at least one” silent transition (and then α in the second case), which is
information guaranteed to be preserved by Properties E and D. J

The following results describe how monitor rejections are preserved by the obscuring preorder.

I Lemma 24. For eachm ∈Monυ and each process p of L where L ≤o L′, rej〈Mυ,Iυ,L′〉(m, p)
implies rej〈Mυ,Iυ,L〉(m, p). J

I Lemma 25. For every υ-alternating myopic monitor m and p a process of L where L ≤o L′,
rej〈Mυ,Iυ,L〉(m, p) implies rej〈Mυ,Iυ,L′〉(m, p). J

I Corollary 26. If an υ-alternating myopic monitor monitors for a formula ϕ on LTS L on
(Act, {τ}) from any obscuring of L, then the monitor reliably monitors for ϕ on L. J

We are ready to identify a maximal reliably monitorable fragment of µHML on (Act, {τ}),
which we call RsHML:

θ, χ ∈ RsHML ::= tt | ff | [τ ]ff | [α]θ | [[τ ]][α]θ | θ∧χ | maxX.θ | X.

I Definition 27 (Reliable Monitor Synthesis). We define a reliable monitor synthesis
function L·Mr from RsHML to υ-alternating myopic monitors.

LttMr = end LffMr = no LXMr = x L[τ ]ffMr = υ.no

Lψ1 ∧ ψ2Mr =


Lψ1Mr if Lψ2Mr = end

Lψ2Mr if Lψ1Mr = end

Lψ1Mr + Lψ2Mr otherwise
L[α]ψMr =

{
end if LψMr = end

α.LψMr otherwise

LmaxX.ψMr =
{

end if LψMr = end

rec x.LψMr otherwise
L[[τ ]][α]ψMr =

{
end if LψMr = end

υ.α.LψMr otherwise J

I Lemma 28. For every formula ϕ ∈ RsHML, LϕMr reliably monitors for ϕ.

I Definition 29 (Reliable Formula Synthesis). We define a reliable formula synthesis
function ‖·‖r from υ-alternating myopic monitors to RsHML.

‖end‖r = tt ‖no‖r = ff ‖x‖r = X

‖υ.no‖r = [τ ]ff ‖υ.α.m‖r = [[τ ]][α]‖m‖r ‖α.m‖r = [α]‖m‖r
‖m+ n‖r = ‖m‖r ∧ ‖n‖r ‖rec x.m‖r = maxX.‖m‖r J

I Lemma 30. For every υ-alternating myopic monitor m on (Act, {τ, υ}), m reliably
monitors for ‖m‖r. J

Theorem 31 presents the main result of this section. The first part follows from Lemmata
28 and 30 whereas the second part is a consequence of Lemma 30 and Corollaries 22 and 26.

I Theorem 31. The monitoring system (Malt, Iυ) on (Act, {τ, υ}) reliably monitors for
RsHML on (Act, {τ, υ}). Moreover, RsHML is the largest reliably monitorable fragment
of µHML up to logical equivalence. J

We note that RsHML is also a fragment of ssHML, the maximally monitorable fragment
of µHML identified in Section 3. Theorem 31 holds for every preorder ≤o that has the
properties listed in Subsection 4.2. Therefore, it also holds for ≤c from Definition 16.
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I Example 32. We return to the server from Examples 12 and 17. Notice that formula ψ is
a RsHML-formula, and therefore it is reliably monitorable. J

We conclude by noting that myopic monitors can also be described as a fragment of full
monitors by replacing υ.no by τ.no+υ.no and υ.α.m with rec x.(τ.x+υ.x+τ.α.m+υ.α.m) in
any myopic monitor. However, myopic monitors provide a cleaner, more efficient description
of the same monitors.

6 Conclusions

We developed a general framework for reliable monitorability for monitoring setups that
obscure information about the internal behaviour of systems. The framework is described
through a family of LTS preorders that satisfy natural properties (A through D of Subsection
4.2). Via further assumptions (properties F, G, H) that guarantee a certain level of information
obscuring, we identified RsHML, a maximal reliably monitorable fragment of µHML. Then,
we provided a monitoring system, (Malt, Iυ), that reliably monitors for RsHML.

Related work: In [9], Dwyer et al. use the approach of combining several properties to be
monitored to produce a composite property and then project this composite property onto
a smaller set of observable actions. This sampling technique effectively “silences” some of
the observable actions and focuses on the rest to reduce overhead without risking unsound
monitoring. Their approach highlights the importance of silent actions for RV and the need
for a framework to handle imperfect information about silent events.

In [5] Basin et. al. consider the problem of monitoring over defective traces (called
incomplete/disagreeing logs). They propose an augmented LTL specification language that
permits reasoning about incompleteness and handling of inconsistencies. In some sense, this
is related to our reliable monitors that are able to provide correct verdicts in the presence of
event obscuring; however, the authors in [5] do not tackle issues related to monitorability.

In [19], Shi et. al. consider the problem of monitoring a wireless network via a wireless
sniffer. A wireless sniffer may introduce uncertainty over a monitoring setup, as the trace it
detects may not necessarily be the actual trace of the system, due to the intrinsic unreliability
of the wireless network. The authors in [19] thus develop a monitoring framework to tolerate
such errors. In separate work [6], Basin et. al. tackle the problem of distributed monitoring
over a network which may produce delays and/or failures; they use a monitoring system
based on a real-time three-valued logic that can track when an event took place. Their
monitors may then need to draw appropriate conclusions under incomplete or scrambled
information. Although we do not consider aspects such as event reordering, our work could
serve as a basis for a better understanding of the level of obscuring these systems can tolerate.

Variations: Our system can be adjusted to describe diverse situations, by either weakening or
strengthening the power of obscuring preorders. For instance, one can relax properties F to H
to describe situations where there is a guarantee that the system reveals its internal behaviour
at least partly and to a certain degree. For example, we can take ≤o to be the identity
relation on LTSs, as it satisfies properties A to D and therefore is an obscuring preorder;
then, the reliably monitorable properties would be all of ssHML and the corresponding
monitoring system would be that of full monitors. A preorder between ≤c and = would
perhaps be more interesting.
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A Appendix

In this appendix, we prove the claims from the main body of this paper.

A.1 General Lemmata
We recursively define relation ⊆ on monitors: for all m,m′ ∈Monδ:

(i) m ⊆ m;

(ii) if m ⊆ m′, then m ⊆ m′ + n and
m ⊆ n+m′; and

(iii) if m ⊆ m′[rec x.m′/x], then m ⊆ rec x.m′.
Intuitively, if m ⊆ m′ and m µ−→ n, then also m′ µ−→ n.

I Lemma 33. If a m ⊆ n for monitors m,n of monitor LTS M that occurs from the rules
in Table 1, then m µ−→M m′ implies n µ−→M m′.

Proof. By straightforward induction on the definition of ⊆. J

I Lemma 34. Let (M, I) be a monitoring system and R an instrumentation rule of the form

R
cond

m / p
µ−→I(M,L) end / p′

,

where cond is a sequence of conditions, m a monitor, p, p′ processes from some LTS, and µ
some action. Let N be the result of adding R to the instrumentation rules of I. Then, for
every process p of an LTS L, and monitor m of M ,

rej〈M,I,L〉(m, p) iff rej〈N,I,L〉(m, p).

Proof. Notice that the effect of R on the LTS I(N,L) is to add transitions leading to
monitored processes of the form end / p, which can never reach a monitored process of the
form no / p′. Therefore, a monitored process m/ p can reach a monitored process of the form
no / p′ in I(M,L) if and only if m / p can reach no / p′ in I(N,L). J

I Lemma 35. Let (M, Iδ) be a monitoring system on (Act,Sil) and let m be a monitor of
M . Then, for every process p of a system LTS L on (Act,Sil), rej〈M,Iδ,L〉(m, p) if and only
if there are some s ∈ (Act ∪ Sil)∗ and a process q of L, such that p s=⇒L q and m s=⇒M no.

Proof. The lemma is a consequence of the following claim: for every s ∈ (Act ∪ Sil)∗
and process q of L, m / p

s=⇒Iδ(M,L) no / q if and only if p s=⇒L q and m s=⇒M no. The “if”
direction can be proven by induction on m s=⇒M no and the “only if” direction by induction
on m / p

s=⇒ no / q (see also the proof of Proposition 1 in [11]). J

A.2 Omitted Proofs from Section 3
Theorem 11 was proven in [12] for the external monitoring system (Mα, Iα). As we demon-
strate, it is not hard to recast that result for the full monitoring system and thus prove
Theorem 8. For a formula ϕ ∈ ssHML, we define w(ϕ) in the following way:

w(tt) = tt; w(ff) = ff; w(X) = X;
w(ϕ ∧ ψ) = w(ψ) ∧ w(ψ); w(maxX.ϕ) = maxX.w(ϕ);
w([µ]ϕ) = [[µ]]w(ϕ).
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Proof of Theorem 8. For an LTS L = 〈P, (Act,Sil),→L〉, let LSil = 〈P, (Act∪Sil, ∅),→L

〉. For a monitor m ∈Monδ and process p ∈ P ,

rej〈Mδ,Iδ,L〉(m, p) if and only if rej〈Mα,Iα,LSil〉(m, p),

as the same rules are used in both cases. Notice that for α ∈ Act ∪ Sil, α=⇒LSil= α−→LSil= α−→L,
as there are no silent actions for LSil, so for every ϕ ∈ ssHML, JϕKL = Jw(ϕ)KLSil .

Therefore, for every ϕ ∈ ssHML, we can define LϕM = Lw(ϕ)Mw and for every m ∈Monδ,
‖m‖ = ‖w−1(m)‖w, where L·Mw and ‖·‖w are the monitor synthesis and formula synthesis
functions for sHML as defined in [11]. Then, for every ϕ ∈ ssHML, LϕM monitors for ϕ and,
for every m ∈Monδ, m monitors for ‖m‖. J

A.3 Omitted Proofs and Examples from Section 4
Proof of Proposition 18. Property F holds because moves 1 and 2 allow us to turn all

τ -transitions to υ-transitions and move 3 allows us to make υ−→ transitive.
Property G holds by using move 1.
Property H is straightforward to verify: it is not hard to see how LTS L can be turned into

L′ from Example 13 using moves 3 to ensure that pi
υ−→ qr and 4 to then remove pi

υ−→ q1.
Properties B through D are preservation properties and it suffices to prove them for ≤1:

Properties B and C are straightforward to verify for each move.
Property A holds for L ≤1 L

′, as it is a general condition for every move.
For properties E and D, notice that moves 1, 2, and 3 preserve reachability with

respect to τ−→ ∪ υ−→, so the properties hold; for move 4, if p τ−→L q (for either condition),
then we are done; otherwise p υ−→L q, so if p 6 υ−→L′ q, then q 6 α−→ for all α ∈ Act (so property
E is verified) and there is some p′ such that p υ−→L′ p′ and either q υ−→L p

′ or q τ−→L p
′, so

property D is verified. J

I Example 36. To save notation, by p τ+υ−−−→ q we mean p τ−→ q and p υ−→ q; moreover, for
1 ≤ i ≤ 4, by L ≤i1 L′ we mean that L ≤1 L

′ by condition i of Definition 16. Recall LTSs
L1, L2, and L3 from Example 19; we also define the following LTSs:

L4 : p0
τ+υ−−−→ p1

τ−→ p2
α−→ p3 L5 : p0

τ−→ p1
τ+υ−−−→ p2

α−→ p3

L′4 : p0
υ−→ p1

τ−→ p2
α−→ p3 L′5 : p0

τ−→ p1
υ−→ p2

α−→ p3

L1
6 : p0

υ−→ p1
τ+υ−−−→ p2

α−→ p3 L2
6 : p0

τ+υ−−−→ p1
υ−→ p2

α−→ p3

L3
6 : p0

τ+υ−−−→ p1
τ+υ−−−→ p2

α−→ p3 L6 : p0
υ−→ p1

υ−→ p2
α−→ p3

L7 : p0
υ−→ p1

υ−→ p2
α−→ p3 and p0

υ−→ p2 L8 : p0
τ+υ−−−→ p2

α−→ p3 and p1
τ−→ p2

L′8 : p0
υ−→ p2

α−→ p3 and p1
τ−→ p2 L9 : p0

υ−→ p2
α−→ p3 and p1

τ+υ−−−→ p2

We observe that by using moves 1 and then 2:

L1 ≤1
1 L4; L1 ≤1

1 L5; L1 ≤1
1 L4; L4 ≤1

1 L
3
6; L5 ≤1

1 L
3
6; L3 ≤1

1 L8;
L4 ≤2

1 L
′
4; L5 ≤2

1 L
′
5; L8 ≤2

1 L
′
8; L9 ≤2

1 L2; Li6 ≤2
1 L6,

where i = 1, 2, 3. Finally, by using moves 3 and 4, we can see that L6 ≤3
1 L7 ≤4

1 L2. Therefore,
L1 ≤c L2 and L3 ≤c L2, and we were able to construct L2 as an obscuring of L1 and L3
(and of all Li for 1 ≤ i ≤ 9). J
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A.4 Omitted Proofs and Examples from Section 5
We first examine reliably monitorable formulas of µHML w.r.t. their monitorability on total
obscurings and identify a suitable fragment of full monitors that suffices to monitor for all
reliably monitorable formulas on total obscurings (Lemma 41).

I Lemma 37. If ϕ is reliably monitorable on LTSs L,L′ on (Act, {τ}) and for an LTS L′′
on (Act, {τ, υ}), L ≤o L′′ and L′ ≤o L′′, then JϕKL = JϕKL′ .

Proof. If m of monitoring system (M, I) reliably monitors for ϕ on L and L′, L ≤o L′′, and
L′ ≤o L′′, then

JϕKL = JϕKL′ = {p | not rej〈M,I,L′′〉(m, p)}. J

Let [τ + υ]ϕ be short for [τ ]ϕ ∧ [υ]ϕ. For a formula ϕ of ssHML on (Act, {τ}), ϕυ is
the result of replacing all occurrences of [τ ] by [τ + υ] in ϕ.

I Lemma 38. For each (possibly open) ssHML-formula ψ on (Act, {υ}), LTS L on
(Act, {υ}), and environment ρ, Jψ, ρKLτ = Jψυ, ρKL

Proof. By straightforward induction on ψ. J

I Lemma 39. If ϕ is a ssHML-formula on (Act, {τ}) that is reliably monitorable, then for
every LTS L on (Act, {τ}) and every obscuring L′ of L, JϕKL = JϕυKL′ .

Proof. By property G, we have that (L′)τ ≤o L′. Therefore, by Lemma 37, JϕKL = JϕK(L′)τ .
Finally, by Lemma 38, JϕK(L′)τ = JϕυKL′ . J

I Corollary 40. If ϕ is a reliably monitorable formula on (Act, {τ}), then there is a full
monitor on (Act, {υ}) that reliably monitors for ϕ.

Proof. Since ϕ is reliably monitorable, then it is also monitorable by a monitor m. Using
the formula synthesis function from Section 3, ‖m‖ ≡ ϕ and ‖m‖ ∈ ssHML (see the proof
of Theorem 8 above). Thus, we assume that ϕ ∈ ssHML. Then, the corollary is the result
of Lemma 39. J

I Lemma 41. For every reliably monitorable formula ϕ on (Act, {τ}), there is an υ-
alternating full monitor on (Act, {τ, υ}) that reliably monitors for ϕ on every LTS L on
(Act, {τ}) from any total obscuring of L.

Proof. According to Corollary 40, there is a full monitor m on (Act, {τ, υ}) that reliably
monitors for ϕ. We demonstrate that m rejects exactly the same processes as an υ-alternating
full monitor on (Act, {υ}) on total LTSs.

Let Q be the set of monitors that can be reached by a sequence of transitions from m. Let
A be the NFA (Q,Act ∪ {υ, (υα) | α ∈ Act}, δ,m, {no}),1 where for n ∈ Q and α ∈ Act,

δ(n, α) = {n′ ∈ Q | n α−→ n′};

δ(n, (υα)) = {n′ ∈ Q | n υ−→ α−→ n′}; and

δ(n, υ) = {no | n υ−→ no}.

1 For an automaton (Q,Σ, δ, q0, F ), Q is the set of states, Σ its alphabet, δ its transition relation, q0 ∈ Q
its initial state, and F ⊆ Q the set of its accepting states.
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For a trace s ∈ (Act ∪ {υ})∗, we define o′(s) as follows: o′(ε) = ε; o′(υk) = υ for k > 0;
o′(αs) = αo′(s) for α ∈ Act; o′(υkαs) = (υα)o′(s) for k > 0. Notice that o(s) is o′(s)
without the parentheses.

Claim: for s ∈ (Act ∪ {υ})∗, m s=⇒ no if and only if A accepts o′(s).
To see that the above claim holds, notice first of all that A accepts o′(s) if and only if
m

o(s)==⇒ no. Therefore, to show the claim it suffices to prove that m s=⇒ no if and only if
m

o(s)==⇒ no. By property H of ≤o, there is a process p of some LTSs L ≤o L′, such that p
produces exactly the prefixes of s in L and the prefixes of o(s) in L′. Monitor m monitors
for ϕ on Lτ ≤o L (by property G) from both L and L′ and therefore, m s=⇒ no if and only if
m

o(s)==⇒ no.
By [1, Theorem 6], there is an external monitor n′ on (Act ∪ {υ, (υα) | α ∈ Act}, ∅)

which rejects exactly the traces A accepts; to turn this into an equivalent (in that it rejects
o(s) iff n′ rejects o′(s)) υ-alternating full monitor n on (Act, υ), we simply replace all (υα)
by υ.α in n′. Then, for every trace s ∈ (Act ∪ {υ})∗, m s=⇒ no if and only if n o(s)==⇒ no.

Now we are ready to prove that m and n reject the same processes on all total LTSs L.
If m rejects process p, then, by Lemma 35, p can produce a trace s, which m rejects; but υ−→
is transitive in L and therefore, p can also produce trace o(s), which n rejects. The other
direction is similar. J

Now we know that any monitoring system that reliably monitors for a fragment of µHML
on (Act, {τ}) must be equivalent to a fragment of full monitors on (Act, {υ}). We can
further narrow down the kind of monitoring system we are looking for by observing that
we can syntactically restrict full monitors and still preserve monitorability with respect to
reliably monitorable formulas.

IDefinition 42. The υ-alternating full monitors on (Act, {υ}) are the full monitors described
by the following grammar:

m,n ∈Monalt ::=end | no | υ.no | α.m | υ.α.m | m+n | rec x.m | x

The resulting monitor LTS is called Malt and it is a fragment of Mδ. J

I Example 43. We revisit Example 19. Observe that mυ
3 = υ.α.no rejects the same processes

as m3 in L2 (and every other total obscuring). mυ
3 is also an υ-alternating full monitor and

it monitors for ϕ3 on total obscurings of LTSs, but it fails to monitor for ϕ3 on L1 (even
after replacing all τ -transitions by υ-transitions). Thus, Lemma 41 does not identify a class
of monitors that reliably monitor for formulas, as even υ-alternating full monitors are too
powerful: mυ

3 monitors for the property that a process cannot perform one silent action
followed by an α, so it still counts silent actions. Lemma 41, however, serves as a guide for
identifying such a class, as the following subsection demonstrates. J

We define υo-monitors as a technical tool. Just like myopic monitors, υo-monitors use
the syntax of full monitors on (Act, {υ}) and thus

Mυo = 〈Monυ, (Act,Sil),→〉.

For the instrumentation Iυo of υo-monitors, we use the same rules as for myopic monitors,
from Table 2, except for iTran.

For an LTS L on (Act, {τ, υ}), Lυ is the LTS with the same set of processes and actions,
but with the following change in the transition relation: for δ ∈ Act ∪ {τ}, δ−→Lυ= δ−→L; and
υ−→Lυ= υ−→L ∪

τ−→L.
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I Lemma 44. For every monitor m ∈Monυ, trace s ∈ (Act ∪ {τ, υ})∗, and all processes
p, q of an LTS L on (Act, {τ, υ}),

m / p
s=⇒Iυo (Mυo ,L) no / q iff m / p

s=⇒Iδ(Mδ,Lυ) no / q.

Proof. By Lemma 34, we can examine the monitoring systems without rule iTer. Observe
that in Lυ, rule iMonS is a special case of iMon, because τ−→Lυ⊆

υ−→Lυ . Therefore, the
instrumentations of the two monitoring systems give exactly the same instrumentation
LTSs. J

I Corollary 45. For every monitor m and LTS L on (Act, {τ, υ}),

rej〈Mυo ,Iυo ,L〉(m, p) iff rej〈Mδ,Iδ,Lυ〉(m, p).

I Lemma 46. If in an LTS L on (Act, {τ, υ}), τ−→L⊆
υ−→L and υ−→L is transitive, then for

every m ∈Monυ and process p of L,

rej〈Mυo ,Iυo ,L〉(m, p) iff rej〈Mυ,Iυ,L〉(m, p).

Proof. Notice that in L, rule iTran is redundant: if m / p
υ−→Iυ(Mυ,L) n / q is constructed

after an application of rule iMon and k applications of rule iTran, then m
υ−→Mυ n

and p( υ−→L ∪
τ−→L)k+1q. But τ−→L= ∅ and υ−→L is transitive, so p

υ−→L q and therefore,
m / p

υ−→Iυo (Mυ,L) n / q (and Mυo = Mυ by definition). J

Proof of Lemma 21. By property F of ≤o, notice that if L is total, then Lυ = L, τ−→L is
empty, and υ−→L is transitive. The corollary then is a consequence of Corollary 45 and Lemma
46. J

Proof of Corollary 22. A direct consequence of Lemmata 41 and 21. J

Proof of Lemma 24. To prove the lemma, it suffices to prove that if m/p δ−→Iυ(Mυ,L′) m
′/p′,

thenm/p δ−→Iυ(Mυ,L) m
′/p′, where δ ∈ Act∪{τ, υ}. By Lemma 34, we can ignore transitions

derived from rule iTer. By properties A and B of ≤o, for δ ∈ Act ∪ {τ}, δ−→L′⊆ δ−→L, so
δ−→Iυ(Mυ,L′)⊆

δ−→Iυ(Mυ,L) — as besides rule iTer, that we ignore, the conditions of all other
instrumentation rules are positive on τ−→.

It remains to prove the claim that if m/p υ−→Iυ(Mυ,L′) m
′/p′, thenm/p υ−→Iυ(Mυ,L) m

′/p′.
Transition m / p

υ−→Iυ(Mυ,L′) m
′ / p′ may be the result of applying rule iMon to derive an

υ-transition and then use zero or more applications of rule iTran. We prove the claim by
induction on the number of applications of rule iTran.
Base Case: Rule iMon was applied on m/p, so m υ−→Mυ m′ and p µ−→L′ p′ for some µ ≤ υ —

that is, µ is either τ or υ. If µ = τ , then by property B, p µ−→L p
′ and therefore we can use

rule iMon to produce m/ p
υ−→Iυ(Mυ,L) m

′ / p′. If µ = υ, then p υ−→L′ p′ and m υ−→Mυ m′.

By property C, p µ′

−→L p
′′( υ−→L ∪

τ−→L)∗p′ for some process p′′ and µ′ ∈ {υ, τ}. Therefore,
we can use rule iMon to derive m/p

υ−→Iυ(Mυ,L) m
′ / p′′ and rule iTran 0 or more times

to derive m / p
υ−→Iυ(Mυ,L) m

′ / p′.
Inductive Step: If rule iTran was applied k > 0 times to derive transition m/p

υ−→Iυ(Mυ,L′)

m′/p′, then it was used k−1 times to derive m/p υ−→Iυ(Mυ,L′) m
′/p′′, for some p′′ µ−→L′ p′,

where µ ∈ {τ, υ}. By the inductive hypothesis, it is the case that m/p
υ−→Iυ(Mυ,L) m

′ /p′′.
If p′′ τ−→L′ p′, then by property B, also p′′ τ−→L p

′, so we can use rule iTran and derive
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m / p
υ−→Iυ(Mυ,L′) m′ / p′. On the other hand, if p′′ υ−→L′ p′, then by property C,

p′′( τ−→L ∪
υ−→L)+p′ and we can again use rule iTran, perhaps more than once, and derive

m / p
υ−→Iυ(Mυ,L′) m

′ / p′. J

I Lemma 47. For all m,m′, υ-alternating myopic monitors, m υ−→p m
′ if and only if either

m′ = no and no ⊆ m or υ.m′ ⊆ m.

Proof. The “if” direction is a consequence of Lemma 33 and rule mVrd. For the “only if”
direction, notice that m υ−→Mυ m′ can only be produced by an application of rule mAct or
mVrd and k applications of a combination of rules mSel and mRec. The remaining proof
is by straightforward induction on k. J

Proof of Lemma 25. The proof is by induction on the number of visible actions on a rejecting
path of the instrumentation. If m = no, then we are done, so in the following we assume that
m 6= no. If m / p( υ−→Iυ(Mυ,L))+no / p′, then p( τ−→L ∪

υ−→L)+p′ and m
υ−→Mυ m′( υ−→Mυ)∗no;

therefore, p τ−→L ∪
υ−→L and by Lemma 47, υ.m′ ⊆ m, so m′ = no by the syntactic restrictions

of υ-alternating myopic monitors. By property D, p τ−→Lυ ∪
υ−→Lυ p′′ for some p′′ and

therefore, m / p
υ−→Iυ(Mυ,L) no / p′′. On the other hand, if

m / p( υ−→Iυ(Mυ,L))+n / q
α−→Iυ(Mυ,L) n

′ / q′
s=⇒Iυ(Mυ,L) m

′ / p′,

where α ∈ Act, then either υ.no ⊆ m and we can complete the proof as above, or
υ.α.n′ ⊆ m. In the second case, p( τ−→L ∪

υ−→L)+q
α−→L q′ and by the inductive hypoth-

esis, rej〈Mυ,Iυ,L′〉(n′, q′). By property A, q α−→L′ q′ and by property E, p( τ−→L′ ∪ υ−→L′)+q.
Therefore, using rules iMon and iTran, m / p

υ−→Iυ(Mυ,L′) α.n
′ / q

α−→Iυ(Mυ,L′) n
′ / q′, and

thus rej〈Mυ,Iυ,L′〉(m, p). J

Proof of Lemma 28. Because of Corollary 26, it suffices to prove that LϕMr monitors for ϕ on
every LTS L on (Act, τ). Let L+ be the LTS on (Act, {τ, υ}) which has the same processes
as L, such that δ−→L+= δ−→L for δ ∈ Act ∪ {τ} and υ−→L+= τ=⇒L. We can immediately see that
τ=⇒L+= τ=⇒L and therefore JϕKL = JϕKL+ . Let ϕs be the formula of ssHML on (Act ∪ {υ}, ∅)
which results from replacing [τ ].no by [υ].no and [[τ ]] by [υ]. Then, LϕMr = LϕsM and
JϕKL+ = JϕsKL+ (by straightforward induction on ϕ); therefore, LϕMr (Mδ, Iδ)-monitors for
ϕ on L+ and by Corollary 45 and Lemma 46, LϕMr (Mυ, Iυ)-monitors for ϕ on L+.

It now suffices to prove that LϕMr rejects a process in L if and only if it rejects the process
in L+. If LϕMr rejects a process p in L, then since p can produce the same trace that LϕMr
rejects (Lemma 35) in L+ as well, so LϕMr also rejects p in L+. For the other direction, we
use induction on k, where by Lemma 46,

LϕMr / p
µ1−→Iυo (Mυo ,L+) · · ·

µk−−→Iυo (Mυo ,L+) no / p′ :

if k = 0, then we are done; if k > 0 and µ1 6= υ, then we are done by the inductive hypothesis;
otherwise, by the inductive hypothesis, LϕMr / p

υ−→Iυo (Mυo ,L+) m / q
s=⇒Iυ(Mυ,L) no / p′ for

some m, q, s. But LϕMr / p
υ−→Iυo (Mυo ,L+) m / q implies that LϕMr

υ−→Mυo m and p
υ−→L+ q;

therefore, LϕMr
υ−→Mυ m and p( τ−→L)+q and by using rule iMon and rule iTran 0 or more

times, LϕMr / p
υ−→Iυ(Mυ,L) m / q and the induction is complete. J

Proof of Lemma 30. Similar to the proof of Lemma 28. J

Proof of Theorem 31. That (Malt, Iυ) reliably monitors for RsHML is a direct consequence
of Lemmata 28 and 30. We demonstrate that if ϕ is a reliably monitorable formula, then
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it is equivalent to a RsHML formula. If ϕ is reliably monitorable, then by Corollary 22,
there is an υ-alternating myopic monitor m that monitors for ϕ on every LTS from every
total obscuring of L. By Corollary 26, for every LTS L, m reliably monitors for ϕ from
L — therefore, m reliably monitors for ϕ. By Lemma 30, m also reliably monitors for
‖m‖r ∈ RsHML and therefore, for every LTS L,

JϕKL = {p | not rej〈Malt,Iυ,L〉(m, p)} = J‖m‖rKL. J
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