
On Benchmarking for
Concurrent Runtime Verification?

Luca Aceto2,3 ID , Duncan Paul AttardB,1,2 ID ,
Adrian Francalanza1 ID , and Anna Ingólfsdóttir2 ID

1 University of Malta, Malta {duncan.attard.01,adrian.francalanza}@um.edu.mt
2 Reykjavík University, Reykjavík, Iceland {luca,duncanpa17,annai}@ru.is

3 Gran Sasso Science Institute, L’Aquila, Italy {luca.aceto}@gssi.it

Abstract. We present a synthetic benchmarking framework that tar-
gets the systematic evaluation of RV tools for message-based concurrent
systems. Our tool can emulate various load profiles via configuration.
It provides a multi-faceted view of measurements that is conducive to
a comprehensive assessment of the overhead induced by runtime moni-
toring. The tool is able to generate significant loads to reveal edge case
behaviour that may only emerge when the monitoring system is pushed
to its limit. We evaluate our framework in two ways. First, we conduct
sanity checks to assess the precision of the measurement mechanisms
used, the repeatability of the results obtained, and the veracity of the
behaviour emulated by our synthetic benchmark. We then showcase the
utility of the features offered by our tool in a two-part RV case study.

Keywords: Runtime verification · Synthetic benchmarking · Software
performance evaluation · Concurrent systems

1 Introduction

Large-scale software design has shifted from the classic monolithic architecture
to one where applications are structured in terms of independently-executing
asynchronous components [17]. This shift poses new challenges to the validation
of such systems. Runtime Verification (RV) [9,27] is a post-deployment technique
that is used to complement other methods such as testing [46] to assess the func-
tional (e.g. correctness) and non-functional (e.g. quality of service) aspects of
concurrent software. RV relies on instrumenting the system to be analysed with
monitors, which inevitably introduce runtime overhead that should be kept min-
imal [9]. While the worst-case complexity bounds for monitor-induced overheads
can be calculated via standard methods (see, e.g. [40,14,1,28]), benchmarking is,
by far, the preferred method for assessing these overheads [9,27]. One reason for
? Supported by the doctoral student grant (No: 207055-051) and the TheoFoMon
project (No: 163406-051) under the Icelandic Research Fund, the BehAPI project
funded by the EU H2020 RISE under the Marie Skłodowska-Curie action
(No: 778233), the ENDEAVOUR Scholarship Scheme (Group B, national funds),
and the MIUR project PRIN 2017FTXR7S IT MATTERS.

https://www.orcid.org/0000-0002-2197-3018
https://www.orcid.org/0000-0002-2448-5394
https://www.orcid.org/0000-0003-3829-7391
https://www.orcid.org/0000-0001-8362-3075

2 L. Aceto et al.

this choice is that benchmarks tend to be more representative of the overhead
observed in practice [30,15]. Benchmarks also provide a common platform for
gauging workloads, making it possible to compare different RV tool implemen-
tations, or rerun experiments to reproduce and confirm existing results.

The utility of a benchmarking tool typically rests on two aspects: (i) the
coverage of scenarios of interest, and (ii) the quality of runtime metrics col-
lected by the benchmark harness. To represent scenarios of interest, benchmark-
ing tools generally employ suites of third-party off-the-shelf (OTS) programs
(e.g. [60,11,59]). OTS software is appealing because it is readily usable and in-
herently provides realistic scenarios. By and large, benchmarks rely on a range of
OTS programs to broaden the coverage of real-world scenarios (e.g. DaCapo [11]
uses 11 open-source libraries). Yet, using OTS programs as benchmarks poses
challenges. By design, these programs do not expose hooks that enable harnesses
to easily and accurately gather the runtime metrics of interest. When OTS soft-
ware is treated as a black box, benchmarks become harder to control, impacting
their ability to produce repeatable results. OTS software-based benchmarks are
also limited when inducing specific edge cases—this aspect is critical when as-
sessing the safety of software, such as runtime monitors, that are often assumed
to be dependable. Custom-built synthetic programs (e.g. [35]) are an alternative
way to perform benchmarking. These tend to be less popular due to the per-
ceived drawbacks associated with developing such programs from scratch, and
the lack of ‘real-world’ behaviour intrinsic to benchmarks based on OTS soft-
ware. However, synthetic benchmarks offer benefits that offset these drawbacks.
For example, specialised hooks can be built into the synthetic set-up to collect
a broad range of runtime metrics. Moreover, synthetic benchmarks can also be
parametrised to emulate variations on the same core benchmark behaviour; this
is usually harder to achieve via OTS programs that implement narrow use cases.

Established benchmarking tools such as SPECjvm2008 [60], DaCapo [11],
ScalaBench [59] and Savina [35]—developed for the JVM—feature extensively in
the RV literature, e.g. see [48,19,18,54,13,45]. Apart from [45], these works assess
the runtime overhead solely in terms of the execution slowdown, i.e., the differ-
ence in running time between the system fitted with and without monitors. Re-
cently, the International RV competition (CRV) [8] advocated for other metrics,
such as memory consumption, to give a more qualitative view of runtime over-
head. We hold that RV set-ups that target concurrency benefit from other facets
of runtime behaviour, such as the response time, that captures the overhead be-
tween communicating components. Tangibly, this metric reflects the perceived
reactiveness from an end-user standpoint (e.g. interactive apps) [50,61,58,21];
more generally, it describes the service degradation that must be accounted for
to ensure adequate quality of service [15,39]. Arguably, benchmarking tools like
the ones above (e.g. Savina) should provide even more. Often, RV set-ups for
concurrent systems need to scale in response to dynamic changes, and the capac-
ity for a benchmark to emulate high loads cannot be overstated. In actual fact,
these loads are known to assume characteristic profiles (e.g. spikes or uniform
rates), which are hard to administer with the benchmarks mentioned earlier.

On Benchmarking for Concurrent Runtime Verification 3

The state of the art in benchmarking for concurrent RV suffers from an-
other issue. Existing benchmarks—conceived for validating other tools—are re-
purposed for RV and often fail to cater for concurrent scenarios where RV is
realistically put to use. SPECjvm2008, DaCapo, and ScalaBench lack workloads
that leverage the JVM concurrency primitives [52]; meanwhile, [12] shows that
the Savina microbenchmarks are essentially sequential, and that the rest of the
programs in the suite are sufficiently simple to be regarded as microbenchmarks
too. The CRV suite mostly targets monolithic software with limited concurrency,
where the potential for scaling up to high loads is, therefore, severely curbed.

This paper presents a benchmarking framework for evaluating runtime mon-
itoring tools written for verification purposes. Our tool focusses on component
systems for asynchronous message-passing concurrency. It generates synthetic
system models following the master-slave architecture [61]. The master-slave ar-
chitecture is pervasive in distributed (e.g. DNS, IoT) and concurrent (e.g. web
servers, thread pools) systems [61,29], and lies at the core of the MapReduce
model [22] supported by Big Data frameworks such as Hadoop [63]. This justi-
fies our aim to build a benchmarking tool targeting this architecture. Concretely:

– We detail the design of a configurable benchmark that emulates various
master-slave models under commonly-observed load profiles, and gathers dif-
ferent metrics that give a multi-faceted view of runtime overhead, Sec. 2.

– We demonstrate that our synthetic benchmarks can be engineered to ap-
proximate the realistic behaviour of web server traffic with high degrees of
precision and repeatability, Sec. 3.1.

– We present a case study that (i) shows how the load profiles and parametris-
ability of our benchmarks can produce edge cases that can be measured
through our performance metrics to asses runtime monitoring tools in a
comprehensive manner, and (ii) confirms that the results from (i) coincide
with those obtained via a real-world use case using OTS software, Sec. 3.2.

2 Benchmark Design and Implementation

Our set-up can emulate a range of system models and subject them to various
load types. We consider master-slave architectures, where one central process,
called the master, creates and allocates tasks to slave processes [61]. Slaves
work concurrently on tasks, relaying the result to the master when ready; the
latter then combines these results to yield the final output. Our slaves are an
abstraction of sets of cooperating processes that can be treated as a single unit.

2.1 Approach

We target concurrent applications that execute on a single node. Nevertheless,
our design adheres to three criteria that facilitate its extension to a distributed
setting. Specifically, components: (i) share neither a common clock, (ii) nor
memory, and (iii) communicate via asynchronous messages. Our present set-up
assumes that communication is reliable and components do not fail.

4 L. Aceto et al.

Load generation. Load on the system is induced by the master when it creates
slave processes and allocates tasks. The total number of slaves in one run can be
set via the parameter n. Tasks are allocated to slave processes by the master,
and consist of one or more work requests that a slave receives, handles, and relays
back. A slave terminates its execution when all of its allocated work requests have
been processed and acknowledged by the master. The number of work requests
that can be batched in a task is controlled by the parameter w; the actual batch
size per slave is then drawn randomly from a normal distribution with mean
µ=w and standard deviation σ=µ×0.02. This induces a degree of variability in
the amount of work requests exchanged between master and slaves. The master
and slaves communicate asynchronously : an allocated work request is delivered
to a slave process’ incoming work queue where it is eventually handled. Work
responses issued by a slave are queued and processed similarly on the master.
Load configuration. We consider three load profiles (see fig. 3 for examples) that
determine how the creation of slaves is distributed along the load timeline t.
The timeline is modelled as a sequence of discrete logical time units representing
instants at which a new set of slaves is created by the master. Steady loads
replicate executions where a system operates under stable conditions. These are
modelled on a homogeneous Poisson distribution with rate λ, specifying the mean
number of slaves that are created at each time instant along the load timeline
with duration t=dn/λe. Pulse loads emulate settings where a system experiences
gradually increasing load peaks. The Pulse load shape is parametrised by t and
the spread, s, that controls how slowly or sharply the system load increases as it
approaches its maximum peak, halfway along t. Pulses are modelled on a normal
distribution with µ=t/2 and σ=s. Burst loads capture scenarios where a system
is stressed due to load spikes; these are based on a log-normal distribution with
µ=ln(m2/

√
p2+m2) and σ=

√
ln(1+p2/m2), where m= t/2, and parameter p

is the pinch controlling the concentration of the initial load burst.
Wall-clock time. A load profile created for a logical timeline t is put into effect
by the master process when the system starts running. The master does not
create the slave processes that are set to execute in a particular time unit in one
go, since this naïve strategy risks saturating the system, deceivingly increasing
the load. In doing so, the system may become overloaded not because the mean
request rate is high, but because the created slaves overwhelm the master when
they send their requests all at once. We address this issue by introducing the
notion of concrete time that maps one discrete time unit in t to a real time period,
π. The parameter π is given in milliseconds (ms), and defaults to 1000ms.
Slave scheduling. The master process employs a scheduling scheme to distribute
the creation of slaves uniformly across the time period π. It makes use of three
queues: the Order queue, Ready queue, and Await queue, denoted by QO, QR,
and QA respectively. QO is initially populated with the load profile, step 1 in
fig. 1a. The load profile consists of an array with t elements—each corresponding
to a discrete time instant in t—where the value l of every element indicates the
number of slaves to be created at that instant. Slaves, S1,S2,...,Sn, are scheduled
and created in rounds, as follows. The master picks the first element from QO

On Benchmarking for Concurrent Runtime Verification 5

Legend: Selected for processing Slave created Slave terminated

QO 4 2 1 1

t=4 units

QRp1 p2 p3 p4

c c+π

queue empty QA

πms

t

l

1 2 3 4

1

2

3

4

Load profile

+

M

l=4

1

2 3

(a) Master schedules the first batch of
four slaves for execution in QR

QO 2 1 1

QRp1 p2 p3 p4

QAS1 S2

Time unit 1; round 1

M

S1 S2

fork req. fork

4

5 6

7

8

(b) Slaves S1 and S2 created and added
to QA; a work request is sent to S1

QO 2 1 1

QRp3 p4

QAS1 S2 S3 S4

Time unit 1; round 2

M

S3 S4 S1 S2

fork req. fork

exit

9

10 11

12

13 14

(c) Slaves S3 and S4 created and added
to QA; slave S2 completes its execution

QO 2 1 1

QRp1 p2

QAS1 S3 S4 S5

Time unit 2; round 1

M

S5 S1 S3 S4

l=2

resp.fork reqs.

15 16

1718

19

20

(d) QR becomes empty; master schedules
the next batch of two slaves

Fig. 1: Master M scheduling slave processes Sj and allocating work requests

to compute the upcoming schedule, step 2 , that starts at the current time,
c, and finishes at c+π. A series of l time points, p1,p2,...,pl, in the schedule
period π are cumulatively calculated by drawing the next pi from a normal
distribution with µ=dπ/le and σ=µ×0.1. Each time point stipulates a moment
in wall-clock time when a new slave Sj is to be created; this set of time points
is monotonic, and constitutes the Ready queue, QR, step 3 . The master checks
QR, step 4 in fig. 1b, and creates the slaves whose time point pi is smaller
than or equal to the current wall-clock time4, steps 5 and 6 in fig. 1b. The
time point pi of a newly-created slave is removed from QO, and an entry for
the corresponding slave Sj is appended to the Await queue QA; this is shown
in step 7 for S1 and S2. Slaves in QA are now ready to receive work requests
from the master process, e.g. step 8 . QA is traversed by the master at this
stage so that work requests can be allocated to existing slaves. The master
continues processing queue QR in subsequent rounds, creating slaves, issuing
work requests, and updating QR and QA accordingly as shown in steps 9 – 13

4 We assume that the platform scheduling the master and slave processes is fair.

6 L. Aceto et al.

in fig. 1c. At any point, the master can receive responses, e.g. step 17 in fig. 1d;
these are buffered inside the masters’ incoming work queue and handled once
the scheduling and work allocation phases are complete. A fresh batch of slaves
from QO is scheduled by the master whenever QR becomes empty, step 15 , and
the described procedure is repeated. The master stops scheduling slaves when all
the entries in QO are processed. It then transitions to work-only mode, where it
continues allocating work requests and handling incoming responses from slaves.

Reactiveness and task allocation. Systems generally respond to load with dif-
fering rates, due to the computational complexity of the task at hand, IO, or
slowdown when the system itself becomes gradually loaded. We simulate these
phenomena using the parameters Pr(send) and Pr(recv). The master interleaves
the processing of work requests to allocate them uniformly among the various
slaves: Pr(send) and Pr(recv) bias this behaviour. Specifically, Pr(send) con-
trols the probability that a work request is sent by the master to a slave, whereas
Pr(recv) determines the probability that a work response received by the master
is processed. Sending and receiving is turn-based and modelled on a Bernoulli
trial. The master picks a slave Sj from QA and sends at least one work request
when X ≤ Pr(send), i.e., the Bernoulli trial succeeds; X is drawn from a uni-
form distribution on the interval [0,1]. Further requests to the same slave are
allocated following this scheme (steps 8 , 13 and 20 in fig. 1) and the entry for
Sj in QA is updated accordingly with the number of work requests remaining.
When X>Pr(send), i.e., the Bernoulli trial fails, the slave misses its turn, and
the next slave in QA is picked. The master also queries its incoming work queue
to determine whether a response can be processed. It dequeues one response
when X ≤ Pr(recv), and the attempt is repeated for the next response in the
queue until X > Pr(recv). The master signals slaves to terminate once it ac-
knowledges all of their work responses (e.g. step 14). Due to the load imbalance
that may occur when the master becomes overloaded with work responses re-
layed by slaves, dequeuing is repeated |QA| times. This encourages an even load
distribution in the system as the number of slaves fluctuates at runtime.

2.2 Realisability

The set-up detailed in sec. 2.1 is easily translatable to the actor model of compu-
tation [2]. In this model, the basic units of decomposition are actors: concurrent
entities that do not share mutable memory with other actors. Instead, they in-
teract via asynchronous messaging. Each actor owns an incoming message buffer
called the mailbox. Besides sending and receiving messages, an actor can also fork
other child actors. Actors are uniquely addressable via a dynamically-assigned
identifier, often referred to as the PID. Actor frameworks such as Erlang [16],
Akka [55] for Scala [51], and Thespian [53] for Python [44] implement actors as
lightweight processes to enable highly-scalable architectures that span multiple
machines. The terms actor and process are used interchangeably henceforth.

Implementation. We use Erlang to implement the set-up of sec. 2.1. Our im-
plementation maps the master and slave processes to actors, where slaves are

On Benchmarking for Concurrent Runtime Verification 7

forked by the master via the Erlang function spawn(); in Akka and Thespian
ActorContext.spawn() and Actor.createActor() can be respectively used to
the same effect. The work request queues for both master and slave processes co-
incide with actor mailboxes. We abstract the task computation and model work
requests as Erlang messages. Slaves emulate no delay, but respond instantly to
work requests once these have been processed; delay in the system can be in-
duced via parameters Pr(send) and Pr(recv). To maximise efficiency, the Order,
Ready and Await queues used by our scheduling scheme are maintained locally
within the master. The master process keeps track of other details, such as the
total number of work requests sent and received, to determine when the system
should stop executing. We extend the parameters in sec. 2.1 with a seed parame-
ter, r, to fix the Erlang pseudorandom number generator to output reproducible
number sequences.

2.3 Measurement Collection

To give a multi-faceted view of runtime overhead, we extend the approach in [8]
and, apart from the (i) mean execution duration, measured in seconds (s), we also
collect the (ii) mean scheduler utilisation, as a percentage of the total available
capacity, (iii) mean memory consumption, measured in GB, and, (iv) mean
response time (RT), measured in milliseconds (ms). Our definition of runtime
overhead encompasses all four metrics. Measurement taking largely depends on
the platform on which the benchmark executes, and one often leverages platform-
specific optimised functionality in order to attain high levels of efficiency. Our
implementation relies on the functionality provided by the Erlang ecosystem.
Sampling. We collect measurements centrally using a special process, called
the Collector, that samples the runtime to obtain periodic snapshots of the
execution environment (see fig. 2). Sampling is often necessary to induce low
overhead in the system, especially in scenarios where the system components
are sensitive to latency [32]. Our sampling frequency is set to 500ms: this figure
was determined empirically, whereby the measurements gathered are neither too
coarse, nor excessively fine-grained such that sampling affects the runtime. Every
sampling snapshot combines the four metrics mentioned above and formats them
as records that are written asynchronously to disk to minimise IO delays.
Performance metrics. Memory and scheduler readings are gathered via the Er-
lang Virtual Machine (EVM). We sample scheduler—rather than CPU utilisation
at the OS-level—since the EVM keeps scheduler threads momentarily spinning
to remain reactive; this would inflate the metric reading. The overall system re-
sponsiveness is captured by the mean RT metric. Our Collector exposes a hook
that the master uses to obtain unique timestamps, step 1 in fig. 2. These are em-
bedded in all work request messages the master issues to slaves. Each timestamp
enables the Collector to track the time taken for a message to travel from the
master to a slave and back, including the time it spends in the master’s mailbox
until dequeued, i.e., the round-trip in steps 2 – 5 . To efficiently compute the
RT, the Collector samples the total number of messages exchanged between the
master and slaves, and calculates the mean using Welford’s online algorithm [62].

8 L. Aceto et al.

M

S1

S2

Sn

Collector
.
.
.

csv
Metric
records

...

10% samplesTstart

round-trip=Tstart−Tfinish

〈•1
,re
q.〉

〈•2,req.〉

〈•2,resp.〉

〈•2,req.〉

〈•2,resp.〉

time in queue

recorded metrics

timestamped reference

1 2

3

4

5

Fig. 2: Collector tracking the round-trip time for work requests and responses

3 Evaluation

We evaluate our synthetic benchmarking tool developed as described in Sec. 2
in a number of ways. In sec. 3.1, we discuss sanity checks for its measurement
collection mechanisms, and assess the repeatability of the results obtained from
the synthetic system executions. Crucially, sec. 3.1 provides evidence that the
benchmarking tool is sufficiently expressive to cover a number of execution pro-
files that are shown to emulate realistic scenarios. Sec. 3.2 demonstrates the
utility of the features offered by our tool for the purposes of assessing RV tools.

Experiment set-up. We define an experiment to consist of ten benchmarks, each
performed by running the system set-up with incremental loads. Our experiments
were performed on an Intel Core i7 M620 64-bit machine with 8GB of memory,
running Ubuntu 18.04 LTS and Erlang/OTP 22.2.1.

3.1 Benchmark Expressiveness and Veracity

The parameters for the tool detailed in sec. 2.1 can be configured to model
a range of master-slave scenarios. However, not all of these configurations are
meaningful in practice. For example, setting Pr(send) = 0 does not enable the
master to allocate work requests to slaves; with Pr(send) = 1, this allocation is
enacted sequentially, defeating the purpose of a concurrent master-slave system.
In this section, we establish a set of parameter values that model experiment set-
ups whose behaviour approximates that of master-slave systems typically found
in practice. Our experiments are conducted with n=500k slaves and w=100 work
requests per slave. This generates ≈n×w×(work requests and responses)=100M
message exchanges between the master and slaves. We initially fix Pr(send) =
Pr(recv)=0.9, and choose a Steady (i.e., Poisson process) load profile since this
features in industry-strength load testing tools such as Tsung [49] and JMeter [3].
Fig. 3 shows the load applied at each benchmark run, e.g. on the tenth run, the
benchmark uses ≈ 5k slaves/s. The total loading time is set to t=100s.

Measurement precision. A series of trials were conducted to select the appro-
priate sampling window size for the RT. This step is crucial because it directly
affects the capability of the benchmark to scale in terms of its number of slave
processes and work requests. Our RT sampling of sec. 2.3 (see also fig. 2) was

On Benchmarking for Concurrent Runtime Verification 9

calibrated by taking various window sizes over numerous runs for different load
profiles of ≈ 1M slaves. The results were compared to the actual mean calcu-
lated on all work request and response messages exchanged between master and
slaves. Window sizes close to 10% yielded the best results (≈ ±1.4% discrep-
ancy from the actual RT). Smaller window sizes produced excessive discrepancy;
larger sizes induced noticeably higher system loads. We also cross-checked the
precision of our sampling method of the scheduler utilisation against readings
obtained via the Erlang Observer tool [16] to confirm that these coincide.

Experiment repeatability. Data variability affects the repeatability of experi-
ments. It also plays a role when determining the number of repeated readings, k,
required before the data measured is deemed sufficiently representative. Choos-
ing the lowest k is crucial when experiment runs are time consuming. The coef-
ficient of variation (CV)—i.e., the ratio of the standard deviation to the mean,
CV = σ

x̄ × 100—can be used to establish the value of k empirically, as follows.
Initially, the CVk for one batch of experiments for some number of repetitions k
is calculated. The result is then compared to the CVk′ for the next batch of repe-
titions k′=k+b, where b is the step size. When the difference between successive
CV metrics k′ and k is sufficiently small (for some percentage ε), the value of k
is chosen, otherwise the described procedure is repeated with k′. Crucially, this
condition must hold for all variables measured in the experiment before k can
be fixed. For the results presented next, the CV values were calculated manually.
The mechanism that determines the CV automatically is left for future work.

Data variability. The data variability between experiments can be reduced by
seeding the Erlang pseudorandom number generator (parameter r in sec. 2.2)
with a constant value. This, in turn, tends to require fewer repeated runs be-
fore the metrics of interest—scheduler utilisation, memory consumption, RT,
and execution duration—converge to an acceptable CV. We conduct experiment
sets with three, six and nine repetitions. For the majority of cases, the CV for
our metrics is lower when a fixed seed is used, by comparison to its unseeded
counterpart. In fact, very low CV values for the scheduler utilisation, memory
consumption, RT, and execution duration, 0.17%, 0.15%, 0.52% and 0.47% re-
spectively, were obtained with three repeated runs. We thus set the number of
repetitions to three for all experiment runs in the sequel. Note that fixing the
seed still permits the system to exhibit a modicum of variability that stems from
the inherent interleaved execution of components due to process scheduling.

Load profiles. Our tool is expressive enough to generate the load profiles intro-
duced in sec. 2.1 (see fig. 3), enabling us to gauge the behaviour of monitoring
set-ups under varying forms of loads. These loads make it possible to mock spe-
cific system scenarios that test different implementation aspects. For example, a
benchmark configured with load surges could uncover buffer overflows in a par-
ticular monitoring implementation that only arise under stress when the length
of the request queue exceeds some preset length.

System reactivity. The reactivity of the master-slave system correlates with the
idle time of each slave which, in turn, affects the capacity of the system to absorb

10 L. Aceto et al.

0 25 50 75 100

Timeline (s)

0

1

2

3

4

5
C

on
cu

rr
en

t
sl

av
es

(K
)/

s Steady

25 50 75 100

Timeline (s)

0

2

4

6

8

Pulse

25 50 75 100

Timeline (s)

0

5

10

15

Burst

Benchmark run number: 1 2 3 4 5 6 7 8 9 10

Fig. 3: Steady, Pulse and Burst load distributions of 500 k slaves for 100 s

overheads. Since this can skew the results obtained when assessing overheads, it is
imperative that the benchmarking tool provides methods to control this aspect.
The parameters Pr(send) and Pr(recv) regulate the speed with which the system
reacts to load. We study how these parameters affect the overall performance of
system models set up with Pr(send)=Pr(recv)∈{0.1,0.5,0.9}. The results are
shown in fig. 4, where each metric (e.g. memory consumption) is plotted against
the total number of slaves. At Pr(send)=Pr(recv)=0.1, the system has the lowest
RT out of the three configurations (bottom left), as indicated by the gentle linear
increase of the plot. One may expect the RT to be lower for the system models
configured with probability values of 0.5 and 0.9. However, we recall that with
Pr(send)=0.1, work requests are allocated infrequently by the master, so that
slaves are often idle, and can readily respond to (low numbers of) incoming work
requests. At the same time, this prolongs the execution duration, when compared
to that of the system set with Pr(send)=Pr(recv)∈{0.5,0.9} (bottom right).
This effect of slave idling can be gleaned from the relatively lower scheduler
utilisation as well (top left). Idling increases memory consumption (top right),
since slaves created by the master typically remain alive for extended periods.
By contrast, the plots set with Pr(send)=Pr(recv)∈{0.5,0.9} exhibit markedly
gentler gradients in the memory consumption and execution duration charts;
corresponding linear slopes can be observed in the RT chart. This indicates that
values between 0.5 and 0.9 yield system models that: (i) consume reasonable
amounts of memory, (ii) execute in respectable amounts of time, and (iii) main-
tain tolerable RT. Since master-slave architectures are typically employed in
settings where high throughput is demanded, choosing values smaller than 0.5
goes against this principle. In what follows, we opt for Pr(send)=Pr(recv)=0.9.

Emulation veracity. Our benchmarks can be configured to closely model real-
istic web server traffic where the request intervals observed at the server are
known to follow a Poisson process [31,43,37]. The probability distribution of
the RT of web application requests is generally right-skewed, and approximates
log-normal [31,20] or Erlang distributions [37]. We conduct three experiments
using Steady loads fixed with n=10k for Pr(send)=Pr(recv)∈ {0.1,0.5,0.9} to

On Benchmarking for Concurrent Runtime Verification 11

100 200 300 400 500
0

25

50
U

ti
li
sa

ti
on

(%
)

Scheduler

100 200 300 400 500

2.00

3.00

4.00

5.00

C
on

su
m

pt
io

n
(G

B
)

Memory

100 200 300 400 500

Total slaves (K)

0

500

1000

1500

2000

2500

T
im

e
(m

s)

Response

100 200 300 400 500

Total slaves (K)

1000

2000

3000

D
ur

at
io

n
(s

)

Execution

Pr(send)=Pr(recv)=0.1 Pr(send)=Pr(recv)=0.5 Pr(send)=Pr(recv)=0.9

Fig. 4: Performance benchmarks of system models for Pr(send) and Pr(recv)

establish whether the RT in our system set-ups resembles the aforementioned dis-
tributions. Our results, summarised in fig. 5, were obtained by estimating the pa-
rameters for a set of candidate probability distributions (e.g. normal, log-normal,
gamma, etc.) using maximum likelihood estimation [56] on the RT obtained from
each experiment. We then performed goodness-of-fit tests on these parametrised
distributions using the Kolmogorov-Smirnov test, selecting the most appropriate
RT fit for each of the three experiments. The fitted distributions in fig. 5 indi-
cate that the RT of our system models follows the findings reported in [31,20,37].
This makes a strong case in favour of our benchmarking tool striking a balance
between the realism of benchmarks based on OTS programs and the controlla-
bility offered by synthetic benchmarking. Lastly, we point out that fig. 5 matches
the observations made in fig. 4, which show an increase in the mean RT as the
system becomes more reactive. This is evident in the histogram peaks that grow
shorter as Pr(send)=Pr(recv) progresses from 0.1 to 0.9.

3.2 Case Study

We demonstrate how our benchmarking tool can be used to assess the runtime
overhead comprehensively via a concurrent RV case study. By controlling the
benchmark parameters and subjecting the system to specific workloads, we show
that our multi-faceted view of overhead reveals nuances in the observed runtime
behaviour, benefitting the interpretation of empirical results. We further assess
the veracity of these synthetic benchmarks against the overhead measured from
a use case that considers industry-strength OTS applications.

12 L. Aceto et al.

0 100 200

Mean response time (ms)

0.000

0.005

0.010

0.015

N
or

m
al

is
ed

de
ns

it
y

Pr(send)=Pr(recv)=0.1

Log-normal
Mean: 50.88
Mode: 13

0 100 200

Mean response time (ms)

0.000

0.005

0.010

0.015

Pr(send)=Pr(recv)=0.5

Log-normal
Mean: 55.43
Mode: 33

0 100 200 300 400

Mean response time (ms)

0.000

0.005

0.010

0.015

Pr(send)=Pr(recv)=0.9

Gamma
Mean: 77.32
Mode: 17

Fig. 5: Fitted probability distributions on RT for Steady loads for n=10k

The RV Tool We use a RV tool to objectively compare the conclusions de-
rived from our synthetic benchmarks against those obtained from the experiment
set up with the OTS applications. The tool under scrutiny targets concurrent
Erlang programs [4]. It synthesises automata-like monitors from sHML specifi-
cations [26] and inlines them into the system via code injection by manipulating
the program abstract syntax tree. Inline instrumentation underlies various other
state-of-the-art RV tools, such as JavaMOP [36], MarQ [54], Java-MaC [38] and
RiTHM [47]. sHML is a fragment of the Hennessy-Milner Logic with recur-
sion [41] that can express all regular safety properties [26]. The tool augments
it to handle pattern matching and data dependencies for three kinds of event
patterns, namely send and receive actions, denoted by ! and ? respectively, and
process crash, denoted by ?. This suffices to specify properties of both the master
and slave processes, resulting in the set-up depicted in fig. 6a. For instance, the
recursive property ϕs describes an invariant of the master-slave communication
protocol (from the slave’s point of view), stating that ‘a slave processing integer
successor requests should not crash’:

maxX.
(1︷ ︸︸ ︷
[\Slv ?]ff ∧

2.1︷ ︸︸ ︷
[\Slv ?\Req]

(
3︷ ︸︸ ︷

3.1︷ ︸︸ ︷
[Slv ?]ff∧

3.2︷ ︸︸ ︷
[Slv !(Req+1)]X

)︸ ︷︷ ︸
2

)
(ϕs)

The key construct in sHML is the modal formula [p]ϕ, stating that whenever a
satisfying system exhibits an event e matching pattern p, its continuation then
satisfies ϕ. In property ϕs, the invariant—denoted by recursion binder maxX—
asserts that a slave Slv does not crash, specified by sub-formula 1 . It further
stipulates in sub-formula 2 that when a request-carrying payload, Req is re-
ceived, 2.1 , Slv cannot crash, 3.1 , and if the slave replies to Req with the pay-
load Req+1, the property recurses on variable X, 3.2 . Action patterns use two
types of value variables: binders, \x , that are pattern-matched to concrete values
learnt at runtime, and variable instances, x , that are bound by the respective
binders and instantiated to concrete data via pattern matching at runtime. This

On Benchmarking for Concurrent Runtime Verification 13

induces the usual notion of free and bound value variables; we assume closed
terms. For example, when checking property ϕs against the trace event pid?42,
the analysis unfolds the sub-formula guarded by maxX, matching the event with
the pattern \Slv ?\Req in 2.1 . Variables Slv and Req are substituted with pid

and 42 respectively in property ϕs, leaving the residual formula:

[pid?]ff∧ [pid!(42+1)]maxX.
(
[\Slv ?]ff ∧
[\Slv ?\Req]

(
[Slv ?]ff∧ [Slv !(Req+1)]X

))
The RV tool under scrutiny produces inlined monitor code that executes in the
same process space of system components (see fig. 6a), yielding the lowest pos-
sible amount of runtime overhead. This enables us to scale our benchmarks to
considerably high loads. Our experiments focus on correctness properties that
are parametric w.r.t. to system components [7,19,54,48]: with this approach,
monitors need not interact with one another and can reach verdicts indepen-
dently. Verdicts are communicated by monitors to a central entity that records
the expected number of verdicts in order to determine when the experiment can
be stopped. The set of properties used in our benchmarks translate to monitors
that loop continually to exert the maximum level of runtime overhead possible.

Fig. 6b shows the monitor synthesised from property ϕs, consisting of states
Q0, Q1, the rejection state 7, and inconclusive state ? . The rejection state cor-
responds to a violation of the property, i.e., ff, whereas the inconclusive state
is reached when the analysed trace events do not contain enough information
to enable the monitor to transition to any other state. Both of these states are
sinks, modelling the irrevocability of verdicts [24,26]. The modality [\Slv ?\Req]
in property ϕs corresponds to the transition between Q0 and Q1 in fig. 6b. The
monitor follows this transition when it analyses the trace event pid1?d1 exhibited
by the slave with PID pid1 when it receives data payload d1 from the master;
as a side effect, the transition binds the variable Slv to pid1 and Req to d1 in

M M

S1 M S2 M . . . Sn M

(a) Inlined runtime monitors

Q0 Q1

?

7

〈pid1 ?d1,{Slv 7→ pid1,Req 7→ d1}〉

pid1 !d1 + 1

!

_?

?,
pid2 !d2 when pid2 6= pid1

or when d2 6= d1 + 1,

pid2 ? when pid2 6= pid1

pid1?

?, _!_, _?

?, _!_, _?

(b) Synthesised monitor from property ϕs

Fig. 6: Synthesised monitors instrumented with master and slave processes

14 L. Aceto et al.

state Q1. From Q1, the monitor transitions to Q0 only when the event pid1 !d2
is analysed, where d2 = d1+1 and pid1 is the slave PID (previously) bound to
Slv . From Q0 and Q1, the rejection state 7 can be reached when a crash event
is analysed. In the case of Q0, the transition to 7 is followed for any crash event
_? (the wildcard _ denotes the anonymous variable). By contrast, the monitor
reaches 7 from Q1 only when the slave with PID pid1 crashes, otherwise it tran-
sitions to the inconclusive state ? . Other transitions from Q0 and Q1 leading to
? follow a similar reasoning. Interested readers are encouraged to consult [25,6,5]
for more information on the specification logic and monitor synthesis.

Synthetic Benchmarks We set the total number of slaves to n=20k for mod-
erate loads and n=500k for high loads; Pr(send)=Pr(recv) is fixed at 0.9 as in
sec. 3.1. These configurations generate ≈n×w×(work requests and responses)=
4M and 100M messages respectively to produce 8M and 200M analysable trace
events per run. The pseudorandom number generator is seeded with a constant
value and three experiment repetitions are performed for the Steady, Pulse and
Burst load profiles (see fig. 3). A loading time of t=100s is used. Our results are
summarised in figs. 7 and 8. Each chart in these figures plots the particular per-
formance metric (e.g. memory consumption) for the system without monitors,
i.e., the baseline, together with the overhead induced by the RV monitors.

Moderate loads. Fig. 7 shows the plots for the system set with n= 20k. These
loads are similar to those employed by the state-of-the-art frameworks to evalu-
ate component-based runtime monitoring, e.g. [57,7,10,23,48] (ours are slightly
higher). We remark that none of the benchmarks used in these works consider
different load profiles: they either model load on a Poisson process, or fail to
specify the kind of load used. In fig. 7, the execution duration chart (bottom
right) shows that, regardless of the load profile used, the running time of each
experiment is comparable to the baseline. With the moderate size of 20k slaves,
the execution duration on its own does not give a detailed enough view of run-
time overhead, despite the fact that our benchmarks provide a broad coverage in
terms of the Steady, Pulse and Burst load profiles. This trend is mirrored in the
scheduler utilisation plot (top left), where both baseline and monitored system
induce a constant load of ≈ 17.5%. On this account, we deem these results to
be inconclusive. By contrast, our three load profiles induce different overhead
for the RT (bottom left), and, to a lesser extent, the memory consumption plots
(top right). Specifically, when the system is subjected to a Burst load, it exhibits
a surge in the RT for the baseline and monitored system alike, at ≈ 16k slaves.
While this is not reflected in the consumption of memory, the Burst plots do
exhibit a larger—albeit linear—rate of increase in memory when compared to
their Steady and Pulse counterparts. The latter two plots once again show anal-
ogous trends, indicating that both Steady and Pulse loads exact similar memory
requirements and exhibit comparable responsiveness under the respectable load
of 20k slaves. Crucially, the data plots in fig. 7 do not enable us to confidently
extrapolate our results. The edge case in the RT chart for Burst plots raises the
question of whether the surge in the trend observed at ≈16k remains consistent

On Benchmarking for Concurrent Runtime Verification 15

2 5 7 10 12 15 17 20
0

25

50
U

ti
li
sa

ti
on

(%
)

Scheduler

2 5 7 10 12 15 17 20
1.584

1.586

1.588

1.590

1.592

1.594

C
on

su
m

pt
io

n
(G

B
)

Memory

2 5 7 10 12 15 17 20

Total slaves (k)

1.0

2.0

3.0

4.0

5.0

T
im

e
(m

s)

Response

2 5 7 10 12 15 17 20

Total slaves (k)

101.0

101.1

101.2

101.3

101.4

101.5

D
ur

at
io

n
(s

)

Execution

Steady baseline monitors Pulse baseline monitors Burst baseline monitors

Fig. 7: Mean runtime overhead for master and slave processes (20 k slaves)

when the number of slaves goes beyond 20k. Similarly, although for a different
reason, the execution duration plots do not allow us to distinguish between the
overhead induced by monitors for different loads on this small scale—this occurs
due to the perturbations introduced by the underlying OS (e.g. scheduling other
processes, IO, etc.) that affect the sensitive time keeping of benchmarks.

High loads. We increase the load to n= 500k slaves to determine whether our
benchmark set-up can adequately scale, and show how the monitored system per-
forms under stress. The RT chart in fig. 8 indicates that for Burst loads (bottom
left), the overhead induced by monitors grows linearly in the number of slaves.
This contradicts the results in fig. 7, confirming our supposition that moderate
loads may provide scant empirical evidence to extrapolate to general conclu-
sions. However, the memory consumption for Burst loads (top right) exhibits
similar trends to the ones in fig. 7. Subjecting the system to high loads renders
discernible the discrepancy between the RT and memory consumption gradients
for the Steady and Pulse plots that appeared to be similar under the moderate
loads of 20k slaves. Considering the execution duration chart (bottom right of
fig. 8) as the sole indicator of overhead could deceivingly suggest that runtime
monitoring induces virtually identical overhead for the distinct load profiles of
fig. 3. However, this erroneous observation is easily refuted by the memory con-
sumption and RT plots that show otherwise. This stresses the merit of gathering
multi-faceted metrics to assist in the interpretation of runtime overhead.

We extend the argument for multi-faceted views to the scheduler utilisation
metric in fig. 8 that reveals a subtle aspect of our concurrent set-up. Specifically,

16 L. Aceto et al.

100 200 300 400 500
0

25

50
U

ti
li
sa

ti
on

(%
)

Scheduler

100 200 300 400 500

1.60

1.80

2.00

2.20

2.40

2.60

C
on

su
m

pt
io

n
(G

B
)

Memory

100 200 300 400 500

Total slaves (k)

0

2000

4000

6000

8000

T
im

e
(m

s)

Response

100 200 300 400 500

Total slaves (k)

200

400

600

800

1000

1200

1400

D
ur

at
io

n
(s

)

Execution

Steady baseline monitors Pulse baseline monitors Burst baseline monitors

Fig. 8: Mean runtime overhead for master and slave processes (500 k slaves)

the charts show that while the execution duration, RT and memory consumption
plots grow in the number of slave processes, scheduler utilisation stabilises at ≈
22.7%. This is partly caused by the master-slave design that becomes susceptible
to bottlenecks when the master is overloaded with requests [61]. In addition,
the preemptive scheduling of the EVM [16] ensures that the master shares the
computational resources of the same machine with the rest of the slaves. We
conjecture that, in a distributed set-up where the master resides on a dedicated
node, the overall system throughput may be further pushed. Fig. 8 also attests
to the utility of having a benchmarking framework that scales considerably well
to increase the chances of detecting potential trends. For instance, the evidence
gathered earlier in fig. 7 could have misled one to assert that the RV tool under
scrutiny scales poorly under Burst loads of moderate and larger sizes.

An OTS Application Use Case We evaluate the overheads induced by the
RV tool under scrutiny using a third-party industry-strength web server called
Cowboy [33], and show that the conclusions we draw are in line with those re-
ported earlier for our synthetic benchmark results. Cowboy is written in Erlang
and built on top of Ranch [34]—a socket acceptor pool for TCP protocols that
can be used to develop custom network applications. Cowboy relies on Ranch
to manage its socket connections, but delegates HTTP client requests to pro-
tocol handlers that are forked dynamically by the web server to handle each
request independently. This architecture follows closely our master-slave set-up
of sec. 2.1 which abstracts details such as TCP connection management and

On Benchmarking for Concurrent Runtime Verification 17

2 5 7 10 12 15 17 20
0

25

50

75

100
U

ti
li
sa

ti
on

(%
)

Scheduler/CPU (Steady)

2 5 7 10 12 15 17 20

1.585

1.590

1.595

1.600

1.605

C
on

su
m

pt
io

n
(M

B
)

Memory (Steady)

2 5 7 10 12 15 17 20

Total slaves/request threads (k)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
(m

s)

Response (Steady)

2 5 7 10 12 15 17 20

Total slaves/request threads (k)

0

2000

4000

6000

D
ur

at
io

n
(s

)

Execution (Steady)

Synthetic benchmark baseline monitors Cowboy baseline monitors

Fig. 9: Mean overhead for synthetic and Cowboy benchmarks (20 k threads)

HTTP protocol parsing. We generate load on Cowboy using the popular stress
testing tool JMeter [3] to issue HTTP requests from a dedicated machine resid-
ing on the same network where Cowboy is hosted. The latter machine is the one
used in the experiments discussed earlier. To emulate the typical behaviour of
web clients (e.g. browsers) that fetch resources via multiple HTTP requests, our
Cowboy application serves files of various sizes that are randomly accessed by
JMeter during the benchmark. In our experiments, we monitored fragments of
the Cowboy and Ranch communication protocol used to handle client requests.

Moderate loads. Fig. 9 plots our results for Steady loads from fig. 7, together
with the ones obtained from the Cowboy benchmarks; JMeter did not enable
us to reproduce the Pulse and Burst load profiles. For our Cowboy benchmarks,
we fixed the total number of JMeter request threads to 20k over the span of
100s, where each thread issued 100 HTTP requests. This configuration coincides
with parameter settings used in the experiments of fig. 7. In fig. 9, the sched-
uler utilisation, memory consumption and RT charts (top, bottom left) show
a correspondence between the baseline plots of our synthetic benchmarks and
those taken with Cowboy and JMeter. This indicates that, for these metrics,
our synthetic system model exhibits analogous characteristics to the ones of the
OTS system, under the chosen load profile. The argument can be extended to
the monitored versions of these systems which follow identical trends. We point
out the similarity in the RT trends of our synthetic and Cowboy benchmarks,
despite the fact that the latter set of experiments were conducted over a local
network. This suggests that, for our single-machine configuration, the synthetic

18 L. Aceto et al.

master-slave benchmarks manage to adequately capture local network condi-
tions. The gaps separating the plots of the two experiment set-ups stem from the
implementation specifics of Cowboy and our synthetic model. This discrepancy
in measurements also depends on the method used to gather runtime metrics,
e.g. JMeter cannot sample the EVM directly, and measures CPU as opposed to
scheduler utilisation. The deviation in execution duration plots (bottom right)
arises for the same reason.
High loads. Our efforts to run tests with 500k request threads where stymied by
the scalability issues we experienced with Cowboy and JMeter on our set-up.

4 Conclusion

Concurrent RV necessitates benchmarking tools that can scale dynamically to
accommodate considerable load sizes, and are able to provide amulti-faceted view
of runtime overhead. This paper presents a benchmarking tool that fulfils these
requirements. We demonstrate its implementability in Erlang, arguing that the
design is easily instantiatable to other actor frameworks such as Akka and Thes-
pian. Our set-up emulates various system models through configurable parame-
ters, and scales to reveal behaviour that emerges only when software is pushed
to its limit. The benchmark harness gathers different performance metrics, offer-
ing a multi-faceted view of runtime overhead that, to wit, other state-of-the-art
tools do not currently offer. Our experiments demonstrate that these metrics
benefit the interpretation of empirical measurements: they increase visibility
that may spare one from drawing insufficiently general, or otherwise, erroneous
conclusions. We establish that—despite its synthetic nature—our master-slave
model faithfully approximates the mean response times observed in realistic web
server traffic. We also compare the results of our synthetic benchmarks against
those obtained from a real-world use case to confirm that our tool captures the
behaviour of this realistic set-up. It is worth noting that, while our empirical
measurements of secs. 3.1 and 3.2 depend on the implementation language, our
conclusions are transferrable to other frameworks, e.g. Akka and Play [42].
Related work. There are other less popular benchmarks targeting the JVM be-
sides those mentioned in sec. 1. Renaissance [52] employs workloads that leverage
the concurrency primitives of the JVM, focussing on the performance of com-
piler optimisations similar to DaCapo and ScalaBench. These benchmarks gather
metrics that measure software quality and complexity, as opposed to metrics that
gauge runtime overhead. The CRV suite [8] aims to standardise the evaluation
of RV tools, and mainly focusses on RV for monolithic programs. We are un-
aware of RV-centric benchmarks for concurrent systems such as ours. In [43], the
authors propose a queueing model to analyse web server traffic, and develop a
benchmarking tool to validate it. Their model coincides with our master-slave
set-up, and considers loads based on a Poisson process. A study of message-
passing communication on parallel computers conducted in [31] uses systems
loaded with different numbers of processes; this is similar to our approach. Im-
portantly, we were able to confirm the findings reported in [43] and [31] (sec. 3.1).

On Benchmarking for Concurrent Runtime Verification 19

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.: De-
terminizing Monitors for HML with Recursion. JLAMP 111, 100515 (2020)

2. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A Foundation for Actor Com-
putation. JFP 7(1), 1–72 (1997)

3. Apache Software Foundtation: Jmeter (2020), https://jmeter.apache.org
4. Attard, D.P.: detectEr (2020), https://github.com/duncanatt/detecter-inline
5. Attard, D.P., Cassar, I., Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Introduction

to Runtime Verification. In: Behavioural Types: from Theory to Tools, pp. 49–76.
Automation, Control and Robotics, River (2017)

6. Attard, D.P., Francalanza, A.: A Monitoring Tool for a Branching-Time Logic. In:
RV. LNCS, vol. 10012, pp. 473–481 (2016)

7. Attard, D.P., Francalanza, A.: Trace Partitioning and Local Monitoring for Asyn-
chronous Components. In: SEFM. LNCS, vol. 10469, pp. 219–235 (2017)

8. Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund,
K., Joshi, Y., Klaedtke, F., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma,
D., Zalinescu, E., Zhang, Y.: First International Competition on Runtime Verifi-
cation: Rules, Benchmarks, Tools, and Final Results of CRV 2014. Int. J. Softw.
Tools Technol. Transf. 21(1), 31–70 (2019)

9. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to Runtime
Verification. In: Lectures on RV, LNCS, vol. 10457, pp. 1–33. Springer (2018)

10. Berkovich, S., Bonakdarpour, B., Fischmeister, S.: Runtime Verification with Min-
imal Intrusion through Parallelism. FMSD 46(3), 317–348 (2015)

11. Blackburn, S.M., Garner, R., Hoffmann, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.L.,
Jump, M., Lee, H.B., Moss, J.E.B., Phansalkar, A., Stefanovic, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In: OOPSLA. pp. 169–190 (2006)

12. Blessing, S., Fernandez-Reyes, K., Yang, A.M., Drossopoulou, S., Wrigstad,
T.: Run, Actor, Run: Towards Cross-Actor Language Benchmarking. In:
AGERE!@SPLASH. pp. 41–50 (2019)

13. Bodden, E., Hendren, L.J., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative Run-
time Verification with Tracematches. J. Log. Comput. 20(3), 707–723 (2010)

14. Bonakdarpour, B., Finkbeiner, B.: The Complexity of Monitoring Hyperproperties.
In: CSF. pp. 162–174 (2018)

15. Buyya, R., Broberg, J., Goscinski, A.M.: Cloud Computing: Principles and
Paradigms. Wiley-Blackwell (2011)

16. Cesarini, F., Thompson, S.: Erlang Programming: A Concurrent Approach to Soft-
ware Development. O’Reilly Media (2009)

17. Chappell, D.: Enterprise Service Bus: Theory in Practice. O’Reilly Media (2004)
18. Chen, F., Rosu, G.: Mop: An Efficient and Generic Runtime Verification Frame-

work. In: OOPSLA. pp. 569–588 (2007)
19. Chen, F., Rosu, G.: Parametric Trace Slicing and Monitoring. In: TACAS. LNCS,

vol. 5505, pp. 246–261 (2009)
20. Ciemiewicz, D.M.: What Do You mean? - Revisiting Statistics for Web Response

Time Measurements. In: CMG. pp. 385–396 (2001)
21. Cornejo, O., Briola, D., Micucci, D., Mariani, L.: In the Field Monitoring of Inter-

active Application. In: ICSE-NIER. pp. 55–58 (2017)

https://jmeter.apache.org
https://github.com/duncanatt/detecter-inline

20 L. Aceto et al.

22. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. Commun. ACM 51(1), 107–113 (2008)

23. El-Hokayem, A., Falcone, Y.: Monitoring Decentralized Specifications. In: ISSTA.
pp. 125–135 (2017)

24. Francalanza, A.: A Theory of Monitors (Extended Abstract). In: FoSSaCS. LNCS,
vol. 9634, pp. 145–161 (2016)

25. Francalanza, A., Aceto, L., Achilleos, A., Attard, D.P., Cassar, I., Della Monica,
D., Ingólfsdóttir, A.: A Foundation for Runtime Monitoring. In: RV. LNCS, vol.
10548, pp. 8–29 (2017)

26. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy-
Milner Logic with Recursion. FMSD 51(1), 87–116 (2017)

27. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime Verification for Decentralised
and Distributed Systems. In: Lectures on RV, LNCS, vol. 10457, pp. 176–210.
Springer (2018)

28. Francalanza, A., Xuereb, J.: On Implementing Symbolic Controllability. In: CO-
ORDINATION. LNCS, vol. 12134, pp. 350–369 (2020)

29. Ghosh, S.: Distributed Systems: An Algorithmic Approach. CRC (2014)
30. Gray, J.: The Benchmark Handbook for Database and Transaction Processing Sys-

tems. Morgan Kaufmann (1993)
31. Grove, D.A., Coddington, P.D.: Analytical Models of Probability Distributions

for MPI Point-to-Point Communication Times on Distributed Memory Parallel
Computers. In: ICA3PP. LNCS, vol. 3719, pp. 406–415 (2005)

32. Harman, M., O’Hearn, P.W.: From Start-ups to Scale-ups: Opportunities and Open
Problems for Static and Dynamic Program Analysis. In: SCAM. pp. 1–23 (2018)

33. Hoguin, L.: Cowboy (2020), https://ninenines.eu
34. Hoguin, L.: Ranch (2020), https://ninenines.eu
35. Imam, S.M., Sarkar, V.: Savina - An Actor Benchmark Suite: Enabling Empirical

Evaluation of Actor Libraries. In: AGERE!@SPLASH. pp. 67–80 (2014)
36. Jin, D., Meredith, P.O., Lee, C., Rosu, G.: JavaMOP: Efficient Parametric Runtime

Monitoring Framework. In: ICSE. pp. 1427–1430 (2012)
37. Kayser, B.: What is the expected distribution of website response times?

(2017, last accessed, 19th Jan 2021), https://blog.newrelic.com/engineering/
expected-distributions-website-response-times

38. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-mac: A Run-
Time Assurance Approach for Java Programs. FMSD 24(2), 129–155 (2004)

39. Kshemkalyani, A.D.: Distributed Computing: Principles, Algorithms, and Systems.
Cambridge University Press (2011)

40. Kuhtz, L., Finkbeiner, B.: LTL Path Checking is Efficiently Parallelizable. In:
ICALP (2). LNCS, vol. 5556, pp. 235–246 (2009)

41. Larsen, K.G.: Proof Systems for Satisfiability in Hennessy-Milner Logic with Re-
cursion. TCS 72(2&3), 265–288 (1990)

42. Lightbend: Play framework (2020), https://www.playframework.com
43. Liu, Z., Niclausse, N., Jalpa-Villanueva, C.: Traffic Model and Performance Eval-

uation of Web Servers. Perform. Evaluation 46(2-3), 77–100 (2001)
44. Matthes, E.: Python Crash Course: A Hands-On, Project-Based Introduction to

Programming. No Starch Press (2019)
45. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An Overview of the MOP

Runtime Verification Framework. STTT 14(3), 249–289 (2012)
46. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley (2011)

https://ninenines.eu
https://ninenines.eu
https://blog.newrelic.com/engineering/expected-distributions-website-response-times
https://blog.newrelic.com/engineering/expected-distributions-website-response-times
https://www.playframework.com

On Benchmarking for Concurrent Runtime Verification 21

47. Navabpour, S., Joshi, Y., Wu, C.W.W., Berkovich, S., Medhat, R., Bonakdarpour,
B., Fischmeister, S.: RiTHM: A Tool for Enabling Time-Triggered Runtime Veri-
fication for C Programs. In: ESEC/SIGSOFT FSE. pp. 603–606. ACM (2013)

48. Neykova, R., Yoshida, N.: Let it Recover: Multiparty Protocol-Induced Recovery.
In: CC. pp. 98–108 (2017)

49. Niclausse, N.: Tsung (2017), http://tsung.erlang-projects.org
50. Nielsen, J.: Usability Engineering. Morgan Kaufmann (1993)
51. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Inc. (2020)
52. Prokopec, A., Rosà, A., Leopoldseder, D., Duboscq, G., Tuma, P., Studener, M.,

Bulej, L., Zheng, Y., Villazón, A., Simon, D., Würthinger, T., Binder, W.: Renais-
sance: Benchmarking Suite for Parallel Applications on the JVM. In: PLDI. pp.
31–47 (2019)

53. Quick, K.: Thespian (2020), http://thespianpy.com
54. Reger, G., Cruz, H.C., Rydeheard, D.E.: MarQ: Monitoring at Runtime with QEA.

In: TACAS. LNCS, vol. 9035, pp. 596–610 (2015)
55. Roestenburg, R., Bakker, R., Williams, R.: Akka in Action. Manning (2015)
56. Rossi, R.J.: Mathematical Statistics: An Introduction to Likelihood Based Infer-

ence. Wiley (2018)
57. Scheffel, T., Schmitz, M.: Three-Valued Asynchronous Distributed Runtime Veri-

fication. In: MEMOCODE. pp. 52–61 (2014)
58. Seow, S.C.: Designing and Engineering Time: The Psychology of Time Perception

in Software. Addison-Wesley (2008)
59. Sewe, A., Mezini, M., Sarimbekov, A., Binder, W.: DaCapo con Scala: design and

analysis of a Scala benchmark suite for the JVM. In: OOPSLA. pp. 657–676 (2011)
60. SPEC: SPECjvm2008 (2008), https://www.spec.org/jvm2008
61. Tarkoma, S.: Overlay Networks: Toward Information Networking. Auerbach (2010)
62. Welford, B.P.: Note on a Method for Calculating Corrected Sums of Squares and

Products. Technometrics 4(3), 419–420 (1962)
63. White, T.: Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale.

O’Reilly Media (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://tsung.erlang-projects.org
http://thespianpy.com
https://www.spec.org/jvm2008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 On Benchmarking forConcurrent Runtime Verification

