
A Theory of Monitors ?

Adrian Francalanzaa,1,∗

aDepartment of Computer Science, Faculty of ICT, University of Malta, Msida, Malta.

Abstract

We develop a behavioural theory for monitors, computational entities that pas-
sively analyse the runtime behaviour of systems so as to infer properties about
them. First, we present a monitor language and an instrumentation relation
used for piCalculus process monitoring. We then identify contextual behavioural
preorders that allow us to relate monitors according to criteria defined over mon-
itored executions of piCalculus processes. Subsequently, we develop alternative
monitor preorders that are compositional, since they allow us to relate monitors
without resorting to their composite behaviour when they instrumented with
systems. Importantly, we show that the latter alternative preorders are sound
and complete with respect to the contextual preorders. Finally, we demonstrate
how these preorders can assist the development of correct monitor synthesis
tools.

Keywords:
monitor correctness, behavioural preorders, runtime verification, process
calculi, monitorability

1. Introduction

Monitors (execution monitors [2]) are software entities that are instrumented
to execute along side a program so as to observe its runtime behaviour and de-
termine properties about it, inferred from the runtime analysis of the exhibited
(program) execution. This basic form of monitor is also occasionally referred
to as (sequence) recognisers [3, 4], which are closely related to partial-identity

?The research was supported by the University of Malta Research Fund project “A Theory
of Monitors” CPSRP05-04, the European Union COST Action BETTY with the short-term
scientific mission COST-STSM-ECOST-STSM-IC1201-170214-038253, the Icelandic Research
Fund RANNIS projects “Theoretical Foundations of Monitorability” TheoFoMon:163406-051
and “MoVeMnt: Mode(l)s of Verification and Monitorability” MoVeMnt:217987-051, and by
the EU H2020 RISE programme under the Marie Sk lodowska-Curie grant agreement No.
778233 “BehAPI: Behavioural Application Programming Interfaces”.
∗Corresponding author
Email address: adrian.francalanza@um.edu.mt (Adrian Francalanza)

1A shorter version of this work outlining the main results appeared as part of the conference
proceedings for the 19th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS) [1]

Preprint submitted to Elsevier January 27, 2021

monitors [5]. In other settings, monitors go even further, and either adapt as-
pects of the monitored program [6, 7, 8, 9, 10] or enforce predefined properties
by modifying the observable behaviour [11, 3, 4, 12, 13, 14]. Monitors are cen-
tral to software engineering techniques such as monitor-oriented programming
(MOP) [15, 9], where a core system is augmented with layers of monitors that
either restrict, extend or replace its behaviour. They also play a major role
in fail-fast design patterns [16] used in fault-tolerant systems [17, 18, 19]. In
the context of formal methods, monitors are used extensively in runtime veri-
fication [20, 21, 22], a lightweight verification technique that attempts to mit-
igate state explosion problems associated model checking, while also providing
a means for post-deployment verification. In programming language design and
implementation, monitors are occasionally used as a mechanism for dynamic
type checking [23, 5, 10].

Monitoring setups typically consist of three main components: apart from
the program being monitored, P , there is the monitor itself, M , and the in-
strumentation, the mechanism composing the monitor with the program as
P / M . This composite entity is referred to as the monitored system [21, 22]
and exhibits behaviour that is dependent on both the program P and the mon-
itor M . Remarkably, instrumentation composition relations have seldom been
studied formally in their own right. This article investigates one such instru-
mentation relation employed throughout a body of work studying monitorabil-
ity [24, 25, 26, 27, 28, 29, 30, 31, 32]. In particular, we develop compositional
reasoning techniques for execution monitors (recognisers) that are composed
with their respective programs using this instrumentation relation. Programs
are here expressed as piCalculus processes [33, 34]—a well-studied concurrency
model—where the monitorable events analysed by the monitors are precisely the
external actions of the processes under scrutiny. We set out to develop monitor
preorders of the form

M1 vM2 (1)

denoting the fact that, when instrumented in the context of any arbitrary process
P , if the monitored system P / M1 exhibits certain behavioural properties, then
the other monitored system P / M2 (instrumented with the same process P)
exhibits the same behaviour as well. Within this setup, we consider various
possible instrumentation properties one may require from a monitored system
and show how these give rise to different monitor preorders.

Example 1. Consider the two monitors M1 and M2 defined below, both listen-
ing for output actions of the form c!v (denoting an output on a channel named
c with a payload v that can be a channel name itself). Monitor M1 listens for
output actions on channel a with a payload that is not in the set C and raises
a detection flag, X, when it observes that the process under scrutiny exhibits
such an action; the payload is bound dynamically to the variable x at runtime.
Monitor M2 augments this behaviour: apart from listening for the same out-
puts on channel a, it also detects outputs with payload b on channels (bound
at runtime to variable y) that are not in set D: the M ′ +M ′′ construct used in
M2 acts as an external choice [35] that branches to either M ′ or M ′′ depending

2

on the behaviour observed.

M1 = match a!(x). if x 6∈ C thenX

M2 = (match a!(x). if x 6∈ C thenX) + (match (y)!b. if y 6∈ D thenX)

One can argue that M2 is related to M1, i.e., M1 vM2, since all the detections
raised by M1 are also raised by M2. However, under more stringent criteria,
the two monitors should not be related. Consider the case where a ∈ D and
b 6∈ C (or b ∈ C and a 6∈ D for that matter). For a process P exhibiting
the action a!b, monitor M2 may non-deterministically fail to detect this be-
haviour because it may analyse the action along the right-hand branch, i.e.,
along match (y)!b.if y 6∈D thenX since the pattern (y)!b matches action a!b, and
consequently not raise the flag. By contrast, monitor M1 always detects the
behaviour a!b and, in this sense, M2 does not preserve all the properties of M1.

There are other potential behavioural properties to consider. For instance,
monitors are also expected to interfere minimally with the execution of the
analysed process, a property often termed as transparency [3, 4, 5, 14]. This
gives rise to further criteria for relating monitors. For example, consider the
monitor M3 below denoting an internal choice, i.e., the construct ⊕, that
autonomously (without external stimuli) either branches to the submonitor
match a!(x).if x 6∈ C thenX or to the branch block; the latter construct blocks
the process under scrutiny from performing further computation.

M3 = (match a!(x).if x 6∈ C thenX)⊕ block

Again, although M1 and M3 can detect the same behaviour, they should not be
related under certain monitoring requirements since M3 may occasionally affect
the behaviour of the process under scrutiny by branching to block. Even though
the construct block is clearly undesirable from a transparency perspective and
should perhaps be ruled out at the monitor-language level, it turns out that the
behaviour that it describes can manifest itself in subtle ways via combinations
of other (useful) constructs. �

The preorders suggested in E.g. 1 are worth investigating for a number of
reasons. For a start, they act as notions of refinement : they allow us to formally
specify properties that are expected of a monitor M by expressing them in terms
of a monitor description, SpecM , and then requiring that SpecM vM holds. In
our setting, both SpecM and M are expressed using the same monitor language,
but our theory does not necessarily require this. Our preorders also provide a
formal understanding for when it is admissible to substitute one monitor imple-
mentation for another while preserving the elected monitoring properties. For
instance, the work in [36, 25, 28, 29, 14, 30, 37, 38] define monitor synthesis al-
gorithms generating monitors from specification formulae that are shown to be
correct; practical concerns occasionally require us to use a more efficient version
of the synthesised monitors (e.g., [39, 40, 41, 42, 43, 44]) and these preorders
would allow us to show that the substituted versions are still correct. Finally,
these preorders induce kernel equivalences, i.e., M1

∼= M2 iff (M1 v M2 and

3

M2 v M1). This can then lead to equational theories where the equivalences
can be used as a justifying underpinning for the development of an axiomatic
semantics for monitors along the lines of [45, 35].

We note that our study considers a general model that, amongst other things,
allows monitors to behave non-deterministically. This permits us to study the
cases where non-determinism is either tolerated or considered erroneous. For
instance, some monitor studies and tools rely explicitly on non-deterministic
models for expressiveness reasons, such as Büchi automata [46, 40] and TOPL
automata [47]. There are studies that employ non-determinism in their for-
malisms to keep certain constructions small and manageable when describing
monitors [48, 28, 25, 29] whereas others use this aspect to asses the cost of deter-
minising monitor descriptions [26, 31] and analyse the intricacies associated with
establishing non-determinism [27, 49]. We would also like our theory to be ap-
plicable to practical settings and considering non-deterministic monitors brings
it closer to more realistic scenarios. Non-determinism arises naturally in concur-
rent and distributed programming, which is increasingly being used for runtime
monitoring [50, 51, 52, 53, 54, 55, 23]. A growing number of monitoring tools
utilises automata-based specification languages similar to the monitor descrip-
tion language used in this work [56, 57, 58, 59]. These tools offer limited support
for ruling out non-deterministic behaviour: their respective implementations are
either thread-unsafe [58] or admit arbitrary code for transition-triggered actions
[60, 56, 59]. In this setting of executable specifications, non-determinism may
also arise from the composition of specifications even though, individually, each
specification behaves deterministically. Note also that, in standard program
refinement setting such as the one proposed in this paper, it is common and
(economical) to describe both monitor specifications and implementations using
the same (monitor) language formalism. In this case, the specification constructs
expressing non-determinism are useful to denote under-specification.

Although formal and intuitive, the preorders alluded to in Eq. (1) turn out to
be hard to determine. One of the obstacles making these preorders unwieldy is
the universal quantification over all possible processes with which the respective
monitors can be instrumented and for which the monitoring properties should
hold. We therefore develop alternative characterisations for these preorders,
M1 ≤M2, that do not rely on this universal quantification over process instru-
mentation. We show that such relations are sound wrt. the former monitor
preorders, which serves as a semantic justification for these alternative monitor
preorders. More importantly, however, it also allows us to use the more tractable
alternative relations as a sound proof technique for establishing inequalities in
the original preorders. We also show that these characterisations are complete,
thereby obtaining full-abstraction for these alternative preorders. Concretely,
the main contributions of the paper are:

1. The definition of three contextual monitor preorders, each requiring the
preservation of different monitoring properties when composed with the
systems to be monitored: Def. 3, Def. 4 and Def. 5.

2. The characterisation of these preorders in terms of alternative preorders

4

that do not not universally quantify over the systems to be monitored,
making them more tractable: Thm. 1, Thm. 2 and Thm. 4.

3. A case study showcasing the utility of such monitor preorders, Sec. 8.

The rest of the article is structured as follows. Sec. 2 briefly overviews our
process model, i.e., a variant of the piCalculus, whereas Sec. 3 introduces our
monitor language together with the instrumentation relation. In Sec. 4 we for-
malise our monitor preorder relations wrt. this instrumentation. We develop our
alternative preorders in Secs. 5 to 7, where we also establish the correspondence
with the other preorders. In Sec. 8 we demonstrate how our preorders can be
used to analyse the monitors generated by an automated synthesis procedure.
Sec. 9 concludes with a discussion about related work and future directions.
Upon first reading, the more technical sections, i.e., Secs. 5 to 7, can be safely
skipped without substantially affecting the understanding of the remaining ma-
terial discussed in other sections.

2. The Language

Fig. 1 presents our process language, a standard version of the synchronous
piCalculus with name matching. It has the usual constructs (e.g., input and
output prefixing is used for communication, parallel composition is used to
describe concurrent processes, and channel name scoping is used to model pro-
cess link mobility) and assumes separate denumerable sets for channel names
a, b, c, d, . . . ∈ Chans, name variables x, y, z, . . . ∈ Vars and process variables,
X,Y, . . . ∈ PVars, and lets identifiers u, v range over the sets, Chans ∪Vars.
The input construct, c?x.P , the recursion construct, recX.P , and the scoping
construct, new c.P , are binders where the free occurrences of the variable x, the
process variable X, and the channel c resp., are bound in the guarded body P .
We write fv(P), fV(P), fn(P),bV(P), bv(P) and bn(P) for the resp. free and
bound variables, process variables and names in P . We use standard syntactic
conventions from process calculi, e.g., we identify processes up to alpha con-
version of bound names and variables. For arbitrary syntactic objects o, o′, we
write o] o′ when the free names mentioned in o and o′ are disjoint e.g., P]Q
means fn(P) ∩ fn(Q) = ∅.

The operational semantics of the language is given as a Labelled Transition
System (LTS), defined by the rules in Fig. 1. LTS judgments are of the form

I . P
µ−−→ P ′ (2)

where I ⊆ Chans denotes an interface of names known (i.e., shared) by both
the process and an implicit observer with which interactions occur, P is a closed
term, and fn(P) ⊆ I. We occasionally refer to I.P as a system where fn(P) ⊆ I
is assumed. Intuitively the judgment in Eq. (2) denotes that the process in state
P carries out the interaction µ with an observer represented by I and transitions
to the new state P ′. We write I, c as a shorthand for I∪{c} whenever c 6∈ I, and

5

Syntax

P,Q ∈ Proc ::= u!v.P (output) | u?x.P (input)

| nil (nil) | if u=v thenP else Q (conditional)

| recX.P (recursion) | X (process var.)

| P ‖Q (parallel) | new c.P (scoping)

Semantics

pOut

I . c!d.P
c!d−−→ P

pIn

I . c?x.P
c?d−−−→ P [d/x]

pThn
I . if c=c thenP else Q

τ−→ P

pEls
c] d

I . if c=d thenP else Q
τ−→ Q

pRec
I . recX.P

τ−→ P [recX.P/X]

pPar
I . P

µ−−→ P ′

I . P ‖Q µ−−→ P ′ ‖Q
pCom

I, d . P
c!d−−→ P ′ I, d . Q

c?d−−−→ Q′

I, d . P ‖Q τ−→ P ′ ‖Q′

pRes
I, d . P

µ−−→ P ′ d] µ

I . new d.P
µ−−→ new d.P ′

pCls
I . P

c!d−−→ P ′ I . Q
c?d−−−→ Q′ d] I

I . P ‖Q τ−→ new d.(P ′ ‖Q′)
pOpn

I, d . P
c!d−−→ P ′

I . new d.P
c!d−−→ P ′

Figure 1: piCalculus syntax and semantics

generally assume a version of the Barendregt convention whereby bn(P)] I.2

For arbitrary names c, d, actions µ ∈ Actτ range over input actions, c?d, output
actions, c!d, and a distinguished silent action, τ (α ∈ Act ranges over external
actions, that exclude τ). The rules in Fig. 1 are fairly standard, using I for
book-keeping purposes relating to free/bound names (we elide symmetric rules
for pPar, pCom and pCls). Since we assume fn(P) ⊆ I, we implicitly have
that c, d ∈ I in rule pOut and that c ∈ I in rule pIn (but d in the action c?d
of pIn is not necessarily in I). Rule pIn employs a substitution, a partial map
σ ∈ (Vars ⇀ Chans), denoted as [c1, . . . , cn/x1, . . . , xn]; when a substitution σ
is applied to a syntactic term o, denoted as oσ, it replaces every free occurrence
in the term, x ∈ fn(o), that is covered by the substitution, x ∈ dom(σ), with

2The rules in Fig. 1 still check explicitly for this; see rules pRes, pCls and pOpn.

6

its respective channel name, σ(x). We use s, t ∈ Act∗ to denote traces of
external actions. Although actions do not include explicit information relating
to extruded names (i.e., when a scoped name is communicated as a payload
and the receiving process is outside the scope), this may be recovered using I
as shown in Def. 1. As we will subsequently see, the absence of name binding
in actions (as used in standard texts such as [34, 61]) simplifies our handling
of traces. More concretely, the evolution of I after a transition is determined
exclusively by the resp. action of the transition, defined as aftr(I, µ) in Def. 1;
note that both the process (through outputs) and the implicit observer (through
inputs) may extend I.

Definition 1 (Extruded Names and Interface Evolution).

ext(I, τ)
def
= ∅ ext(I, c!d)

def
= {d}\I ext(I, c?d)

def
= ∅

aftr(I, τ)
def
= I aftr(I, c!d)

def
= I ∪ {d} aftr(I, c?d)

def
= I ∪ {d} �

Example 2. Consider the process new d.(c!d.d?x.P) and the interface I={c}.
We can deduce the transition

I . new d.c!d.d?x.P
c!d−−→ d?x.P using rules pOut and pOpn

which scope extrudes the name d since ext(I, c!d) = {d}. The new interface
following the transition is aftr(I, c!d) = {c, d} = I ′, denoting the fact that now
the observer is aware of the previously scoped name d as well. We can thus infer
the following transition wrt. the (extended) interface I ′:

I ′ . d?x.P
d?b−−−→ P [b/x] using rule pIn

Again, the interface is extended as a result of this transition, aftr(I ′, d?b) =
{c, d, b}, to denote the fact that the process is now aware of the fresh name b
that was passed on by the observer. �

Notice that whenever fn(P) ⊆ I and I . P
µ−−→ Q then fn(Q) ⊆ aftr(I, µ)

as well. We write I . P 6 µ−−→ to denote 6 ∃P ′ · I . P µ−−→ P ′ and lift the functions
in Def. 1 to traces, i.e., ext(I, s) and aftr(I, s), in the obvious way. Two

successive transitions I . P
µ1−−→ P1 and aftr(I, µ1) . P1

µ2−−→ P2 are denoted as

I .P
µ1−−→ aftr(I, µ1).P1

µ2−−→ P2. We write I .P
s

=⇒ Q to denote the sequence

of transitions I0.P0
µ1−−→ I1.P1

µ2−−→ I2.P2 . . .
µn−−→ Pn where P0 = P , Pn = Q,

I0 = I, Ii = aftr(Ii−1, µi) for i ∈ 1..n, and s is equal to µ1 . . . µn after filtering

τ labels. We call I . P
s

=⇒ Q an s-execution.

Example 3. Consider the process Psv=recX.c?x.new d.x!d.X, modelling the
idiomatic server that repeatedly waits for requests on channel c and answers
back on the inputted channel (bound to variable x) with a fresh channel. We
can derive the following behaviour wrt. I = {c}:

I . Psv
τ−→ I . c?x.new d.x!d.Psv

c?a−−−→ I, a . new d.a!d.Psv
a!d−−−→

I, a, d . Psv
c?a

==⇒ I, a, d . new d.a!d.Psv
a!d′−−−→ I, a, d, d′ . Psv

7

Syntax

p, q ∈ Pat ::= o?r (input pattern) | o!r (output pattern)

w ∈ Verd ::= end (termination) | X (detection)

M,N ∈Mon ::= w (verdict) | p.M (pattern match)

|M +N (choice) | if u=v thenM else N (branch)

| recX.M (recursion) | X (monitor var.)

Monitor Semantics

mVer
w

α−−→ w
mPat

match(p, α) = σ

p.M
α−−→Mσ

mChL
M

µ−−→M ′

M +N
µ−−→M ′

mRec
recX.M

τ−→M [recX.M/X]
mChR

N
µ−−→ N ′

M +N
µ−−→ N ′

mThn
if c=c thenM else N

τ−→M
mEls

c] d

if c=d thenM else N
τ−→ N

Instrumented System Semantics

iMon
I . P

α−−→ P ′ M
α−−→ M ′

I . P / M
α−−→ P ′ / M ′

iAsyP
I . P

τ−→ P ′

I . P / M
τ−→ P ′ / M

iTer
I . P

α−−→ P ′ M 6 α−−→ M 6 τ−→
I . P / M

α−−→ P ′ / end
iAsyM

M
τ−→ M ′

I . P / M
τ−→ P / M ′

Figure 2: Monitor syntax, semantics and Instrumentation Semantics

Notice that, whereas the first instance of c?a extends the interface (and denotes
a bound input [34, 61]) the second instance of c?a denotes a standard input.
Note also that to be able to derive the final transition, rule pOpn requires us to

infer the premise (I, a, d), d′.a!d′.Psv
a!d′−−−→ Psv where the condition d′ 6∈ (I, a, d)

implied by the notation (I, a, d), d′ of the premise, implicitly forces us to alpha-
convert new d.a!d.Psv to new d′.a!d′.Psv before performing the transition. �

3. Monitor Instrumentation

Monitors, M,N ∈ Mon, are syntactically described by the grammar in
Fig. 2. They may reach either of two verdicts, namely detection, X, or ter-
mination, end, denoting an inconclusive verdict. Monitors are equipped with
a pattern matching construct (used to observe external actions) and a name-
comparison branching construct. In our case, patterns p, q ∈ Pat range over

8

input and output actions3 and may contain either names, Chans, (free) vari-
ables, Vars, or variable binders of the form (x), (y) ∈ Binds that are bound
to concrete values when pattern matched with an action. We let o, r range
over Chans ∪Vars ∪Binds and call closed pattern those that do not contain
free variables. The pattern matching function match(p,α) is defined for closed
patterns and actions as follows:

match((x), c) = [c/x] match(c, d) =

{
∅ if c = d

undefined otherwise

match(o1?o2, c1?c2) =


σ1 ∪ σ2 if σ1 = match(o1, c1), σ2 = match(o2, c2)

and ∀x∈dom(σ1)∩dom(σ2) · σ1(x)=σ2(x)

undefined otherwise

match(o1!o2, c1!c2) =


σ1 ∪ σ2 if σ1 = match(o1, c1), σ2 = match(o2, c2)

and ∀x∈dom(σ1)∩dom(σ2) · σ1(x)=σ2(x)

undefined otherwise

match(o1?o2, c1!c2) = match(o1!o2, c1?c2) = undefined

As in the case of processes (Sec. 2), in a pattern-match prefix p.M , any binding
variables in p bind the resp. free variables in M ; closed monitors are those with
no free variables. The remaining constructs, i.e., external branching, internal
branching and recursion, are unremarkable.

The monitor semantics is defined in terms of an LTS (Fig. 2), modelling the
analysis of the visible runtime execution of a process; unless otherwise stated,
we assume closed monitors. Following [62, 11, 25, 27, 29], in rule mVer verdicts
are able to analyse any external action but transition to the same verdict, i.e.,
verdicts are irrevocable. By contrast, pattern-guarded monitors only transition
when the action matches the pattern, binding pattern variables to the resp.
action names, match(p, α) = σ, and substituting them in the continuation, Mσ;
see rule mPat. Rules mChL and mChR allow a monitor to behave as either the
left or right branch (possibly) depending on the action to be analysed, whereas
mThn and mEls allow the monitor to branch internally, depending on the
analysis of an internal check (based on data). Rule mRec handles recursion in
standard fashion.

A monitored system, P / M , consists of a process, P , instrumented with a
monitor, M , analysing its (external) behaviour. Fig. 2 defines the instrumenta-
tion semantics for configurations, I . P / M , i.e., systems augmented with an
interface I, where again we assume P and M are closed and fn(P), fn(M) ⊆ I
for book-keeping purposes. The LTS semantics follows [25, 27, 29] and relies on
the resp. process and monitor semantics of Fig. 1 and Fig. 2. In rule iMon,

3This may be extended in straight forward fashion to accommodate other forms of actions.

9

if the process exhibits the external action α wrt. I, and the monitor can anal-
yse this action, they transition in lock-step in the instrumented system while
exhibiting same action. If, however, a process exhibits an action that the mon-
itor cannot analyse, the action is manifested at system level while the monitor
is terminated ; see rule iTer. Finally, iAsyP and iAsyM allow monitors and
processes to transition independently wrt. internal moves, i.e., our instrumen-
tation forces process-monitor synchronisation for external actions only, which
constitute our monitorable actions. We highlight the fact that, as is expected
of recognisers, the process drives the behaviour of a monitored system: if the
process cannot α-transition, the monitored system cannot α-transition either.

Example 4. Recall Psv from Ex. 3. Using the semantics of Fig. 2, one can derive
the monitored execution leading to a detection below, when composed with the
monitor M1 =

(
c?(y).y!(z).if z=c then end else X

)
, subject to I ′ = {c, a}:

I ′ . Psv / M1
c?a

==⇒ I ′ . new d.a!d.Psv / a!(z).if z=c then end else X (3)

a!d−−−→ I ′, d . Psv / if d=c then end else X
τ−→ I ′, d . Psv / X (4)

Monitor M1 detects any output with a payload that is not name c on a channel
that is communicated as a payload on channel c in the previous action. Note
how this channel, is learnt at runtime in Eq. (3) and then used for the pattern-
matching of the second action in Eq. (4).

Contrastingly, for the same I ′, when monitoring with the monitor M2 =
((y)!(z).if y=a then end else X) does not lead to a detection for the same trace,
because the first action, c?a (an input) cannot pattern match with the output
pattern, (y)!(z). In fact, rule iTer terminates (prematurely) the monitor after
transition c?a, so as to avoid erroneous detections.

I ′ . Psv / M2
τ−→ c?x.new d.x!d.Psv / M2

c?a−−−→ new d.a!d.Psv / end
a!d

==⇒ Psv / end
(5)

Note that a monitor need not necessarily ever reach a verdict when mon-
itoring a system. The monitor M3 = recX.c?(y).y!(z).if z = c then X else X
ensures that no payload that is outputted on the channel inputted on c is equal
to channel c itself, since otherwise it flags a detection. When instrumented with
Psv, we are guaranteed never to reach a detection because all such payloads are
fresh:

I ′.Psv/M3
c?a

==⇒ I ′.new d.a!d.Psv/ a!(z).if z=c thenX else M3
a!d

==⇒ I ′.Psv/M3

Finally, consider M4 = c?(y).if y=c then end else y!(z).c?z.X, another moni-
tor. We have the following (dissected) transition sequence for I = {c} explaining

10

how instrumentation works:

I . Psv / M4
c?a
==⇒ I, a .

(
new d.a!d.Psv

)
/ if a=c then end else a!(z).c?z.X (6)

τ−→ I, a .
(
new d.a!d.Psv

)
/ a!z.c?z.X (7)

a!d−−−→ (I, a, d) . Psv / c?d.X (8)

c?b
=⇒ (I, a, d, b) . new d′.b!d′.Psv / end (9)

b!d′−−−→ (I, a, d, b, d′) . Psv / end (10)

In Eq. (6) the server (asynchronously) unfolds (pRec and iAsyP) and inputs
on c the fresh name a (pIn). The monitor can analyse c?a using mPat where
match(c?(y), c?a) = [a/y], transitioning accordingly using the instrumentation
rule iMon while learning the fresh name a (originating from the environment).
At this stage, the instrumentation temporarily stalls the process, even though
it can produce the (scope extruding) output a!d. More precisely, although the
monitor cannot presently analyse a!d, the rule iTer—which terminates the
monitor execution—cannot be applied, since the monitor can silently transition
and potentially become capable of analysing the action. This is indeed the
case, Eq. (7) using rule mEls, resulting in the second monitoring transition,
Eq. (8) using iMon, where the monitor learns the second fresh name d, this time
originating from the monitored process; we thus obtain (c?z.X)[d/z] = c?d.X.
After another unfolding, the process is ready to input on c again. However, the
monitor cannot match c?b (match(c?d, c?b) is undefined) and since the monitor
cannot silently transition either, it is terminated (iTer) while still allowing
the process to proceed, Eq. (9). In Eq. (10), verdict monitors allow monitored
processes to execute without any hindrance using rule mVer. �

Ex. 4 highlights two conflicting instrumentation requirements. On the one
hand, monitors should interfere minimally with the execution of a monitored
process where, observationally, a monitored process should behave like the orig-
inal one. On the other hand, instrumentation must also ensure bona fide de-
tections, e.g., in (5) and (9), terminating monitoring when the observed pro-
cess behaviour does not correspond to that expected by the monitor using rule
iTer. But in order to do this while avoiding premature termination, instru-
mentation needs to allow for monitor internal computation, e.g., (7). Unfortu-

nately, the premise caveat M 6 τ−→ in rule iTer—necessary to prevent this pre-
mature terminations—allows monitors to affect (indirectly) monitored process
behaviour. This subtle aspect of instrumentation, illustrated in E.g. 5 below,
will be revisited again in Sec. 4 when our monitor preorders are considered.

Example 5. The monitor Ω below:

Ω = recX.(if c=c thenX else X) Ω′ = if c=c then Ω else Ω (11)

is divergent, i.e., Ω
τ−→ Ω′

τ−→ Ω
τ−→ . . ., and unresponsive, i.e., ∀α · Ω 6 α−−→

and Ω′ 6 α−−→. As a result, it suppresses every process external behaviour when

11

instrumented: for arbitrary I . P we can show I . P / Ω 6 α−−→ and I . P / Ω′ 6 α−−→
for any α, since rules iMon and iTer cannot ever be applied. �

Remark 1. The model presented in this paper (Secs. 2 and 3) is a superset
of the monitoring operational setup used to develop the monitorability results
in [25, 30, 63, 32] and the deterministic correctness criteria in [27, 26, 31]. In
this extended model, we allow name-passing in the monitored actions, which
translates to the runtime extension of monitor-system boundary upon the scope
extrusion of new names (i.e., a monitor can learn new channel names at runtime
and then monitor for events on these channels). �

We conclude this section by proving a number of important properties about
our model. Upon first reading, the reader may safely skip onto the next section.
Prop. 1 is an important sanity check stating that verdicts are irrevocable.

Lemma 1. M
τ−→ implies M 6= w

Proof. By the contrapositive, we assume M = w and show, by case analysis of
the monitor LTS that M 6 τ−→.

Proposition 1 (Definite Verdicts). I . P / w
s

=⇒ Q / M implies M = w

Proof. By numerical induction on (
µn−−→)n where (

s
=⇒) = (

µn−−→)n. The base

case is trivial. For the inductive case, I . P / w
µ1−−→ Q′ / M ′(

µk−−→)kQ / M we
have two subcases:

µ1 = τ : By a corollary of Lem. 1, we know that rule iAsyM could not have
been used to derive the first transition, meaning that only iAsyP could
have been used. Thus we know that I . P

τ−→ Q′ and that M ′ = w. The

required result follows by M ′ = w and the I.H. on I.Q′/ w (
µk−−→)k Q/M .

µ1 = α: We know that rule iTrm could never have been applied to derive the
first transition, since w

α−−→ w for any external action α. Thus it could
have only been derived using iMon, and by rule mVer we also know that
M ′ = w. Similar to the previous case, the required result follows by the

I.H. on aftr(I, α) . Q′ / w (
µk−−→)k Q / M .

Corollary 1. (I . P / M
s

=⇒ Q / N and N 6= w) implies M 6= w

We also show that instrumenting a system with a verdict monitor does not
affect its behaviour (Prop. 2) which justifies, in part, why we preempt moni-
toring to end when the monitor is under specified and does not know how to
handle an action produced by the process under scrutiny in rule iTer in Fig. 2.

Proposition 2 (Verdict Non-Interference).

I . P
s

=⇒ Q implies I . P / w
s

=⇒ Q / w

Proof. By induction on the length of the transition sequence I . P
s

=⇒ Q. For

the inductive case I . P
µ−−→ · s

=⇒ Q:

12

• When µ = τ we construct the first part of the required sequence using
rule iAsyP.

• When µ = α we construct the first part of the required sequence using
rule iMon and rule mVer for the monitor.

We close off this section with three lemmata deal with zipping and unzipping
monitored transition sequences. These allow us to compose and decompose
monitored computation and form the basis for our compositional analysis. In
particular, we prove these lemmata for the special case where computations
reach a verdict (which, by virtue of Prop. 1, means that it is persistent).

Lemma 2 (Verdict UnZipping).

I . P / M
s

=⇒ Q / X implies (I . P
s

=⇒ Q and M
s

=⇒ X).

Proof. By induction on the length of the transition sequence I .P / M
s

=⇒ Q/X.

• If I . P / M
τ−→ P ′ / M ′

s
=⇒ Q / X, by case analysis we know that the

first transition was derived using either iAsyP or iAsyM. We therefore
prepend either I .P ′

s
=⇒ Q or M ′

s
=⇒ X (obtained by the I.H.) accordingly,

using the premise of either iAsyP or iAsyM.

• If I . P / M
α−−→ P ′ / M ′

s
=⇒ Q / X we know it could have only been

derived using iMon; had it been derived using iTrm, then we would have
M ′ = end, which contradicts Prop. 1. We thus proceed by prepending
both I . P ′

s
=⇒ Q or M ′

s
=⇒ X obtained by the I.H. by I . P

α−−→ P ′ and
M

α−−→M ′ resp.

Lemma 3 (General Unzipping). I . P / M
s

=⇒ Q / N implies:

• I . P s
=⇒ Q

• M s
=⇒ N or (s = s1αs2 and M

s1==⇒M ′ 6 τ−→ and M ′ 6 α−−→ and N = end).

Proof. By induction on the structure of s. The proof is similar to that of Lem. 2,
except for the inductive case of the form I . P / M

α−−→ P ′ / M ′
s

=⇒ Q / N ,
for which we need to consider the possibility that rule iTrm from Fig. 2 was
applied to derive I . P / M

α−−→ P ′ / M ′. In such a case, we know that M 6 τ−→,
M ′ 6 α−−→ and that M ′ = end. Thus, by aftr(I, α).P ′ / end

s
=⇒ Q/ N and Prop. 1

we know that N = end as required.

Lemma 4 (General Zipping). I .P
s

=⇒ Q and M
s

=⇒ N implies I .P / M
s

=⇒
Q / N

Proof. By induction on the length of the transition sequence of I . P
s

=⇒ Q and
the length of the transition sequence of M

s
=⇒ N . For the inductive cases:

• When I . P
τ−→ P ′

s
=⇒ Q we construct the required monitored transition

sequence using iAsyP and the resulting monitored transition sequence
from the I.H.

13

• When I . P
α−−→ P ′

s
=⇒ Q we have two subcases:

– If M
τ−→ M ′

s
=⇒ N we construct the required monitored transi-

tion sequence using iAsyM and the resulting monitored transition
sequence from the I.H.

– If M
α−−→ M ′

s
=⇒ N we construct the required monitored transi-

tion sequence using iMon and the subsequent monitored transition
sequence from the I.H.

4. Monitor Preorders

We can use the formal setting presented in Sec. 3 to develop the monitor
preorders discussed in the Introduction. We start by defining the monitoring
predicates we expect to be preserved by the preorder; a number of these predi-
cates rely on computations and detected computations, defined below.

Definition 2 (Detected Computations). The transition sequence:

I . P / M
s

=⇒ I0 . P0 / M0
τ−→ I1 . P1 / M1

τ−→ I2 . P2 / M2
τ−→ . . .

is called an s-computation if it is maximal (i.e., either it is infinite or it is finite
and cannot be extended further using τ -transitions). An s-computation is called
detected (or a detected computation along s) iff ∃n ∈ N ·Mn = X. �

One criteria for comparing monitors considers the verdicts reached after
observing a specific execution trace produced by the process under scrutiny.
The semantics of Sec. 3 assigns a passive role to monitors, prohibiting them
from influencing the branching execution of the monitored process. Def. 2 thus
differentiates between the detected computations, identifying them by the visible
trace of execution that is dictated by the process and over which the monitor
should not have any control.

Example 6. Consider the process P = new d.(d!c‖d?x.c!a.nil‖d?x.c!b.nil) and
the interface I = {c, b, a}. The system can non-deterministically produce either

of the following two behaviours: I . P
c!a

==⇒ nil or I . P
c!b

==⇒ nil. Consider also
the following monitors:

M1 = c!a.X+ c!b.X M2 = c!a.X+ c!b.end M3 = c!a.X
M4 = c!a.X+ c!b.X+ c!b.end M5 = c!a.X+ c!b.X+ c!a.end + c!b.end

All configurations I . P / Mi for i ∈ 1..5 exhibit detecting computations along
the trace s = c!a.ε (ε denotes the empty trace and we write c!a.ε instead of
just c!a to differentiate between the trace containing just that action and the
action itself). For the trace t = c!b.ε, configurations I . P / Mj for j ∈ {1, 4, 5}
detect t-computations as well, whereas the resp. configurations with M2 and
M3 do not. Although the configuration I . P / M1 always detects along t

(in fact, I . P / M1
t

=⇒ P / M ′1 implies M ′1 = X) those with M4 and M5

14

may fail to detect it along such a trace (for instance, we have the computation

I . P / M4
t

=⇒ nil / end 6 τ−→). Similarly, the configurations with monitors M1

and M4 deterministically detect along trace s, but I . P / M5 does not. �

Ex. 6 suggests two types of computation detections that a monitor may exhibit.

Definition 3 (Potential and Deterministic Detection).

1. M potentially detects for I . P along trace s, denoted as pd(M, I, P, s), iff
there exists a detecting s-computation from I . P / M .

2. M deterministically detects for I.P along trace s, denoted as dd(M, I, P, s),
iff all s-computation from I . P / M are detecting. �

Remark 2. If a monitored process cannot produce trace s, i.e., I . P 6 s=⇒, then
for any M we have I . P / M 6 s=⇒ as well (Lem. 3). If we have I . P / M 6 s=⇒,
then pd(M, I, P, s) is trivially false and dd(M, I, P, s) is trivially true. �

The detection predicates of Def. 3 induce the following monitor preorders
(and equivalences), based on the resp. detection capabilities.

Definition 4 (Potential and Deterministic Detection Preorders).

M vpd N
def
= ∀I, P, s · pd(M, I, P, s) implies pd(N, I, P, s)

M vdd N
def
= ∀I, P, s · dd(M, I, P, s) implies dd(N, I, P, s)

M ∼=pdN and M ∼=ddN denote the potential and deterministic detection kernel

equivalences induced by the respective preorders, i.e., M ∼=pd N
def
= (M vpd

N and NvpdM), and similarly for M∼=ddN . We write M@pdN as a shorthand
notation for (MvpdN and N 6vpd M) and similarly for M@ddN . �

Example 7. Recall the monitors defined in Ex. 6. It turns out that

M2
∼=pd M3 @pd M5

∼=pd M4
∼=pd M1 (12)

M5 @dd M2
∼=dd M3

∼=dd M4 @dd M1 (13)

Note that, whereas monitor M5 can potentially detect more computations that
monitors M2 and M3, Eq. (12), it can deterministically detect less computations
than these two monitors, Eq. (13). In fact, M5 cannot deterministically detect
any computation, irrespective of the process and interface it is instrumented
with (i.e., it is a bottom element for the vdd preorder). �

As opposed to related formal analysis on monitors such as [11, 36, 64, 38],
the detection predicates in Def. 3 consider monitor behaviour within an in-
strumented system. Apart from acting as a continuation for the study in
[25, 26, 28, 27, 29, 31], this setup also enables us to formally justify subtle
monitor orderings, as exemplified in E.g. 8, and help us to analyse peculiarities
brought about by the specific instrumentation relation, as illustrated in E.g. 10.

15

Example 8. Consider the shorthand notation τ.M for the monitor recX.M
whenever X 6∈ fV(M). We have the following (in)equalities:

X ∼=pd τ.X but τ.X @dd X

It should not be hard for the reader to see that both judgments pd(X, I, P, s) and
pd(τ.X, I, P, s) hold for any I, P and s, and thus X ∼=pd τ.X. The reason for the
inequality to the right, i.e., X @dd τ.X, is less obvious. Consider the processes
ΩP = recX.(if c= c thenX else X) and Ω′P = if c= c then ΩP else ΩP , which
are analogous to the divergent monitors Ω and Ω′ defined earlier in Eq. (11).
The predicate dd(X, I, P, s) holds trivially for the monitor X for any process
P , interface I, and trace s, since the monitor detects immediately, irrespective
of the process’ actions. This means that we have τ.X vdd X. It also means
that, in particular, dd(X, I,ΩP , ε) holds. But predicate dd(τ.X, I,ΩP , ε) does
not hold, due to the non-detecting ε-computation

I . ΩP / τ.X
τ−→ I . Ω′P / τ.X

τ−→ I . ΩP / τ.X
τ−→ . . .

This is enough to refute the inequality X vdd τ.X. Perhaps a more practical
manifestation of the monitor behaviour just discussed is the strict inequality:

c!(x).if x=d thenX else end @dd c!d.X (14)

were the apparently innocuous left hand monitor does not deterministically
detect the trace c!d.ε when composed with the system c!d.ΩP , whereas the right
hand monitor does. �

E.g. 5 hinted that certain monitor inequalities are less straightforward than
anticipated due to divergences. The following examples expand on this aspect.

Example 9. Recall the divergent monitor Ω from Eq. (11). We have the fol-
lowing ordering for vpd and vdd for the following pathological examples:(

end ∼=pd c!a.end ∼=pd Ω
)

@pd c!a.X @pd X (15)(
end ∼=dd c!a.end

)
@dd c!a.X @dd Ω @dd X (16)

As discussed already in E.g. 8, monitor X satisfies dd(X, I, P, s) for any pro-
cess P , interface I, and trace s. This is immediately apparent from the LTS
behaviour of monitor X (in isolation). For the same reasons, it also satisfies
pd(X, I, P, s) for any process P , interface I, and trace s. As a result, monitor
X is a top element for both preorders, as evidenced in Eqs. (15) and (16). By
analysing the LTS behaviour of both monitors end and c!a.end, we can also
see that no execution path leads to a detection, and it turns out that these
two monitors are equated as bottom elements by both preorders, as shown in
Eqs. (15) and (16). Similarly, it is not hard to see that monitor c!a.X poten-
tially and deterministically detects any system execution that starts with the
action c!a (and nothing more); this makes it neither a top nor a bottom element.
Surprisingly, even though monitor Ω is a bottom element for the vpd preorder,

16

it is not a bottom element for the vdd preorder, even though it appears to be
that case when simply looking at its LTS behaviour: there is no trace s such
that Ω

s
=⇒ X. More concretely, Ω prohibits any external action from the pro-

cess it is instrumented with, limiting all computations to ε-computations, i.e.,
irrespective of I . P , configuration I . P / Ω exhibits no s-computations for any
s where s 6= ε, rendering dd(Ω, I, P, s) for s 6= ε vacuously true (see Rem. 2). �

Reasoning about monitor divergences becomes even less obvious in the pres-
ence of other monitor combinators.

Example 10. Recall the divergent monitor Ω from (11). We have:

Ω + end @dd

(
Ω ∼=dd Ω +X ∼=dd recX.(τ.X +X)

)
(17)

Ω + c!a.X @pd Ω +X but Ω + c!a.X ∼=dd Ω +X (18)

In Eq. (17), the monitor Ω + end does not deterministically detect any com-
putation: when composed with an arbitrary I . P , it clearly can never reach a
detection, but it can neither prohibit the process from producing visible actions,
as in the case of Ω (see rules mVer, mChR and iMon). Monitor Ω + X can
either behave like Ω or transition to X after one external action observed; in
both cases, it deterministically detects all s-computation where |s| > 0. The
monitor recX.(τ.X+X) first silently transitions to (τ.recX.(τ.X +X))+X and
then either transitions back to the original state or else transitions to X with an
external action; in either case, when composed with any process I . P , it also
deterministically detects all s-computation as long as |s| > 0.

In Eq. (18), monitor Ω + c!a.X potentially detects less computations than
Ω + X (e.g., for I = {c, a, b}, P = c!b.nil and s = c!b.ε, the predicate pd(Ω +
X, I, P, s) holds but pd(Ω + c!a.X, I, P, s) does not). However, both determin-
istically detect the same computations, i.e., all s-computation where |s| > 0.
Specifically, if a process being monitored can produce an action other than c!a,
the instrumentation with monitor Ω + c!a.X restrains such an action, since the
monitor cannot transition with that external action (it can only transition with
c!a). Nevertheless, it can τ -transition (see rules iMon and iTrm in Fig. 2). �

The preorders of Def. 4 are not as discriminating as one might expect.

Example 11. Consider the monitor Many = (x)?(y).X+(x)!(y).X. Intuitively,
the monitor Many potentially and deterministically detects any s-computation
when |s| > 0 since after any action (irrespective of whether it is an input or an
output, or of the action subject and object values) the monitor always detects.

Many
∼=pd Many + Ω and Many

∼=dd Many + Ω ∼=dd Ω (19)

Perhaps less intuitively, monitor Many + Ω produces the same potential and
deterministic detections, yielding the resp. equalities in Eq. (19). In the case of
deterministic detections, monitor Many+Ω may exhibit either of two behaviours:
it can either detect after observing one action (just like in the case of Many) or
else silently transition to Ω, which prohibits any traces that are not equal to ε

17

from the process it is instrumented with. In either case, the monitor detects all
traces s where |s| > 0 (in the case it transitions to Ω, this is trivially satisfied
since there are none). In fact, the two monitors are deterministic detection
equivalent to Ω.

c!a.end ∼=pd c!a.end + c!a.Ω ∼=pd end

and c!a.end ∼=dd c!a.end + c!a.Ω ∼=dd end
(20)

In Eq. (20), neither monitor produces any potential or deterministic detections
and they are thus equivalent according to the resp. kernel equivalences of Def. 4.
In fact, they are potential and deterministic equivalent to the monitor end, which
is a bottom element for both preorders. �

There are settings where the equalities established in E.g. 11 are deemed too
coarse. For instance, in Eq. (20), whereas monitor c!a.end is innocuous when
instrumented with a process, monitor c!a.end + c!a.Ω can change the observed
behaviour of the process under scrutiny after the action c!a is emitted (namely
by suppressing external actions, as explained in E.g. 10); a similar argument
applies for the monitors in Eq. (19).

We thus define a third monitor predicate called transparency [3, 11, 65, 14],
stating that whenever a monitored process cannot perform an external action,
it must be because the (unmonitored) process is unable to perform that action
(i.e., the monitor instrumentation does not prohibit that action).

Definition 5 (Transparency Preorder). M is transparent for I . P wrt. trace
s, denoted as tr(M,P, I, s), iff(
I . P / M

s
=⇒ Q / N and aftr(I, s) . (Q / N) 6 α=⇒

)
implies aftr(I, s) . Q 6 α=⇒ .

We define the induced preorder as expected:

M vtr N
def
= ∀I, P, s · tr(M, I, P, s) implies tr(N, I, P, s) �

Although the preorders in Def. 4 and Def. 5 are interesting in their own right,
we define the following relation as the finest monitor preorder in this paper.

Definition 6 (Monitor Preorder).

M v N def
= M vpd N and M vdd N and M vtr N �

Example 12. Recall the monitors described in E.g. 11. Although it turns out
that the inequality Many + Ω vMany holds, we have Many 6vMany + Ω because
Many 6vtr Many + Ω. For instance, for I = {c, a}, P = c!a.c!a.nil and s = c!a.ε
we have tr(Many, I, P, s) but ¬tr(Many + Ω, I, P, s). Using analogous reasoning,
we also have c!a.end 6v c!a.end + c!a.Ω. �

18

Inequalities from the preorders of Def. 4 and Def. 5 are relatively easy to
repudiate. For instance, recall

M3 = c!a.X M5 = c!a.X+ c!b.X+ c!a.end + c!b.end

from E.g. 6, together with the process P = new d.(d!c‖d?x.c!a.nil‖d?x.c!b.nil),
the interface I = {c, b, a} and the trace t = c!b.ε (also defined in the same
example). We can use P, I and t as counter examples to show that pd(M5, I, P, t)
and ¬pd(M3, I, P, t), thus disproving M5 vpd M3; similarly, P, I and s = c!a.ε
can be used to show dd(M3, I, P, s) and ¬dd(M5, I, P, s) and refute M3 vpd M5.
However, it is much harder to show that an inequality from these preorders
holds because we need to consider monitor behaviour wrt. all possible processes,
interfaces and traces. As shown in Ex. 8, Ex. 10 and Ex. 11, this often requires
intricate reasoning in terms of the three LTSs defined in Fig. 1 and Fig. 2,
namely the process LTS, the monitor LTS and the instrumentation LTS.

5. Characterising the Potential Detection Preorder

We define three alternative monitor preorders that correspond to the pre-
orders in Sec. 4 and for which positive statements about inequalities are easier
to establish. The new preorders are defined exclusively in terms of the monitor
operational semantics of Fig. 2, and do not consider how they are affected by
arbitrary processes as in Defs. 4 to 6 (requiring the process and instrumentation
LTSs of Figs. 1 and 2). Importantly, we show that the new preorders coincide
with those in Sec. 4: apart from equipping us with an simpler mechanism for
determining the inequalities of Sec. 4, the correspondence results provide further
insight into the properties satisfied by the preorders of Def. 4 and Def. 5.

We start with the potential-detection preorder. We first define a restricted
monitor LTS that disallows idempotent transitions from verdicts, w

α−−→ w since
these are redundant when considering the monitor operational semantics in
isolation.

Definition 7 (Restricted Monitor Semantics). A derived monitor transition,

M
µ−−→r N , is the least relation satisfying the conditions M

µ−−→ N and M 6= w.
M

s
=⇒r N denotes a transition sequence in the restricted LTS. �

Remark 3. Although Def. 7 prohibits rule mVer (Fig. 2) from being used as
the root of a transition derivation, it can still be used e.g., to derive:

mVer
X

α−−→ X
mChL

X+M
α−−→ X X+M 6= w

X+M
α−−→r X �

The restricted LTS is used to limit the detecting transition sequences on the
left of the implication in Def. 8. We still permit these transitions to be matched

19

by transition sequences in the original monitor LTS, so as to allow the monitor
to the right of the inequality to match the sequence with a prefix of visible
actions (which can then be padded by X

α−−→ X transitions as required).

Definition 8 (Alternative Potential Detection Preorder).

M �pd N
def
= ∀s ·M s

=⇒r X implies N
s

=⇒ X

The new preorder M �pd N of Def. 8 fully characterises the contextual
preorder M vpd N of Def. 4. We proceed to show this in Thm. 1, which relies
on a useful property about the restricted monitor LTS of Def. 7.

Lemma 5 (Restricted Monitor Operational Semantics).

1. M
s

=⇒r N implies M
s

=⇒ N .

2. M
s

=⇒ N and N 6= w implies M
s

=⇒r N .

3. M
s

=⇒ w implies ∃t ≤ s ·M t
=⇒r w

Proof. By induction on the number of transitions. For the second clause, we
make use of Cor. 1.

The proof of Thm. 1 is split into two parts. The if part, i.e., if M �pd N
then M vpd N , which justifies the use of �pd as a sound method for determining
when two monitors are related according to vpd, follows from Lem. 6. The only-
if part, i.e., M �pd N only if M vpd N , shows that such a characterisation is
complete and follows from Lem. 8 below.

Lemma 6 (Soundness). M �pd N implies M vpd N

Proof. From Def. 4, we prove the implication by assuming pd(M, I, P, s) for an
arbitrary I,P and s, and then showing that pd(N, I, P, s) holds. The assumption

pd(M, I, P, s) implies that I . P / M
s

=⇒ Q / X for some Q, and by verdict
unzipping, Lem. 2, we obtain:

I . P
s

=⇒ Q (21)

M
s

=⇒ X. (22)

From Eq. (22) and Lem. 5.3 we have M
t

=⇒r X where t is a prefix of s. Thus by

M �pd N we obtainN
t

=⇒ X which can be extended toN
s

=⇒ X using rule mVer
from Fig. 2 for the additional padding. Thus, by Eq. (21) and verdict zipping,

Lem. 4, we construct I . P / N
s

=⇒ Q / X, which implies pd(N, I, P, s).

Completeness, Lem. 8, requires us to define a generic way how to construct
a characteristic process (and interface) from a trace. The resulting character-
istic process, prc(s) defined in Def. 10, can produce the required trace wrt. a
maximal interface (approximation), nm(s) extracted via Def. 9.

Definition 9 (Trace Names).

nm(c?d.s)
def
= {c, d} ∪ nm(s) nm(c!d.s)

def
= {c, d} ∪ nm(s) nm(ε)

def
= ∅ �

20

Definition 10 (Trace-characterising Process).

prc(c?d.s)
def
= c?x.prc(s) prc(c!d.s)

def
= c!d.prc(s) prc(ε)

def
= nil �

Lemma 7 (Properties of the characteristic process). For all traces s,t:

1. nm(s) . prc(s)
t

=⇒ P implies s = tt′ for some t′ where P = prc(t′)

2. nm(st) . prc(st)
s

=⇒ prc(t) where aftr(nm(st), s) = nm(st)

Proof. By induction on the structure of s.

Lemma 8 (Completeness). M vpd N implies M �pd N

Proof. From Def. 8, assume M vpd N and pick an s such that M
s

=⇒r X. We

need to show that N
s

=⇒ X. From M
s

=⇒r X and Lem. 5.1, we obtain M
s

=⇒ X.
Thus, by Lem. 7.2 and Lem. 4 (verdict zipping) we deduce:

nm(s) . prc(s) / M
s

=⇒ nil / X

which implies pd(M,nm(s),prc(s), s). From the assumption M vpd N we
obtain the predicate pd(N,nm(s),prc(s), s) which, by Def. 3, means that

nm(s) . prc(s) / N
s

=⇒ Q / X (23)

for someQ. Thus, by Eq. (23) and Lem. 2 (verdict unzipping) we obtainN
s

=⇒ X
as required.

Theorem 1 (Potential-Detection Preorders). M vpd N iff M �pd N

Proof. The if case follows from Lem. 6 whereas the only-if case is a direct
consequence of Lem. 8.

Example 13. Recall Ω + c!a.X and Ω +X from Eq. (18) of E.g. 10. By virtue
of Thm. 1, to show that Ω + c!a.X vpd Ω + X holds, it suffices to show that
Ω + c!a.X �pd Ω + X, which allows us to focus exclusively on the LTS of the
resp. monitors Ω + c!a.X and Ω +X. Moreover, the bi-implication of the full
abstraction result in Thm. 1 guarantees that this can always be done.

This can alleviate the proof burden substantially and facilitate the automa-
tion of the process substantially. For instance, by Def. 8, we only need to

consider Ω + c!a.X
c!a

==⇒r X, which can be easily matched by Ω + X
c!a

==⇒
X. Similarly, recall the monitor c!(x).if x=d thenX else end from Eq. (14).
To show that c!(x).if x=d thenX else end vpd X, we only need to consider

c!(x).if x=d thenX else end
c!d

==⇒r X, which can be matched by X
c!a−−→ X. �

21

6. Characterising the Deterministic Detection Preorder

The characterisation of the remaining preorders is more involved. For a
start, both characterisations rely on divergence judgments.

Definition 11 (Divergence and Strong Divergence).

1. M ↑ denotes that M diverges, meaning that it can produce an infinite
transition sequence of τ -actions M

τ−→M ′
τ−→M ′′

τ−→ . . .

2. M ⇑ denotes that M strongly diverges, meaning that it cannot produce
finite transition sequence of τ -actions M

τ−→M ′
τ−→ . . .M ′′ 6 τ−→. �

The alternative preorder for deterministic detections, Def. 13 below, is based
on three predicates describing the behaviour of a monitorM along a trace s. The
predicate blk(M, s) describes the potential for monitor M to block before it can
complete trace s. The predicate fl(M, s) describes the potential for monitorM to
fail after monitoring trace s: an s-derivative of M either reaches a non-detecting
state from which no further τ actions are possible, or it diverges (implicitly, by
Lem. 1, this also implies that the monitors along the diverging sequences are
never detecting). Finally the predicate nd(M, s) states the existence of a non-
detecting s-derivative of monitor M .

Definition 12 (Monitor Block, Fail and Non-Detecting).

blk(M, s)
def
= ∃s1, α, s2, N · s=s1αs2 and M

s1==⇒ N 6 τ−→ and N 6 α−→

fl(M, s)
def
= ∃N ·M s

=⇒ N and
(
(N 6= X and N 6 τ−→) or N ↑

)
nd(M, s)

def
= ∃N ·M s

=⇒ N and N 6= X �

Note that the predicate blk(M, s) of Def. 12 implicitly requires |s| ≥ 1 for it
to hold. It is also closed under extensions, as stated by the following corollary.

Corollary 2. blk(M, s) implies ∀t · blk(M, st)

More importantly, the three monitor predicates in Def. 12 capture all the
possible scenarios why a monitor might not able to deterministically detect a
trace when composed with an arbitrary system. This intuition is formalised in
the following three lemmata, namely Lems. 9 to 11.

Lemma 9. blk(M, s) and I . P
s

=⇒ implies ¬dd(M, I, P, s)

Proof. Assume blk(M, s) and I . P
s

=⇒. By Def. 12 we know

∃s1, α, s2, N such that s = s1αs2 (24)

and M
s1==⇒ N 6 τ−→ and N 6 α−→ (25)

From Eq. (24), we can also decomposed I . P
s

=⇒ and express it as

∃P ′, P ′′ such that I . P
s1==⇒ P ′

α−−→ P ′′
s2==⇒ P ′′′ (26)

22

By Eq. (25), Eq. (26) and Lem. 4 (zipping) we obtain I . M / P
s1==⇒ P ′ / N .

Again, by Eqs. (25) and (26) and iTrm from Fig. 2 we can deduce the monitored

system transition aftr(I, s1).P ′ / N
α−−→ P ′′ / end. Finally, by (26) and Prop. 2

(verdict zipping) we deduce aftr(I, (s1α)) . P ′′ / end
s2==⇒ P ′′ / end. The three

transition sequences can be conjoined together for form

I . M / P
s1==⇒ P ′ / N

α−−→ P ′′ / end
s2==⇒ P ′′ / end

which can then be extended to a full computation (which is either finite or infi-
nite, depending on the sequence of τ -transitions that can be generated from P ′′).
By Eq. (24), since s = s1αs2, this constructs a non-detecting s-computation,
which is the evidence required to obtain ¬dd(M, I, P, s).

Lemma 10. fl(M, s) and I . P
s

=⇒ implies ¬dd(M, I, P, s)

Proof. Assume fl(M, s) and I . P
s

=⇒. By Def. 12 we have

M
s

=⇒ N (27)

(N 6= X and N 6 τ−→) or N ↑ (28)

By the assumption I . P
s

=⇒ P ′ (for some P ′), Eq. (27) and Lem. 4 (zipping)

we obtain I . P / M
s

=⇒ P ′ / N . At this point, by Eq. (28), we have two cases
to consider:

• If N ↑ we can easily construct a non-terminating s-computation. Impor-
tantly, by Lem. 1, we also know that this computation is non-detecting
since the monitors along the diverging sequences can never be detecting
(i.e., verdict cannot produce τ -transitions).

• If we have N 6= X and N 6 τ−→, then we can still extend this to a full s-
computation (whether this is finite or infinite depends on the τ -transitions
from P ′); we note that this computation would be non-detecting as well,
and hence obtain ¬dd(M, I, P, s).4

Lemma 11. nd(M, s) and I . P
s

=⇒ P ′ and P ′ ↑ implies ¬dd(M, I, P, s)

Proof. Assume nd(M, s) and I . P
s

=⇒ P ′ where P ′ ↑. From Def. 12 we know

M
s

=⇒ N for some N where N 6= X and by Lem. 4 (zipping) we obtain:

I . P / M
s

=⇒ P ′ / N (29)

Note that, by Cor. 1, every intermediate monitor in the transition sequence
Eq. (29) cannot be detecting. This same transition sequence can be extended to

4Note that no interactions can happen between P ′ and N at this stage (using rules iMon
and iTer), because this would necessarily generate an external action α and make it an
sα-computation instead of an s-computation.

23

a non-detecting derivation sequence using the (infinite) τ -transitions from P ′ ↑
and repeated applications of the rule iAsyP (i.e., N never progresses). Since
this transition sequence is infinite, it constitutes an s-computation, and hence
we obtain the witness required to conclude ¬dd(M, I, P, s).

The relationship between the deterministic detection predicate of Def. 3 and
the monitor LTS predicates of Def. 12 is even stronger. In fact, Lem. 13 below
justifies the need for the three (and only those three) predicates in Def. 12 to
operationally characterise the violation of the deterministic detection predicate.
Lem. 12 is a technical lemma used by Lem. 13 and allows us to retrace the cause
of a divergence in a monitored system to either the process itself or the monitor.

Lemma 12. I . P / M ↑ implies I . P ↑ or M ↑

Proof. By contradiction. Assume I . P / M ↑ and consider the possibility of
having ¬(I . P ↑ or M ↑): this means that both ¬(I . P ↑) and ¬(M ↑). Thus
we can place a finite upper bound on the maximum number of τ -transition
sequences from I . P and M (irrespective of the computation chosen); let us
denote the resp. integer upper-bounds as k1 and k2. Now, for any diverging
transition sequence in I.P /M (with an infinite number of transitions), we know
that each transition is derived using either rule iAsyP, which means that a τ∗-
derivative of P induced the transition, or by using rule iAsyM, meaning that a
τ∗-derivative of M induced the transition. But the diverging transition sequence
could not have more than k1 + k2 transitions, which yields a contradiction.

Lemma 13 (Deterministic Detection Violation). ¬dd(M, I, P, s) implies

1. (blk(M, s) and I . P
s

=⇒) or;

2. (fl(M, s) and I . P
s

=⇒) or;

3. (nd(M, s) and ∃P ′ · I . P s
=⇒ P ′ ↑).

Proof. Pick an M , an I, a P and a s such that ¬dd(M, I, P, s). By Def. 3, this
means that there exists a non-detecting s-computation from I .P / M . We have
two subcases to consider:

• If this non-detecting s-computation is finite, we have the transition se-
quence I . P / M

s
=⇒ Q / N 6 τ−→ for some Q and N . Clearly, we have

N 6= X and N 6 τ−→ . (30)

since, otherwise, we would contradict aftr(I, s) .Q/ N 6 τ−→ using the rule
iAsyM. By Lem. 3 (unzipping) we have

I . P
s

=⇒ Q (31)

and either M
s

=⇒ N (32)

or s = s1αs2 where M
s1==⇒M ′ 6 τ−→,M ′ 6 α−−→, N = end (33)

24

In case of Eq. (32), by Eq. (30) we obtain fl(M, s) and since Eq. (31)

gives us I . P
s

=⇒) which satisfied the second alternative of the claimed
conclusion disjunction. Analogously, in case of Eq. (33) we obtain the first

alternative, namely (blk(M, s) and I . P
s

=⇒).

• If this non-detecting s-computation is infinite we can split the computa-
tion into two parts

I . P / M
s

=⇒ Q / N (34)

I ′ . Q / N ↑ where I ′ = aftr(I, s) (35)

We note that, by Def. 2, it must be that N 6= X. Again, by Eq. (34) and
Lem. 3, we have:

I . P
s

=⇒ Q (36)

and either M
s

=⇒ N (37)

or s = s1αs2 where M
s1==⇒M ′ 6 τ−→,M ′ 6 α−−→, N = end (38)

In case of Eq. (38), by Eq. (36) we obtain (blk(M, s) and I . P
s

=⇒). In
case of Eq. (37), we use Eq. (35) and Lem. 12 to obtain two subcases:

– If N ↑, then by Eq. (37) and Eq. (36) we obtain fl(M, s) and I .P
s

=⇒.

– If I ′ .Q ↑, by Eq. (37) and N 6= X we satisfy the third alternative of

the claimed conclusion disjunction, namely nd(M, s) and ∃P ′·I.P s
=⇒

P ′ and P ′ ↑. More precisely, P ′ = Q.

Based on these results, we define our alternative deterministic detection
preorder in terms of the predicates of Def. 12.

Definition 13 (Alternative Deterministic Detection Preorder).

M �dd N
def
= ∀s ·


blk(N, s) implies blk(M, s) or fl(M, s)

fl(N, s) implies blk(M, s) or fl(M, s)

nd(N, s) implies nd(M, s) or blk(M, s)

We write M 'dd N to denote the kernel equality of this preorder (i.e., M �dd N
and N �dd M). �

In Lem. 14 we show that the new alternative preorder is sound wrt. its
contextual counterpart from Def. 4. Note how the proof for this lemma works
on the contrapositive of the preorder implication of Def. 4, and thus relies on the
violation of the deterministic detection predicate of Def. 3, i.e., ¬dd(M, I, P, s).

Lemma 14 (Soundness). M �dd N implies M vdd N

Proof. By Def. 4 we show the implication by the contrapositive. We assume
M �dd N and pick I, P and s such that ¬dd(N, I, P, s). Then we show that
¬dd(M, I, P, s). From ¬dd(N, I, P, s) and Lem. 13 we obtain three subcases:

25

• If blk(N, s) and I . P
s

=⇒, then by Def. 13 we know that:

– Either fl(M, s), and by I.P
s

=⇒ and Lem. 10 we obtain ¬dd(M, I, P, s);

– Or blk(M, s). By I . P
s

=⇒ and Lem. 9 we get ¬dd(M, I, P, s) as well.

• If fl(N, s) and I . P
s

=⇒, then by Def. 13 we know that:

– Either fl(M, s): again, by I.P
s

=⇒ and Lem. 10 we get ¬dd(M, I, P, s);

– Or blk(M, s): similar to the previous case, by I . P
s

=⇒ and Lem. 9
we obtain ¬dd(M, I, P, s) as well.

• If nd(N, s) and ∃P ′ · I . P s
=⇒ P ′ ↑, then by Def. 13 we know that:

– Either nd(M, s), and by ∃P ′ · I . P s
=⇒ P ′ ↑ and Lem. 11 we obtain

¬dd(M, I, P, s);

– Or blk(M, s), in which case, by I . P
s

=⇒ P ′ and Lem. 9 we obtain
¬dd(M, I, P, s) as well.

We can also show that the alternative preorder of Def. 13 is complete,
Lem. 17. This requires us to define new properties and prove a number of sup-
porting lemmata. Concretely, Def. 14 defines a predicate stating that a process
does not diverge after producing a trace s. Cor. 3 states that the characteristic
process for trace s (Def. 9 and Def. 10) does not diverge after performing s.
Cor. 4 states that a non-deterministically-detecting monitor along s for I . P
when I . P never diverges after s implies that either the monitor blocks along
trace s or it fails after analysing s. Finally, Lem. 15 states that fl(M, s) is a
stronger predicate than nd(M, s).

Definition 14 (Non-Diverging After s).

ndiv(I, P, s)
def
= I . P

s
=⇒ P ′ implies ¬

(
aftr(I, s) . P ′ ↑

)
�

Corollary 3. For all traces s we have ndiv(nm(s),prc(s), s)

Proof. Follows from Lem. 7.

Corollary 4. ¬dd(M, I, P, s) and ndiv(I, P, s) implies blk(M, s) or fl(M, s)

Proof. Follows from Lem. 13, where ndiv(I, P, s) precludes the last option.

Lemma 15. fl(M, s) implies nd(M, s)

Proof. From Def. 12, we have two cases to consider for fl(M, s):

• Case M
s

=⇒ N 6 τ−→ and N 6= X trivially implies the weaker conditions of
nd(M, s).

• Case M
s

=⇒ N ↑ implies N
τ−→. From Lem. 1 we know that N 6= w

meaning that N 6= X as well, from which nd(M, s) follows.

26

We are now in a position to prove completeness. Before, however, we need
to define a slightly different characterising process for a particular trace that
diverges once the external trace is produced. This is used for the last subcase
of the proof for Lem. 17.

Definition 15 (Trace-characterising Diverging Process).

prcd(c?d.s)
def
= c?x.prcd(s) prcd(c!d.s)

def
= c!d.prcd(s) prcd(ε)

def
= Ω �

Lemma 16. nm(s) . prcd(s)
s

=⇒ Ω

Proof. By structural induction on s.

Lemma 17 (Completeness). M vdd N implies M �dd N

Proof. By Def. 13 we have to assume M vdd N and:

• Pick an s where blk(N, s), and show that blk(M, s) or fl(M, s). From
blk(N, s), Lems. 7 and 9 we obtain ¬dd(N,nm(s),prc(s), s). From M vdd

N , it must be the case that ¬dd(M,nm(s),prc(s), s) as well, and from
Cors. 3 and 4 we obtain blk(M, s) or fl(M, s) as required.

• Pick an s where fl(N, s) and show that fl(M, s) or blk(M, s). The proof is
analogous to the previous case.

• Pick an s where nd(N, s) and show that nd(M, s) or blk(M, s). From
nd(N, s), Lems. 11 and 16 we obtain ¬dd(N,nm(s),prc(s), s). From
M vdd N , it must be the case that ¬dd(M,nm(s),prc(s), s) as well,
and from Lem. 13 we obtain blk(M, s), fl(M, s), or nd(M, s). In the case
where we have fl(M, s), we know by Lem. 15 that we also have nd(M, s).
The other two possible cases, i.e., blk(M, s) or nd(M, s), are immediately
what is required by Def. 13.

Theorem 2 (Deterministic-Detection Preorders). M vdd N iff M �dd N

Proof. Follows from Lem. 14 and Lem. 17.

In the following examples we show how to put Thm. 2 to good use.

Example 14. Consider the monitors M = c?a.end+(x)!b.end and N = c?a.end.
By virtue of Thm. 2, in order to determine that M vdd N it suffices to prove
M �dd N . We proceed as follows:

1. We have blk(N, s) whenever s = αt and α 6= c?a. We have two subcases:

• If match((x)!b, α) is undefined, we show blk(M,αt) by first showing
that blk(M,αt) for the specific case where t = ε and then generalising
the result for arbitrary t using Cor. 2.

• If ∃σ·match((x)!b, α) = σ, we show fl(M,αt) by first showing fl(M,αt)

for the specific case where t = ε since M
α

=⇒ end; clearly end 6= X and
end 6 τ−→. We then generalise the result for arbitrary t using Prop. 1.

27

2. For any s where either s = ε or s = c?a.t for some t, we have fl(N, s):

• When s = ε we can easily show fl(M, ε).

• When s = c?a.t for some t, we can first show fl(M, c?a.ε) and then
use Prop. 1 again, for all extensions to alleviate the proof burden.

3. For any s where either s = ε or s = c?a.t for some t, we also have nd(N, s):
the required proof is analogous to the previous case. We can also use (the
technical lemma) Lem. 10 and the previous case for fl(N, s) to simplify
the proof further. �

Example 15. Recall the statement X 6vdd τ.X from E.g. 8. The inequality was
repudiated by “guessing” the process context ΩP = recX.(if c=c thenX else X)
that drives the monitor along the trace ε. Although intuitive, this method is
arguably hard to automate because there is no immediately apparent connection
between the process ΩP and the two monitors X and τ.X.

Full abstraction (i.e., completeness, Lem. 17), provides an alternative way
how to disprove X vdd τ.X, by showing that X 6�dd τ.X. Specifically, we
can readily argue that whereas nd(τ.X, ε), we can neither show nd(X, ε) nor
blk(X, ε). This reasoning is easier to automate and infer from the structure of
the two monitors. �

Example 16. Recall the equalities Ω ∼=dd Ω +X ∼=dd recX.(τ.X+X) claimed
in Eq. (17) of E.g. 10. It is easier to determine these equalities by considering
only the LTSs of the respective monitors to show that Ω 'dd Ω + X 'dd

recX.(τ.X +X) since:

1. For any s 6= ε we have the negated predicates ¬blk(Ω, s), ¬blk(Ω +X, s)
and ¬blk(recX.(τ.X +X), s). For instance, whenever s 6= ε, it is not hard

to prove that recX.(τ.X + X)
s

=⇒ N implies N = X (and similarly for
Ω +X); Ω, on the other hand can never produce such a transition.

2. We only have fl(Ω, ε), fl(Ω+X, ε) and fl(recX.(τ.X+X), ε) and by Lem. 15
we also have nd(Ω, ε), nd(Ω +X, ε) and nd(recX.(τ.X +X), ε). �

Remark 4. The alternative preorder in Def. 13 can be optimised further using
refined versions of the predicates fl(M, s) and nd(M, s) that are defined in terms
of the restricted monitor transitions of Def. 7, as in the case of Def. 3. �

7. Characterising the Transparency Preorder

We can also characterise the contextual transparency preorder of Def. 5.
The alternative transparency preorder, Def. 17 below, is defined in terms of
divergence refusals which, in turn, rely on strong divergences from Def. 11.
Intuitively, divergence refusals are the set of actions that cannot be performed
whenever a monitor reaches a strongly divergent state following the analysis of
trace s. These actions turn out to be precisely those actions that are suppressed
on a process after producing trace s, when instrumented with the respective
monitor.

28

Definition 16 (Divergence Refusals).

dref(M, s)
def
=
{
α | ∃N ·M s

=⇒ N and N ⇑ and N 6 α=⇒
}

�

Definition 17 (Alternative Transparency Preorder).

M �tr N
def
= ∀s · dref(N, s) ⊆ dref(M, s) �

As before, it turns out that the alternative transparency preorder of Def. 17
coincides with its contextual counterpart from Def. 5. But before we embark
on the proof for the characterisation of the transparency preorder, we define
a second contextual preorder for transparency that turns out to be equivalent
to that of Def. 5. Importantly, this second preorder facilitates the proof of the
characterisation for the alternative preorder.

Definition 18 (Action-Specific Transparency Preorder). M is transparent for
action α, wrt. the system I . P and trace s, denoted as atr(M,P, I, s, α), iff(
I . P / M

s
=⇒ Q / N and aftr(I, s) . (Q / N) 6 α=⇒

)
implies aftr(I, s) . Q 6 α=⇒ .

The action-specific transparency predicate induces the resp. preorder:

M vatr N
def
= ∀I, P, s, α · atr(M, I, P, s, α) implies atr(N, I, P, s, α) �

The two transparency preorders, namely M vtr N of Def. 5 and M vatr N
of Def. 18, turn out to be equivalent, as shown in Thm. 3. This theorem relies
on the following lemmata, the most important of which is Lem. 20 which, in
turn, relies on the following two technical lemmata.

Lemma 18.
(
I . P

α−−→ P ′ and M 6 α=⇒ and M ⇑
)

implies I . P / M 6 α=⇒

Proof. We proceed by contradiction. We assume I . P / M
α

=⇒ and then show
that we either contradict M 6 α=⇒ or M ⇑.

From I . P / M
α

=⇒ we know that there exist P ′,M ′ such that

I . P / M ==⇒ P ′ / M ′ (39)

aftr(I, ε) = I and I . P ′ / M ′
α−−→ (40)

By case analysis, only two rules could have been used Eq. (40):

iMon: This means that I . P ′
α−−→ and, more importantly,

M ′
α−−→ (41)

Now from Eq. (39) and Lem. 3 (unzipping) we have two further subcases:

1. Either M ==⇒ M ′, which, by Eq. (41), would allow us to derive

M
α

=⇒ (thus contradicting M 6 α=⇒).

29

2. Or M ==⇒ M ′′ 6 τ−→ for some M ′′ where M ′ = end. In particular,
M ==⇒M ′′ 6 τ−→ would contradict M ⇑.

iTrm: This means that I . P ′
α−−→ and, more importantly, M ′ 6 τ−→ and M ′ 6 α−−→.

Similar to the previous case, we use Eq. (39) and Lem. 3 to get two further
subcases, but in either case we always end up contradicting M ⇑.

Lemma 19.
(
I . P

α−−→ P ′ and I . P / M 6 α=⇒
)

implies
(
M 6 α=⇒ and M ⇑

)
Proof. First, we obtain M 6 α=⇒ by contradiction: if we assume M

α
=⇒, then

by I . P
α−−→ P ′ and Lem. 4 (zipping) we would obtain I . P / M

α
=⇒ which

contradicts our initial assumption.
Second, we need to show M ⇑; we do this by also assuming M 6 α=⇒ as part

of our assumptions (we just derived it above). Again, we proceed by contradic-
tion. We assume M 6⇑ and then show that this would imply the contradicting
conclusion I . P / M

α
=⇒. If M 6⇑ holds, this means that there exist a number

of finite transition sequences from M and, moreover, the maximum number of
τ -transitions from M can be capped by some integer; we denote this (positive)
integer as maxtau(M). We proceed by strong numerical induction on maxtau(M)
to show that for all of these τ -transition sequences, it is always the case that we
obtain the contradicting conclusion that I . P / M

α
=⇒; hence our assumption

M 6⇑ must be false.

maxtau(M) = 0: We have M 6 τ−→. By assumption, we also have M 6 α−−→ and

I . P
α−−→ P ′. Hence by rule iTrm we deduce I . P / M

α−−→ P ′ / end.

maxtau(M) = k+1: For all M ′ such that M
τ−→ M ′, we have maxtau(M ′) <

maxtau(M). Thus by I.H. we obtain I . P / M ′
α

=⇒, from which we can

then derive I . P / M
α

=⇒ using M
τ−→M ′ and rule iAsyM.

Lemma 20 (Non-transparency and Divergence refusal).

¬atr(M, I, P, s, α) iff

{
∃Q · I . P s

=⇒ Q and aftr(I, s) . Q
α

=⇒
and ∃N ·M s

=⇒ N and N ⇑ and N 6 α=⇒

Proof. The proof is split into two parts.

If : By I . P
s

=⇒ Q, M
s

=⇒ N and Lem. 4 (zipping) we obtain

I . P / M
s

=⇒ Q / N (42)

By aftr(I, s) . Q
α

=⇒, N ⇑, N 6 α=⇒ and Lem. 18 we obtain

I . Q / N 6 α=⇒ (43)

From Eqs. (42) and (43) and aftr(I, s) . Q
α

=⇒ we get ¬atr(M, I, P, s, α).

30

Only-If : By Def. 18 ¬atr(M, I, P, s, α) means that there exists Q and N where

I . P / M
s

=⇒ Q / N (44)

aftr(I, s) . (Q / N) 6 α=⇒ (45)

aftr(I, s) . Q
α

=⇒ (46)

From Eqs. (45) and (46) and the contrapositive of Prop. 2 we know that
N 6= end. Thus by Eq. (44) and Lem. 3 we know that

I . P
s

=⇒ Q (47)

M
s

=⇒ N (48)

Eq. (46) means that there exists some Q′ such that aftr(I, s) . Q ==⇒
Q′

α−−→ and by Eq. (45), it must also be the case that aftr(I, s) . (Q′ /

N) 6 α=⇒. Thus, by the technical lemma Lem. 19, we obtain

N 6 α=⇒ and N ⇑ (49)

The required result follows from Eqs. (46) to (49).

Lem. 20 allows us to prove a number of derived lemmata that will then be
used towards proving Thms. 3 and 4.

Lemma 21. ¬atr(M,P, I, s, α) implies ¬atr(M,prc(sα),nm(sα), s, α)

Proof. Assume ¬atr(M,P, I, s, α). From Lem. 20 we know:

∃Q · I . P s
=⇒ Q and aftr(I, s) . Q

α
=⇒

∃N ·M s
=⇒ N and N ⇑ and N 6 α=⇒ (50)

By Lem. 7 we obtain

nm(sα) . prc(sα)
s

=⇒ prc(α)
α

=⇒ nil (51)

By Eqs. (50) and (51) and Lem. 20 we get ¬atr(M,prc(sα),nm(sα), s, α)

Lemma 22. (¬atr(M,prc(sα),nm(sα), s, α) and I . P
sα

==⇒) implies
¬atr(M,P, I, s, α)

Proof. Analogous to Lem. 21.

The following result, Lem. 23, establishes a correspondence between the
contextual preorder predicate of Def. 5 and that of Def. 18.

Lemma 23. ¬tr(M,prc(sα),nm(sα), s) implies ¬atr(M,prc(sα),nm(sα), s, α)

31

Proof. From Def. 5 and Def. 18 we know that ∃β.¬atr(M,prc(sα),nm(sα), s, β)
and subsequently, by Lem. 20, we obtain:

∃β,Q · nm(sα) . prc(sα)
s

=⇒ Q and aftr(nm(sα), s) . Q
β

=⇒ (52)

∃N ·M s
=⇒ N and N ⇑ and N 6 β=⇒ (53)

By Eq. (52) and Lem. 7 we know that Q = prc(α) and again by Lem. 7 we
know that β = α. We thus use Eqs. (52) and (53), β = α and Lem. 20 to obtain
the required result, namely ¬atr(M,prc(sα),nm(sα), s, α).

We are now in a position to prove the two main results of the section. Thm. 3
establishes a bi-directional correspondence between the transparency preorder of
Def. 5 and the one defined in Def. 18. We then prove soundness and completeness
for the alternative transparency preorder of Def. 17 in terms of the preorder in
Def. 18. This turns out to be easier to do because the preorder in Def. 18 is
more specific which allows us to define the characteristic driving system and
violating trace.

Theorem 3 (Transparency Preorder Equivalence). MvtrN iff MvatrN

Proof. The proof is split into two parts for the if and only-if implications; the
only-if case is less straightforward because it is more specific.

If : Assume M vatr N and pick some I, P and s such that ¬tr(N,P, I, s).
By the contrapositive of the implication in Def. 5, we need to show that
¬tr(M,P, I, s). From ¬tr(N,P, I, s), Def. 5 and Def. 18 we know that
∃α · ¬atr(N,P, I, s, α). By M vatr N , Def. 18 and the contrapositive we
obtain ¬atr(M,P, I, s, α) which, by Def. 5, implies ¬tr(M,P, I, s).

Only-If : Assume M vtr N and ¬atr(N,P, I, s, α) for an arbitrary I, P, s and
action α. By the contrapositive and Def. 18, we need to show that
¬atr(M,P, I, s, α). From ¬atr(N,P, I, s, α) and Lem. 20 we know that

P
sα

==⇒ (54)

and by Lem. 21 we subsequently obtain

¬atr(N,prc(sα),nm(sα), s, α) (55)

for the characteristic process defined in Defs. 9 and 10. From Eq. (55), we
know ¬tr(N,prc(sα),nm(sα), s) and by M vtr N and the contrapositive
of Def. 5 we obtain ¬tr(M,prc(sα),nm(sα), s). By Lem. 23, we derive
the stronger predicate ¬atr(M,prc(sα),nm(sα), s, α) and by Lem. 20 we
obtain

∃M ′ ·M s
=⇒M ′ and M ′ ⇑ and M ′ 6 α=⇒ . (56)

Hence, by Eqs. (54) and (56) and Lem. 20 we obtain ¬atr(M,P, I, s, α) as
required.

32

As mentioned earlier we prove the soundness and completeness lemmata for
�tr of Def. 17 with respect to vatr of Def. 18. The required result thus follows
by transitivity as a result of Thm. 3.

Lemma 24 (Soundness). M �tr N implies M vatr N

Proof. Assume M �tr N . By the contrapositive of Def. 18, pick an I,P ,s and
α such that ¬atr(N, I, P, s, α). We need to show that ¬atr(M, I, P, s, α) holds.
By ¬atr(N, I, P, s, α), Lem. 20 and Def. 16 we have:

I . P
s

=⇒ Q for some Q and aftr(I, s) . Q
α

=⇒ (57)

α ∈ dref(N, s) (58)

By Def. 17 we know that dref(N, s) ⊆ dref(M, s); by Eq. (58), this means that:

α ∈ dref(M, s) (59)

Thus, by Eqs. (57) and (59), Def. 16, and Lem. 20 we deduce ¬atr(M, I, P, s, α)
as required.

Lemma 25 (Completeness). M vatr N implies M �tr N

Proof. Assume M vatr N . By Def. 17, to prove the required conclusion, we
have to show that dref(N, s) ⊆ dref(M, s). Pick an arbitrary α ∈ dref(N, s). By
Def. 16, α ∈ dref(N, s) means that

∃N ′ ·N s
=⇒ N ′ and N ′ ⇑ and N ′ 6 α=⇒ (60)

By Lems. 7 and 20 and Eq. (60) we can deduce ¬atr(N,nm(sα),prc(sα), s, α).
Thus, by the assumption M vatr N , we obtain ¬tr(M,nm(sα),prc(sα), s, α).
Again, by Lem. 20 this means that

∃M ′ ·M s
=⇒M ′ and M ′ ⇑ and M ′ 6 α=⇒

which, by Def. 16, implies α ∈ dref(M, s) as required.

Theorem 4 (Transparency Preorders). M vtr N iff M �tr N

Proof. The result follows from Lems. 24 and 25 and Thm. 3 and transitivity.

We can revisit the earlier examples and assess them in terms of the alter-
native transparency preorder �tr of Def. 17, which gives us a better sense why
this preorder is easier to use and automate.

Example 17. Recall monitors c!a.end and c!a.end + c!a.Ω from (20) of E.g. 11.
The inequality c!a.end + c!a.Ω vtr c!a.end follows immediately from Thm. 4,
since for any trace s we have dref(c!a.end, s) = ∅, which means that the inclusion
dref(c!a.end, s) ⊆ dref(c!a.end + c!a.Ω, s) holds trivially.

The symmetric case, c!a.end vtr c!a.end + c!a.Ω, can also be readily repu-
diated by applying Thm. 4. For instance, dref((c!a.end + c!a.Ω), c!a.ε) = Act
(and dref(c!a.end, c!a.ε) = ∅) we trivially obtain a violation of the set inclusion
requirements of Def. 17. This means that c!a.end 6�tr c!a.end + c!a.Ω which, in
turn, implies that c!a.end 6vtr c!a.end + c!a.Ω. �

33

Example 18. Recall the two pathological monitors Ω + X and recX.(τ.X +
X) from Eq. (17). In E.g. 10 we argued that they are deterministic-detection
equivalent, i.e., Ω + X ∼=dd recX.(τ.X + X). It is not hard to see that they
are also potential-detection equivalent as well,i.e., Ω +X ∼=pd recX.(τ.X +X).
However, at first glance, it is hard to tell how these monitors relate in terms
of the transparency preorder of Def. 5. One of the reasons complicating this
analysis is that both monitors produce diverging computations when composed
with any arbitrary system, even though these diverging computations impact
transparency differently. Arguably, we can differentiate between these monitors
from a transparency perspective more easily using �tr of Def. 17 because we
only need to consider the respective monitor LTSs which are also finite state (in
this case, at least).

More concretely, we can readily calculate that dref((Ω + X), ε) = Act

since Ω + X
τ−→ Ω and dref(Ω, ε) = Act. By contrast, we can deduce that

dref((recX.(τ.X + X)), ε) = ∅. In fact, it is not hard to see that whenever

recX.(τ.X + X)
ε

=⇒ M , we either have M = τ.
(
recX.(τ.X +X)

)
+ X or

M = recX.(τ.X + X); in either case, for any α ∈ Act, we can show that

M
α

=⇒ since M
ε

=⇒ X and X
α−−→ X by mVer of Fig. 2. For all other traces s

where |s| ≥ 1 (i.e., s = αt for some α and t) we obtain empty divergence refusal

sets for both monitors since we have Ω+X
α

=⇒ X and recX.(τ.X+X)
α

=⇒ X for
any α ∈ Act. We thus can positively conclude that Ω +X vtr recX.(τ.X +X)
while refuting recX.(τ.X +X) vtr Ω +X. �

Equipped with the three alternative preorders of Defs. 8, 13 and 17, we are
now in a position to provide an alternative complete proof method for determin-
ing the strongest monitor preorder presented in this article, i.e., the contextual
preorder v of Def. 6. This is given as the alternative preorder � in Def. 19, and
is shown to be fully abstract to v in Thm. 5.

Definition 19 (Alternative Monitor Preorder).

M � N def
= M �pd N and M �dd N and M �tr N

�

Theorem 5 (Full Abstraction). M v N iff M � N

Proof. Follows immediately as a result of Thms. 1, 2 and 4.

8. Possible Applications

Our preorders and their characterisations can be used in a number of set-
tings. One obvious application would be that of ensuring the correct translation
from monitors described in the modelling language of Fig. 2 to corresponding
monitor implementations in an actual programming language. This would how-
ever require a formal operational semantics for the target programming lan-
guage, which can be quite substantial, is often unavailable, and is certainly

34

Logic Syntax

ϕ, φ ∈ sHML ::= tt | ff | ϕ ∧ φ | [p, g]ϕ | maxX.ϕ | X

Logic Semantics

JttK def
= Sys JffK def

= ∅ Jϕ ∧ φK def
= JϕK ∩ JφK

J[p, g]ϕK def
=

I . P
∣∣∣∣∣∣∣
 I . P

α
=⇒ Q

and match(p, α) = σ

and gσ ⇓ true

 implies aftr(I, α) . Q ∈ JϕσK


JmaxX.ϕK def

=
⋃{

S | S ⊆ Jϕ[X/S]]K
}

Monitor Synthesis

〈〈tt〉〉 def
= end 〈〈ff〉〉 def

= X 〈〈ϕ ∧ φ〉〉 def
= 〈〈ϕ〉〉+ 〈〈φ〉〉

〈〈[p, g]ϕ〉〉 def
=

{
p.〈〈ϕ〉〉 if g = true

p.if g then 〈〈ϕ〉〉 else end otherwise

〈〈maxX.ϕ〉〉 def
= recX.〈〈ϕ〉〉 〈〈X〉〉 def

= X

Figure 3: The syntax and semantics of sHML.

beyond the scope of this work. Even when this operational semantics is avail-
able, one would also need to ensure that the instrumentation mechanism used
coincides with that of Fig. 2 before the characterisations of Defs. 8, 13 and 17
can be used in their present form; see the related work discussion in Sec. 9.

In this section, we showcase the utility of our preorders through a case
study involving an automated synthesis procedure originally proposed for a
body of work studying the monitorability of program specifications. The study
was conducted for a variant of the highly expressive modal µ-calculus called
µHML [66, 28, 25, 29, 30]: the study identifies a maximally-expressive5 logical
fragment for runtime violation detections called sHML (safety µHML), and
the automated synthesis works on this logical fragment. The synthesis proce-
dure has also been implemented as a tool called detectEr, and has been used to
runtime verify concurrent systems written in Erlang [67, 68, 69, 44, 70]. Conve-
niently, the implementation of detectEr is based on a model that uses the same
instrumentation relation formalised in Fig. 2.

Fig. 3 restates the syntax of sHML and adapts it to systems defined in terms
of the piCalculus variant of Sec. 2. It assumes a countable set of logical vari-
ables X,Y ∈ LVar, that are bound by recursive formulae of the form maxX.ϕ,
expressing largest fixpoints. In addition to the standard constructs for truth, tt,
falsehood, ff, and conjunction, ϕ ∧ φ, the logic includes the universal modality

5This means that every property that can be, in some sense, adequately monitored for
violations, can also be expressed in the logical fragment.

35

construct, [p, g]ϕ, where the action patterns p are matched to concrete actions
using the function match(p,α) from Sec. 3. Action matching dynamically maps
variables to names, which are then used to evaluate pattern guards g ∈ PGrd;
these take the following form6 for our target piCalculus systems (recall that
u, v ∈ (Chans ∪Vars)):

PGrd ::= true | u = v | u 6= v

Closed pattern guards (i.e., without free variables) have the expected semantics:

true ⇓ true c = c ⇓ true c 6= d ⇓ true (whenever c] d)

Closed formulae ϕ ∈ sHML are interpreted over systems, I . P ∈ Sys as
JϕK, defined inductively on the structure of ϕ in Fig. 3:

Sys
def
= {I . P | I ⊂ Chans, P ∈ Proc, fv(P) = fV(P) = ∅, fn(P) ⊆ I} .

Formula tt is satisfied by all systems, ff is satisfied by none, whereas conjunc-
tions bear the standard set-theoretic meaning. The universal modality formulae
[p, g]ϕ state that whenever a satisfying system produces an action α matching
the pattern p yielding σ, and the instantiated guard gσ holds, the resultant
system that is transitioned to must satisfy ϕσ (i.e., ϕ instantiated with the
bindings in σ). To capture maximal fixpoints, the recursive formula maxX.ϕ is
defined as the union of all the post-fixpoint solutions S ⊆ Sys of ϕ; see [71] for
more details.

Fig. 3 also presents the synthesis function, 〈〈−〉〉, from sHML formulae to
monitors given in [66, 25, 28, 29], but adapted to our monitors. The synthe-
sis assumes a one-to-one mapping between logical variables, LVar, and process
variables, PVars; for convenience, LVar and PVars are assumed to coincide. A
key insight to understand the synthesis for a formula ϕ is that the monitor gen-
erated detects execution traces pertaining systems belonging to the dual of the
property, i.e., Sys \ JϕK. Thus, ff translates to a detection, X, whereas monitor
for a conjunction ϕ ∧ φ should behave as either of the monitors for the con-
stituent subformulae, 〈〈ϕ〉〉+ 〈〈φ〉〉. Analogously, although maximal fixpoints can
express infinite behaviour, the synthesised monitor need only detect a violating
behaviour of finite length. A core part of the synthesis function deals with uni-
versal modality formulae, 〈〈[p, g]ϕ〉〉. Intuitively, it translate to a pattern-match
monitor prefix, p..., followed by monitor branch on g that proceeds with the
respective monitoring of the guarded subformula ϕ, i.e., if g then 〈〈ϕ〉〉 else end.
In order to keep the monitor overheads low, the synthesis presented in Fig. 3
short-circuits the branching condition whenever it holds trivially, i.e., when g is
true. The synthesis function is inherently compositional, and this aspect facili-
tated any correctness analysis conducted in prior work where the synthesis was
first devised (e.g., [25, 29, 67]).

6Even though the guard true can be easily encoded as the guard c = c (for some default
channel name c), we use true to give a refined monitor synthesis; see Fig. 3.

36

The preorders developed in this paper can help us analyse the monitors
produced by the synthesis in Fig. 3. For instance, consider the behavioural
analysis of a system that interacts on two channels named in and out. The
sHML variant presented in Fig. 3 allows us to specify that “a system cannot
(immediately) produce outputs on channel out” in at least two different ways:

ϕ1 = [out!(y), true]ff and ϕ2 = [(x)!(y), x = out]ff

It is not hard to see from the semantics of Fig. 3 that ϕ1 and ϕ2 are semantically
equivalent. However, our synthesis function yields slightly different monitors for
the two formulae:

〈〈ϕ1〉〉 = m1 = out!(y).X 〈〈ϕ2〉〉 = m2 = (x)!(y).if x=out thenX else end

These monitors are not only syntactically different, but may also exhibit dif-
ferent runtime behaviour when composed with an arbitrary system. Using
the preorder characterisations of Secs. 5 and 6, we can determined that the
two monitors are potential-detection equivalent (for any system), m1

∼=pd m2,
by employing Thm. 1 and simply analysing the LTS of the respective moni-
tor descriptions, m1 'pd m2. But we can also determined that they are not
deterministic-detection equivalent, m1 6∼=pd m2, by analysing their respective
LTS semantics (and not considering any system instrumentation). This fol-
lows from Thm. 2 since, by Def. 13, we can show that m1 6�dd m2 because
nd(m2, out!c) holds for some arbitrary channel c, but we can neither show
nd(m1, out!c) nor blk(m1, out!c).

As a secondary example of the utility of our preorders, consider the specifi-
cation requiring “systems not to input (on channel in) and consecutively output
(on channel out) with different payloads, and also not to input twice in succes-
sion (on channel in)”. This can be expressed in our adapted sHML as

ϕ3 = [in?(x), true][out!(y), y 6= x]ff ∧ [in?(x), true][in?(y), true]ff

and from ϕ3 we can automatically synthesise the monitor

〈〈ϕ3〉〉 = m3 =

{
in?(x).out!(y).if y 6=x thenX else end

+ in?(x).in?(y).X

For the sake of our example, assume that detecting successive inputs on channel
in (violating the subformula [in?(x), true][in?(y), true]ff) is critical. Therefore, we
would required that monitor m3 detects this violating behaviour both potentially
and deterministically (we are less concerned about the other detections carried
out by m3). One way to enforce this additional requirement is to describe the
monitor specification

m4 = in?(x).in?(y).X

which clearly detects consecutive inputs on channel in potentially and deter-
ministically, and then require that m3 is a refinement of m4 following Def. 4:

m4 vpd m3 and m4 vdd m3

37

Although we can show that the first inequality holds, we can prove that the
second inequality does not, m4 6vdd m3. In fact, since blk(m3, s) for the trace
s = in?c.in?d with arbitrary names c and d, but neither blk(m4, s) nor fl(m4, s),
we deduce m4 6�dd m3 and, by Thm. 2, m4 6vdd m3 follows.

We consider a third and final example showcasing the utility of our monitor
preorders. Sampling (or event polling) has been frequently proposed as a tech-
nique for lowering the runtime overhead of monitors [72, 73, 74]. We can model
event sampling in terms of our monitor language of Sec. 3, by using the code
excerpt recX.(τn.X + p.m) in lieu of the monitor p.m that blocks listening for
events that match with pattern p; the alternative code excerpt introduces a pe-
riodic delay of some pre-determined n (internal) τ -steps between event listens.
Thus, for the sHML formula ϕ1 = [out!(y), true]ff discussed earlier, a modified
monitor synthesis would instead generate the monitor

m′1 = recX.(τn.X + out!(y).X)

Although m′1 is an adequate monitor refinement for m1 in terms of both poten-
tial and deterministic detections, i.e., m1 vpd m

′
1 and m1 vdd m

′
1, it is not a

valid refinement for transparency, m1 6vtr m
′
1. This can easily be shown via the

alternative characterisation of Def. 17 following Thm. 4 since we can show that
in?c ∈ dref(m′1, ε) for some arbitrary payload c whereas dref(m1, ε) = ∅.

9. Conclusion

We have presented a theory for (recogniser) monitors based on refinement
preorders. It allows us to substitute a monitor M1 in a monitored process P /M1

by another monitor M2 while guaranteeing the preservation of a number of mon-
itoring properties relating to (behaviour) detection and monitor interference; see
Defs. 4 and 5. We content that our theory can serve as a basis for defining rig-
orous notions of monitor correctness, as advocated by various other work such
as [75, 51, 21, 22, 76, 63, 77, 78, 32]. A distinguishing feature of our approach
is that any correctness definitions based on our preorders would automatically
inherit the universal quantification over all (system) contexts: such a power-
ful criterion guarantees the preservation of the monitor correctness properties
asserted, irrespective of where the monitor is employed. Universal quantifica-
tion over contexts is useful in practice since limited access to the system under
scrutiny is usually provided while the monitor is being constructed. Our ap-
proach also promotes a holistic approach to monitor correctness, as in the case of
[27, 49]. We have shown, through various pathological examples such as E.g. 4, 5
and 8 to 11, how subtle interdependencies between systems and monitors arise,
affecting the overall monitored computation. In Sec. 8, we argue that these are
not just edge cases, but can be pertinent issues that engineers need to content
with when developing their analysis tools. The examples discussed in this paper
also make a strong case that a proper definition of monitor correctness needs to
take into consideration system instrumentation.

Despite these stronger guarantees, our monitor theory also provides mech-
anisms to substantially alleviate the effort of proving monitors correct. More

38

concretely, as a result of the alternative preorders developed, the theory is also
compositional, since it enables us to ensure the preservation of properties from
say P / M1 to P / M2 by analysing the resp. monitors M1 and M2 in isolation,
without the need to consider the process being monitored, P . In principle, pro-
cesses may be arbitrarily complex; in fact, they are usually far more complex
than the monitors that analyse them. It is thus reasonable to expect that such
compositional techniques are effective and yield considerable efficiency gains
when assessing monitor correctness.

9.1. Related and Future Work.

The instrumentation relation considered here has been used extensively in
other studies that investigate various foundational aspects of runtime moni-
toring, from monitorability [25, 30, 63, 32, 79] to monitor deterministic be-
haviour [27, 26, 49, 31]. This composition relation embodies synchronous in-
strumentation, where the external actions naturally constitute the monitorable
actions. Variants of this relation have also been studied: some consider the
instrumentation of silent actions as monitorable or opaque7 [28] whereas oth-
ers extend the visibility to aspects of the system under scrutiny such as action
refusals [29]. The variant considered here constitutes a mild extension to the
instrumentation relation used in previous work such as [25, 27, 30]: in this work,
monitors may learn new channel names (that are scope extruded) at runtime and
subsequently extend their analysis to any actions occurring on these channels.
This mechanism extends what usually happens in runtime verification settings,
where system instrumentation typically listens for specific actions/events from
a fixed set (e.g., method names within a specific codebase of classes); these
events are statically linked to the monitor prior execution via mechanisms such
as aspect orientation(e.g., [80, 81, 82, 83]). However, there exist more dynamic
instrumentation approaches that can handle the generality described by our set-
ting (e.g., [84, 85, 86, 87, 88]) and these have already been used in the context
of runtime monitoring (e.g., [67, 89, 90]).

Synchronous instrumentation is the most prevalent method used in monitor-
ing tools (e.g., [91, 60, 92, 57]) because it carries benefits such as timely detec-
tions. It can however lead to high runtime overheads and there are variants such
as asynchronous instrumentation (e.g., [93, 51, 94, 67]) or hybrid variations that
mix synchornous and asynchronous instrumentation (e.g., [60, 62, 6, 9, 95, 96]).
Our theory should be applicable, at least in part, to these instrumentation vari-
ants. Monitor instrumentation can also be either inlined [97] within the system
code or outlined and kept as a separate unit of code. Our techniques clearly
address outline monitors, which are used in various settings (e.g., [23, 55, 5]).
Despite the advantages that inlined monitors carry (e.g., they yield lower over-
heads and are generally more expressive because monitors have full access of
the system code) they introduce further dependencies with the system under

7A sequence of silent actions can be opaquely observed by the monitor when their occur-
rence can be observed but the precise number of τ -transitions cannot be determined.

39

scrutiny and it is substantially harder to attain compositional techniques for
them.

In runtime verification, multi-verdict monitors [36, 11, 64, 98, 38] are often
considered, where detections are partitioned (or refined) into verdicts such as
(maybe)acceptances and (maybe)rejections. The monitors studied here express
generic (i.e., uni-verdict) detections only. They are nevertheless maximally ex-
pressive for branching-time properties [24, 25] and have recently been shown to
also be maximally expressive for certain classes of linear-time properties [30, 63].
The uni-verdict monitors expressed in this work also facilitate comparisons with
other linear-time behavioural preorders (see next paragraph). We nevertheless
expect our theory to extend smoothly to more general settings that include
multi-verdicts such as acceptances and rejections.

Our potential and deterministic detection preorders are reminiscent of the
classical may and must preorders of [45, 35] and, more recently (for the deter-
ministic detection preorder), of the subcontract relations in [99, 100]. These
relations differ from those presented in Def. 4 in a number of respects. For
starters, the monitor instrumentation relation of Fig. 2 assigns monitors a pas-
sive role where a monitored system produces an external action only if the
system produces that action. In contrast, the parallel composition relation com-
posing processes (servers in [99, 100]) with tests (clients in [99, 100]) is more
symmetric and invites tests to interact with the process being probed. Another
important difference is that testing preorders typically relate processes (e.g., see
[45, 35]), whereas our preorders are defined over the adjudicating entities i.e.,
the monitors.

The closest work in this regard is that of [99, 101], where the authors develop
a must and compliance theory for clients (or tests) i.e., processes with a special
”success” action. Still, there are significant discrepancies between this theory
and our deterministic detection preorder (further to the differencies between the
detected (monitored) computations of Def. 2 and the successful computations
under tests of [45, 35, 99] as outlined above) — success in the compliance relation
of [100] is even more disparate. Concretely, in our setting we have equalities
such as c!a.X ∼=dd c!a.X+b!a.end (a slight variant on Eq. (13) of E.g. 8), but this
equality would not hold in the setting of [99, 101] since their client preorder is
sensitive to external choices. In fact, whereas c!a.X would pass a must-test with
the process c?x.nil + b?x.nil, the test equivalent of the monitor c!a.X + b!a.end
would not, since we would have the following computations where one of them
(see Eq. (62)) is unsuccessful:

c?x.nil + b?x.nil ‖ c!a.X+ b!a.end
τ−→ nil ‖ X (61)

c?x.nil + b?x.nil ‖ c!a.X+ b!a.end
τ−→ nil ‖ end (62)

Note that, in the case ofvdd, the unsuccessful computation analogous to Eq. (62)
would be distinguished from the one analogous to Eq. (61) by its visible trace

40

(the interface I={c, b, . . .} is omitted for uniformity):

c!a.nil + b!a.nil / c!a.X+ b!a.end
c!a−−→ nil / X

c!a.nil + b!a.nil / c!a.X+ b!a.end
b!a−−→ nil / end

The two relations are in fact incomparable, since divergent tests are bottom
elements in the client must preorder of [99, 101], but they are not in vdd. In
fact, we have seen that Ω 6vdd Ω + end in Eq. (17) of E.g. 10. Moreover, for any
arbitrary external action α, we also have

α.X 6vmst Ω vmst α.X

according to [99, 101] whereas in our setting we have the opposite:

α.X vdd Ω 6vdd α.X.

At an intuitive level, this is because the instrumentation relation of Fig. 2 priori-
tises silent actions over external actions that cannot be matched by the monitor.
The interested reader should consult [102] for a complementary discussion re-
lating process testing with runtime monitoring.

Transparency is usually a concern for enforcement monitors whereby the vis-
ible behaviour of a monitored process should not be modified unless it violates
some specified property [3, 23, 14]. We have adapted this concept to recog-
nisers in Def. 5, to express different degrees to which the process behaviour is
suppressed by the monitor. In [14], a slightly different notion of transparency
was defined for a branching-time setting using transducers that are composed
using a relation that is very similar to our instrumentation relation. It would
certainly be worthwhile to adapt our transparency preorder to that setting.

There a number of studies that investigate monitoring for the piCalculus:
in particular, most of them seem concerned with , and focusses on synthesising
adaptation/enforcement monitors from session types [7, 8, 23, 5]. The closest
to our work is that by Bocchi et al. [23] and Gommerstadt et al. [5]. The defi-
nitions of monitor correctness by Bocchi et al. [23] are distinctly different from
ours since they they are based on branching-time (bisimulation) equivalences.
They also employ compositional techniques as in our case, but their decompo-
sition methods for decoupling the monitor analysis from that of processes rely
on type information provided by the session types used. The correctness defini-
tions of Gommerstadt et al. target partial-identity monitors that, in addition to
analysing the behaviour of a system, are also tasked with acting as forwarders of
messages to and from the system under scrutiny. They attain a compositional
analysis for determining monitor correctness by devising a dedicated type sys-
tem for these partial-identity monitors. However, since these entities exist in a
linear type setting where channels are used once, many guarantees related to
deterministic behaviour come for free.

The potential- and deterministic-detection monitor preorders of Defs. 4, 8
and 13 complement well recent work targetting the development of formal tools

41

for the analysis of (observationally) deterministic behaviour of monitors [27, 49].
In fact, for monitors that are deemed to be consistently-detecting/controllable [27],
potential detection should imply deterministic detection. This investigation is
left for future work. Should this be the case, this result could be exploited
to further alleviate the burden of proving our contextual inequalities since the
proofs for showing potential-detection preorders are less onerous than those for
determining deterministic-detection preservation.

Acknowledgements.. The paper benefited from discussions with Luca Aceto,
Giovanni Bernardi, Matthew Hennessy and Anna Ingólfsdóttir.

References

[1] A. Francalanza, A Theory of Monitors (Extended Abstract), in: B. Ja-
cobs, C. Löding (Eds.), Foundations of Software Science and Compu-
tation Structures (FoSSaCS), Vol. 9634 of LNCS, 2016, pp. 145–161.
doi:10.1007/978-3-662-49630-5_9.

[2] F. B. Schneider, Enforceable security policies, ACM Trans. Inf. Syst. Se-
cur. 3 (1) (2000) 30–50. doi:10.1145/353323.353382.
URL http://doi.acm.org/10.1145/353323.353382

[3] J. Ligatti, L. Bauer, D. Walker, Edit automata: enforcement mechanisms
for run-time security policies, Int. J. Inf. Secur. 4 (1-2) (2005) 2–16. doi:
10.1007/s10207-004-0046-8.
URL http://dx.doi.org/10.1007/s10207-004-0046-8

[4] N. Bielova, F. Massacci, Do you really mean what you actually enforced?:
Edited automata revisited, Int. J. Inf. Secur. 10 (4) (2011) 239–254. doi:
10.1007/s10207-011-0137-2.
URL http://dx.doi.org/10.1007/s10207-011-0137-2

[5] H. Gommerstadt, L. Jia, F. Pfenning, Session-typed concurrent contracts,
in: ESOP, Vol. 10801 of LNCS, Springer, 2018, pp. 771–798. doi:10.

1007/978-3-319-89884-1_27.
URL https://doi.org/10.1007/978-3-319-89884-1_27

[6] I. Cassar, A. Francalanza, Runtime Adaptation for Actor Systems, in:
RV, Vol. 9333 of LNCS, Springer, 2015, pp. 38–54.

[7] M. Coppo, M. Dezani-Ciancaglini, B. Venneri, Self-adaptive monitors for
multiparty sessions, in: PDP, IEEE Computer Society, 2014, pp. 688–696.

[8] C. D. Giusto, J. A. Perez, Disciplined Structured Communications with
Disciplined Runtime Adaptation, Sci. of Computer Programming 97 (2)
(2015) 235–265. doi:http://dx.doi.org/10.1016/j.scico.2014.04.

017.
URL http://www.sciencedirect.com/science/article/pii/

S0167642314002512

42

http://dx.doi.org/10.1007/978-3-662-49630-5_9
http://doi.acm.org/10.1145/353323.353382
http://dx.doi.org/10.1145/353323.353382
http://doi.acm.org/10.1145/353323.353382
http://dx.doi.org/10.1007/s10207-004-0046-8
http://dx.doi.org/10.1007/s10207-004-0046-8
http://dx.doi.org/10.1007/s10207-004-0046-8
http://dx.doi.org/10.1007/s10207-004-0046-8
http://dx.doi.org/10.1007/s10207-004-0046-8
http://dx.doi.org/10.1007/s10207-011-0137-2
http://dx.doi.org/10.1007/s10207-011-0137-2
http://dx.doi.org/10.1007/s10207-011-0137-2
http://dx.doi.org/10.1007/s10207-011-0137-2
http://dx.doi.org/10.1007/s10207-011-0137-2
https://doi.org/10.1007/978-3-319-89884-1_27
http://dx.doi.org/10.1007/978-3-319-89884-1_27
http://dx.doi.org/10.1007/978-3-319-89884-1_27
https://doi.org/10.1007/978-3-319-89884-1_27
http://www.sciencedirect.com/science/article/pii/S0167642314002512
http://www.sciencedirect.com/science/article/pii/S0167642314002512
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2014.04.017
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2014.04.017
http://www.sciencedirect.com/science/article/pii/S0167642314002512
http://www.sciencedirect.com/science/article/pii/S0167642314002512

[9] I. Cassar, A. Francalanza, On Implementing a Monitor-Oriented Program-
ming Framework for Actor Systems, in: integrated Forma Methods (iFM),
LNCS, Springer, 2016, pp. 176–192.

[10] A. Francalanza, C. A. Mezzina, E. Tuosto, Reversible choreographies
via monitoring in erlang, in: Distributed Applications and Interopera-
ble Systems - 18th IFIP WG 6.1 International Conference, DAIS 2018,
Held as Part of the 13th International Federated Conference on Dis-
tributed Computing Techniques, DisCoTec 2018, Madrid, Spain, June
18-21, 2018, Proceedings, Vol. 10853 of LNCS, Springer, 2018, pp. 75–
92. doi:10.1007/978-3-319-93767-0_6.
URL https://doi.org/10.1007/978-3-319-93767-0_6

[11] Y. Falcone, J.-C. Fernandez, L. Mounier, What can you verify and enforce
at runtime?, STTT 14 (3) (2012) 349–382.

[12] E. Dolzhenko, J. Ligatti, S. Reddy, Modeling runtime enforcement with
mandatory results automata, Int. J. Inf. Sec. 14 (1) (2015) 47–60. doi:

10.1007/s10207-014-0239-8.
URL https://doi.org/10.1007/s10207-014-0239-8

[13] S. Pinisetty, V. Preoteasa, S. Tripakis, T. Jéron, Y. Falcone, H. Marchand,
Predictive runtime enforcement, Formal Methods in System Design 51 (1)
(2017) 154–199. doi:10.1007/s10703-017-0271-1.
URL https://doi.org/10.1007/s10703-017-0271-1

[14] L. Aceto, I. Cassar, A. Francalanza, A. Ingólfsdóttir, On runtime en-
forcement via suppressions, in: S. Schewe, L. Zhang (Eds.), 29th Inter-
national Conference on Concurrency Theory (CONCUR 2018), LIPIcs,
Schloss Dagstuhl, Dagstuhl, Germany, 2018, pp. 34:1–8:19.

[15] Formal Systems Laboratory, Monitor Oriented Pro-
gramming, University of Illinois at Urbana Champaign,
http://fsl.cs.illinois.edu/index.php/Monitoring-Oriented

Programming.

[16] F. Cesarini, S. Thompson, Erlang Programming, O’Reilly, 2009.

[17] A. Francalanza, M. Hennessy, A Theory for Observational Fault Toler-
ance, J. Log. Algebraic Methods Program. (JLAP) 73 (1–2) (2007) 22 –
50. doi:http://dx.doi.org/10.1016/j.jlap.2007.03.003.

[18] P. Verissimo, L. Rodrigues, Distributed Systems for System Architects,
Kluwer Academic Publishers, 2001.

[19] I. Cassar, A. Francalanza, C. A. Mezzina, E. Tuosto, Reliability and fault-
tolerance by choreographic design, in: Proceedings Second International
Workshop on Pre- and Post-Deployment Verification Techniques, Pre-
Post@iFM 2017, Torino, Italy, 19 September 2017, Vol. 254 of EPTCS,

43

https://doi.org/10.1007/978-3-319-93767-0_6
https://doi.org/10.1007/978-3-319-93767-0_6
http://dx.doi.org/10.1007/978-3-319-93767-0_6
https://doi.org/10.1007/978-3-319-93767-0_6
https://doi.org/10.1007/s10207-014-0239-8
https://doi.org/10.1007/s10207-014-0239-8
http://dx.doi.org/10.1007/s10207-014-0239-8
http://dx.doi.org/10.1007/s10207-014-0239-8
https://doi.org/10.1007/s10207-014-0239-8
https://doi.org/10.1007/s10703-017-0271-1
http://dx.doi.org/10.1007/s10703-017-0271-1
https://doi.org/10.1007/s10703-017-0271-1
http://dx.doi.org/http://dx.doi.org/10.1016/j.jlap.2007.03.003
https://doi.org/10.4204/EPTCS.254.6
https://doi.org/10.4204/EPTCS.254.6

2017, pp. 69–80. doi:10.4204/EPTCS.254.6.
URL https://doi.org/10.4204/EPTCS.254.6

[20] M. Leucker, C. Schallhart, A brief account of Runtime Verification, JLAP
78 (5) (2009) 293 – 303. doi:http://dx.doi.org/10.1016/j.jlap.

2008.08.004.
URL http://www.sciencedirect.com/science/article/pii/

S1567832608000775

[21] A. Francalanza, L. Aceto, A. Achilleos, D. P. Attard, I. Cassar, D. D.
Monica, A. Ingólfsdóttir, A Foundation for Runtime Monitoring, in: Run-
time Verification: 17th International Conference, RV 2017, Seattle, WA,
USA, September 2017, Vol. 10548 of LNCS, Springer, 2017, pp. 8–29.
doi:10.1007/978-3-319-67531-2_2.

[22] E. Bartocci, Y. Falcone, A. Francalanza, G. Reger, Introduction to Run-
time Verification, Springer, 2018, Ch. 1, pp. 1–33.

[23] L. Bocchi, T. Chen, R. Demangeon, K. Honda, N. Yoshida, Monitoring
networks through multiparty session types, TCS 669 (2017) 33–58.

[24] A. Francalanza, L. Aceto, A. Ingólfsdóttir, On Verifying Hennessy-Milner
Logic with Recursion at Runtime, in: RV, Vol. 9333 of LNCS, Springer,
2015, pp. 71–86.

[25] A. Francalanza, L. Aceto, A. Ingolfsdottir, Monitorability for the
Hennessy–Milner logic with recursion, Formal Methods in System Design
(FMSD) (2017) 1–30.

[26] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, S. Ö. Kjartansson,
On the Complexity of Determinizing Monitors, in: CIAA, Vol. 10329 of
LNCS, 2017, pp. 1–13. doi:10.1007/978-3-319-60134-2_1.

[27] A. Francalanza, Consistently-detecting monitors, in: R. Meyer, U. Nest-
mann (Eds.), 28th International Conference on Concurrency Theory
(CONCUR 2017), Vol. 85 of LIPIcs, Schloss Dagstuhl, Dagstuhl, Ger-
many, 2017, pp. 8:1–8:19. doi:10.4230/LIPIcs.CONCUR.2017.8.

[28] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, Monitoring for
silent actions, in: FSTTCS, Vol. 93 of LIPIcs, 2017, pp. 7:1–7:14.

[29] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, A Framework for
Parametrized Monitorability, in: FoSSaCS, Vol. 10803 of LNCS, Springer,
2018, pp. 203–220.

[30] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, K. Lehtinen,
Adventures in Monitorability: From Branching to Linear Time and Back
Again, Proceedings of the ACM on Programming Languages 3 (POPL)
(2019) 52:1–52:29.
URL https://dl.acm.org/citation.cfm?id=3290365

44

http://dx.doi.org/10.4204/EPTCS.254.6
https://doi.org/10.4204/EPTCS.254.6
http://www.sciencedirect.com/science/article/pii/S1567832608000775
http://dx.doi.org/http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://www.sciencedirect.com/science/article/pii/S1567832608000775
http://www.sciencedirect.com/science/article/pii/S1567832608000775
http://dx.doi.org/10.1007/978-3-319-67531-2_2
http://dx.doi.org/10.1007/978-3-319-60134-2_1
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://dl.acm.org/citation.cfm?id=3290365
https://dl.acm.org/citation.cfm?id=3290365
https://dl.acm.org/citation.cfm?id=3290365

[31] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, S. Ö. Kjartans-
son, Determinizing monitors for HML with recursion, J. Log. Algebraic
Methods Program. (JLAMP) 111 (2020) 100515. doi:10.1016/j.jlamp.
2019.100515.
URL https://doi.org/10.1016/j.jlamp.2019.100515

[32] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, K. Lehtinen,
An Operational Guide to Monitorability with Applications to Regular
Properties, Software and Systems Modeling (SOSYM), 2021 (to appear).

[33] R. Milner, Communication and concurrency, Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[34] D. Sangiorgi, D. Walker, PI-Calculus: A Theory of Mobile Processes,
Cambridge University Press, 2001.

[35] M. Hennessy, Algebraic Theory of Processes, MIT Press, 1988.

[36] A. Bauer, M. Leucker, C. Schallhart, Runtime verification for LTL and
TLTL, TOSEM 20 (4) (2011) 14.

[37] A. Francalanza, C. A. Mezzina, E. Tuosto, Towards Choreographic-Based
Monitoring, in: Reversible Computation: Extending Horizons of Comput-
ing - Selected Results of the COST Action IC1405, Vol. 12070 of LNCS,
Springer, 2020, pp. 128–150. doi:10.1007/978-3-030-47361-7_6.
URL https://doi.org/10.1007/978-3-030-47361-7_6

[38] A. Francalanza, C. Cini, Computer says no: Verdict explain-
ability for runtime monitors using a local proof system, J.
Log. Algebraic Methods Program. (JLAMP) 119 (2021) 100636.
doi:https://doi.org/10.1016/j.jlamp.2020.100636.
URL http://www.sciencedirect.com/science/article/pii/

S2352220820301218

[39] K. Sen, A. Vardhan, G. Agha, G. Rosu, Efficient Decentralized Monitoring
of Safety in Distributed Systems, in: ICSE, IEEE, 2004, pp. 418–427.

[40] M. d’Amorim, G. Roşu, Efficient monitoring of ω-languages, in: CAV,
2005, pp. 364 – 378.

[41] L. Kuhtz, B. Finkbeiner, Efficient parallel path checking for linear-time
temporal logic with past and bounds, Log. Methods Comput. Sci. 8 (4).
doi:10.2168/LMCS-8(4:10)2012.
URL https://doi.org/10.2168/LMCS-8(4:10)2012

[42] I. Cassar, A. Francalanza, S. Said, Improving runtime overheads for de-
tecter, in: Proceedings 12th International Workshop on Formal Engineer-
ing approaches to Software Components and Architectures, FESCA 2015,
London, United Kingdom, April 12th, 2015, Vol. 178 of EPTCS, 2015, pp.
1–8. doi:10.4204/EPTCS.178.1.
URL https://doi.org/10.4204/EPTCS.178.1

45

https://doi.org/10.1016/j.jlamp.2019.100515
http://dx.doi.org/10.1016/j.jlamp.2019.100515
http://dx.doi.org/10.1016/j.jlamp.2019.100515
https://doi.org/10.1016/j.jlamp.2019.100515
https://doi.org/10.1007/978-3-030-47361-7_6
https://doi.org/10.1007/978-3-030-47361-7_6
http://dx.doi.org/10.1007/978-3-030-47361-7_6
https://doi.org/10.1007/978-3-030-47361-7_6
http://www.sciencedirect.com/science/article/pii/S2352220820301218
http://www.sciencedirect.com/science/article/pii/S2352220820301218
http://dx.doi.org/https://doi.org/10.1016/j.jlamp.2020.100636
http://www.sciencedirect.com/science/article/pii/S2352220820301218
http://www.sciencedirect.com/science/article/pii/S2352220820301218
https://doi.org/10.2168/LMCS-8(4:10)2012
https://doi.org/10.2168/LMCS-8(4:10)2012
http://dx.doi.org/10.2168/LMCS-8(4:10)2012
https://doi.org/10.2168/LMCS-8(4:10)2012
https://doi.org/10.4204/EPTCS.178.1
https://doi.org/10.4204/EPTCS.178.1
http://dx.doi.org/10.4204/EPTCS.178.1
https://doi.org/10.4204/EPTCS.178.1

[43] K. Chatterjee, T. A. Henzinger, J. Otop, Quantitative monitor automata,
in: X. Rival (Ed.), Static Analysis - 23rd International Symposium, SAS
2016, Edinburgh, UK, September 8-10, 2016, Proceedings, Vol. 9837 of
LNCS, Springer, 2016, pp. 23–38. doi:10.1007/978-3-662-53413-7_2.
URL https://doi.org/10.1007/978-3-662-53413-7_2

[44] D. P. Attard, A. Francalanza, Trace Partitioning and Local Monitoring
for Asynchronous Components, in: SEFM, Vol. 10469 of LNCS, Springer,
2017, pp. 219–235. doi:10.1007/978-3-319-66197-1_14.
URL https://doi.org/10.1007/978-3-319-66197-1_14

[45] R. De Nicola, M. C. B. Hennessy, Testing equivalences for processes,
Theoretical Computer Science (TCS) 34 (1-2) (1984) 83–133.
URL http://www.sciencedirect.com/science/article/pii/

0304397584901130

[46] M. Y. Vardi, P. Wolper, Reasoning about infinite computations, Inf.&
Comp. 115 (1) (1994) 1–37.

[47] R. Grigore, D. Distefano, R. L. Petersen, N. Tzevelekos, Runtime verifi-
cation based on register automata, in: TACAS, Vol. 7795 of LNCS, 2013,
pp. 260–276.

[48] Y. Yamagata, C. Artho, M. Hagiya, J. Inoue, L. Ma, Y. Tanabe, M. Ya-
mamoto, Runtime monitoring for concurrent systems, in: RV, 2016, pp.
386–403.

[49] A. Francalanza, J. Xuereb, On implementing symbolic controllability,
in: S. Bliudze, L. Bocchi (Eds.), Coordination Models and Languages
- 22nd IFIP WG 6.1 International Conference, COORDINATION 2020,
Held as Part of the 15th International Federated Conference on Dis-
tributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June
15-19, 2020, Proceedings, Vol. 12134 of LNCS, Springer, 2020, pp. 350–
369. doi:10.1007/978-3-030-50029-0_22.
URL https://doi.org/10.1007/978-3-030-50029-0_22

[50] Q. Luo, G. Roşu, EnforceMOP: A Runtime Property Enforcement System
for Multithreaded Programs, in: ISSTA, ACM, New York, NY, USA, 2013,
pp. 156–166. doi:10.1145/2483760.2483766.
URL http://doi.acm.org/10.1145/2483760.2483766

[51] A. Francalanza, A. Seychell, Synthesising Correct concurrent Runtime
Monitors, Formal Methods in System Design (FMSD) 46 (3) (2015) 226–
261. doi:10.1007/s10703-014-0217-9.
URL http://dx.doi.org/10.1007/s10703-014-0217-9

[52] P. Fraigniaud, S. Rajsbaum, C. Travers, On the number of opinions needed
for fault-tolerant run-time monitoring in distributed systems, in: RV,
2014, pp. 92–107.

46

https://doi.org/10.1007/978-3-662-53413-7_2
http://dx.doi.org/10.1007/978-3-662-53413-7_2
https://doi.org/10.1007/978-3-662-53413-7_2
https://doi.org/10.1007/978-3-319-66197-1_14
https://doi.org/10.1007/978-3-319-66197-1_14
http://dx.doi.org/10.1007/978-3-319-66197-1_14
https://doi.org/10.1007/978-3-319-66197-1_14
http://www.sciencedirect.com/science/article/pii/0304397584901130
http://www.sciencedirect.com/science/article/pii/0304397584901130
http://www.sciencedirect.com/science/article/pii/0304397584901130
https://doi.org/10.1007/978-3-030-50029-0_22
http://dx.doi.org/10.1007/978-3-030-50029-0_22
https://doi.org/10.1007/978-3-030-50029-0_22
http://doi.acm.org/10.1145/2483760.2483766
http://doi.acm.org/10.1145/2483760.2483766
http://dx.doi.org/10.1145/2483760.2483766
http://doi.acm.org/10.1145/2483760.2483766
http://dx.doi.org/10.1007/s10703-014-0217-9
http://dx.doi.org/10.1007/s10703-014-0217-9
http://dx.doi.org/10.1007/s10703-014-0217-9
http://dx.doi.org/10.1007/s10703-014-0217-9

[53] S. Berkovich, B. Bonakdarpour, S. Fischmeister, Runtime verification with
minimal intrusion through parallelism, FMSD 46 (3) (2015) 317–348.

[54] B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. A. Rosenblueth,
C. Travers, Decentralized asynchronous crash-resilient runtime verifica-
tion, in: CONCUR, 2016, pp. 16:1–16:15.

[55] L. Jia, H. Gommerstadt, F. Pfenning, Monitors and blame assignment for
higher-order session types, in: POPL, 2016, pp. 582–594.

[56] C. Colombo, A. Francalanza, R. Mizzi, G. J. Pace, polylarva: Runtime
verification with configurable resource-aware monitoring boundaries, in:
SEFM, 2012, pp. 218–232.

[57] H. Barringer, Y. Falcone, K. Havelund, G. Reger, D. E. Rydeheard,
Quantified Event Automata: Towards Expressive and Efficient Run-
time Monitors, in: FM, Vol. 7436 of LNCS, Springer, 2012, pp. 68–84.
doi:10.1007/978-3-642-32759-9_9.

[58] G. Reger, H. C. Cruz, D. E. Rydeheard, MarQ: Monitoring at Runtime
with QEA, in: TACAS, 2015, pp. 596–610.

[59] S. Debois, T. Hildebrandt, T. Slaats, Safety, liveness and run-time refine-
ment for modular process-aware systems with dynamic sub processes, in:
FM, 2015, pp. 143–160.

[60] F. Chen, G. Roşu, MOP: An Efficient and Generic Runtime Verifica-
tion Framework, in: OOPSLA, ACM, 2007, pp. 569–588. doi:10.1145/

1297027.1297069.

[61] M. Hennessy, A Distributed Pi-Calculus, Cambridge University Press,
2007.

[62] G. Roşu, K. Havelund, Rewriting-based techniques for runtime verifica-
tion, Automated Software Engg. 12 (2) (2005) 151–197. doi:10.1007/

s10515-005-6205-y.
URL http://dx.doi.org/10.1007/s10515-005-6205-y

[63] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, K. Lehtinen, An
Operational Guide to Monitorability, in: P. C. Ölveczky, G. Salaün (Eds.),
Software Engineering and Formal Methods (SEFM), Vol. 11724 of LNCS,
Springer, 2019, pp. 433–453.

[64] C. Cini, A. Francalanza, An LTL Proof System for Runtime Verification,
in: TACAS, Vol. 9035 of LNCS, Springer, 2015, pp. 581–595.

[65] L. Bocchi, T.-C. Chen, R. Demangeon, K. Honda, N. Yoshida, Monitoring
networks through multiparty session types, in: FMOODS/FORTE 2013,
Vol. 7892 of LNCS, 2013, pp. 50–65.

47

http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1145/1297027.1297069
http://dx.doi.org/10.1145/1297027.1297069
http://dx.doi.org/10.1007/s10515-005-6205-y
http://dx.doi.org/10.1007/s10515-005-6205-y
http://dx.doi.org/10.1007/s10515-005-6205-y
http://dx.doi.org/10.1007/s10515-005-6205-y
http://dx.doi.org/10.1007/s10515-005-6205-y

[66] A. Francalanza, L. Aceto, A. Ingólfsdóttir, On verifying hennessy-
milner logic with recursion at runtime, in: E. Bartocci, R. Majumdar
(Eds.), Runtime Verification - 6th International Conference, RV 2015 Vi-
enna, Austria, September 22-25, 2015. Proceedings, Vol. 9333 of LNCS,
Springer, 2015, pp. 71–86. doi:10.1007/978-3-319-23820-3_5.
URL https://doi.org/10.1007/978-3-319-23820-3_5

[67] D. P. Attard, A. Francalanza, A Monitoring Tool for a Branching-Time
Logic, in: RV, Vol. 10012 of LNCS, Springer, Cham, 2016, pp. 473–481.

[68] D. P. Attard, I. Cassar, A. Francalanza, L. A. A. Ingofsdottir, A runtime
monitoring tool for actor-based systems, in: Behavioural Types: from
Theory to Tools, Automation, Control and Robotics, River Publishers,
2017, pp. 49–76. doi:10.13052/rp-9788793519817.
URL https://doi.org/10.13052/rp-9788793519817

[69] detectEr Project, http://www.cs.um.edu.mt/svrg/Tools/detectEr/.

[70] I. Cassar, A. Francalanza, D. P. Attard, L. Aceto, A. Ingólfsdóttir, A
suite of monitoring tools for erlang, in: G. Reger, K. Havelund (Eds.),
RV-CuBES 2017. An International Workshop on Competitions, Usability,
Benchmarks, Evaluation, and Standardisation for Runtime Verification
Tools, September 15, 2017, Seattle, WA, USA, Vol. 3 of Kalpa Publications
in Computing, EasyChair, 2017, pp. 41–47.
URL http://www.easychair.org/publications/paper/cSzb

[71] L. Aceto, A. Ingólfsdóttir, K. G. Larsen, J. Srba, Reactive Systems: Mod-
elling, Specification and Verification, Cambridge Univ. Press, New York,
NY, USA, 2007.

[72] L. Fei, S. P. Midkiff, Artemis: practical runtime monitoring of applications
for execution anomalies, in: M. I. Schwartzbach, T. Ball (Eds.), Proceed-
ings of the ACM SIGPLAN 2006 Conference on Programming Language
Design and Implementation, Ottawa, Ontario, Canada, June 11-14, 2006,
ACM, 2006, pp. 84–95. doi:10.1145/1133981.1133992.
URL https://doi.org/10.1145/1133981.1133992

[73] B. Bonakdarpour, S. Navabpour, S. Fischmeister, Sampling-based run-
time verification, in: M. J. Butler, W. Schulte (Eds.), FM 2011: Formal
Methods - 17th International Symposium on Formal Methods, Limerick,
Ireland, June 20-24, 2011. Proceedings, Vol. 6664 of LNCS, Springer, 2011,
pp. 88–102. doi:10.1007/978-3-642-21437-0_9.
URL https://doi.org/10.1007/978-3-642-21437-0_9

[74] E. Bartocci, R. Grosu, A. Karmarkar, S. A. Smolka, S. D. Stoller,
E. Zadok, J. Seyster, Adaptive runtime verification, in: S. Qadeer,
S. Tasiran (Eds.), Runtime Verification, Third International Conference,
RV 2012, Istanbul, Turkey, September 25-28, 2012, Revised Selected Pa-
pers, Vol. 7687 of LNCS, Springer, 2012, pp. 168–182. doi:10.1007/

48

https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/978-3-319-23820-3_5
http://dx.doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.13052/rp-9788793519817
http://dx.doi.org/10.13052/rp-9788793519817
https://doi.org/10.13052/rp-9788793519817
http://www.easychair.org/publications/paper/cSzb
http://www.easychair.org/publications/paper/cSzb
http://www.easychair.org/publications/paper/cSzb
https://doi.org/10.1145/1133981.1133992
https://doi.org/10.1145/1133981.1133992
http://dx.doi.org/10.1145/1133981.1133992
https://doi.org/10.1145/1133981.1133992
https://doi.org/10.1007/978-3-642-21437-0_9
https://doi.org/10.1007/978-3-642-21437-0_9
http://dx.doi.org/10.1007/978-3-642-21437-0_9
https://doi.org/10.1007/978-3-642-21437-0_9
https://doi.org/10.1007/978-3-642-35632-2_18
http://dx.doi.org/10.1007/978-3-642-35632-2_18
http://dx.doi.org/10.1007/978-3-642-35632-2_18

978-3-642-35632-2_18.
URL https://doi.org/10.1007/978-3-642-35632-2_18

[75] J. Laurent, A. Goodloe, L. Pike, Assuring the Guardians, in: RV, Vol.
9333 of LNCS, Springer, 2015, pp. 87–101.

[76] T. Ferrère, T. A. Henzinger, N. E. Saraç, A theory of register monitors, in:
A. Dawar, E. Grädel (Eds.), Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July
09-12, 2018, ACM, 2018, pp. 394–403. doi:10.1145/3209108.3209194.
URL https://doi.org/10.1145/3209108.3209194

[77] D. A. Basin, T. Dardinier, L. Heimes, S. Krstic, M. Raszyk, J. Schnei-
der, D. Traytel, A formally verified, optimized monitor for metric first-
order dynamic logic, in: Automated Reasoning - 10th International
Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceed-
ings, Part I, Vol. 12166 of LNCS, Springer, 2020, pp. 432–453. doi:

10.1007/978-3-030-51074-9_25.
URL https://doi.org/10.1007/978-3-030-51074-9_25

[78] B. Finkbeiner, S. Oswald, N. E. Passing, M. Schwenger, Verified rust
monitors for lola specifications, in: Runtime Verification - 20th Inter-
national Conference, RV 2020, Los Angeles, CA, USA, October 6-9,
2020, Proceedings, Vol. 12399 of LNCS, Springer, 2020, pp. 431–450.
doi:10.1007/978-3-030-60508-7_24.
URL https://doi.org/10.1007/978-3-030-60508-7_24

[79] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, K. Lehtinen,
The best a monitor can do, in: C. Baier, J. Goubault-Larrecq (Eds.),
29th EACSL Annual Conference on Computer Science Logic, CSL 2021,
January 25-28, 2021, Ljubljana, Slovenia (Virtual Conference), Vol. 183
of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp.
7:1–7:23. doi:10.4230/LIPIcs.CSL.2021.7.
URL https://doi.org/10.4230/LIPIcs.CSL.2021.7

[80] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold,
An overview of aspectj, in: Proceedings of the 15th European Conference
on Object-Oriented Programming, ECOOP ’01, Springer-Verlag, London,
UK, UK, 2001, pp. 327–353.
URL http://dl.acm.org/citation.cfm?id=646158.680006

[81] A. Colyer, A. Clement, G. Harley, M. Webster, Eclipse Aspectj: Aspect-
oriented Programming with Aspectj and the Eclipse Aspectj Development
Tools, 1st Edition, Addison-Wesley Professional, 2004.

[82] J. Seyster, K. Dixit, X. Huang, R. Grosu, K. Havelund, S. A. Smolka,
S. D. Stoller, E. Zadok, Interaspect: aspect-oriented instrumentation with
GCC, Formal Methods in System Design 41 (3) (2012) 295–320. doi:

49

http://dx.doi.org/10.1007/978-3-642-35632-2_18
http://dx.doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1145/3209108.3209194
http://dx.doi.org/10.1145/3209108.3209194
https://doi.org/10.1145/3209108.3209194
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1007/978-3-030-51074-9_25
http://dx.doi.org/10.1007/978-3-030-51074-9_25
http://dx.doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1007/978-3-030-60508-7_24
https://doi.org/10.1007/978-3-030-60508-7_24
http://dx.doi.org/10.1007/978-3-030-60508-7_24
https://doi.org/10.1007/978-3-030-60508-7_24
https://doi.org/10.4230/LIPIcs.CSL.2021.7
http://dx.doi.org/10.4230/LIPIcs.CSL.2021.7
https://doi.org/10.4230/LIPIcs.CSL.2021.7
http://dl.acm.org/citation.cfm?id=646158.680006
http://dl.acm.org/citation.cfm?id=646158.680006
https://doi.org/10.1007/s10703-012-0171-3
https://doi.org/10.1007/s10703-012-0171-3
http://dx.doi.org/10.1007/s10703-012-0171-3
http://dx.doi.org/10.1007/s10703-012-0171-3

10.1007/s10703-012-0171-3.
URL https://doi.org/10.1007/s10703-012-0171-3

[83] I. Cassar, A. Francalanza, L. Aceto, A. Ingólfsdóttir, eAOP: an aspect ori-
ented programming framework for Erlang, in: N. Chechina, S. L. Fritchie
(Eds.), Proceedings of the 16th ACM SIGPLAN International Workshop
on Erlang, ACM, 2017, pp. 20–30. doi:10.1145/3123569.3123570.
URL https://doi.org/10.1145/3123569.3123570

[84] S. Liang, G. Bracha, Dynamic Class Loading in the Java Virtual Ma-
chine, in: Proceedings of the 13th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, OOPSLA,
ACM, New York, NY, USA, 1998, pp. 36–44. doi:10.1145/286936.

286945.
URL http://doi.acm.org/10.1145/286936.286945

[85] T. Arts, L.-A. Fredlund, Trace analysis of erlang programs, SIGPLAN
Not. 37 (12) (2002) 18–24. doi:10.1145/636517.636524.
URL http://doi.acm.org/10.1145/636517.636524

[86] J. Bonér, What are the key issues for commercial AOP use: how does
AspectWerkz address them?, in: G. C. Murphy, K. J. Lieberherr (Eds.),
Proceedings of the 3rd International Conference on Aspect-Oriented Soft-
ware Development, AOSD, ACM, 2004, pp. 5–6. doi:10.1145/976270.

976273.
URL https://doi.org/10.1145/976270.976273

[87] A. R. Bernat, B. P. Miller, Anywhere, Any-time Binary Instrumenta-
tion, in: J. Foster, L. L. Pollock (Eds.), Proceedings of the 10th ACM
SIGPLAN-SIGSOFT workshop on Program Analysis for Software Tools,
PASTE, ACM, 2011, pp. 9–16. doi:10.1145/2024569.2024572.
URL https://doi.org/10.1145/2024569.2024572

[88] N. Nethercote, J. Seward, Valgrind: A Framework for Heavyweight Dy-
namic Binary Instrumentation, in: Proceedings of the 28th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation, PLDI, ACM, New York, NY, USA, 2007, pp. 89–100. doi:

10.1145/1250734.1250746.
URL http://doi.acm.org/10.1145/1250734.1250746

[89] N. Grech, G. Fourtounis, A. Francalanza, Y. Smaragdakis, Heaps don’t
lie: countering unsoundness with heap snapshots, PACMPL 1 (OOPSLA)
(2017) 68:1–68:27. doi:10.1145/3133892.
URL https://doi.org/10.1145/3133892

[90] N. Grech, G. Fourtounis, A. Francalanza, Y. Smaragdakis, Shooting from
the heap: ultra-scalable static analysis with heap snapshots, in: F. Tip,
E. Bodden (Eds.), Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam,

50

http://dx.doi.org/10.1007/s10703-012-0171-3
http://dx.doi.org/10.1007/s10703-012-0171-3
https://doi.org/10.1007/s10703-012-0171-3
https://doi.org/10.1145/3123569.3123570
https://doi.org/10.1145/3123569.3123570
http://dx.doi.org/10.1145/3123569.3123570
https://doi.org/10.1145/3123569.3123570
http://doi.acm.org/10.1145/286936.286945
http://doi.acm.org/10.1145/286936.286945
http://dx.doi.org/10.1145/286936.286945
http://dx.doi.org/10.1145/286936.286945
http://doi.acm.org/10.1145/286936.286945
http://doi.acm.org/10.1145/636517.636524
http://dx.doi.org/10.1145/636517.636524
http://doi.acm.org/10.1145/636517.636524
https://doi.org/10.1145/976270.976273
https://doi.org/10.1145/976270.976273
http://dx.doi.org/10.1145/976270.976273
http://dx.doi.org/10.1145/976270.976273
https://doi.org/10.1145/976270.976273
https://doi.org/10.1145/2024569.2024572
https://doi.org/10.1145/2024569.2024572
http://dx.doi.org/10.1145/2024569.2024572
https://doi.org/10.1145/2024569.2024572
http://doi.acm.org/10.1145/1250734.1250746
http://doi.acm.org/10.1145/1250734.1250746
http://dx.doi.org/10.1145/1250734.1250746
http://dx.doi.org/10.1145/1250734.1250746
http://doi.acm.org/10.1145/1250734.1250746
https://doi.org/10.1145/3133892
https://doi.org/10.1145/3133892
http://dx.doi.org/10.1145/3133892
https://doi.org/10.1145/3133892
https://doi.org/10.1145/3213846.3213860
https://doi.org/10.1145/3213846.3213860

The Netherlands, July 16-21, 2018, ACM, 2018, pp. 198–208. doi:10.

1145/3213846.3213860.
URL https://doi.org/10.1145/3213846.3213860

[91] M. Kim, M. Viswanathan, S. Kannan, I. Lee, O. Sokolsky, Java-MaC:
A run-time assurance approach for Java programs, FMSD 24 (2) (2004)
129–155. doi:10.1023/B:FORM.0000017719.43755.7c.

[92] N. Decker, M. Leucker, D. Thoma, jUnitRV - Adding Runtime Verification
to jUnit, in: NASA FM, Vol. 7871 of LNCS, Springer, 2013, pp. 459–464.
doi:10.1007/978-3-642-38088-4_34.

[93] B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson,
B. Finkbeiner, H. B. Sipma, S. Mehrotra, Z. Manna, Lola: Runtime mon-
itoring of synchronous systems, in: TIME, IEEE, 2005, pp. 166–174.

[94] D. Basin, G. Caronni, S. Ereth, M. Harvan, F. Klaedtke, H. Mantel,
Scalable Offline Monitoring of Temporal Specifications, Form. Methods
Syst. Des. 49 (1-2) (2016) 75–108. doi:10.1007/s10703-016-0242-y.
URL http://dx.doi.org/10.1007/s10703-016-0242-y

[95] T. Zhang, P. Gebhard, O. Sokolsky, SMEDL: combining synchronous and
asynchronous monitoring, in: Y. Falcone, C. Sánchez (Eds.), Runtime
Verification - 16th International Conference, RV, Vol. 10012 of LNCS,
Springer, 2016, pp. 482–490. doi:10.1007/978-3-319-46982-9_32.
URL https://doi.org/10.1007/978-3-319-46982-9_32

[96] C. Sánchez, Online and offline stream runtime verification of synchronous
systems, in: C. Colombo, M. Leucker (Eds.), Runtime Verification - 18th
International Conference, (RV), Vol. 11237 of LNCS, Springer, 2018, pp.
138–163. doi:10.1007/978-3-030-03769-7_9.
URL https://doi.org/10.1007/978-3-030-03769-7_9

[97] U. Erlingsson, The Inlined Reference Monitor approach to Security Policy
Enforcement, Ph.D. thesis, Cornell University (2004).

[98] S. Pinisetty, T. Jron, S. Tripakis, Y. Falcone, H. Marchand, V. Preoteasa,
Predictive runtime verification of timed properties, J. Syst. Softw. 132 (C)
(2017) 353–365. doi:10.1016/j.jss.2017.06.060.
URL https://doi.org/10.1016/j.jss.2017.06.060

[99] G. Bernardi, M. Hennessy, Mutually testing processes, Logical Methods
in Computer Science 11 (2). doi:10.2168/LMCS-11(2:1)2015.
URL https://doi.org/10.2168/LMCS-11(2:1)2015

[100] G. Castagna, N. Gesbert, L. Padovani, A theory of contracts for web
services, ACM Trans. Program. Lang. Syst. 31 (5) (2009) 19:1–19:61. doi:
10.1145/1538917.1538920.
URL http://doi.acm.org/10.1145/1538917.1538920

51

http://dx.doi.org/10.1145/3213846.3213860
http://dx.doi.org/10.1145/3213846.3213860
https://doi.org/10.1145/3213846.3213860
http://dx.doi.org/10.1023/B:FORM.0000017719.43755.7c
http://dx.doi.org/10.1007/978-3-642-38088-4_34
http://dx.doi.org/10.1007/s10703-016-0242-y
http://dx.doi.org/10.1007/s10703-016-0242-y
http://dx.doi.org/10.1007/s10703-016-0242-y
https://doi.org/10.1007/978-3-319-46982-9_32
https://doi.org/10.1007/978-3-319-46982-9_32
http://dx.doi.org/10.1007/978-3-319-46982-9_32
https://doi.org/10.1007/978-3-319-46982-9_32
https://doi.org/10.1007/978-3-030-03769-7_9
https://doi.org/10.1007/978-3-030-03769-7_9
http://dx.doi.org/10.1007/978-3-030-03769-7_9
https://doi.org/10.1007/978-3-030-03769-7_9
https://doi.org/10.1016/j.jss.2017.06.060
http://dx.doi.org/10.1016/j.jss.2017.06.060
https://doi.org/10.1016/j.jss.2017.06.060
https://doi.org/10.2168/LMCS-11(2:1)2015
http://dx.doi.org/10.2168/LMCS-11(2:1)2015
https://doi.org/10.2168/LMCS-11(2:1)2015
http://doi.acm.org/10.1145/1538917.1538920
http://doi.acm.org/10.1145/1538917.1538920
http://dx.doi.org/10.1145/1538917.1538920
http://dx.doi.org/10.1145/1538917.1538920
http://doi.acm.org/10.1145/1538917.1538920

[101] G. T. Bernardi, A. Francalanza, Full-abstraction for Client Testing Pre-
orders, Sci. Comput. Program. 168 (2018) 94–117. doi:10.1016/j.

scico.2018.08.004.
URL https://doi.org/10.1016/j.scico.2018.08.004

[102] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, K. Lehtinen,
Testing Equivalence vs. Runtime Monitoring, in: Models, Languages, and
Tools for Concurrent and Distributed Programming - Essays Dedicated
to Rocco De Nicola on the Occasion of His 65th Birthday, Vol. 11665 of
LNCS, Springer, 2019, pp. 28–44. doi:10.1007/978-3-030-21485-2_4.
URL https://doi.org/10.1007/978-3-030-21485-2_4

52

https://doi.org/10.1016/j.scico.2018.08.004
https://doi.org/10.1016/j.scico.2018.08.004
http://dx.doi.org/10.1016/j.scico.2018.08.004
http://dx.doi.org/10.1016/j.scico.2018.08.004
https://doi.org/10.1016/j.scico.2018.08.004
https://doi.org/10.1007/978-3-030-21485-2_4
http://dx.doi.org/10.1007/978-3-030-21485-2_4
https://doi.org/10.1007/978-3-030-21485-2_4

	Introduction
	The Language
	Monitor Instrumentation
	Monitor Preorders
	Characterising the Potential Detection Preorder
	Characterising the Deterministic Detection Preorder
	Characterising the Transparency Preorder
	Possible Applications
	Conclusion
	Related and Future Work.

