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Abstract. We present a novel model-driven approach for testing REST-
ful applications. We introduce a (i) domain-specific language for Ope-
nAPI specifications and (ii) a tool to support our methodology. Our DSL,
called COpenAPI, is inspired by session types and enables the modelling
of communication protocols between a REST client and server. Our tool,
dubbed COTS, generates (randomised) model-based test executions and
reports software defects. We evaluate the effectiveness of our approach by
applying it to test several open source applications. Our findings indicate
that our methodology can identify nuanced defects in REST APIs and
achieve comparable or superior code coverage when compared to much
larger handcrafted test suites.

1 Introduction

Modern software is increasingly composed of concurrent and distributed compo-
nents that are independently developed, and function by exchanging data across
a communication network. The interaction of such components may be based
on classic client-server Internet protocols (such as SMTP, IMAP, and POP3),
various forms of remote procedure calls (RPCs), web-based standards—such as
the REpresentational State Transfer (REST) architectural design.

Ensuring the correctness and reliability of these applications is notoriously
hard. Software developers typically create handcrafted test suites, which must
address many (and ever-growing) application usage scenarios: It is often the
case that such manually-written test suites are developed intermittently, over
long periods of time, by a variety of testers. This makes the software develop-
ment and testing process error-prone and susceptible to inconsistencies [23,33].
A number of efforts have emerged with the aim of simplifying the testing pro-
cess of component based-software by streamlining the amount of manual work
through automatic test generation. Most of these efforts focus on automatic test
generation for applications exposing an API over a network, where there is a con-
siderable interest in addressing the popular REST API style [4,5,7,13,15,21,30–
33,37,43].
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Fig. 1. Typical documentation provided for REST APIs.

Example 1. Figure 1a shows a fragment of a REST API of the SockShop web
application [38] written as an OpenAPI specification [28]. A new customer can
be created by passing the necessary credentials as payload to the operation with
ID addCust (lines 3–4); this operation returns a unique reference identifier for
the customer, meant to be used in subsequent operations to create a payment
card (addCard) and an address (addAddr) to associate with (previously created)
customers. The customer information including any cards and addresses linked
to it can be retrieved with getCust and deleted with deleteCust. ��

The OpenAPI in Fig. 1a is a typical instance of a REST API description.
OpenAPI is used pervasively for such specifications: it provides information on
the available URIs, the corresponding HTTP methods and respective responses
with the associated data formats (omitted from Fig. 1a). However, OpenAPI
does not specify the relationships and dependencies between different API invo-
cations. For instance, Fig. 1a does not express that:

– Customer information can be added (addCard, addAddr), retrieved
(getCust), or deleted (deleteCust) only after the customer is created
(addCust).

– Operations addCard, addAddr or getCust cannot be executed after the cus-
tomer has been deleted (deleteCust).

– Operations addCard, addAddr and getCust may be interleaved without effect-
ing the successful outcome of the other invocations.
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– The variable custId, an ID given to the customer upon creation is to be used
to perform any operation on the customer (such as retrieval or deletion).

These dependencies induce an ordering in the API invocations, depicted in
the message sequence chart in Fig. 1b. Unfortunately, this information is often
omitted (cf. [8,19,38]) or only informally stated (as e.g., in [14]). In develop-
ment contexts, this is often sufficient as developers are typically able to deduce
the intended order of invocation by examining the descriptions of requests and
the data types exchanged by each operation. However, this omission becomes
problematic when testing. Deviations from the dependencies identified earlier in
Fig. 1b can be categorized as logic-based faults, that is, errors stemming from
incorrect or unintended actions within the business logic of the application.
Such violations are often intricate and context-specific, arising from the unique
interactions and workflows within the application. These faults are not easily
detectable through basic system responses or standard error codes and typi-
cally necessitate comprehensive, scenario-based testing for identification. Fur-
thermore, these faults are intrinsically linked to the essential operations and
branching mechanisms of the application, impacting its ability to perform as
intended.

Previous work on REST API testing proposes various fully-automated test
generation strategies [5,21,33,42]. These push-button tools excel at detecting
systemic errors that are related to the system’s general functioning such as
server crashes, malformed requests, unauthorized access attempts, or resource
not found errors. However, it is unlikely that logic-based errors are uncovered by
invoking the API without an explicit pre-defined model of the intended inter-
action with the API. E.g., in the SockShop application from Example 1, such
tools are able to detect if the SUT crashes when creating a new customer, but
it is unlikely that they are able to detect whether the SUT allows the retrieval
of a previously deleted customer. A test to detect such errors should create a
customer and then try to retrieve the same customer after having deleted it. It
has been empirically shown that the quality of tests substantially improves when
conducted in a stateful manner, i.e., by exploring states of the system under test
(SUT) that are reachable via sequences of invocations [5]. A recent work con-
cludes that: “existing tools fail to achieve high code coverage due to limitations of
the approaches they use for generating parameter values and detecting operation
dependencies” [22].

The state-of-the-art of testing REST APIs can be seen on a spectrum. At
one end, manual tests, though labor-intensive, excel at uncovering complex, logic-
based errors. At the opposite end are fully-automated testing tools, which, while
requiring minimal effort, fall short in detecting eloaborate errors. This work seeks
a middle ground, leveraging a model-based approach. Our goal is to automate the
identification of more logic-based faults, thus bridging the gap between labor-
intensive manual testing and the scope of fully-automated tools.

Contributions. We present a model-based, tool-supported methodology for the
automatic testing of web applications exposing REST APIs. Our approach allows
the specification of API dependencies and constraints. Our contributions are:
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Fig. 2. Methodology overview

1. COpenAPI: a domain-specific language designed to specify dependencies
between requests in an OpenAPI specification that capture the state of the
interaction with the SUT and the sequencing of message exchanges;

2. COTS: an automated tool leveraging COpenAPI models to generate tests
that interact with the SUT and assess the correctness of its responses.

3. Experimental results demonstrating the effectiveness of COpenAPI and
COTS using case studies from various application domains. We compare
our results against RESTful API testing tools and manually-written tests.

The key benefits of our approach are in terms of (i) a high degree of expressive-
ness due to the possibility of specifying data dependencies, (ii) effectiveness of
the approach that can identify logic-based faults, and (iii) high level of coverage.

2 A Model-Driven, DSL-Based Methodology

2.1 Background

Based on the REST architectural style [16] and HTTP protocol, REST APIs
facilitate software services on the web by exposing resources through HTTP
URIs, which are manipulated using standard HTTP request methods like GET,
POST, PUT, and DELETE. Responses are represented by standard HTTP codes
(e.g., 200 for success, 404 for missing resources, 500 for server errors). While
OpenAPI and GraphQL [18] are prominent for documenting REST APIs, our
emphasis on OpenAPI stems from its broad adoption and tool support for gener-
ating client libraries across various programming languages. Though our method-
ology primarily targets OpenAPI, it’s flexible for other web API standards like
GraphQL.

The technical nature of REST APIs, their complex state-dependent interac-
tions, and their evolving nature introduces challenges for which existing model-
based testing methods and tools are ill-suited (see related work in Sect. 5). To
bridge this gap, we introduce the COpenAPI DSL (Sect. 3), designed to artic-
ulate the intricate sequences and state dependencies characteristic of RESTful
interactions, enabling precise testing beyond the capabilities of existing models
and tools.
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2.2 Methodology

Our methodology consists of the three phases depicted in Fig. 2:

(P1) modelling phase: construct a model that describes how a client application
might interact with the SUT, and how the SUT is expected to respond to
the client’s inputs;

(P2) testing phase: automatically generate a test driver that tests the SUT by
interacting with it according to the model, and reports whether the SUT
responses violate the model;

(P3) analysis phase: inspect the outputs produced by test driver to identify
faults in the SUT.

The phases (P1), (P2) and (P3) are iterated when the model has to be refined
according to the findings of the analysis or it has to be evolved according to the
life cycle of the SUT. The main goal of our approach is to automate the testing
phase, and let testers shift their efforts to the modelling phase, reducing the need
to develop (and maintain) a large suite of handcrafted test.

The first step towards the methodology entails determining a suitable model
for phase (P1), allowing for the automatic derivation of tests for RESTful appli-
cations. To write such model, we design COpenAPI (see Sect. 3) taking inspi-
ration from (binary) session types [20].

The next step in our methodology is (P2), i.e., the testing phase. In this
phase, the test driver interacts with the SUT by sending and receiving messages
according to the COpenAPI model. The test driver needs to perform two types
of interactions with the SUT:

– the test driver must send requests to the SUT of the correct format and
payload type; and

– the test driver needs to check that the responses received from the SUT do
not violate the COpenAPI model. These violations may be of three forms:

• the response code received is not valid, or
• the payload data does not have the expected format, or
• the response code and payload data format are valid, but the payload data

causes an assertion violation in the model (e.g., by violating a constraint
involving data from a previous request/response).

The last phase of the methodology Item (P3) is devoted to the identification
of faults in the SUT, by inspecting the outputs of the test driver. The test driver
produces a successful test when it manages to complete a full traversal of the
COpenAPI model without finding any of the aforementioned errors. To help
with the analysis, the test driver produces two outputs:

1. a log file with information about every performed test: the random seed used
to generate it, the sequence of messages sent and received and their respective
payloads, and the test outcome (pass/fail); and

2. an offline representation of failed tests, usable for manually reproducing faults
of the SUT without re-executing the test driver, useful for, e.g., bug reporting.



80 C. B. Burlò et al.

3 A DSL for OpenAPI

We introduce a DSL based on an augmented form of session types [12,20,36].
Intuitively, a session type specifies the valid sequences of message exchanges (i.e.,
the protocol) that regulate the interaction between communication programs;
here we focus on binary session types, which model how a program is expected
to interact with just one other program (in our case, a client with a RESTful
server).

The formal syntax of our augmented session types S is:

S ::= +
{
!operationIdi(geni).Si

}
i∈I

(internal choice)∣
∣ &

{
?responseCodei(deci)〈Ai〉.Si

}
i∈I

(external choice)∣
∣ rec X.S (recursion)∣
∣ X (recursion variable)∣
∣ end (termination)

T ::= Int
∣
∣ String

∣
∣ . . . (data types)

G ::= Int(g)
∣
∣ String(g)

∣
∣ . . . (data types with generators)

where I is a finite non-empty set of indexes and for i ∈ I, geni is a generator
assignment xi,1 : Gi,1, . . . , xi,ni

: Gi,ni
(cf. Example 2) and dec is a type assign-

ment xi,1 : Ti,1, . . . , xi,ni
: Ti,ni

) with xi,1, . . . , xi,ni
pairwise distinct. We use

standard data types, including standard types (e.g., Int, String, ...) and user-
defined types. Generators are also user-defined, tailored to the particular request
being sent. This enables crafting input scenarios that are specifically aimed at
exploring under-tested paths or complex behaviour of the API, enhancing both
the depth and breadth of the testing coverage.

The communication units of our syntax are the output and input prefixes,
respectively !operationId and ?responseCode where operationId is the corre-
sponding identifier referring to the specific request in the OpenAPI specification
and responseCode is the HTTP response code that is returned from the service
after the request is made (see Sect. 5). Assertions A are boolean expressions that
may refer to the variables occurring in preceding payload descriptions.

We illustrate the usage of COpenAPI with the following example which
elaborates on the protocol in Fig. 1b.

Example 2. Figure 3 shows a testing model written in COpenAPI. The model
corresponds to the message-sequence diagram from Fig. 1b. The model specifies
that the interaction protocol should first create a customer by invoking addCust
together with two payload generators:

1. genApiKey which retrieves a key to authenticate with the API; and
2. genCustInfo to generate the customer information.

The server is then expected to reply with the response code 201 indicating
that the customer creation was successful, while also including an identification
code of type String which is bound with the variable custId. Next, the driver
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Fig. 3. Example of a COpenAPI model using the OpenAPI specification in Fig. 1a,
formalising the message-sequence diagram in Fig. 1b.

chooses between sending addCard, addAddr, getCust or deleteCust, including
the data required in the respective payloads by either invoking the specified
generators, or use previously-bound variables. For instance, in the case where
addCard is selected, the payload must include: (1) the API key stored in the
variable apiKey, (2) the specific customer ID stored in the variable custId, and
(3) the card information, by invoking the generator getCardInfo.

The model also specifies the use of a user-provided assertion checkCustomer
(line 9) to check the response sent by the SUT for the response getCust.
The assertion checks whether the retrieved customer information (stored in c2)
matches with the information provided when the customer was created when
addCust was invoked (stored in c1). If the assertion succeeds, the test driver
loops and performs the choice (line 3) once again. Otherwise, the test run termi-
nates and the test is marked as failed. The recursion repeats until the test driver
selects delCust, after which the protocol would terminate successfully. ��

3.1 Semantics of COPENAPI

We give a denotational semantics of COpenAPI by mapping its model to sets of
finite sequences of input/output events. Given a output prefix π, [[π@i]] denotes
the set of values in the codomain of the generator of the i-th parameter of π
while for an input prefix π, [[π@i]] is the set of values inhabiting the type of the
i-th parameter of π. We define

E = {π(v1, . . . , vn)
∣
∣ π is a prefix and ∀1 ≤ i ≤ n : vi ∈ [[π@i]]}

Let M a COpenAPI model and ρ be a map assigning subsets of E� to free
recursion variables of M . The semantics of M in ρ, is the set [[M,ρ]] defined
according to the equations in Fig. 4. The semantics is defined by induction on the
structure of the COpenAPI models and returns a set of finite traces; the idea is
that this set represents all the executions allowed by a COpenAPI specification.
Basically, [[M,ρ]] yields the possible tests that the test driver might use. For
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Fig. 4. Semantics for the COpenAPI language.

example, the internal choice is defined as the set of all possible output prefixes
in the choice with the different variations of the values that can be generated
from the generators. The case for the external choice is similar, with the only
exception that once the values are replaced in assertions of branches should
hold. The semantics of end is standard. The map ρ keeps track of the recursive
variables in S; initially we assume that M is closed, i.e., it has no free occurrences
of recursion variables. This makes the semantics of recursion standard.

3.2 Implementation

We implement the COpenAPI language as part of a tool called COTS. Imple-
mented in the Scala programming language, takes as input the COpenAPI
model and the optional preamble, and generates the Scala source code of an
executable test driver that interacts with the SUT according to the model. The
test driver, in turn, interacts with the REST API exposed by the SUT by using
a Scala API which is autogenerated from the provided OpenAPI specification,
using OpenAPI Generator.1 When the test driver runs, it invokes such Scala
API methods to send HTTP requests to the SUT, and to receive and parse its
responses; the model determines which requests are sent (and in what order)
by the test driver, and which responses are expected. After completing the test
runs, the test driver produces the following output:

(1) the level of model coverage achieved by the test runs;
(2) a log file with information about every performed test: the random seed used

to generate the test, the sequence of requests/responses and their payloads,
and the test outcome (pass/fail);

(3) an offline representation of failed tests as sequences of curl2 commands,
which can be executed from a shell to reproduce faults of the SUT without
re-executing the test driver.

1 https://openapi-generator.tech.
2 https://curl.se.

https://openapi-generator.tech
https://curl.se
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Table 1. Case studies.

Application Notes

FeaturesService [14] Used in empirical evaluation of [4,24,33,41]
RESTCountries [27] Used in the empirical evaluation of [41]
GestaoHospital [35] Used in the empirical evaluation of [41]
LanguageTool [29] Used in the empirical evaluation of [24,41]
PetClinic [8] Used in the empirical evaluation of [10]
UsersRegistry [19] Uses non-trivial API authentication
PetStore [9] Used in the empirical evaluation of [24]
SockShop [38] Used in the empirical evaluation of [1,6]
Openverse [39] Industry app, part of WordPress project

4 Evaluation

In this section, we conduct a comprehensive evaluation of our methodology and
its practical application in COTS. This assessment is twofold:

1. Qualitative Analysis: We aim to determine if the test-models defined by
COpenAPI and the test drivers generated by COTS are effective in identi-
fying logic-based faults.

2. Quantitative Analysis: We assess the effectiveness of our methodology in
terms of code coverage, which is a standard metric for evaluating testing tools.

Given the novelty of our approach in user-written, model-based testing for
REST-APIs, we establish our baseline comparison with: i) fully-automated
REST testing approaches; and ii) manually crafted REST API tests.

4.1 Experiment Setup

To conduct such evaluation, and obtain the results presented in Sect. 4.2, we
follow the preparatory steps illustrated in the rest of this section: we first select
the artefacts, build their COpenAPI model, and we determine an adequate
number of test runs per application.

Artefact selection. To conduct such an evaluation, we consider a sample of third-
party applications listed in Table 1, satisfying the following criteria:

1. they must be open source, to facilitate reproducibility of our results;
2. they must have OpenAPI specifications, needed by COTS;
3. they should be non-trivial and thus representative of real-world RESTful

applications;
4. ideally, they should include manually-written tests of their REST APIs,

should be amenable to code coverage measurements, and should have been
already used for evaluation in previous literature on testing.
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All applications in Table 1 are open source, provide OpenAPI specifications,
and are non-trivial; moreover, all of them (except UsersRegistry and Openverse)
have been used in previous testing literature. The first 5 applications also satisfy
the rest of our “ideal” criteria (item 4 above): they include handcrafted test suites
for their REST APIs, and their architecture (consisting of a single Java-based
executable) allow us to easily collect and analyse code coverage information using
standard tools. Two other applications (LanguageTool and PetStore) also have
similar architecture (allowing us to analyse code coverage), but do not include
a test suite for their REST APIs.

Building the COpenAPI Models. As we are not the authors of the SUTs in
Table 1, we were required to infer the usage of the SUTs as intended by their
developers—in particular, what sequences of operations (request/responses) are
valid, and how some requests may depend on others. As mentioned earlier, this
information is typically only given informally in the application documentation,
it may not be up-to-date, and is often omitted. Therefore, we often inferred
this information by examining the pre-existing handcrafted tests, or by studying
existing REST API clients. We also enriched our test models with application
usage scenarios that, although possible, might have been overlooked in the exist-
ing handwritten tests. This way, our models may leverage SUT functionalities
beyond those covered by the existing tests, and potentially reveal new faults in
the SUTs.

Example 3. FeaturesService was the only application with documentation about
some of its operations. For instance, the documentation says:

“The application should allow one to add a constraint such that when a
feature requires another feature to be active, the latter feature cannot be
deactivated without first deactivating the former.”

To test whether FeaturesService respects such a description, we formalise the
COpenAPI model shown in Fig. 5 (abridged). This model specifies that the
test driver should first add two features by invoking addFeature; their names
are created by random generators and bound in variables feat1 and feat2. Then,
the test driver should invoke addConstraint specifying that feat2 requires feat1.
Finally, the test driver should attempt to delete feat1 via delFeature, expecting
the SUT to answer with a 400 “bad request” response. If the SUT was to answer
with anything other than a 400, (such as 200, indicating that the operation was
successful) it would indicate a fault in the logic of the SUT. ��

Determining an Adequate Number of Test Runs. After writing the COpenAPI
model of each SUT and generating its test driver using COTS, we established
an adequate number of test runs for each SUT. The optimal number of test runs
is the smallest number that maximises (1) the number of discovered faults, (2)
the level of code coverage, and (3) the level of model coverage. This number
depends on the complexity of the SUT and the COpenAPI model in use. To
determine the optimal number, we adopted an incremental approach: gradually
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Fig. 5. COpenAPI model for testing FeaturesServices (abridged), discussed in Exam-
ple 3.

increase the number of test runs until the rate of bug discovery and code coverage
plateau. This was determined by analysing the logs generated by COTS for each
application and verifying that the model was being fully traversed.

4.2 Results

We now present our results, in terms of discovered faults (Sect. 4.2) and code
coverage (Sect. 4.2).

Discovered Faults. Table 2 reports the number of faults discovered by our
test models and the COTS-generated test drivers, categorised by the test oracle
that detected the fault. We found 25 faults across the 9 selected applications and
reported some of the most representative faults to the application maintainers;
when we received a reply, in almost all cases the developers acknowledged that
the faults were real bugs.3

Table 2 classifies the faults detected by COTS into logic-based and system-
atic categories. Logic-based faults, embedded in the SUT’s logic, are discerned
through testing specific operational sequences, while systematic faults, inherent
in the SUT’s overall function, can be identified by testing the requests in isolation
of other requests. COTS successfully uncovered 10 logic-based and 15 system-
atic faults. Detecting the logic-based faults is attributed to COpenAPI models,
which incorporate the SUT’s domain knowledge, enabling COTS to navigate
complex, interdependent request-response sequences. Such intricate sequences
are unlikely to be deduced by fully-automated tools (e.g., Example 3), that,
as mentioned earlier focus more on systematic faults. Furthermore, as Table 2
demonstrates, COTS effectively detects both fault types.

Some examples of logic-based faults follow:

– In the PetClinic model, we included an assertion to verify that a newly cre-
ated resource can be subsequently retrieved from the SUT. However, COTS

3 For LanguageTool, we reported 3 cases of “500 Internal Server Error” uncovered by
our test model; such errors are considered faults in REST testing literature, but
LanguageTool produces such errors to signal an unsupported functionality.
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Table 2. Faults discovered by COTS test drivers and oracles, using our COpenAPI
models.
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FeaturesService 6 0 0 6 (1, 0) 2 4
RESTCountries 0 2 0 2 (2, 0) 2 0
GestaoHospital 1 0 0 1 (1, 0) 0 1
LanguageTool 3 0 0 3 (3, 3) 0 3
PetClinic 5 0 2 7 (3, 3) 4 3
UsersRegistry 1 0 0 1 (1, 1) 0 1
PetStore 1 0 0 1 (1, 0) 0 1
SockShop 1 1 0 2 (2, 0) 1 1
Openverse 1 1 0 2 (2, 2) 1 1

Total 19 4 2 25 (16, 6) 10 15

discovered a fault: if a resource is updated, subsequent retrieval attempts fail,
indicating an issue in the SUT’s retrieval operation.

– Another fault in the PetClinic application involved inconsistent identification
numbers. The SUT issues an ID number when a resource is created, but the
list of resources returned shows different IDs than those originally assigned.

– The FeaturesService application did not adhere to the model shown in Exam-
ple 3. It incorrectly permitted the deactivation of feat1, which should have
been disallowed, and erroneously returned a successful HTTP status code of
204 instead of indicating failure.

– In the SockShop application, a significant fault was identified: the application
fails to retrieve resources immediately after their creation. This fault was
detected by first creating the resource and then attempting to retrieve it via
the API sequence modelled via COpenAPI.

Code Coverage. Table 3 reports the size of the case studies,4 and compares
COTS model-based testing coverage results against handcrafted REST API
test suites (when available as part of the selected case studies), and against
fully-automated REST API testing.

The table shows the sizes (in lines of code) of our COpenAPI models against
the handwritten REST API test suites. The COTS model sizes include the
preambles, whereas the handwritten test sizes exclude their comments. Table 3
4 The LanguageTool application has 5 API endpoints but only 2 are testable.
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Table 3. Size information about the case studies, and comparison between COTS-
based testing results (with COpenAPI models developed by us, executed for up to
1min with default initial randomness seed), handwritten tests (part of the SUT source
code), and Morest (average across 5 repetitions, each requiring 8 h of execution).
The coverage is measured using JaCoCo 0.8.8 (https://www.eclemma.org/jacoco) with
standard configuration; JaCoCo is also used in the Morest evaluation [24].
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RESTCountries 2409 22 247 300 100 1722 896
GestaoHospital 4427 20 138 463 50 2857 2532
PetClinic 10,416 35 225 1321 100 3099 3127
UsersRegistry 5452 11 68 246 50 2035 1906
FeaturesService 2026 18 98 377 150 1626 1576 360
LanguageTool 18,053 2 75 20 4999 935
PetStore 3693 20 111 100 1987 763.20
SockShop 3392 15 99 50
OpenVerse 7117 16 124 1

also shows the number of test runs performed using COTS and the number of
lines covered by 1. COTS; 2. the applications’ handwritten REST API tests;
and 3. the fully-automated tool Morest [24,25]. We focus on Morest because a
recent study [24] shows Morest to be superior to the other fully-automatic REST
API testing tools in literature. Therefore, we selected Morest as representing the
state-of-the-art, and included some of its case studies (FeaturesService, Lan-
guageTool and Petstore) in our experiments.

In Table 3 we can observe that COpenAPI models are smaller than the hand-
written tests provided by the SUTs—and yet, their code coverage is comparable,
and higher for COTS in most cases. In the case of RestCountries, the COpe-
nAPI model size is quite close to the handwritten tests size, but the COTS
coverage is significantly higher. This suggests that a concise COpenAPI model
can replace (part of) a larger handwritten test suite, allowing testers to “concen-
trate on a (data) model and generation infrastructure instead of hand-crafting
individual test” [11].

With respect to the fully-automatic testing tool Morest, the benefits of devel-
oping a COpenAPI model are evident in the significantly higher line coverage
achieved by COTS. In the three common applications we examined, COTS
achieved 3 times as much coverage in PetStore, 4 times as much in FeaturesSer-
vice, and 5 times as much in LanguageTool. Our results were obtained in a few
seconds (once the COpenAPI model was developed), whereas the Morest cov-
erage is averaged over 5 executions taking 8 h each. This suggests that, after the

https://www.eclemma.org/jacoco
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initial investment of time needed to write a COpenAPI model, our model-based
approach pays off in terms of coverage achieved and time saved over repeated
executions.

4.3 Threats to Validity and Limitations

The time taken to develop COpenAPI models for these case studies varied
from one application to another, depending on the complexity of the requests of
the applications. On average, we estimate that it took us 30 h to complete each
model—including the time we used to infer the intended usage of the application
in question. We believe that a developer or tester more familiar with the appli-
cation domain and requirements would write equivalent (or better) test models
in less time.

Internal Threats to Validity. The method for determining optimal test runs
could lead to imprecisions due to local maxima. Our lack of precise knowledge
about expected request/response sequences necessitated designing COpenAPI
models based on application tests and source code, potentially introducing bias
(Table 3). Additionally, the comparison does not account for the qualitative
distinction between creating concrete test cases and developing more abstract
COpenAPI models, with the latter possibly being viewed as more challenging.

External Threats to Validity. Our case studies, though diverse, may not uni-
versally represent all application types, limiting generalizability (Sect. 4.1). We
aligned our study with REST API testing discourse, selecting artefacts common
in literature to minimize bias and ensure relevance. Despite these efforts, the spe-
cific selection could limit applicability, though it was necessary for comparability
with existing research.

5 Related Work

In contrast to existing methodologies, our COpenAPI DSL allows for a more
nuanced and comprehensive modelling of REST API behaviour. It enables the
description of complex sequences and dependencies that are essential for thor-
oughly testing RESTful services. This approach is a significant departure from
traditional models, which typically address simpler scenarios or focus on indi-
vidual API operations in isolation.

We classify studies on testing of REST APIs into two broad categories: model-
based and fully automatic.

Model-Based Testing of REST APIs. Our work enriches model-based test-
ing of REST APIs by introducing a sophisticated DSL, COpenAPI, for detailed
modeling and testing, diverging from existing approaches by supporting com-
plex test sequences and state dependencies within a single model (§3). Unlike
Chakrabarti et al. [7] and Fertig et al. [15], who focus on isolated sequences or
operations, our DSL enables multiple test paths and value assertions, surpassing
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the limitations of singular test sequence models and isolated API testing. Fur-
thermore, while Seijas et al. [32] and Pinheiro et al. [30] contribute valuable
perspectives on property-based and state machine-based modeling, they lack in
addressing dynamic data generation and comprehensive evaluation. Francisco et
al.’s [17] constraints-driven approach and Aichernig et al.’s [2] business rule mod-
eling offer insights into precondition and postcondition specification, yet neither
adequately tackles the RESTful API stateful interaction complexity our COpe-
nAPI DSL is designed for. In contrast, TorXakis, another model-based testing
tool, applied in [34] to the Dropbox synchronization protocol, does not support
RESTful APIs and extending it would entail significant development, including
the creation of an adapter for translating REST API requests and responses
and aligning OpenAPI data types with those of TorXakis [34]. Our approach
uniquely facilitates capturing intricate dependencies across REST API requests
and responses, a critical aspect for thorough testing of sophisticated web services.

Fully Automatic Testing of REST APIs. This category includes a variety
of testing approaches [13,31,33,43] and tools such as RestTestGen [37], RESTler
[5], EvoMaster [4], QuickREST [21], RestCT [40] and Morest [24,25]. Starting
from an API specification like OpenAPI [28], these tools automatically gener-
ate tests primarily to check the correctness of individual API responses. They
mostly rely on random data generators or generators automatically derived
from the specifications, which might not fully capture the intricacies of the
API’s behaviour. In contrast, in our work, the sequencing of valid requests and
responses is explicitly specified in the model, enabling complex interactions with
the SUT. This is complemented by our use of non-random, tester-assigned data
generators in the COpenAPI model, which allows for a more targeted and
effective testing approach. This method provides a stark contrast to AGORA’s
invariant detection-based approach [3] and the approach in [26] focussing on the
specification of inter-parameter dependencies. While these methodologies offer
robust solutions in their respective areas, they do not offer the same level of
specificity in interaction sequencing and tailored data generation as our COpe-
nAPI model-driven approach does.

6 Conclusion

We introduced COTS, a tool implementing a model-based testing approach
for RESTful applications using COpenAPI DSL and OpenAPI specifications,
which generates executable test drivers for model-based testing of web services.
Our evaluation against third-party open source applications and comparison with
existing automated REST API testing tools and manual test suites demonstrates
the efficacy of COTS. It achieved comparable or better code coverage and fault
detection with smaller, more manageable models, highlighting the potential for
reduced effort in test creation and maintenance. Future work includes extend-
ing COTS to support other API specifications like GraphQL and gRPC, and
enhancing COpenAPI’s expressiveness by incorporating additional test oracles
and timing constraints.
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