
Centralized vs Decentralized Monitors for
Hyperproperties
Luca Aceto # �

Dept. of Computer Science, Reykjavik University, Iceland
Gran Sasso Science Institute, L’Aquila, Italy

Antonis Achilleos #�

Dept. of Computer Science, Reykjavik University, Iceland

Elli Anastasiadi # �

Uppsala University, Sweden

Adrian Francalanza #�

University of Malta, Malta

Daniele Gorla #�

Dept. of Computer Science, “Sapienza” University of Rome, Italy

Jana Wagemaker # �

Dept. of Computer Science, Reykjavik University, Iceland

Abstract
This paper focuses on the runtime verification of hyperproperties expressed in Hyper-recHML, an
expressive yet simple logic for describing properties of sets of traces. To this end, we consider a
simple language of monitors that observe sets of system executions and report verdicts w.r.t. a
given Hyper-recHML formula. We first employ a unique omniscient monitor that centrally observes
all system traces. Since centralised monitors are not ideal for distributed settings, we also provide
a language for decentralized monitors, where each trace has a dedicated monitor; these monitors
yield a unique verdict by communicating their observations to one another. For both the centralized
and the decentralized settings, we provide a synthesis procedure that, given a formula, yields a
monitor that is correct (i.e., sound and violation complete). A key step in proving the correctness of
the synthesis for decentralized monitors is a result showing that, for each formula, the synthesized
centralized monitor and its corresponding decentralized one are weakly bisimilar for a suitable notion
of weak bisimulation.

2012 ACM Subject Classification Theory of computation → Operational semantics; Theory of
computation → Modal and temporal logics; Theory of computation → Logic and verification

Keywords and phrases Runtime Verification, hyperlogics, decentralization

Digital Object Identifier 10.4230/LIPIcs...

Funding This work has been supported by the project ‘Mode(l)s of Verification and Monitorability’
(MoVeMent) (grant No 217987) of the Icelandic Research Fund. Elli Anastasiadi’s research has been
supported by grant VR 2020-04430 of the Swedish Research Council.

1 Introduction

Runtime verification (RV) [12] is a verification technique that observes system executions to
determine whether some given specification is satisfied or violated. This runtime analysis
is usually conducted by a computational entity called a monitor [33]. RV is a lightweight
verification technique that is carried out as the system under observation executes, thereby
avoiding scalability issues caused by the state-explosion problem, as is the case for model
checking. Recently, RV has been extended to parallel set-ups [17, 24, 45], and a large body of
work in that setting aims to verify hyperproperties at runtime [1, 18,19,27,30].

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luca@ru.is
https://orcid.org/0000-0001-8554-6907
mailto:antonios@ru.is
https://orcid.org/0000-0002-1314-333X
mailto:elli.anastasiadi@it.uu.se
https://orcid.org/0000-0001-7526-9256
mailto:adrian.francalanza@um.edu.mt
https://orcid.org/0000-0003-3829-7391
mailto:gorla@di.uniroma1.it
https://orcid.org/0000-0002-8616-3905
mailto:janaw@ru.is
https://orcid.org/0000-0002-8616-3905
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Centralized vs Decentralized Monitors for Hyperproperties

Hyperproperties [27] are sets of hypertraces, i.e. sets of traces that may be seen as
describing different system executions or the contributions of different sequential processes
to a system execution. As argued in [22], many properties of concurrent and distributed
systems can be viewed as hyperproperties. When verifying hyperproperties at runtime,
several traces (i.e. several execution sequences) can be observed instead of just one, possibly
at the same time. Several extensions of temporal logics, such as HyperLTL, HyperCTL∗ [26],
Hyper2LTL [14], have been defined to express hyperproperties. Extensions of standard logics
to hyper properties also include variations of the µ-calculus, such as [1], setting the basis for
the logic used in this paper, and [36], which studies an asynchronous semantics.

Since they were proposed by Clarkson and Schneider in [27], hyperproperties have become
a fundamental, trace-based formalism for expressing security and privacy properties, verified
using static and dynamic techniques [10,14,15,18,22, 23,25,30] implemented in a variety of
tools [13,15,29]. There is a large body of work, such as [10,23,37], detailing several algorithms
for monitoring (fragments of) hyperlogics under different assumptions and providing several
correctness guarantees. However, these proposals either construct a centralized monitoring
algorithm that has access to all traces in the observed hypertrace, or verify single trace
properties, over a distributed set-up1. Having an omniscient monitor simplifies the runtime
analysis since the monitoring algorithm can compare all traces as needed by simply accessing
different parts of its local memory. But this power comes with drawbacks. For starters,
centralized monitors are unrealistic for distributed systems, where trace analysis is typically
localised to network nodes so as to minimize communication across locations. Moreover,
centralized monitors create single points of failure during verification [8]. Furthermore, it
can be problematic to store all the traces locally, especially in light of the wide availability of
multi-core systems. The goal of the decentralized monitor synthesis from logical specifications
presented in this paper is to permit distributed monitor choreographies with local trace views
whose components communicate in order to verify global properties (such as hyperproperties).
Decentralized monitors have been shown to avoid high contentions leading to vastly improved
scalability [8]. They also offer better privacy guarantees whenever they are stationed locally
at the nodes where the respective traces are generated [35,39]. To the best of our knowledge,
such a message-passing monitoring set-up has never been studied for the purpose of verifying
hyperproperties so far.

In this paper, we study procedures for the automated synthesis of centralized and de-
centralized monitors from hyperproperties described in the logic Hyper-recHML [1]. This
logic extends the linear-time [51] µ-calculus [40] (also known as Hennessy-Milner logic with
recursion [44]) with constructs to describe properties of hypertraces inspired by the work on
HyperLTL (namely variables ranging over traces, modal operators parametrized by trace
variables, matching/mismatching between trace variables, and existential and universal
quantification over them). Hyper-recHML can describe hyperproperties not expressible in
HyperLTL or HyperCTL*, such as properties that speak about consensus (see Example
2.2) and periodicity (see Example 2.3). Furthermore, Hyper-recHML supports a general,
syntax-driven monitor synthesis that can handle both the aforementioned hyperproperties,
at least in the centralized case (see also the discussion in Section 5).

In both the centralized and decentralized set-ups, we work in the parallel model [30], where
a fixed number of system executions is processed in parallel by monitors in an online fashion.
We specify monitors using a process-algebraic formalism that builds on the one presented
in [5, 34] to define a class of monitors called regular. Such monitors are easy to describe,

1 See e.g. [20, 21,31,35] for distributed monitoring algorithms for classic trace-based logics.

XX:3

resemble (alternating) automata, and have sufficient expressive power to provide standard
monitoring guarantees. Moreover, their algebraic structure supports the compositional
definition of their operational semantics and monitor synthesis procedures from formulas,
building on previous work relating algebraic process calculi with RV [6,9,16,32,33,38,42,43].

In the centralized case, for each formula in the fragment of Hyper-recHML limited to
greatest-fixed-point operators, our synthesis procedure yields a monolithic monitor that
has access to all the traces in an observed hypertrace. However, in order to synthesize
decentralized monitors for a sufficiently expressive fragment of the logic, it is necessary to
extend the monitor capabilities with communication, as shown already in [1]. For instance, to
monitor for the property “If there is a trace where event a occurs, then there exists another
trace where event b does not occur thereafter”, monitors observing different traces need to
communicate to record that event a occurred in some trace at some point and that there is
some trace where b does not occur from that point onwards. Allowing monitors to send and
receive messages significantly complicates their operational semantics (see Section 4), the
monitor synthesis procedure (see Section 4.2), and all consequent proofs. The operational
semantics for communicating monitors is one of the main contributions of the paper since its
design is crucial to obtain the correctness guarantees provided by the synthesis procedure
for decentralized monitors. In particular, the semantics of decentralized monitors and their
synthesis from formulas have to be designed carefully to ensure that monitors are reactive
(they are always ready to process any system event) and input-enabled (they can always
receive any input from other monitors in their environment), properties that are desirable in
any decentralized RV set-up.

We show that both the centralized and the decentralized monitor synthesis procedures are
correct. More precisely, the monitors synthesized from formulas are sound and violation-
complete, meaning that (1) if the monitor synthesized from a formula φ reports a positive
(resp., negative) verdict when observing a hypertrace T , then T does (resp., does not) satisfy
φ, and (2) if T does not satisfy φ, then its associated monitor will report a negative verdict
when observing T (see Theorems 3.2 and 3.3, and Corollaries 4.2 and 4.3). The proof of
correctness in the decentralized case is considerably more technical than the corresponding
proof in the centralized setting, due to the intricate communication semantics. To address
the resulting technical challenges, we develop a proof strategy where we prove the correctness
of the decentralized monitor synthesis procedure using the centralized one as a yardstick.

This methodology is one of the key contributions we offer in this study. More precisely,
in Section 4.1 we identify six properties of a decentralized monitor synthesis that make it
‘principled’ (see Definition 4.5) and we show that, when a decentralized monitor synthesis is
principled, the centralized and decentralized monitors synthesized from a formula are related
by a suitable notion of weak bisimulation (Theorem 4.6). Apart from supporting the definition
of decentralized monitor synthesis procedures, this result allows us to reduce the correctness
of our decentralized monitor synthesis to that of the centralized one, which can in turn drive
the definition of further synthesis procedures in future work. We also conjecture that our
methodology provides a path to proving similar results for other models of communicating
monitors independent of the monitoring strategy. In summary, our contributions are the
following:

a framework for monitoring hyperproperties by a central monitor that has access to
all locations (Section 3) and a decentalized monitoring set-up for hyperproperties, with
monitors that communicate (Section 4);
a synthesis function that returns a correct centralized monitor for every formula without
least fixed points (Section 3);

XX:4 Centralized vs Decentralized Monitors for Hyperproperties

a synthesis function that returns a correct (decentralized) choreography of communicating
monitors for every formula without least fixed points that has no location quantifier
within a fixed point operator (Section 4); and
a methodology to prove the correctness of a synthesis of communicating monitors, by estab-
lishing a list of desirable properties and relating the behavior of the decentralized monitors
to that of the corresponding centralized monitor (Definition 4.5 and Theorem 4.6).

Omitted proofs, due to space constraints, can be found in [2].

2 The Model and the Logic

Let Act be a finite set of actions with at least two elements2, ranged over by a, b; the set
of (infinite) traces over Act is Trc = Actω, ranged over by t. Given a finite and non-empty
set of locations L ranged over by ℓ, a hypertrace T on L is a function from L to Trc; the
set of hypertraces on L is denoted by HTrcL. L and Act are fixed throughout this paper.
A hypertrace describes a (distributed) system with |L| users, and every user is located at
a unique location chosen from L. A system behavior is captured by a hypertrace T on L,
mapping every user to the trace they perform.

For t, t′ ∈ Trc, we write t a−→ t′ whenever t = at′. Let A : L → Act; for T, T ′ ∈ HTrcL, we
write T A−→ T ′ whenever T (ℓ) A(ℓ)−−−→ T ′(ℓ), for every ℓ ∈ L. Notice that, for each T , there is
a unique pair A and T ′ such that T A−→ T ′: more precisely, for every ℓ ∈ L, we have that
A(ℓ) = a and T ′(ℓ) = t′, whenever T (ℓ) = at′. We denote the A and T ′ just defined by hd(T)
and tl(T) respectively. For a partial function f : D ⇀ E (where D and E are sets ranged
over by d and e, respectively), we denote by dom(f) the set {d ∈ D | f(d) is defined} and by
rng(f) the set {e | ∃d ∈ dom(f). f(d) = e}. Notation f [d 7→ e] denotes the (partial) function
mapping d to e and behaving like f otherwise.

2.1 The Logic Hyper-recHML
We consider Hyper-recHML as the logic to specify hyperproperties. We assume two disjoint
and countably infinite sets Π and V of location variables and recursion variables, ranged over
by π and x, respectively. Formulas of Hyper-recHML are constructed as follows:

φ ::= tt | ff | φ∧φ | φ∨φ | max x.φ | min x.φ | x | ∃π.φ | ∀π.φ | π = π | π ̸= π | [aπ]φ | ⟨aπ⟩φ

Apart from the basic boolean constructs, we include the greatest and and least fixed-
point operators to describe unbounded and/or infinite behaviors in a finitary manner,3
existential/universal quantifiers and equality/inequality tests on location variables, and the
usual Hennessy-Milner modalities where [aπ] stands for ‘necessarily after a at the location
bound to π’, and ⟨aπ⟩ denotes ‘possibly after a at the location bound to π’. A formula
is said to be guarded if every recursion variable appears within the scope of a modality
within its fixed-point binding. All formulas are assumed to be guarded (without loss of
expressiveness [41]). We write FVloc(φ) to denote the free location variables of φ, and
FVrec(φ) for the free recursion variables.
▶ Remark 2.1. We consider formulas where bound location variables are all pairwise distinct
(and different from the free variables); hence, the formula ∀π.[aπ]∃π.φ denotes the formula

2 When Act is a singleton, every property in the logic becomes equivalent to true or false.
3 In LTL, this behavior is captured by the ‘Until’ and ‘Release’ operators, but these are less expressive

than fixed-points; see [7].

XX:5

JttKρ
σ = HTrcL JffKρ

σ = ∅ JxKρ
σ = ρ(x)

Jφ ∧ φ′Kρ
σ = JφKρ

σ ∩ Jφ′Kρ
σ Jφ ∨ φ′Kρ

σ = JφKρ
σ ∪ Jφ′Kρ

σ

Jmax x.ψKρ
σ =

⋃
{S | S ⊆ JψKρ[x 7→S]

σ } Jmin x.ψKρ
σ =

⋂
{S | S ⊇ JψKρ[x 7→S]

σ }

J∃π.φKρ
σ =

⋃
ℓ∈L

JφKρ
σ[π 7→ℓ] J∀π.φKρ

σ =
⋂
ℓ∈L

JφKρ
σ[π 7→ℓ]

Jπ = π′Kρ
σ =

{
HTrcL if σ(π) = σ(π′)
∅ otherwise

Jπ ̸= π′Kρ
σ =

{
HTrcL if σ(π) ̸= σ(π′)
∅ otherwise

J[aπ]φKρ
σ = {T | hd(T)(σ(π)) = a implies tl(T) ∈ JφKρ

σ}
J⟨aπ⟩φKρ

σ = {T | hd(T)(σ(π)) = a ∧ tl(T) ∈ JφKρ
σ)}

Table 1 The semantics of Hyper-recHML.

∀π.[aπ]∃π′.(φ{π′
/π}), where φ{π′

/π} stands for the capture-avoiding substitution of π′ for π
in φ. A similar notation for other kinds of substitutions is used throughout the paper. ◀

The semantics of a Hyper-recHML formula φ is defined over HTrcL by exploiting two
partial functions: ρ : V ⇀ 2HTrcL , which assigns a set of hypertraces on L to all free recursion
variables of φ, and σ : Π ⇀ L, which assigns a location to all free location variables of φ. In
what follows, we tacitly assume that the free recursion and location variables in a formula φ
are always included in dom(ρ) and dom(σ), respectively.

The semantics for formulas in Hyper-recHML is given through the function J−Kρ
σ as shown

in Table 1. A formula ⟨aπ⟩φ holds true at hypertrace T if the trace in T at the location
bound to π starts with an a and tl(T) satisfies φ; by contrast, a formula [aπ]φ can also hold
true if the trace in T at the location associated to π does not start with an a. Whenever φ
is closed (i.e., without any free variable), the semantics is given by JφK∅

∅, where ∅ denotes the
partial function with empty domain. Notationally, we shall simply write JφK instead of JφK∅

∅.
We say that T satisfies the closed formula φ if T ∈ JφK.

▶ Example 2.2. For example, consider the set of actions {a, b}; then, the hyperproperty

φa = ∀π.max x.
(
⟨bπ⟩x ∨ ∃π′.(π′ ̸= π ∧ ⟨aπ′⟩x)

)
(1)

is a consensus-type property stating that, at every position of every trace, whenever there is
an a there is another trace that also has a. Using the semantic definition of the logic, it is
not hard to see that the hypertrace T1 over the set of locations {ℓ1, ℓ2, ℓ3} that maps ℓ1 to
aω, ℓ2 to baω and ℓ3 to (ba)ω does not satisfy the property φa: what breaks the property is
the first position. On the other hand, the hypertrace T2 that maps ℓ1 to aω, ℓ2 to (ab)ω and
ℓ3 to (ba)ω does satisfy φa because at each position there are two traces that exhibit an a. ◀

2.2 On the Expressiveness of Hyper-recHML
The logic Hyper-recHML adapts linear-time µHML [44] to express properties of hypertraces,
just as HyperLTL and HyperCTL* [26] are variations on LTL [47] and CTL* [28], respectively,
interpreted over hypertraces. It is well known that µHML is more expressive than LTL and
CTL* [52]. It is, therefore, natural to wonder whether Hyper-recHML can express properties
that cannot be described using HyperLTL and HyperCTL*.

XX:6 Centralized vs Decentralized Monitors for Hyperproperties

We claim that the strictness of the inclusion of LTL in µHML is preserved for their
hyper-extensions. To justify our claim, we present two arguments to demonstrate that
Hyper-recHML is more expressive than HyperLTL, which rely on classic results on the
inexpressiveness of LTL, the embedding of LTL in µHML, and the ability of Hyper-recHML
to quantify over traces more liberally than HyperLTL.

First, we recall that Wolper showed in [52] that the property “event a occurs at all even
positions in a trace” cannot be expressed in LTL (see [52, Corollary 4.2] that is based on
Theorem 4.1 in that reference). We will refer to this property as φe, where “e” stands for
even, and adapt it to a hypertrace setting.

▶ Example 2.3. Let φhe
be the hyperproperty on the set of actions {a, b} that results from

adding an existential trace quantifier ∃π at the beginning of φe, and replacing all modalities
with π-indexed ones:

φhe = ∃π.max x.
(
[aπ]⟨aπ⟩x ∧ [bπ]⟨aπ⟩x

)
(2)

This is a liveness property that describes the periodicity of events; when evaluated over
singleton hypertraces, it coincides with the evaluation of φe. ◀

The hyperproperty φhe
defined above can be used to prove the following result.

▶ Proposition 2.4. Hyper-recHML is more expressive than HyperLTL.

The second witness to the fact that Hyper-recHML is more expressive than HyperLTL is
the possibility to use quantifiers in any part of a formula. For example, the hyperproperty
φa defined in (1) can potentially spawn an unbounded number of quantifiers, by unfolding
the recursion when encountering a events.

▶ Proposition 2.5. Hyper-recHML is more expressive than HyperCTL*.

We shall see later on that part of this additional expressiveness of Hyper-recHML is
present in the fragments for which we synthesize monitors.

3 Centralized Monitoring

The set of centralized monitors CMon is given by the following grammar:

CMon ∋ m ::= yes | no | end | aℓ.m | m+m | m⊕m | m⊗m | rec x.m | x

Notationally, we denote with ⊙ any of ⊗ and ⊕, and use v to range over the verdicts
{yes, no, end}. The operational semantics of centralized monitors is given in Table 2. Notice
that monitors that wait for an action at some location (as prescribed by writing aℓ) and do
not see that action therein (as stated by A) stop their monitoring activity, by reporting end.

Monitors can yield verdicts at any point of their computation. This is represented by
the judgement ⇛, whose intended use is to evaluate monitors and reach a verdict, whenever
possible. The rules are given in Table 3; as one may expect, verdict evaluation is non-
deterministic, due to the presence of +. Also notice that there can be multiple ways to infer
the same verdict for the same monitor: e.g., for yes ⊕ no we can either use the third or the
(symmetric version of the) fourth rule from the first line of Table 3. However, the inferred
value is of course the same (i.e., yes, in the previous situation).

We instrument a monitor m on a hypertrace T based on the rules of Table 4. As usual,
we write ↣∗ for the reflexive-transitive closure of ↣.

XX:7

v
A−→ v

A(ℓ) = a

aℓ.m
A−→ m

A(ℓ) ̸= a

aℓ.m
A−→ end

m{rec x.m/x} A−→ m′

rec x.m A−→ m′

m
A−→ m′

m+ n
A−→ m′

n
A−→ n′

m+ n
A−→ n′

m
A−→ m′ n

A−→ n′

m⊙ n
A−→ m′ ⊙ n′

Table 2 The operational semantics for centralized monitors, where ⊙ ∈ {⊗, ⊕}.

v ⇛ v

m⇛ end
n⇛ end

m ⊙ n⇛ end
m⇛ yes

m ⊕ n⇛ yes
m⇛ no

m ⊗ n⇛ no

m⇛ v

m + n⇛ v

m⇛ no
n⇛ v

m ⊕ n⇛ v

m⇛ yes
n⇛ v

m ⊗ n⇛ v

m{rec x.m/x}⇛ v

rec x.m⇛ v

Table 3 Verdict evaluation for centralized monitors (up to com-
mutativity of +, ⊗, and ⊕).

m
A−→ m′ T

A−→ T ′

m ▷ T ↣ m′ ▷ T ′

m⇛ v

m ▷ T ↣ v

Table 4 The instrumenta-
tion rules for centralized mon-
itors.

3.1 From Formulas to Centralized Monitors
We derive monitors for the subset of formulas without least fixed-points, denoted with
Hyper-maxHML. More precisely, given a formula φ, we want to derive a monitor that, when
monitoring a hypertrace T , returns no if and only if T does not belong to the semantics of φ;
furthermore, if it returns yes, then T belongs to the semantics of φ. All regular properties of
infinite traces that can be monitored for violations with the aforementioned guarantees can
be expressed without using least fixed-point operators (see the maximality results presented
in [5, Proposition 4.18] and [7, Theorem 5.2] in the setting of logics interpreted over infinite
traces). Intuitively, we use least fixed-points to describe liveness properties, whose violation
does not have a finite witness in general.

The definition of the synthetized monitor is given by induction on φ. This definition is
parametrized by a partial function σ, assigning a location to all the free location variables
of φ; when φ is closed, we consider cm∅(φ). The formal definition is given in Table 5. The
interesting cases are for the quantifiers (that are treated as conjunctions and disjunctions,
respectively) and for the modal operators.

▶ Example 3.1. Let L = {1, 2} and Act = {a, b}, and consider the formula (2). The monitor
synthesis in Table 5 produces the following monitor m when applied to that formula:

m =
⊕

ℓ∈{1,2}

rec x.((aℓ.(aℓ.x+ bℓ.no) + bℓ.yes) ⊗ (bℓ.(aℓ.x+ bℓ.no) + aℓ.yes)).

When monitor m is instrumented with the hypertrace T mapping location 1 to aω and
location 2 to (ab)ω, the verdict no cannot be reached: indeed, T satisfies the formula φ since
the trace at location 1 has a at all positions. On the other hand, when m is instrumented
with the hypertrace T ′ mapping location 1 to bω and location 2 to (ab)ω, the no verdict is
reached after the monitor has observed the first two actions at locations 1 and 2; this is in
line with the fact that T ′ does not satisfy φhe

. ◀

XX:8 Centralized vs Decentralized Monitors for Hyperproperties

cmσ(tt) = yes cmσ(ff) = no cmσ(x) = x cmσ(max x.φ) = rec x.cmσ(φ)
cmσ(φ ∧ φ′) = cmσ(φ) ⊗ cmσ(φ′) cmσ(φ ∨ φ′) = cmσ(φ) ⊕ cmσ(φ′)
cmσ(∀π.φ) =

⊗
ℓ∈L cmσ[π 7→ℓ](φ) cmσ(∃π.φ) =

⊕
ℓ∈L cmσ[π 7→ℓ](φ)

cmσ(π = π′) =
{

yes if σ(π) = σ(π′)
no otherwise

cmσ(π ̸= π′) =
{

yes if σ(π) ̸= σ(π′)
no otherwise

cmσ([aπ]φ) = aσ(π).cmσ(φ) +
∑

b̸=a bσ(π).yes cmσ(⟨aπ⟩φ) = aσ(π).cmσ(φ) +
∑

b ̸=a bσ(π).no

Table 5 Centralized monitor synthesis.

The main results of this section are that the centralized monitors synthesized from formulas
report sound verdicts and their verdicts are complete for formula violations. We refer the
reader to [7] for a discussion on notions of correctness for monitors and the significance of
soundness and violation-completeness. The proofs can be found in [2].

▶ Theorem 3.2 (Soundness). Let φ ∈ Hyper-maxHML be a closed formula and T ∈ HTrcL.
If cm∅(φ) ▷ T ↣∗ no, then T ̸∈ JφK; if cm∅(φ) ▷ T ↣∗ yes, then T ∈ JφK.

▶ Theorem 3.3 (Violation Completeness). Let φ ∈ Hyper-maxHML be a closed formula and
T ∈ HTrcL. If T ̸∈ JφK, then cm∅(φ) ▷ T ↣∗ no.

4 Decentralized Monitoring

When verifying a distributed system, having a central authority that performs any type of
runtime verification is a strong assumption, as it reduces the appeal of distribution. Thus,
we study to what extent hyperproperties can be monitored by decentralized monitors.

We associate monitors to locations, denoted by ℓ, and monitors associated to ℓ monitor
only actions required to happen at ℓ, thus allowing the processing of events to happen locally.
This imposes some form of coordination between monitors at different locations. For this
reason, we introduce the possibility for monitors to communicate.

We define a communication alphabet Com, ranged over by c, over some finite alphabet of
communication constants Con (that contains Act), ranged over by γ, as

Com ∋ c ::= (!G, γ) | (?G, γ),

where G ⊆ L and γ ∈ Con. We have a communication action (!G, γ) for sending γ to group
G (multicast communication), and one (?G, γ) for receiving γ from any monitor from the set
G. Point-to-point communication can be represented by taking singleton sets for G.

The syntax of decentralized monitors is given by the following grammar:

DMon ∋ M ::= [m]ℓ | M ∨M | M ∧M

LMon ∋ m ::= yes | no | end | a.m | c.m | m+m | m⊕m | m⊗m | rec x.m | x

Monitor [m]ℓ denotes that m monitors the trace located at location ℓ, so, it is ‘localized’
at ℓ (this justifies the name LMon). Monitors assigned to the same trace run in parallel
and observe identical events; contrary to [1], monitors assigned to different traces are no

XX:9

a.m
a−→ m

ℓ ∈ G

(?G, γ).m (?ℓ,γ)−−−−→ m
(!G, γ).m (!G,γ)−−−−→ m v

a−→ v

m{rec x.m/x} λ−→ m′

rec x.m λ−→ m′

m
a−→ m′ n

a−→ n′

m⊙ n
a−→ m′ ⊙ n′

m
(?ℓ,γ)−−−−→ m′ n

(?ℓ,γ)−−−−→ n′

m⊙ n
(?ℓ,γ)−−−−→ m′ ⊙ n′

m
λ−→ m′

m+ n
λ−→ m′

m
(!G,γ)−−−−→ m′

m⊙ n
(!G,γ)−−−−→ m′ ⊙ n

m
(?ℓ,γ)−−−−→ m′ n ̸(?ℓ,γ)−−−−→

m⊙ n
(?ℓ,γ)−−−−→ m′ ⊙ n

Table 6 The operational semantics for decentralized local monitors (up to commutativity of +,
⊗ and ⊕), where we let λ denote either a, (!G, γ) or (?ℓ, γ) for ℓ ∈ L, G ⊆ L.

m
(!G,γ)−−−−→ m′

[m]ℓ
ℓ:(!G,γ)−−−−−→ [m′]ℓ

m
(?ℓ′,γ)−−−−→ m′ ℓ ∈ G

[m]ℓ
G : (?ℓ′, γ)
⇝ [m′]ℓ

m ̸(?ℓ′,γ)−−−−→

[m]ℓ
G : (?ℓ′, γ)
⇝ [m]ℓ

ℓ /∈ G

[m]ℓ
G : (?ℓ′, γ)
⇝ [m]ℓ

M
G : (?ℓ, γ)
⇝M ′ N

G : (?ℓ, γ)
⇝ N ′

M ⋄ N
G : (?ℓ, γ)
⇝M ′ ⋄ N ′

⋄ ∈ {∧, ∨}

M
ℓ:(!G,γ)−−−−−→ M ′ N

G : (?ℓ, γ)
⇝ N ′

M ⋄ N
ℓ:(!G,γ)−−−−−→ M ′ ⋄ N ′

⋄ ∈ {∧, ∨}

Table 7 Operational semantics for communication
of M ∈ DMon (up to commutativity of ∧, ∨).

A(ℓ) = a m
a−→ m′

[m]ℓ
A−→ [m′]ℓ

A(ℓ) = a m ̸a−→ m ̸c−→

[m]ℓ
A−→ [end]ℓ

M
A−→ M ′ N

A−→ N ′

M ⋄ N
A−→ M ′ ⋄ N ′

⋄ ∈ {∧, ∨}

Table 8 Operational semantics for
actions of M ∈ DMon (up to commut-
ativity of ∧, ∨).

longer completely isolated from each other, but can now communicate, which is the main
new feature of the decentralized set-up.

The operational rules for m ∈ LMon are given in Table 6. Notice that, when we have
parallel monitors, only one of them at a time can send; by contrast, all those that can receive
from some location ℓ are forced to do so.

For M ∈ DMon, the operational semantics can be found in Table 7 (the rules concerning
communication) and Table 8 (the rules concerning action steps). The operational semantics
in Table 7 defines multicast, where a monitor located at ℓ sends a message to group G and
every monitor at a location in G that can receive from ℓ does so; every monitor that cannot,
or that is not in G, does not change its state. The first four rules capture the judgment for
inferring when all components of a monitor which are able to receive a certain γ sent from a
location do so. Intuitively, ℓ is the location from which message γ was sent to group G, and
M

G : (?ℓ, γ)
⇝ N indicates that every monitor in M located at a location in G that can receive

γ from ℓ indeed has received γ and transitioned appropriately in N . The last two rules then
actually define communication. In particular, the last rule in Table 7 implements multicast
by stipulating that the outcome of the synchronization between a send action ℓ : (!G, γ)

XX:10 Centralized vs Decentralized Monitors for Hyperproperties

m⇛ v

[m]ℓ ⇛ v

M ⇛ end N ⇛ end
M ⋄ N ⇛ end

M ⇛ no
M ∧ N ⇛ no

M ⇛ yes N ⇛ v

M ∧ N ⇛ v

M ⇛ yes
M ∨ N ⇛ yes

M ⇛ no N ⇛ v

M ∨ N ⇛ v

Table 9 The verdict combination rules for
decentralized monitors (up to commutativity
of ∧ and ∨, ranged over by ⋄).

M
A−→ M ′ T

A−→ T ′

M ▷ T ↣M ′ ▷ T ′

M
ℓ:(!G,γ)−−−−−→ M ′

M ▷ T ↣M ′ ▷ T

M ⇛ v

M ▷ T ↣ v

Table 10 The evolution of a decentralized
monitor instrumented on a hypertrace.

and a receive one of the form G : (?ℓ, γ) is the send action itself, which can be received by
other monitors at locations in G in a larger monitor of which M ⋄N is a sub-term. We note,
in passing, that monitors M ∈ DMon are ‘input-enabled’: for each M,G, ℓ and γ, there is
always some M ′ such that M G : (?ℓ, γ)

⇝ M ′. So the last rule in Table 7 (and its symmetric
version) can always be applied when the send transition in its premise is available.

Monitors can also locally observe an action, as prescribed by a location-to-action function
A; the rules are given in Table 8. Monitors at the same location observe the same action. If a
monitor cannot take the action prescribed by A at its location, the monitor becomes end, as
stipulated by the second rule given in Table 8. Note that it is not sufficient to trigger that rule
when m cannot exhibit action A(ℓ): we also require that m cannot communicate. Note that
the inability of m to exhibit action A(ℓ) is not sufficient to trigger that rule: we also require
that m cannot communicate. Intuitively, this is because monitors exhibit an ‘alternating’
behavior in which they observe the next action produced by a system hypertrace and then
embark in a sequence of communications with other monitors to inform them of what they
observed. As will be made clear in our definition of a weak bisimulation relation presented
in Definition 4.1, such communications are interpreted as internal actions in monitor behavior.
Therefore, the inability of some monitor [m]ℓ to perform action A(ℓ) can only be gauged in
‘stable states’—that is, monitor states in which no communication is possible. This design
choice is akin to that underlying the definition of refusal testing presented in [46] and of the
stable-failures model for (Timed) CSP defined in [49,50], where the inability of a process to
perform some action can only be determined in states that afford no internal computation
steps.

Verdict evaluation for M ∈ DMon is defined in Table 9 and relies on that for m ∈ CMon
provided in Table 3. Finally, given a decentalized monitor M and a hypertrace T , the
instrumentation of the monitor on the trace is described by the rules of Table 10. As before,
we denote with ↣∗ the reflexive transitive closure of ↣.

4.1 Synthesizing Decentralized Monitors Correctly
In this section we describe how to synthesize decentralized monitors ‘correctly’ from formulas,
i.e. such that their behavior corresponds to that of the corresponding centralized monitors.
The advantage of this approach is that it simplifies the proof that monitors synthesized via
a ‘correct’ decentralized synthesis function are sound and violation-complete, by utilizing
the correspondence to centralized monitors. Moreover, it identifies desirable properties of a
‘correct’ decentralized synthesis function that can guide the development of further automated
decentralized-monitor synthesis algorithms.

XX:11

We first define the correspondence between centralized and decentralized monitors and
show that this correspondence is sufficient to obtain soundness and violation-completeness in
the decentralized setting from the corresponding results in the centralized setting (Theor-
ems 3.2 and 3.3). In the remainder of the section, given a synthesis function which takes
as inputs a formula φ and a mapping σ from location variables to locations, and outputs a
monitor Mσ(φ) ∈ DMon, we specify criteria that allow us to derive this correspondence.

We write M → M ′ to denote the existence of an integer h > 0 and of h monitors
M1, . . . ,Mh, locations ℓ1, . . . , ℓh−1 and communication actions c1, . . . , ch−1 such that M1 =
M , Mh = M ′, and Mi

ℓi:ci−−−→ Mi+1 (for every i = 1, . . . , h − 1). By definition of → on
communicating monitors, each ci is (!Gi, γi), for some Gi ⊆ L and γi ∈ Con. Similarly, at
the level of local monitors we write m → m′ to denote the existence of an integer h > 0, of
local monitors m1, . . . ,mh and of c1, · · · ch ∈ {(!G, γ), (?ℓ, γ) | G ⊆ L, ℓ ∈ L, γ ∈ Con} such
that m1 = m, mh = m′ and mi

ci−→ mi+1.
The correspondence between the centralized and the decentralized monitors is character-

ized as a weak bisimulation:

▶ Definition 4.1. A binary relation R over DMon × CMon is a weak bisimulation if and
only if, whenever MRm, it holds that:
1. ∃M ′ ∈ DMon such that M → M ′ and M ′ ⇛ v if and only if m⇛ v.
2. If M A−→ M ′ then ∃m′ ∈ CMon such that m A−→ m′ and M ′Rm′.
3. If M c−→ M ′ then M ′Rm, where c = ℓ : (!G, γ) for some ℓ ∈ L, G ⊆ L, γ ∈ Con.
4. If m A−→ m′ then there exist M1,M2,M

′ such that M → M1
A−→ M2 → M ′ and M ′Rm′.

One of the main features of weak bisimilarity is that, if Mσ(φ) and cmσ(φ) are weakly
bisimilar, then they report the same verdict when observing any hypetrace T ; thus, we obtain
violation-completeness and soundness for decentralized monitors from the corresponding
results for centralized monitors:

▶ Corollary 4.2 (Soundness). Let T ∈ HTrcL, φ ∈ Hyper-maxHML be a closed formula
such that M∅(φ) is defined, and R a weak bisimulation such that (M∅(φ),cm∅(φ)) ∈ R. If
M∅(φ) ▷ T ↣∗ no, then T ̸∈ JφK; if M∅(φ) ▷ T ↣∗ yes, then T ∈ JφK.

▶ Corollary 4.3 (Violation Completeness). Let T ∈ HTrcL, φ ∈ Hyper-maxHML be a closed
formula such that M∅(φ) is defined, and R a weak bisimulation such that (M∅(φ),cm∅(φ)) ∈
R. If T ̸∈ JφK, then M∅(φ) ▷ T ↣∗ no.

We now describe sufficient conditions for any decentralized synthesis function such
that there is a weak bisimulation between the centralized and the decentralized monitors
synthesized from a formula φ and a location environment σ. Whenever we write M c−→ N

for M,N ∈ DMon, we assume that c ∈ {ℓ : (!G, γ) | ℓ ∈ L, G ⊆ L, γ ∈ Con}, as per the
labeling of the communication transitions of decentralized monitors. We write [m]ℓ ∈ M , for
M ∈ DMon, if [m]ℓ is one of its constituents: formally, [m]ℓ ∈ [m]ℓ and, if [m]ℓ ∈ M , then
[m]ℓ ∈ M ⋄N and [m]ℓ ∈ N ⋄M (recall that ⋄ denotes either ∧ or ∨). We start by defining
when M ∈ DMon can(not) communicate:

▶ Definition 4.4. Let M ∈ DMon. We say M ∈ DMon can communicate, if there exists
[m]ℓ ∈ M such that m c−→ n for some c ∈ Com. Otherwise, we say M cannot communicate.

▶ Definition 4.5. We say that a monitor synthesis M−(−) is principled when it satisfies the
following conditions, for every formula φ and environment σ such that Mσ(φ) is defined:
Verdict Agreement: for every verdict v, cmσ(φ)⇛ v if and only if Mσ(φ)⇛ v;

XX:12 Centralized vs Decentralized Monitors for Hyperproperties

Verdict Irrevocability: for every verdict v and Mσ(φ) A−→ M1 → M2 → M , if M2 ⇛ v, then
M ⇛ v;

Reactivity: for every A, there exists M such that Mσ(φ) A−→ M ;
Bounded Communication: for every Mσ(φ) A−→ M → M ′, there exists M ′′ such that

M ′ → M ′′ and M ′′ cannot communicate;
Processing-Communication Alternation: for every Mσ(φ) A−→ M → M1,

1. Mσ(φ) cannot communicate, and
2. M1

c−→ M2 implies M1 ̸A−→ for every c and A;
Formula Convergence: if Mσ(φ) A−→ M → M ′, M ′ cannot communicate, and cmσ(φ) A−→

cmσ′(φ′) for some formula φ′ and environment σ′, then M ′ = Mσ′(φ′).

Let M−(−) be a decentralized synthesis function. We define relation RM as follows:

RM ≜ R1 ∪ R2

R1 ≜ {(Mσ(φ),cmσ(φ)) | FVloc(φ) ⊆ dom(σ)}

R2 ≜
{

(M ′,cmσ′(φ′)) | FVloc(φ) ⊆ dom(σ) and Mσ(φ) A−→ M → M ′ → Mσ′(φ′)
}

The crucial property of any principled synthesis function is the following:

▶ Theorem 4.6. For every principled synthesis M−(−), RM is a weak bisimulation.

4.2 From Formulas to Decentralized Monitors
We now describe how to synthesize decentralized monitors for a fragment of Hyper-maxHML,
and show that this synthesis function satisfies Definition 4.5. This allows us to apply
Theorem 4.6 and obtain soundness and violation-completeness of these synthesized monitors.

In what follows, we consider formulas from PHyper-recHML, the subset of Hyper-recHML
given by the following grammar (see Section 5 for a discussion on the choice of fragment):

φ ::= ∃π.φ | ∀π.φ | φ ∧ φ | φ ∨ φ | ψ

ψ ::= tt | ff | π = π | π ̸= π | ψ ∧ ψ | ψ ∨ ψ | max x.ψ | min x.ψ | x | [aπ]ψ | ⟨aπ⟩ψ

We denote the class of formulas of type ψ with Qf (quantifier free). PHyper-recHML is a
subset of Hyper-recHML and thus its semantics over HTrcL is the one given in Table 1.

We synthesize decentralized monitors for the fragment of PHyper-recHML only containing
formulas of type ψ without diamonds and least fixed-points, which we call PHyper-maxHML.
In section 4.3 we also discuss how diamonds can also be added to the picture. The synthesis
for decentralized monitors is given in Table 11. First, we derive a monitor belonging to LMon
for formulas of type ψ ∈ Qf; this synthesis function is parametrized by a location ℓ ∈ L and
a partial function σ from Π to L that is defined for every free location variable in ψ. Then
we derive monitors belonging to DMon for formulas of type φ.

Note that, in the definition of dMσ(ψ), cmσ(ψ) is the monitor resulting from the
centralized synthesis function defined in Table 5. Intuitively dMσ(ψ) synthesizes a local
monitor at each location relevant to ψ, which are the locations associated by σ to the free
location variables in ψ. If σ = ∅ (and so ψ does not have any free trace variables), there is
no need for communication between locations, and in fact a verdict can be obtained from ψ

immediately. This verdict coincides with the one reached in the centralized synthesis.
We observe that the case for σ = ∅ and cmσ(ψ)⇛ v only applies when ψ is a Boolean

combination of tt and ff. Thus, every closed formula φ on which we apply our synthesis

XX:13

dmℓ
σ(tt) = yes dmℓ

σ(ff) = no dmℓ
σ(x) = x dmℓ

σ(max x.ψ) = rec x.dmℓ
σ(ψ)

dmℓ
σ(ψ ∧ ψ′) = dmℓ

σ(ψ) ⊗ dmℓ
σ(ψ′) dmℓ

σ(ψ ∨ ψ′) = dmℓ
σ(ψ) ⊕ dmℓ

σ(ψ′)

dmℓ
σ([aπ]ψ) =

a.(!(rng(σ)\{ℓ}), a).dmℓ

σ(ψ) +
∑
b̸=a

b.(!(rng(σ)\{ℓ}), b).yes if σ(π) = ℓ

∑
b∈Act

b.
(

(?{σ(π)}, a).dmℓ
σ(ψ) +

∑
b ̸=a

(?{σ(π)}, b).yes
)

otherwise

dmℓ
σ(π = π′) =

{
yes if σ(π) = σ(π′)
no otherwise

dmℓ
σ(π ̸= π′) =

{
yes if σ(π) ̸= σ(π′)
no otherwise

dMσ(ψ) =
{ ∨

ℓ∈rng(σ)[dmℓ
σ(ψ)]ℓ if σ ̸= ∅

[v]ℓ0 if σ = ∅ ∧ cmσ(ψ)⇛ v

dMσ(∀π.φ) =
∧

ℓ∈L dMσ[π 7→ℓ](φ) dMσ(∃π.φ) =
∨

ℓ∈L dMσ[π 7→ℓ](φ)
dMσ(φ ∧ φ′) = dMσ(φ) ∧ dMσ(φ′) dMσ(φ ∨ φ′) = dMσ(φ) ∨ dMσ(φ′)

Table 11 Decentralized monitor synthesis, where ℓ0 is any fixed element of L.

1. is trivial, i.e. φ is logically equivalent to tt or ff, or
2. is such that every subformula ψ ∈ Qf of φ is in the scope of a quantifier.
For non-trivial formulas, the σ = ∅ case for dMσ(ψ) never applies, and we can ignore it. The
decentralized monitor for a closed formula φ is dM∅(φ).
▶ Remark 4.7. In the first clause of the definition of the synthesis function for box formulas,
it might seem superfluous to send a message also when the monitor observes some b ̸= a.
However, this is important to make sure monitors do not deadlock. To see this, consider a
synthesis where that definition instead looks like

dmℓ
σ([aπ]ψ) =

a.(!(rng(σ)\{ℓ}), a).dmℓ

σ(ψ) +
∑
b̸=a

b.yes if σ(π) = ℓ∑
b∈Act

b.(?{σ(π)}, a).dmℓ
σ(ψ) otherwise

Consider Act = {a, b}, L = {ℓ, ℓ′} and some hypertrace T such that T (ℓ) = b.t1 and
T (ℓ′) = b.t2 for some traces t1 and t2. Now consider m ⊗ n, where m = dmℓ

σ([aπ]ψ),
n = dmℓ

σ([aπ′]ψ′), σ(π) = ℓ and σ(π′) = ℓ′. For A(ℓ) = A(ℓ′) = b ≠ a, we then get
m

A(ℓ)−−−→ yes and n
A(ℓ′)−−−→ (?{σ(π′)}, a).dmℓ

σ(ψ′), and monitor yes ⊗ (?{σ(π′)}, a).dmℓ
σ(ψ′) is

stuck because the receive action of the monitor (?{σ(π′)}, a).dmℓ
σ(ψ′) has no matching send.

It is precisely to avoid these scenarios that we make sure that, for each sending transition,
there is a corresponding receiving transition, and a monitor always sends the last action it
read to all other locations in the range of the environment σ. ◀

Soundness and violation completeness for the synthesis defined in Table 11 follow from
Corollary 4.2 and 4.3 by using Theorem 4.6, once we prove the following key result:

▶ Theorem 4.8. The synthesis function dM defined in Table 11 is principled.

▶ Example 4.9. In order to highlight the inter-monitor communication, we consider the
following formula

φ = ∃π.∃π′.([aπ]ff ∧ [bπ′]ff)

XX:14 Centralized vs Decentralized Monitors for Hyperproperties

over L = {1, 2} and Act = {a, b}, which states that either both traces start with a, or neither
does. By letting σ = [π 7→ ℓ, π′ 7→ ℓ′], the synthesis for this property gives:

dM∅(φ) =
∨

ℓ,ℓ′∈L

∨
ℓ′′∈{ℓ,ℓ′}

[
dmℓ′′

σ ([aπ]ff ∧ [bπ′]ff)
]

ℓ′′
,where

dmℓ′′

σ ([aπ]ff ∧ [bπ′]ff) =

(a.(!∅, a).no + b.(!∅, b).yes) ⊗ if ℓ = ℓ′ = ℓ′′

(b.(!∅, b).no + a.(!∅, a).yes)

(a.(!{ℓ′}, a).no + b.(!{ℓ′}, b).yes) ⊗ if ℓ ̸= ℓ′ and ℓ′′ = ℓ

(a.((?{ℓ′}, b).no + (?{ℓ′}, a).yes) +
b.((?{ℓ′}, b).no + (?{ℓ′}, a).yes))

(a.((?{ℓ}, a).no + (?{ℓ}, b).yes) + if ℓ ̸= ℓ′ and ℓ′′ = ℓ′

b.((?{ℓ}, a).no + (?{ℓ}, b).yes))
⊗ (b.(!{ℓ}, b).no + a.(!{ℓ}, a).yes) ◀

4.3 On the Decentralized-Monitor Synthesis for Diamonds
The synthesis of decentralized monitors presented in Table 11 does not deal explicitly with
formulas of the form ⟨aπ⟩ψ. However, it can be applied to those formulas using the observation
that ⟨aπ⟩ψ is logically equivalent to

[aπ]ψ ∧
∧

b ̸=a[bπ]ff. (3)

To showcase this, we present an example of the decentralized synthesis applied on Wolper’s
property (φhe

) from Example 2.3, which makes use of diamond modalities.

▶ Example 4.10. Recall φhe
from (2); expressed here as ∃π.ψ, with

ψ = max x.(ψ1 ∧ ψ2) ψ1 = [aπ]⟨aπ⟩x ψ2 = [bπ]⟨aπ⟩x

Let L = {1, 2} and Act = {a, b}. The synthesis is applied thus:

dM∅(φ) =
∨

ℓ∈L

[
rec x.

(
mℓ

[π 7→ℓ](ψ1) ⊗mℓ
[π 7→ℓ](ψ2)

)]
ℓ

with

mℓ
[π 7→ℓ](ψ1) = a.(!∅, a).mℓ

[π 7→ℓ](⟨aπ⟩x) + b.(!∅, b).yes
mℓ

[π 7→ℓ](ψ2) = b.(!∅, b).mℓ
[π 7→ℓ](⟨aπ⟩x) + a.(!∅, a).yes

and

mℓ
[π 7→ℓ](⟨aπ⟩x) = (a.(!∅, a).x+ b.(!∅, b).yes) ⊗ (b.(!∅, b).no + a.(!∅, a).yes) (4)

As the monitors in Example 4.10 indicate, a decentralized monitor synthesis for formulas
of the form ⟨aπ⟩ψ that is based on the encoding of (3) leads to monitors with a high degree
of parallelism; for simplicity, the degree in Example 4.10 is reduced because we assumed
to have just two actions. However, |Act| − 1 parallel conjunctions are required in general.
Alternatively, one could define a decentralized monitor synthesis directly for formulas of the
form ⟨aπ⟩ψ as follows:

mℓ
σ(⟨aπ⟩ψ) =

a.(!(rng(σ)\{ℓ}), a).dmℓ

σ(ψ) +
∑
b ̸=a

b.(!(rng(σ)\{ℓ}), b).no if σ(π) = ℓ

∑
b∈Act

b.
(

(?{σ(π)}, a).dmℓ
σ(ψ) +

∑
b̸=a

(?{σ(π)}, b).no
)

otherwise

XX:15

This is essentially the synthesis for box formulas in Table 11 with no verdicts in place of yes.
With this explicit rule for diamonds, (4) simply reduces to:

mℓ
[π 7→ℓ](⟨aπ⟩x) = a.(!∅, a).x+ b.(!∅, b).no

The synthesized monitor for diamond now contains no occurrence of any parallel operator.

5 Conclusion

We provided two methods to synthesize monitors for hyperproperties expressed as fragments
of Hyper-recHML. Our first synthesis procedure constructs monitors that analyse hypertraces
in a centralized manner and are guaranteed to correctly detect all violations of the respective
formula, as long as it does not have a least fixed-point operator. Our second synthesis
algorithm constructs monitors that operate in a decentralized manner and communicate with
one another using multicast to share relevant information between them. The decentralized-
monitor synthesis provides the same correctness guarantees as the centralized one, but is only
defined for formulas with trace quantifiers that do not appear inside any fixed-point operator.
This additional restriction, which is natural and present in many monitoring set-ups for
hyperlogics, e.g. [10, 19, 23, 26, 30, 36], allows us to focus on examining the intricacies of
monitoring in a decentralized setting with monitor communication. More precisely, it allows
us to fix the σ in the synthesis function which, in turn, produces a static set of locations
with which a monitor can communicate. Despite the restriction to PHyper-recHML, our
synthesis algorithm still covers properties that were previously not even expressible, hence
not monitorable, in state-of-the-art hyperlogics.

Of course, the picture is still incomplete: we have a centralized-monitor synthesis procedure
for an expressive fragment of Hyper-recHML, whereas our decentralized-monitor synthesis
deals with a more restricted fragment of that logic. It is not clear if this restriction is
necessary; for example, a different decentralized-monitor synthesis for a larger fragment
might be obtained by utilizing a different communication paradigm other than multicast,
which was adopted in this study. In fact, we conjecture that broadcast communications
might allow us to synthesize decentralized monitors for a larger Hyper-recHML fragment,
including formulae that mix greatest fixed-points and quantifiers, like φa defined in (1);
currently, monitors only send messages to the locations in the range of the specified σ.
Another interesting direction is to allow monitors to infer information from communications
they did not receive. A good starting point to explore such a synthesis algorithm (and prove
its correctness) can be the synthesis properties in Definition 4.5. To fully delineate the power
of decentralized monitoring, a maximality result in the spirit of those presented in [5,7] is
needed, which we intend to establish in the future.

Although we have focused on monitors that detect violations, we can also synthesize
monitors that detect all satisfying hypertraces for the respective dual fragments of Hyper-
recHML. Another direction we intend to pursue in future is the development of tools for
monitoring Hyper-recHML specifications at runtime, based on the results of this article. We
expect that our decentralised-monitor synthesis procedure can be implemented by generating
a dedicated monitor for every location in a way that is very similar to the synthesis of
µHML monitors presented in [3, 4, 11] and implemented in the tool detectEr available at
https://duncanatt.github.io/detecter/.

Related Work. To the best of our knowledge, Agrawal and Bonakdarpour were the first
to study RV for hyperproperties expressed in HyperLTL in [10], where they investigated
monitorability for k-safety hyperproperties expressed in HyperLTL. They also gave a semantic

https://duncanatt.github.io/detecter/

XX:16 Centralized vs Decentralized Monitors for Hyperproperties

characterization of monitorable k-safety hyperproperties, which is a natural extension to
hyperproperties of the ‘universal version’ of the classic definition of monitorability presented
by Pnueli-Zaks [7, 48]. In contrast to this work, we do not restrict ourselves to alternation-
free formulas (see Eq. (1)) and every monitorable formula considered by Agrawal and
Bonakdarpour can be expressed in our monitorable fragment. Brett et al. [23] improve on
the work presented in [10] by presenting an algorithm for monitoring the full alternation-free
fragment of HyperLTL. They also highlight challenges that arise when monitoring arbitrary
HyperLTL formulas, namely (i) quantifier alternations, (ii) inter-trace dependencies and
(iii) relative ordering of events across traces. Our decentralized-monitor synthesis addresses
(i) by using the number of locations as an upper bound on the number of traces, and (ii)
and (iii) via synchronized multicasts.

In [30], Finkbeiner et al. investigate RV for HyperLTL [26] formulas w.r.t. three different
input classes, namely the bounded sequential, the unbounded sequential and the parallel
classes. They also develop the monitoring tool RVHyper [29] based on the sequential
algorithms developed for those input classes. The parallel class is closest to our set-up, since
it consists in a fixed number of system executions that are processed synchronously.

Beutner et al. [15] study runtime monitoring for Hyper2LTLfp, a temporal logic that is
interpreted over sets of finite traces of equal length. Unlike Hyper2LTL [14], Hyper2LTLfp
permits quantification under temporal operators, which is also allowed in our logic Hyper-
recHML. In contrast to HyperLTL, Hyper2LTLfp features second-order quantification over
sets of finite traces and can express properties like common knowledge.

In [36], Gustfeld et al. study automated analysis techniques for asynchronous hyper-
properties and propose a novel automata-theoretic framework, the so-called alternating
asynchronous parity automata, together with the fixed-point logic Hµ for expressing asyn-
chronous hyperproperties. The logic Hµ has commonalities with PHyper-recHML, but it
only allows for prenex formulas; moreover, its semantics progresses asynchronously on each
trace. Properties such as “an atomic proposition does not occur at a certain level in the tree
(of traces)” are not expressible in their logic Hµ, but can be described in Hyper-recHML.

Chalupa and Henzinger [25] explore the potential of monitoring for hyperproperties using
prefix transducers. They develop a transducer language, called prefix expressions, give it
an operational semantics over a hypertrace (reminiscent of the semantics in Section 4) and
then implement it to assess the induced overheads. They show how transducers can use
the writing capabilities as a method for monitor synchronization across traces, akin to the
monitor communication and verdict aggregation of Section 4. Since transducers are, in
principle, more powerful that passive monitors, additional guarantees are required to ensure
that they do not interfere unnecessarily with system executions.

References

1 Luca Aceto, Antonis Achilleos, Elli Anastasiadi, and Adrian Francalanza. Monitoring hy-
perproperties with circuits. In Mohammad Reza Mousavi and Anna Philippou, editors,
Formal Techniques for Distributed Objects, Components, and Systems - 42nd IFIP WG 6.1
International Conference, FORTE 2022, volume 13273 of LNCS, pages 1–10. Springer, 2022.

2 Luca Aceto, Antonis Achilleos, Elli Anastasiadi, Adrian Francalanza, Daniele Gorla, and Jana
Wagemaker. Centralized vs decentralized monitors for hyperproperties. CoRR, abs/2405.12882,
2024.

3 Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza, and
Anna Ingólfsdóttir. A monitoring tool for linear-time µhml. In COORDINATION, volume
13271 of LNCS, pages 200–219. Springer, 2022.

XX:17

4 Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza,
and Anna Ingólfsdóttir. A monitoring tool for linear-time µHML. Sci. Comput. Program.,
232:103031, 2024.

5 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
Adventures in monitorability: from branching to linear time and back again. Proc. ACM
Program. Lang. POPL, 3(52):1–29, 2019.

6 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
Testing equivalence vs. runtime monitoring. In Models, Languages, and Tools for Concurrent
and Distributed Programming, volume 11665 of LNCS, pages 28–44. Springer, 2019.

7 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
An operational guide to monitorability with applications to regular properties. Softw. Syst.
Model., 20(2):335–361, 2021.

8 Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir. Runtime
Instrumentation for Reactive Components. In ECOOP, volume 313 of LIPIcs, pages 16:1–16:33.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

9 Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir. On first-order runtime
enforcement of branching-time properties. Acta Informatica, 60(4):385–451, 2023.

10 Shreya Agrawal and Borzoo Bonakdarpour. Runtime Verification of k-Safety Hyperproperties
in HyperLTL. In IEEE 29th Computer Security Foundations Symposium, pages 239–252. IEEE
Computer Society, 2016.

11 Duncan Paul Attard, Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir,
and Karoliina Lehtinen. Better late than never or: Verifying asynchronous components at
runtime. In FORTE, volume 12719 of LNCS, pages 207–225. Springer, 2021.

12 Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to runtime
verification. In Ezio Bartocci and Yliès Falcone, editors, Lectures on Runtime Verification -
Introductory and Advanced Topics, volume 10457 of LNCS, pages 1–33. Springer, 2018.

13 Raven Beutner and Bernd Finkbeiner. Software verification of hyperproperties beyond k-safety.
In Sharon Shoham and Yakir Vizel, editors, Computer Aided Verification - 34th International
Conference, CAV 2022, volume 13371 of LNCS, pages 341–362. Springer, 2022.

14 Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. Second-order hyper-
properties. In CAV (2), volume 13965 of LNCS, pages 309–332. Springer, 2023.

15 Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. Monitoring second-
order hyperproperties. In Mehdi Dastani, Jaime Simão Sichman, Natasha Alechina, and
Virginia Dignum, editors, Proceedings of the 23rd International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2024, pages 180–188. ACM, 2024.

16 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. Theor. Comput. Sci., 669:33–58, 2017.

17 Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-
contract for distributed multiparty interactions. In Paul Gastin and François Laroussinie,
editors, CONCUR 2010 - Concurrency Theory, pages 162–176, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

18 Borzoo Bonakdarpour and Bernd Finkbeiner. Runtime verification for HyperLTL. In Yliès
Falcone and César Sánchez, editors, Runtime Verification - 16th International Conference,
RV 2016, Madrid, Spain, September 23-30, 2016, Proceedings, volume 10012 of LNCS, pages
41–45. Springer, 2016.

19 Borzoo Bonakdarpour and Bernd Finkbeiner. The complexity of monitoring hyperproperties.
In 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford, United Kingdom,
July 9-12, 2018, pages 162–174. IEEE Computer Society, 2018.

20 Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, David A. Rosenblueth, and
Corentin Travers. Decentralized asynchronous crash-resilient runtime verification. J. ACM,
69(5):34:1–34:31, 2022.

XX:18 Centralized vs Decentralized Monitors for Hyperproperties

21 Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. Challenges
in fault-tolerant distributed runtime verification. In Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, Verification and Validation: Discussion,
Dissemination, Applications - 7th International Symposium, ISoLA 2016,, volume 9953 of
LNCS, pages 363–370, 2016.

22 Borzoo Bonakdarpour, César Sánchez, and Gerardo Schneider. Monitoring hyperproperties by
combining static analysis and runtime verification. In Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, Verification and Validation. Verification
- 8th International Symposium, ISoLA 2018, volume 11245 of LNCS, pages 8–27. Springer,
2018.

23 Noel Brett, Umair Siddique, and Borzoo Bonakdarpour. Rewriting-based runtime verification
for alternation-free hyperltl. In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 77–93, Berlin, Heidelberg, 2017. Springer
Berlin Heidelberg.

24 Ian Cassar, Adrian Francalanza, Claudio Antares Mezzina, and Emilio Tuosto. Reliability
and fault-tolerance by choreographic design. In Adrian Francalanza and Gordon J. Pace,
editors, Proceedings Second International Workshop on Pre- and Post-Deployment Verification
Techniques, PrePost@iFM 2017, Torino, Italy, 19 September 2017, volume 254 of EPTCS,
pages 69–80, 2017.

25 Marek Chalupa and Thomas A. Henzinger. Monitoring hyperproperties with prefix transducers.
In RV, volume 14245 of LNCS, pages 168–190. Springer, 2023.

26 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal logics for hyperproperties. In Martín Abadi and Steve
Kremer, editors, Principles of Security and Trust - Third International Conference, POST
2014, volume 8414 of LNCS, pages 265–284. Springer, 2014.

27 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–
1210, 2010.

28 E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “Not Never” revisited: on
branching versus linear time temporal logic. volume 33, pages 151–178, 1986.

29 Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. RVHyper: A
runtime verification tool for temporal hyperproperties. In TACAS (2), volume 10806 of LNCS,
pages 194–200. Springer, 2018.

30 Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Monitoring
hyperproperties. Formal Methods Syst. Des., 54(3):336–363, 2019.

31 Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. A lower bound on the number of
opinions needed for fault-tolerant decentralized run-time monitoring. J. Appl. Comput. Topol.,
4(1):141–179, 2020.

32 Adrian Francalanza. Consistently-detecting monitors. In CONCUR, volume 85 of LIPIcs,
pages 8:1–8:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

33 Adrian Francalanza. A Theory of Monitors. Inf. Comput., 281:104704, 2021.
34 Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the Hennessy-

Milner logic with recursion. Formal Methods Syst. Des., 51(1):87–116, 2017.
35 Adrian Francalanza, Andrew Gauci, and Gordon J. Pace. Distributed system contract

monitoring. J. Log. Algebraic Methods Program., 82(5-7):186–215, 2013.
36 Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Automata and fixpoints for

asynchronous hyperproperties. Proc. ACM Program. Lang., 5(POPL), jan 2021.
37 Christopher Hahn, Marvin Stenger, and Leander Tentrup. Constraint-based monitoring of

hyperproperties. In Tomáš Vojnar and Lijun Zhang, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 115–131, Cham, 2019. Springer International
Publishing.

38 Jun Inoue and Yoriyuki Yamagata. Operational semantics of process monitors. In RV, volume
10548 of LNCS, pages 403–409. Springer, 2017.

XX:19

39 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and blame assignment for
higher-order session types. In POPL, pages 582–594. ACM, 2016.

40 Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27(3):333–354, 1983.

41 Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic approach to
branching-time model checking. J. ACM, 47(2):312–360, 2000.

42 Ruggero Lanotte, Massimo Merro, and Andrei Munteanu. A process calculus approach to
detection and mitigation of PLC malware. Theor. Comput. Sci., 890:125–146, 2021.

43 Ruggero Lanotte, Massimo Merro, and Andrei Munteanu. Industrial control systems security
via runtime enforcement. ACM Trans. Priv. Secur., 26(1):4:1–4:41, 2023.

44 Kim G. Larsen. Proof systems for satisfiability in Hennessy-Milner logic with recursion.
Theoretical Computer Science, 72(2):265–288, 1990.

45 Claudio Antares Mezzina and Jorge A. Pérez. Causally consistent reversible choreographies:
A monitors-as-memories approach. In Proceedings of the 19th International Symposium on
Principles and Practice of Declarative Programming, PPDP ’17, page 127–138, New York, NY,
USA, 2017. Association for Computing Machinery.

46 Iain Phillips. Refusal testing. Theoretical Computer Science, 50:241–284, 1987.
47 Amir Pnueli. The temporal logic of programs. In FOCS’77, 18th IEEE Annual Symposium on

Foundations of Computer Science, Proceedings, pages 46–57. IEEE, 1977.
48 Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time verification via testers.

In FM, volume 4085 of LNCS, pages 573–586. Springer, 2006.
49 George M. Reed and A. W. Roscoe. The timed failures-stability model for CSP. heoretical

Computer Science, 211(1–2):85–127, 1999.
50 A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR, USA, 1997.
51 Moshe Y. Vardi. A temporal fixpoint calculus. In Jeanne Ferrante and Peter Mager, editors,

Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, pages 250–259. ACM Press, 1988.

52 Pierre Wolper. Temporal logic can be more expressive. Inf. Control., 56(1/2):72–99, 1983.

	1 Introduction
	2 The Model and the Logic
	2.1 The Logic Hyper-recHML
	2.2 On the Expressiveness of Hyper-recHML

	3 Centralized Monitoring
	3.1 From Formulas to Centralized Monitors

	4 Decentralized Monitoring
	4.1 Synthesizing Decentralized Monitors Correctly
	4.2 From Formulas to Decentralized Monitors
	4.3 On the Decentralized-Monitor Synthesis for Diamonds

	5 Conclusion

