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Abstract. Runtime Monitors observe the execution of a system with
the aim of reaching a verdict about it. One property that is expected of
monitors is consistent verdict detections; this property was characterised
in prior work via a symbolic analysis called symbolic controllability. This
paper explores whether the proposed symbolic analysis lends itself well
to the construction of a tool that checks monitors for this deterministic
behaviour. We implement a prototype that automates this symbolic anal-
ysis, and establish complexity upper bounds for the algorithm used. We
also consider a number of optimisations for the implemented prototype,
and assess the potential gains against benchmark monitors.

Keywords: Deterministic Monitors · Symbolic Analysis · Runtime Ver-
ification

1 Introduction

Monitors are computational entities that are instrumented to execute alongside
a program of interest. This paper focusses on a specific class of monitors called
execution monitors [34], also termed sequence recognisers [25] or partial-identity
monitors [21]. Execution monitors observe a sequence of events exhibited by the
running program with the aim of reaching an irrevocable verdict. Conceptually,
these monitors may be described as suffix-closed sets of traces of events that lead
to the respective verdicts [36,11,5]. Operationally, however, they are best con-
ceived as a branching structure whereby a sequence of events may lead a monitor
to reach a number of possible states [22,20,16,2]. This better captures the poten-
tial monitor behaviour in concurrent/distributed settings [26,15,7,9,23,8,19], or
the behaviour encountered in practical implementations that may occasionally
(and unexpectedly) operate erratically [12,32,13]. Put differently, monitors them-
selves may, either by necessity or inadvertently, behave non-deterministically.

In spite of this potential behaviour, deterministic monitor operation for the
verdicts reached is still a desirable quality and is often a prerequisite for monitor
correctness [6]. In prior work [17, Def. 6], we proposed an observational defi-
nition for a consistently-detecting monitor. Intuitively, fixed a trace exhibited
by the program it is instrumented with, such a monitor is required to always
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reach the same verdict for that trace. Crucially, consistent detection allows such
a monitor to pass through different intermediate states during the course of
its verdict-reaching trace analysis (since these states are not observable from
a consistently-detecting sense). An alternative characterisation called monitor
controllability [17, Def. 11] is also proposed in this work, with the aim of provid-
ing a more tractable method for assessing deterministic monitor behaviour. This
characterisation improves on reasoning about monitor consistent detection in
two ways: (i) it avoids universal quantifications over the programs that a mon-
itor can be instrumented with (i.e., contexts); (ii) it is coinductive, permitting
reasoning about an infinite number of traces in a finite manner (for certain mon-
itor cases). Monitor controllability is also shown to be both sound and complete
w.r.t. consistent detection.

There is one further complication when reasoning about monitor behaviour.
In most practical settings, events carry a payload from some infinite data do-
main. A refinement to the coinductive definition, called symbolic (monitor) con-
trollability, is thus developed in [17] to assist with abstracting over universal
quantifications on payload data and data-dependent monitor states. This work
also claims that the resulting symbolic analysis mandated by the new definition
lends itself well to the construction of a tool that analyses monitors for their
capacity to perform deterministic detections. The goal of our paper is to verify
this claim. The contributions are twofold:

1. In Sec. 3, we build a prototype that automates the analysis for symbolic
controllability, demonstrating the implementability of the approach proposed
in [17]; we also provide complexity bounds for the algorithm implemented.

2. In Sec. 4, we identify implementation bottlenecks that limit the scalability of
the tool in practice. Subsequently, in Sec. 5, we empirically evaluate a num-
ber of proposed solutions using a series of pathological monitor descriptions
devised in Sec. 4.

2 Preliminaries

We assume the existence of an expression language, e, d ∈ Exp and a boolean
expression language b, c ∈ BExp. Expressions are defined in terms of a denumer-
able set of expression variables, x, y ∈ Vars, and a value domain, v, u ∈ Val;
for expository purposes, we assume the value domain to be infinite. Boolean
expressions are defined over the expression language Exp, and include the stan-
dard constructs for the basic values true and false, conjunctions b∧ c, expression
equality e=d, and negation ¬b. The meta-function fv(e) and fv(b) computes the
free variables in the respective expressions e and b. (Boolean) expressions with-
out any free variables are said to be closed, and open otherwise. Substitutions,
denoted by [~e/~x], are partial maps from Vars to Exp, with the term d[~e/~x] signify-
ing that every free occurrence of xi ∈ ~x in d is substituted by the corresponding
expression ei ∈ ~e. As is standard, open terms are interpreted over valuations,
ρ ∈ Vars → Val, i.e., complete maps instantiating free variables to concrete
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Monitors

w, o ∈ Verd ::= > (accept) | ⊥ (reject)

| 0 (inconclusive)

m,n ∈Mon ::= w (verdict) | let x = e in m (evaluate)

| l〈e〉.m (expression guard) | l(x).m (quantified guard)

| m + n (choice) | if b thenm else n (conditional)

| recX.m (recursion) | X (monitor variable)

Symbolic Transitions

sVer

w
θ−−→

true
w

sIfT

if b thenm else n
τ−−→
b

m

sIfF

if b thenm else n
τ−−→
¬b

n

sRec

recX.m
τ−−→

true
m[recX.m/X]

sChL

m
µ−−→
b

m′

m + n
µ−−→
b

m′

sGrE

l〈e〉.m l〈x〉−−−−→
e=x

m

sGrQ

l(y).m
l〈x〉−−−−→
true

m[x/y]

sLet

let x = e in m
τ−−→

true
m[e/x]

Weak Symbolic Transitions and Reductions

sWTr1

m
θ−−→
b

m′

m
θ

=⇒
b
p m′

sWTr2

m
τ−−→
b

m′ m′ θ
=⇒
c
p m′′

m
θ

==⇒
b∧c

p m′′

sWRd1

m ==⇒
true

m

sWTr2

m
τ−−→
b

m′ m′ =⇒
c

m′′

m ==⇒
b∧c

m′′

Fig. 1: A Symbolic Semantics for Monitors

values. (Open) expressions and boolean expressions come equipped with par-
tial evaluation functions taking a valuation and returning the respective values,
JeρK = v and JbρK ∈ {true, false}; the terms eρ and bρ denote the instantiation of
the free variables in e and b respectively by the corresponding values mapped to
in ρ. A boolean expression b is satisfiable if there exists some valuation ρ that
maps b to true, i.e., sat(b) = ∃ρ.JbρK = true.

Programs are seen as entities that generate events of the form l〈v〉 where
l, k ∈ Lab is the event label and v is the payload from the value domain. A
sequence of events, i.e., a trace, thus represents a program execution that is
analysed by the instrumented monitor.1 For our study, monitors are modelled
as Labelled Transition Systems (LTSs), described by the syntax in Fig. 1. They
consist of two conclusive verdicts (namely acceptance, >, and rejection, ⊥) and
an inconclusive verdict, 0, to describe the state a monitor transitions to when it

1 Operationally, a program p is instrumented with a monitor m as m / p where p
drives the execution and m passively reacts by analysing observable events gener-
ated by p [16,18,4]. In the case of controllability, the results in [17] show how this
instrumentation can be abstracted as a monitor reacting to an event trace.
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is asked to analyse an event it is not expecting. The syntax defines two guards
describing event analysis. Expression guards, l〈e〉.m, require the monitor to first
analyse an event l〈v〉 where the payload v is equal to (the evaluation of) the
expression e, and then to proceed as the continuation m. Quantified guards,
l(x).m, require the monitor to dynamically learn the payload v from an analysed
event l〈v〉 with a matching label l, and then bind the learnt payload value v to
the variable x in the continuation m; we use the suggestive notation l( ).m when
the binding variable is not used in m. The remaining constructs are standard.

Example 1. A program operating a thermostat is initialised to a starting temper-
ature i via the event init〈i〉 (i ∈ N). After this, it can either terminate reporting
end〈j〉 with the error code j ∈ N, or repeatedly read the current temperature
value i, get〈i〉, and adjust the temperature i, set〈i〉, for some value i.

m1 = init〈0〉.end( ).⊥
m2 = init〈50〉.recX.get(y).if y>50 then set( ).⊥ else set〈y + 1〉.X
m3 = init(x).let lim = ecalc in

(
if x<lim then end( ).⊥ else

recX.get(y).if y ≥ lim then set〈y + 1〉.> else set( ).X
)

Monitors m1, m2 and m3 check for three different specifications. Monitor
m1 rejects executions that terminate after the thermostat is initialised to 0.
When the thermostat is initialised to 50, monitor m2 repeatedly checks that
it is not set if the temperature read is greater than the initialisation value.
Monitor m3 checks whether the initialised value (learnt at runtime) is less than
some predetermined value calculated via some complex calculation ecalc: if so,
it rejects terminations and accepts executions where the thermostat is set to
the temperature just read increased by one, where the former is higher than the
predetermined value. The monitor instrumentation assumed (used extensively
in other settings [16,18,1,4]) preempts the monitor execution to the inconclusive
state, 0, whenever the monitor is presented with an event this not specified by its
description. For instance, if the monitorm1 is presented with the event set〈42〉 (or
event init〈42〉 for that matter), the instrumentation aborts the runtime analysis
by reducing the monitor to 0. �

Following [17], the monitor semantics is given in Fig. 1 in terms of a sym-
bolic LTS 〈Mon,BExp,Act,−→〉 where Act is a set containing symbol ac-
tions, θ ∈ SEvt, and the silent action τ 6∈ SEvt. Symbolic actions, l〈x〉, ab-
stract over concrete trace events by carrying variables x instead of values; we let
µ ∈ SEvt ∪ {τ}. The transition relation −→⊆ (Mon×Act×BExp×Mon)

is denoted as m
µ−−→
b

n; it models the transition from a monitor state m to a new

monitor state n via the symbolic action µ where the predicate b constrains the
free variables in the action µ and the monitor states m and n. It is defined as the
least relation satisfying the rules in Fig. 1 (we elide the symmetric rule sChR).
Rule sVer states that a verdict w can analyse any symbolic action θ under any
circumstance, i.e., true, and transition to itself, modelling verdict irrevocability.
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A conditional monitor if b thenm else n can (silently) τ -transition to either m
under the pretext that b holds (rule sIfT), or to n if the converse, ¬b, holds (rule
sIfF). The other key rules are sGrE and sGrQ for expression and quantified
guards respectively: whereas the latter rule transitions with the symbolic event
l〈x〉 without constraining x, the former rule requires that x is equivalent to the
guard expression e, i.e., e = x. The remaining rules are fairly straightforward;
see [17] for details. Fig. 1 also defines derivation rules for weak symbolic transi-

tions (without trailing silent actions), m
θ

=⇒
b
p n, and reductions, m =⇒

b
n. The

predicate m
θ

=⇒
b
p is used as a shorthand notation for the requirement ∃n·m θ

=⇒
b
p n.

The symbolic transitions in Fig. 1 are defined over general terms that are
potentially open. They are used to abstract over concrete transitions—defined
over closed monitor terms—in our symbolic analysis. The pair 〈b,m〉 is used to
represent the set of concrete terms {mρ | JbρK = true }. Typically, a symbolic
analysis starts off from a concrete term m, denoted by the pair 〈true,m〉 where
m is closed. General constraining conditions b in a pair 〈b,m〉 are accrued from

prior transitions as follows. The symbolic transition relation m
µ−−→
c

n is used

to abstractly calculate the set of concrete transitions mρ
µρ−−→ nρ from the pair

〈b,m〉 for any ρ satisfying b, i.e., JbρK = true, whenever ρ also satisfies c. In order
to record this fact, the resulting set of monitor states is encoded as 〈b ∧ c, n〉.

Our symbolic analysis rests on another important technical machinery. Since
it is concerned with abstracting over internal non-determinism (as long as it does
not manifest itself in terms of the verdicts reached) we need to (symbolically)
reason with respect to sets of (open) monitor terms, M ⊆Mon, denoting the set
of possible monitor states that we could have reached thus far. Concretely, the
symbolic analysis works on constrained monitor-sets, 〈b,M〉, where the boolean
condition b constrains the free variables present in every monitor m ∈ M , i.e.,

J〈b,M〉K def
= {mρ | m ∈ M and JbρK = true }. The meta-function fv(−) is lifted

to constrained monitor-sets in the obvious manner i.e., fv(〈b, {m1, . . . ,mn}〉) =
fv(b)∪fv(m1)∪ . . .∪fv(mn). In the sequel, we also use the notation ∧B for some
set of boolean conditions B = {c1, . . . , cn} to denote the syntactic conjunction
of all the conditions in B. The helper function frsh(V ) is also used to generate
the next fresh variable x which is not in the variable set V ⊆ Vars.

Symbolic controllability employs two predicates on constrained monitor-sets.
The predicate spr

(
〈b,M〉, w

)
holds if some monitor m ∈ M that can symboli-

cally reach a verdict after a finite sequence of silent actions along some condition
c where b∧c is satisfiable. The predicate spa

(
〈b,M〉, θ, c

)
holds if some monitor

m ∈M can weakly analyse the event θ with condition c with a satisfiable b∧c.

Definition 1 (Symbolic Predicates [17]). A constrained monitor-set 〈b,M〉

1. symbolically potentially reaches a verdict w, denoted as spr
(
〈b,M〉, w

)
, when-

ever ∃c ∈ BExp,∃m ∈M such that m =⇒
c
w and sat(b∧c).

2. symbolically potentially analyses an event θ along condition c, denoted as

spa
(
〈b,M〉, θ, c

)
, whenever ∃m ∈M where m

θ
=⇒
c
p and sat(b∧c). �
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Example 2. Recall monitorm2 from E.g. 1. Consider the constrained monitor-set
〈b,M〉 where b is y<20, M = {if y>50 then set( ).⊥ else set〈y+1〉.m′

2}, and

m′
2 = recX.get(y).if y>50 then set( ).⊥ else set〈y + 1〉.X.

This constrained monitor-set cannot potentially reach a verdict, ¬spr
(
〈b,M〉, w

)
.

In fact, via (symbolic) τ -transitions it can only reach the monitor states set( ).⊥
and set〈y+1〉.m′

2. When observing the (symbolic) event set〈z〉, the monitor-set
M can weakly transition to two potential monitor states: one, ⊥, along condition
c1 = (y > 50) and the other, m′

2, along c2 = (y ≤ 50)∧(y′ = y + 1). However,
since the condition b∧c1 is not satisfiable, only the second branch corresponds
to an actual transition in the concrete semantics (i.e., there is a valuation ρ
that satisfies (y < 20)∧ (y ≤ 50)∧ (z = y + 1)). In fact, we can say that the
constrained monitor-set can potentially analyse the event set〈z〉 along c2, i.e.,
predicate spa

(
〈b,M〉, set〈z〉, c2

)
from Def. 1. �

From a specific set of potential states in a monitor computation, say 〈b,M〉,
the symbolic analysis needs to calculate the possible next set of (symbolic) events
the potential states can analyse. This does not only depend on the ability to
symbolically transition with an event θ, but also the conditions required for this
transition to be performed. The function rc(M, θ) defined below computes the
set of all possible conditions along which event θ may occur; it also accounts for
the computation sequences that lead a monitor to deadlock and not be able to
(weak-) symbolically transition with event θ. Once this set of relevant conditions
for event θ is calculated, {c1, . . . , cn}, the analysis needs to calculate which of
these are realisable when paired with b from 〈b,M〉. Since each of these condi-
tions can either be satisfied or violated at runtime, sc(b, {c1, . . . , cn}) returns
the set of all the possible ways {b, c′1, . . . , c′n} can be combined together where
c′i is either equal to ci or its negation; the resulting combinations partition the
valuations satisfying b, with some of the them being possibly empty. This then
allows the symbolic analysis to calculate saft(〈b,M〉, θ, c), the reachable (sym-
bolic) monitor states from 〈b,M〉 after analysing event θ with condition c. Note
also how saft(〈b,M〉, θ, c) accounts for the possibility that an execution branch
of 〈b,M〉 is unable to analyse a symbolic event θ along c: when this is the case, it
introduces the inconclusive verdict, 0, in the set of reachable monitors to model
monitor analysis preemption.

Definition 2 (Symbolic Reachability Analysis [17]). The relevant condi-
tions for a monitor-set M w.r.t. the symbolic event θ is given by:

rc(M, θ)
def
= { c | ∃m ∈M · (m θ

=⇒
c
p or ∃n · (m =⇒

c
n and n 6 τ=⇒ and n 6 θ=⇒)) }

The satisfiability combinations w.r.t. b for set {c1, . . . , cn} is given by:

sc(b, {c1, . . . , cn})
def
= { {b, c′1, . . . , c′n} | ∀i ∈ 1..n · (c′i=ci or c′i=¬ci) }

The reachable constrained monitor-sets from 〈b,M〉 after θ along c are:

saft(〈b,M〉, θ, c) def
= { 〈∧B, saft(M,B, θ)〉 | B ∈ sc(b∧c, rc(M, θ)) and sat(∧B) }



On Implementing Symbolic Controllability 7

saft(M,B, θ) def
=

n
∃m ∈M, c · sat((∧B) ∧ c) and

(
m

θ
=⇒
c
p n

or (∃n′ ·m =⇒
c
n′ 6τ−−→ and n′ 6 θ−−→ and n = 0)

)
 �

Equipped with this set of machinery, we can define Symbolic Monitor Con-
trollability. It requires that:

1. whenever a set of potential states can (autonomously) reach a conclusive
verdict, they must all do so and must do it immediately (without requiring
further τ -transitions, since this can be interfered with when the instrumented
process diverges to create a form of spinlock);

2. whenever a set of potential states can analyse an event, the reachable set of
monitor states after carrying out that event is also included in the relation
(i.e., the relation is closed).

The interested reader is invited to consult [17] for further details.

Definition 3 (Symbolic Monitor Controllability [17]). A relation over
constrained monitor-sets S ⊆

(
BExp× P(Mon)

)
is said to be symbolically con-

trollable iff for all 〈b,M〉 ∈ S, the following two conditions are satisfied:

1. spr(〈b,M〉, w) and w ∈ {>,⊥} implies M = {w};
2. spa(〈b,M〉, l〈x〉, c) where frsh(fv(〈b,M〉)=x implies saft(〈b,M〉, l〈x〉, c)⊆S.

For a monitor m to be symbolically controllable, there must exist some symboli-
cally controllable relation S s.t. 〈true, {m}〉 ∈ S. �

Since symbolic controllability is both sound and complete w.r.t. consistent
monitor detection, it can also be used to determine violations to the latter defi-
nition (recall that consistent detection is defined in terms of concrete events).

Example 3. It is tempting to monitor for the consolidated specifications denoted
by m2 and m3 from E.g. 1, via the monitor m4 = m2 +m3. Upon observing the
(concrete) event init〈50〉, m4 may reach either of two monitor states, m′

2 (from
E.g. 2) and m′

3 (described below); this is permitted by symbolic controllability
(and by consistent detection), as long as both states reach the same verdict.

m′
3 = let lim = ecalc in

(
if x<lim then end( ).⊥ else

recX.get(y).if y ≥ lim then set〈y + 1〉.> else set( ).X
)

But consider a trace of events such as init〈50〉 · get〈60〉 · set〈61〉. If the monitor
transitions to the first monitor state, m′

2, the execution will always be rejected,
whereas if the monitor transitions to the second monitor state, m′

3[50/x], two
further cases must be considered. If the predetermined value lim is larger than 50,
a conclusive verdict will never be reached. Otherwise, the execution is accepted.
The aforementioned trace thus proves that m4 is not consistently detecting.

According to our symbolic analysis of Def. 3, for m4 to be symbolically
controllable, there must exists some relation S that contains 〈true, {m4}〉. By
Def. 3.2, S must also contain 〈true ∧ x = 50, {m′

2,m
′
3}〉. If we assume that lim
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greater than 50 (the converse case is similar), S must also contain 〈true∧(x=50)∧
true, {if y>50 then set( ).⊥ else set〈y + 1〉.m′

2, end( ).⊥}〉 and, in turn (after con-
sidering the symbolic event set〈z〉 with condition y>50), it must also contain
〈true∧(x=50)∧true∧(y>50), {⊥,0}〉. But, clearly, the latter constrained monitor-
set violates Def. 3.1. Thus, no such symbolically controllable relation exists. �

The reachability closure requirement of Def. 3.2, defined using the (symbolic
after) saft(〈b,M〉, θ, c) function of Def. 2, keeps on aggregating the conditions of
the transitions to the constraining condition b in a constrained set 〈b,M〉. This
complicates the formulation of a finite symbolic relation (whenever this exists).
To overcome this, the work in [17] defines a sound method for consolidating
constraining boolean conditions, thus garbage collecting redundant constraints
that bear no effect on the meaning of the (open) monitor-set M .

Definition 4 (Optimised Symb. Controllability [17]). The consolidation
of a boolean expression b w.r.t. variable-set V , denoted cns(b, V ), is defined as:

cns(b, V )
def
= b1 whenever prt(b, V ) = 〈b1, b2〉 for some b2

where the boolean expression partitioning operation prt(b, V ) is defined as:

prt(b, V )
def
=

{
〈b1, b2〉 if sat(b) and b=b1∧b2 and fv(b1)⊆V and V ∩fv(b2)=∅
〈b, true〉 otherwise

Let optimised symbolic reachability from 〈b,M〉 for θ and c, osaft(〈b,M〉, θ, c),
be defined as:

osaft(〈b,M〉, θ, c) def
=

 〈cns(∧B, V ), saft(M,B, θ)〉
B ∈ sc(b∧c, rc(M, θ))

and sat(∧B) and
V = fv(saft(M,B, θ))


A relation S ⊆

(
BExp× P(Mon)

)
is called optimised symbolically-controllable

iff for all 〈b,M〉∈S:

1. spr(〈b,M〉, w) and w ∈ {>,⊥} implies M = {w};
2. spa(〈b,M〉, l〈x〉, c) s.t. frsh(fv(〈b,M〉))=x implies osaft(〈b,M〉, l〈x〉, c)⊆S.

The largest optimised symbolically-controllable relation is denoted by Copt, and
contains all optimised symbolically-controllable relations. We say that a monitor
m is optimised symbolically-controllable iff there exists an optimised symbolically-
controllable relation S such that 〈true, {m}〉 ∈ S. �

Example 4. Although monitoring for a different combined specification involving
m1 and m3 from E.g. 1, i.e., monitor m1+m3, may reach different internal states,
it can be shown to be symbolically controllable via the relation S defined below:

S =

{
〈true, {m1 +m3}〉, 〈x=0, {end( ).⊥,m3

′′}〉, 〈true, {⊥}〉, 〈x 6=0, {m3
′′}〉,

〈true, {m3
′′′}〉, 〈true, {get(y).if y≥ecalc then set〈y+1〉.⊥ else set( ).m3

′′′}〉

}
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where

m3
′′ =

{
let lim=ecalc in if x<lim then end( ).⊥ else

recX.get(y).if y≥lim then set〈y+1〉.⊥ else set( ).X

m3
′′′ = recX.get(y).if y≥ecalc then set〈y+1〉.⊥ else set( ).X

Def. 4 allows us to discard redundant boolean conditions in the constrained
monitor-sets of S, collapsing semantically equivalent entries into the same syn-
tactic representation. For instance, the entry 〈true, {m1 +m3}〉 can potentially
analyse the event init〈x〉 with the relevant conditions {true, x=0}. The satisfiabil-
ity combinations, sc(true, {true, x=0}), are given by {true∧x=0, true∧¬(x=0)}.
The reachable monitor-set obtained by saft(〈true, {m1+m3}〉, init〈x〉, true∧x=0)
is 〈true∧x=0, {end( ).⊥,m3

′′}〉, and that obtained by the symbolic calculation
saft(〈true, {m1 +m3}〉, init〈x〉, true∧x 6= 0) is 〈true∧x 6=0, {m3

′′}〉. The respective
conditions are consolidated as x=0 and x 6=0.

Similarly, the entry 〈x=0, {end( ).⊥,m3
′′}〉 can potentially analyse the event

end〈x′〉 with the relevant conditions {true, x<ecalc∧true}. The monitor-set ob-
tained by saft(〈true, {end( ).⊥,m3

′′}〉, end〈x′〉, (x=0)∧(x<ecalc)∧true) is given
by 〈(x=0)∧(x<ecalc)∧true, {⊥}〉; importantly, the conditions are consolidated
as true since none of them impose any constraint on monitor-set {⊥}. �

3 Preliminary Implementation

Symbolic Controllability, Defs. 3 and 4, is declarative in nature: to show that a
monitor m is symbolically controllable, it suffices to provide a symbolically con-
trollable relation S containing the constrained monitor-set 〈true, {m}〉. However,
this does not provide any indication on how this relation can be obtained.

Our preliminary attempt devising this algorithm is described in Alg. 1. Intu-
itively, the procedure starts from the initial constrained monitor-set 〈true, {m}〉,
checks for clause Def. 3.1 and then generates new monitor-sets to analyse using
clause Def. 3.2. Constrained monitor-sets are represented as a pair containing a
list of conditions (i.e., conjuncted constraining conditions) and a list of monitors
(i.e., the monitor-set); the base condition true is represented by the empty list.
The algorithm uses a list of pairs, S, and a queue, Q. The list of pairs (initialised
to empty) stores the constrained monitor-sets that will make up the relation we
are trying to construct; the queue, initialised to the singleton element 〈true, {m}〉,
is used to store the constrained monitor-sets that have not been analysed yet.
Lists are convenient for reading and adding data; however, queues perform bet-
ter when data needs to be removed since they have a time complexity of O(n)
and O(1) respectively. The list S observes two key invariants, namely that (i)
all the pairs in S satisfy Def. 3.1 and (ii) all reachable constrained monitor-sets
from these pairs, obtained via saft(-), are either in S itself or in Q, waiting to
be analysed. When Q becomes empty, a fixpoint is reached: all reachable con-
strained monitor-sets from S must be in S itself, satisfying Def. 3.2, and the
resulting S is closed.
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1 def CompSymRel(S, Q)
2 if Q.empty then
3 return true
4 else
5 # unseen constrained monitor-set
6 〈b,M〉 ← Q.remove
7 S ← 〈b,M〉
8 # condition (1) true
9 if spr 〈b,M〉 then

10 # generate a fresh variable
11 x ← frsh(fv〈b,M〉)
12 sevts ← GenSymEvents(M , x)
13 # generate the reachable cms
14 Q←CompReach(sevts,〈b,M〉,Q,S)
15 CompSymRel (S, Q)
16 else
17 # condition (1) false
18 return false

19 def CompReach(sevts,〈b,M〉,Q,S)
20 for s in sevts do
21 c ← rc(M , s)
22 satComb ← sc(b, c)
23 for scomb in satCombs do
24 if spa 〈b,M〉 s scomb then
25 cms ← saft(〈b,M〉, s, scomb)
26 for cm in cms do
27 if cm 6∈ S then
28 S ← 〈b,M〉
29 Q.append cm # add to queue
30 return Q

31 def IsSymControllable(M)
32 b ← [ ] # [ ] represents true
33 cm ← 〈b,M〉
34 Q← cm # init a queue
35 CompSymRel([ ], Q)

Alg. 1: Pseudocode for the Algorithm automating Symbolic Controllability

Function ComSymRel( ) in Alg. 1 is the main function. If Q is empty, there
are no further constrained monitor-sets to analyse and true is returned (line 3).
Otherwise, a constrained monitor-set is removed from Q. Condition Def. 3.1
is checked (line 9) and the analysis terminates with false if violated. Line 12
obtains all symbolic events that can be observed by the current constrained
monitor-set using function GenSymEvents( ), which is then used to get the
reachable constrained monitor-sets using function CompReach( ). This func-
tion follows closely Def. 1 and Def. 2, but function sc( ) on line 22 returns only
the combinations that are satisfiable; this removes the need to compute sc(b∧ c)
in spa

(
-
)

and sc(∧B) in saft(-). The reachable constrained monitor-sets are
generated on line 25, and those that have not been analysed yet are pushed to Q
on line 29. Alg. 1 is implemented in straightforward fashion using OCaml [27].

Interfacing with the SAT Solver. Generating the set of satisfiability com-
binations w.r.t. a set of relevant conditions (line 22) requires the invocation
of an external satisfiability solver to determine reachable paths. We used the
Z3 [28] theorem prover for this; its numerous APIs allow a seamless integration
with our tool. Z3 relies on hand-crafted heuristics [30] to determine whether
a set of formulas, also known as assertions, is satisfiable. Instead of opting to
use the default solver, we used a custom strategy based on the built-in tactics
ctx-solver-simplify( ) and propagate-ineqs( ), performing simplification and
inequality propagation respectively. We used another important feature of Z3:
instead of returning a boolean verdict, the function invoking the SAT solver,
sat( ), returns the simplified formula together with the verdict. This increases
the number of discarded conditions during boolean consolidation and makes fu-
ture satisfiability checks that refine this condition less expensive.
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Complexity Bounds. The complexity of Alg. 1 depends on two parameters:

1. The terms reachable from the initial monitor m via the symbolic semantics
of Fig. 1, denoted here as the set reach(m). Since our monitors are expressed
using a regular grammar, we can show that this set is finite for any monitor
m ∈ Mon, i.e., size

(
reach(m)

)
=i for some i ∈ N; see [4] for a similar

proof of this fact. As our controllability analysis relies on sets of reachable
monitors, the standard complexity for the power set construction is O(2i).

2. The satisfiability checks of the boolean constraints b generated by the sym-
bolic analysis. In general, Alg. 1 needs to check the satisfiability of the
boolean condition of every monitor set from the previous point. Satisfia-
bility is usually a function of the number of free variables, j ∈ N, in the
boolean condition b. Although the standard boolean satisfiability would be
O(2j), the boolean conditions in Alg. 1 involve variables for integers with
operators, i.e., integer programming. Since we are agnostic of the expression
language used, this is not decidable for general integer expressions [29] (e.g.,
expressions with both addition and multiplication). Limiting expressions to
Presburger arithmetic would recover decidability [10], yielding a complexity
that can be safely approximated to 2O(j).

When decidable, the complexity of Alg. 1 can be safely approximated to 2O(i+j).

4 Evaluating Efficiency

Although Sec. 3 demonstrates that controllability analysis can be implemented,
albeit with high worst-case complexity bound, it is unclear whether the imple-
mentation scales well in practice. In this section we devise an evaluation strategy
for our tool that attempts to capture typical use-cases; whenever performance
bottlenecks are detected, alternative implementation methods are studied in
Sec. 5 and compared to our baseline implementation.

A Benchmark for Assessing Deterministic Monitor Analysis. A major
obstacle for assessing the scalability of Alg. 1 is the absence of a proper bench-
mark. To this end, we use the monitor modelling syntax of Fig. 1 to design a
suite of pathological monitor template descriptions that are parametrisable in
size and complexity, allowing us to carry out our evaluation in a systematic
manner; see Tab. 1. Each template targets a specific feature of a symbolic anal-
ysis for non-deterministic behaviour. Concretely, Mrec(n) is a monitor template
that generates monitor instances that can transition to multiple sub-monitors,
some of which lead to a verdict while others recurse to induce further iterations
in the monitor analysis loop; this pathological behaviour induces large relation
sizes S in the analysis of Alg. 1. In Mcnd(n), (symbolic) events may be observed
along various boolean conditions with the intention of increasing the number of
constraints b in the corresponding constrained monitor-set 〈b,M〉 analysed in
Alg. 1. The monitor instances generated by Mcnd(n) also have a high branching
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Mrec(n) = recX.
∑n+1
i=1

(
k〈i〉.(l〈i〉.X) + (q〈i〉.>)

)

Mcnd(n) =

l(x).(if x=4 then k〈x〉.⊥ else k〈x〉.>)

+
∑n
i=2

(
if x mod 2=0 then ifx<2(n−i+3) then . . . ifx<2(n−i+3) then

i=2..n

if x>2 then k〈x〉.⊥else k〈x〉.> . . . else k〈x〉.>
i=2..n+1

)

Mbrc(n) =

l(x).
(
if x=4 then k〈x〉.⊥ else k〈x〉.

∑3n
j=1(k〈j〉.>)

)
+
∑n
i=2

(
if x mod 2 = 0 then if x<2(n−i+3) then . . . if x<2(n−i+3) then

i=2..n

if x>2 then k〈x〉.
∑3n
j=1(k〈j〉.⊥)

else k〈x〉.
∑3n
j=1(k〈j〉.>) . . . else k〈x〉.

∑3n
j=1(k〈j〉.>)

i=2..n+1

)

Table 1: Parametrisable Monitor Descriptions

factor, which induces larger monitor-sets M . The final monitor template Mbrc(n)
generates monitors with nested branching that alternates with event analysis;
this impacts the number of relevant conditions that need to be considered when
calculating the reachable constrained monitor-sets in Alg. 1.

Preliminary Results. We evaluated the mean running time (over 3 repeated
runs) of our preliminary (Naive) implementation for the three monitor tem-
plates of Tab. 1, instantiated by an ascending parameter n. All experiments
were conducted on a Quad-Core Intel Core i5 64-bit machine with 16GB mem-
ory, running OCaml version 4.08.0 on OSX Catalina. They can be reproduced us-
ing the sources provided at https://github.com/jasmine97xuereb/sym-cont,
whereby the master branch contains the preliminary implementation and the
other branches the individual optimisations.

The plotted time results (in blue) are reported in Fig. 2 on a logarithmic scale;
missing plot-points mean that the (controllability) analysis did not terminate
within a stipulated time threshold (over 10 hours). The results confirm that the
preliminary implementation does not scale well; although it has a low response
time for low values of n, its performance degrades quickly as n increases (the
worst behaviour measured was that for the pathological cases of Mbrc(n), where
we immediately witnessed a sharp spike at n = 3). A closer inspection into
the working of the algorithm reveals that the invocations to the Z3 solver are
expensive operations, incurring a cost that is magnitudes higher than any other
aspect of the analysis. In turn, the number of invocations is dependent on the
number of relevant conditions: in the preliminary implementation of Alg. 1, the
algorithm considers all 2i possible combinations for a given number i of relevant
conditions, each of which needs to be checked for satisfiability. This insight gave
us a focus of attack for improving the tool’s scalability.

https://github.com/jasmine97xuereb/sym-cont
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Fig. 2: Mean Running Time for different monitors

5 Optimisation Techniques

Upon closer inspection, we notice that a substantial number of conjuncted con-
ditions generated by sc( ) of Alg. 1 are (trivially) unsatisfiable. Ideally, these
cases should not result in invocations to the satisfiability solver.

Optimisation Technique O1. The first optimisation technique relies on the
notion of (easily identifiable) mutual exclusion, whereby the satisfaction of one
boolean condition necessarily violates that of the other.

Example 5. Recall the constrained monitor-set 〈b, {m1 +m2}〉 from E.g. 1. The
relevant conditions w.r.t. event init〈x〉 are {b1, b2}, where b1 is x=0 and b2 is
x=50. Accordingly, the satisfiability combinations generated for sc(true, {b1, b2})
are b1∧b2, ¬b1∧b2, b1∧¬b2, and ¬b1∧¬b2. Since x cannot be equal to values 0
and 50 simultaneously, conditions b1 and b2 are mutually exclusive. �

A close inspection of the transition rules in Fig. 1 reveals that the constraints
introduced tend to be of the form x=e; whenever e=v, it is easy to syntactically
determine mutually exclusive conditions as in E.g. 5. The pseudocode in Alg. 2
first partitions the set of boolean conditions into two (line 3): the first partition,
X, consists solely of variable assignments i.e., expressions of the form x=n for
n∈N, whereas the second partition, Y , contains the remaining conditions. For
partition Y , all the possible combinations are generated as in Alg. 1 (line 7).
As for partition X, we first cluster them according to the constrained variable
(line 6); for each cluster, either one condition is true, or all of them are false
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1 def sc(b,cs)
2 result ← [ ]
3 (X,Y ) ← partition cs # X contains var assignments and Y all others
4 for x ∈ Var(X) do # cluster expressions in X by their variable name
5 Xx ← {(y = v) ∈ X | x = y}
6 firstx ← Xx ++ [∧(negate all c in Xx)]

7 second ← all possible combinations for Y
8 combinations ← ("x∈Var(X) firstx)× second # cartesian product of first and second
9 for c in combinations do

10 t ← sat ( [b, c] ) # t:(bool, exp list)
11 if fst(t) then
12 result ← result ++ snd(t)

Alg. 2: Pseudocode for first optimised function sc(b, {c1, ..., cn})

(since they are necessarily mutually exclusive). The resulting combinations are
merged by computing their Cartesian Product (line 8).

Example 6. Consider the open monitor term m5 = init〈y〉.> and constrained
monitor-set 〈b,M〉 whereM= {m1 +m2 +m5} withm1 andm2 from E.g. 1. The
relevant conditions for M along event init〈x〉, rc(M, init〈x〉) are c= {b1, b2, b3},
where b1 is x=0, b2 is x=50, and b3 is x=y. When calculating sc(true, c) using
Alg. 2, condition-set c is partitioned into X= {b1, b2} and Y= {b3}. All the con-
ditions in the X are mutually exclusive. Thus, the possible ways the conditions
in X can be combined are given by the condition-set {b1, b2,¬b1∧¬b2}. The pos-
sible combinations of the conditions in Y are generated as before, and are given
by {b3,¬b3} on line 7. These two resulting sets are merged as: {b1, b3}, {b1,¬b3},
{b2, b3}, {b2,¬b3}, {¬b1∧¬b2, b3}, and {¬b1∧¬b2,¬b3}. Note that whereas Alg. 1
generates 8 combinations (and SAT solver invocations), this is now reduced to
6. Moreover, the latter combinations of logical formulas are less complex. �

In general, given a set of relevant conditions of length k, a set of clusters
Xx∈Var(X) and Y where |Xx∈Var(X)|=nx, |Y |=m, and k=m+

∑
x∈Var(X) nx, the

number of times the SAT solver is invoked is reduced from 2k=2m
∏
x∈Var(X) 2nx

to 2m
∏
x∈Var(X)(nx+1). Hence, the larger the first partition is, i.e., |X|, the

more effective the optimisation. When we evaluate the optimised implementation
against the benchmark in Tbl. 1, depicted by the plot labelled O1 in Fig. 2, we
noticed that even though the running time for monitors Mrec(n) and Mbrc(n)
decreased substantially, that of monitors Mcnd(n) was unaffected.

Optimisation Technique 2. Storing the aggregated boolean conditions as a
flat structure loses information regarding the monitor branching structure.

Example 7. Consider m6, a slight modification of monitor m2 from E.g. 1.

m6 = init〈50〉.let lim = ecalc in m6
′

m6
′ = recX.get(y).if y≥50 then set( ).⊥ else if y<lim then set〈y+1〉.X else set( ).⊥



On Implementing Symbolic Controllability 15

Upon observing event init〈50〉, followed by event get〈y〉, both along the boolean
condition true, the reachable monitor-set for 〈true, {m6}〉 is given by 〈true, {m6

′′}〉,
where m6

′′ = if y≥50 then set( ).⊥ else if y<ecalc then set〈y+1〉.m6
′ else set( ).⊥.

Monitor-set {m6
′′} analyses event set〈x〉 with relevant conditions c1, c2, and

c3, where c1 is (y>50)∧(y<ecalc)∧(x=y+1), c2 is (y>50)∧¬(y<ecalc), and c3 is
¬(y>50). Computing the set of satisfiable combinations, sc(true, {c1, c2, c3}), in
a naive manner entails the invocation of the SAT solver 23=8 times. However,
there are multiple combinations that cannot hold. For instance, c1∧c2 is not
satisfiable because condition c2 occurs along an if true branch, whereas condition
b1 occurs along the else branch of the same monitor. �

We consider a hierarchic representation of expressions, i.e., expression trees
represented as tuples e=〈e′, [e′′], [e′′′]〉 with e′ as the root. For convenience, we
use the suggestive dot notation (.) to access specific elements. The condition of
expression tree, e′, is accessed via the field e.cond. Expression trees have a list of
left and a list of right expressions. The left expressions, [e′′], can only be reached
if sat(e′) and are accessed via the field e.true. Similarly, the right expressions,
[e′′′], can only be reached if ¬sat(e′) and are accessed via e.false. Since [e′′] and
[e′′′] can be reached when e′ is true or false respectively, the expressions along the
left and the right paths are mutually exclusive. Condition true is still represented
by an empty list; expressions e′′ and e′′′ may be expression trees themselves.

Example 8. Recall monitor-set {m6
′′} from E.g. 7. If we recompute the relevant

conditions for this monitor-set w.r.t. event set〈x〉, rc({m6
′′} , set〈x〉), using the

new representation we obtain b = 〈y≥50, [〈y<ecalc, [x=y+1], [ ]〉], [ ]〉. �

1 def Trav(e: exp)
2 def GetPaths(e′: exp list)
3 paths ← [ ]
4 if e′ not empty then
5 for x in e′ do
6 paths ← paths ++ Trav(x)

7 # cartestian product of all p in paths
8 return "ni=1 pathsi
9 if e is an expression tree then

10 branchT ← GetPaths(e.true)
11 branchF ← GetPaths(e.false)
12 # add e.cond to each p in branchT
13 x← e.cond ∧ pi · ∀pi ∈ branchT
14 y ← ¬ e.cond ∧ pi · ∀pi ∈ branchF
15 return x ++ y
16 else
17 return e

18 def sc(b,cs)
19 paths ← [ ], result ← [ ]
20 # X contains only expression trees
21 (X, Y ) ← partition cs
22 for x in X do
23 paths ← paths ++ Trav(x)

24 # cartestian product of all p in paths
25 k ← "ni=1 pathsi
26 first ← X ++ [∧(negate all x in k)]
27 second ← all combinations for Y
28 # cartesian prod of first and second
29 combinations ← first × second
30 # filter out unsatisfiable conditions
31 for c in combinations do
32 t ← sat ( [b, c] )
33 if fst(t) then
34 result ← result ++ snd(t)

Alg. 3: Pseudocode for second optimised function sc(b, {c1, ..., cn})
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The pseudocode for the second optimisation in Alg. 3 relies on the function
Trav( ). It traverses expression tree e passed as parameter and returns a list of
mutually exclusive conditions. This function recursively computes all the paths
along the true and false branches on lines 10 and 11 respectively. Once all the
possible combinations along the true branch of the initial condition e.cond are
generated, each combination is conjuncted with the corresponding initial condi-
tion, e.cond, on line 13. Similarly, those along the false branch are conjuncted
with its negation, ¬e.cond, on line 14.

The function computing the satisfiability combinations, sc( ) in Alg. 3, works
by first partitioning the set of boolean conditions into two, X, and Y , such that
X contains only expression trees. The set of possible combinations of the condi-
tions inX is obtained via function Trav( ), which returns a list of condition-sets,
{c1, · · · , cn}, where each condition-set consists of mutually exclusive conditions.
The cartesian product of these condition-sets is then computed, c1 × · · · × cn,
denoted by the generalised cartesian product "ni=1 ci (line 8). The possible com-
binations relative to the conditions in Y are generated as before. These two lists
of combinations are then joined through their cartesian product (line 29).

Example 9. Recall boolean condition b = 〈b1, [〈b2, [b3], [ ]〉], [ ]〉 from E.g. 8, where
b1 is (y≥50), b2 is (y<ecalc), and b3 is (x=y+1). We illustrate how the set of
combinations deducible from expression tree b are obtained. Calling Trav( )
on expression b generates the set of all possible combinations by traversing its
left and right sub-branches recursively (lines 10, 11) to produce two lists of mu-
tually exclusive conditions, [b2∧b3,¬b2] and [ ]. The conditions in [b2∧b3,¬b2]
are conjuncted with b1 (line 13), resulting in c1 = b1∧b2∧b3 and c2 = b1∧¬b2.
Similarly, [ ] is conjuncted with ¬b1, resulting in c3 = ¬b1. Trav( ) then re-
turns [c1, c2, c3]. Generating the satisfiability combinations, sc(true, {c1, c2, c3})
in E.g. 7 decreases the number of possible combinations from 8 to 3. �

It is worth noting that the effectiveness of this optimisation depends on both
the depth and the number of expression trees, i.e., size of partition X. Evaluating
it against the benchmark in Tbl. 1, we obtain the plot labelled O2 in Fig. 2.
The resulting graph confirms that the tool performs better for Mcnd(n).

Optimisation Technique 3. Despite the merits afforded by the preceding op-
timisations, multiple instances where the satisfiability solver must be invoked
still prevail. We attempt to circumvent this overhead by batching the satisfiabil-
ity checks. If all two-pairs are simultaneously satisfiable, the satisfiability of the
entire list is checked, otherwise, if one pair is unsatisfiable, then it immediately
follows that the list of conditions is unsatisfiable. This results in the mean run-
ning times shown by the plot labelled O3 in Fig. 2 (recall that the values on the
y-axis are in logarithmic form). This technique yields a substantial gain as well.
For instance, comparing the mean running time against that of the preliminary
version for monitor Mcnd(5) from Tab. 1 there is a percentage decrease of 35%.
Even better, for monitor Mbrc(3), there is a percentage decrease of 99.99%. How-
ever, the other two optimisation techniques depicted by the plots labelled O1
and O2 in Fig. 2 generally give improvements with better orders of magnitude.
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Merged Optimisations. Merging all the optimisation techniques, an improve-
ment in the mean running time is immediately noticeable, especially for monitors
Mbrc(n) from Tbl. 1. For instance, comparing the mean running time for n=3
using the preliminary and the final optimised version, there is a percentage de-
crease of 99.996%. In fact, the plot labelled Merged in Fig. 2, acts as a lower
bound for all other versions.

6 Conclusion

This paper investigates the implementability aspects of monitor controllabil-
ity [17]. We discuss the realisability of a prototype that directed us towards the
execution bottlenecks of the monitor analysis; we devised a number of solutions
to these bottlenecks, implemented them, and studied which ones are the most
effective. Our implementation remains closely faithful to the original definition
of symbolic controllability, reassuring us of the correctness of our analysis.

Future Work. We plan to build translator tools that generate model descrip-
tions of monitors in terms of the syntax discussed in Sec. 2, as is done in tools
such as Soter [14]. This allows us to analyse a wider range of real-world monitor
implementations using our tool. We also plan to investigate further optimisations
to symbolic controllability that continue to improve the utility of our tool.

Related Work. An alternative approach to analysing for monitor deterministic
behaviour is that of converting the monitor description itself into a determin-
istic one. This approach was investigated extensively in [2,3] for a variety of
methods and concludes that any conversion typically incurs a triple exponential
blow-up. The closest work to ours is [24], which uses SMT-based model check-
ing to prove invariants about monitors. One illustrative invariant they consider
is the analysis of a combined execution of two monitors (akin to our monitor
sets) using k-induction (i.e., bounded model checking); by contrast we consider
the entire (possibly infinite) run through coinduction. Similar work on verifying
dynamic programming monitors for LTL that uses the Isabelle/HOL proof as-
sistant [33] is also limited to finite traces. Isabelle/HOL is used in [35] to extract
certifiably-correct monitoring code from specifications expressed in Metric First-
Order Temporal Logic (MFOTL). Although MFOTL uses quantifications over
event data (similar to ours), the analysis in [35] is limited to formulas that are
satisfied by finitely-many valuations; our techniques do not have this restriction.
Further afield, the work in [31] uses symbolic analysis and SMT solvers to reason
about the runtime monitoring of contracts. Their symbolic analysis is however
concerned with shifting monitoring computation to the pre-deployment phase,
which is different from our aim.
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10. Büchi, J.R.: Weak second-order arithmetic and finite automata. Mathematical
Logic Quarterly 6(1-6) (1960). https://doi.org/10.1002/malq.19600060105
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