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Abstract. We examine the determinization of monitors. We demonstrate that ev-
ery monitor is equivalent to a deterministic one, which is at most doubly expo-
nential in size with respect to the original monitor. When monitors are described
as CCS-like processes, this doubly-exponential bound is optimal. When (deter-
ministic) monitors are described as finite automata (as their LTS), then they can
be exponentially more succinct than their CCS process form.

1 Introduction

Monitors [23, 10] are computational entities that execute alongside a system so as to
observe its runtime behavior and possibly determine whether a property is satisfied or
violated from the exhibited (system) execution. They are used extensively in runtime
verification [17] and are central to software engineering techniques such as monitor-
oriented programming [6]. Monitors are often considered to be part of the trusted com-
puting base and, as a result, are expected to behave correctly. A prevailing correctness
criterion requires monitors to exhibit deterministic behavior. Determinism is also im-
portant for lowering the runtime overheads of monitoring a system: in order not to miss
possible detections of a non-deterministic monitor, one would need to keep track of all
the monitor states that are reachable for the currently observed execution trace.

Non-determinism is inherent to various computational models used to express mon-
itors, such as Büchi automata [26, 8] or process calculi [5, 27, 10]. As a matter of fact,
non-deterministic monitor descriptions are often more succinct than deterministic ones,
and thus easier to formulate and comprehend. Non-deterministic computation is also
intrinsic to concurrent and distributed programming — used increasingly for runtime
monitoring [24, 18, 5, 9, 3] —, where the absence of global clocks makes it hard to rule
it out, and interleaving under-specification can be used to improve execution efficiency.

In [11], Francalanza et al. identified a maximally-expressive monitorable fragment
for the branching-time logic µHML [15, 16] and their results relied on a monitor-
synthesis procedure for every monitorable µHML-formula. In order to achieve a simple
compositional definition, this synthesis procedure may yield non-deterministic moni-
tors. In this paper we tackle the problem of determinizing monitors in the framework
of [11], which are described using syntax close to the regular fragment of CCS pro-
cesses [20]. We demonstrate that every monitor can be transformed into an equivalent
? This research was supported by the project “TheoFoMon: Theoretical Foundations for Moni-
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Monitor Semantics

ACT
↵.m

↵�! m
SEL

mi
µ�! m0 i 2 I

P
i2I mi
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recx.m
⌧�! m[recx.m/x]
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v

↵�! v

Instrumentation Semantics
MON

p
↵�! p0 m

↵�! m0

m / p
↵�! m0 / p0

TER

p
↵�! p0 m 6 ↵�! m 6 ⌧�!
m / p

↵�! end / p0

ASP
p

⌧�! p0

m / p
⌧�! m / p0

ASM
m

⌧�! m0

m / p
⌧�! m0 / p

Table 1. Monitor and Instrumentation Semantics (↵ ranges over ACT and µ over ACT [ {⌧})

deterministic one, which strengthens the results in [11]. However, we also show that the
price of determinization can be a hefty one: there are monitors which require a doubly
exponential blow-up in size to determinize. Note that, although our results employ the
monitor framework of [11], our methods and findings can be extended to other forms
of automata-like monitor descriptions such as those in [2, 5, 27, 10].

Overview: Section 2 provides the preliminaries. In Section 3, we prove that all monitors
can be determinized and give methods to transform monitors to automata and back.
Section 4 provides lower bounds to complement the constructions of Section 3. Section
5 discusses the main technical results in this paper. Omitted proofs and an extensive
treatment of the determinization of monitors can be found in an extended version [1].

2 Background

We overview the main definitions for the monitoring set-up of [11] used in our study.

2.1 Basic Definitions: Monitoring Processes

Systems are denoted as processes whose semantics is given in terms of a labeled tran-
sition system (LTS). An LTS is a triple hPROC, (ACT [ {⌧}),!i where PROC is a set
of process states (p 2 PROC), ACT is a finite set of observable actions (↵ 2 ACT),
⌧ /2 ACT is the distinguished silent action, and !✓ (PROC ⇥ (ACT [ {⌧}) ⇥ PROC)
is a transition relation. Monitors are described via the specific syntax given below, but
their semantics is also given as an LTS.

Definition 1. A monitor is described by the following grammar:

m 2 MON :: = yes | no | end | ↵.m |
X

i2I

mi | rec x.m | x

where x comes from a countably infinite set of variables and I 6= ; is a finite index
set. We write m + n in lieu of

P
i2I mi when |I| = 2. Constants yes, no, and end

are called verdicts (denoted by v) and represent acceptance, rejection and inconclusive
termination respectively. The behavior of a monitor is defined by the rules of Table 1. ⌅
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A monitored system is a monitor m and a system p instrumented to execute side-by-
side, denoted as m / p; its behavior is defined by the instrumentation rules in Table 1.
Intuitively, a monitor m mirrors visible actions performed by p (rule MON). Whenever
m cannot match an action from p and cannot internally transition to a state that might
enable it to do so, m 6 ⌧�!, then m aborts to the inconclusive end verdict (rule TER).
Finally instrumentation monitors only for visible actions, and thus we allow m and p to
perform internal ⌧ actions independently of each other (rules ASP and ASM). Given an
LTS with a set of states P (of processes, monitors, or monitored systems) with r, r0 2 P
and a set of actions (ACT [ {⌧}), we write r

↵
=) r0 to mean that r can weakly transition

to r0 using a single ↵ action and any number of ⌧ actions, r( ⌧�!)⇤.
↵�! .(

⌧�!)⇤r0. For
each r, r0 2 P and trace t = ↵

1

.↵
2

. . . .↵k 2 ACT⇤, we use r
t
=) r0 to mean r

↵
1=) .

↵
2=)

. . .
↵

k=) r0 if t is non-empty and r(
⌧�!)⇤r0 if t is the empty trace.

In the monitorability results of [11] the verdicts yes and no (referred to hereafter
as conclusive verdicts) are linked to satisfaction and violation of µHML formulas, re-
spectively. We say that a monitor m accepts (resp. rejects) process p when there are a
trace t 2 ACT⇤ and process p0 such that m/p

t
=) yes/p0 (resp. m/p

t
=) no/p0). In this

setting, acceptance is equivalent to saying that p can produce a trace t along which the
monitor can derive the yes verdict, and similarly for rejection and verdict no. Thus,
we say that a monitor m accepts (resp. rejects) a trace t 2 ACT⇤ when m

t
=) yes (resp.

when m
t
=) no). We say that two monitors, m and n are (verdict) equivalent, denoted as

m ⇠ n, if for every trace t and verdict v 2 {yes,no}, m t
=) v iff n t

=) v. The utility of
this monitor equivalence relation stems from the following fact: whenever m ⇠ n, then
for every process state p, if monitor m accepts (resp. rejects) process p, then monitor n
must accept (resp. reject) process p as well.

Multiple Verdicts In [11] the authors show that monitors with a single conclusive verdict
suffice to adequately monitor for µHML formulae; these monitors can use either yes or
no, but not both. We therefore confine our study to determinizing single-verdict moni-
tors (particularly monitors that use the yes verdict), but note that there is a straightfor-
ward approach for dealing with multi-verdict monitors, which are used in other settings
such as in [10]. For details on determinizing multi-verdict monitors consult [1].

Finite Automata We overview briefly Finite Automata Theory, used in Section 3; the
interested reader should consult [25] for further details. A nondeterministic finite au-
tomaton (NFA) is a quintuple A = (Q,⌃, �, q

0

, F ), where Q is a finite set of states, ⌃
is a finite set of symbols, called the alphabet (in our context, ⌃ = ACT), � ✓ Q⇥⌃⇥Q
is a transition relation, q

0

2 Q is the initial state, and F ✓ Q is the set of final or ac-
cepting states. Given a word t 2 ⌃⇤, a run r of A on t = t

1

· · · tk (ti 2 ⌃, 1  i  k)
is a sequence q

0

q
1

· · · qk, such that (qi�1

, ti, qi) 2 � for 1  i  k; r is an accepting
run if qk 2 F . We say that A accepts t when A has an accepting run on t, and A ac-
cepts/recognizes a language L ✓ ⌃⇤ whenever A accepts exactly all t 2 L. In such
cases L is unique and we call it L(A). If � is a function � : Q ⇥ ⌃ ! Q then A is a
deterministic finite automaton (DFA). A classical result is that for every NFA A with n
states, there is an equivalent DFA (i.e. a DFA that recognizes the language L(A)) with
at most 2n states [21]; this upper bound is optimal [19].
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2.2 Determinism and Other Choices

The purpose of this paper is to examine the determinization of monitors, which is the
process of constructing a deterministic monitor from an equivalent nondeterministic
one. We must therefore establish what we understand by a deterministic monitor. For the
purposes of [11], monitor deterministic behavior need only concern itself with the defi-
nite verdicts that can be reached after observing a particular trace t. Stated otherwise, we
can say that a monitor m behaves deterministically whenever it transitions to verdict-
equivalent monitors for every trace t. The work in [11] contains several examples of
monitors that break this behavioral condition: an easy one is mc = ↵.↵.yes+↵.�.yes,
because when this monitor reads an ↵, it has to make a choice and transition to either
↵.yes or �.yes which are not equivalent, ↵.yes 6⇠ �.yes . A deterministic monitor
that is equivalent to mc is ↵.(↵.yes+ �.yes).

For Turing machines, algorithms, and finite automata, determinism is typically more
restrictive, requiring that from every state (in our case, monitor) and input symbol (in
our case, action), there is a unique transition to follow. In the case of monitors, we can
transition either by means of an observable action, ↵, but also via a ⌧ -action, which can
occur without reading from a trace. In finite automata, these ⌧ actions could perhaps cor-
respond to ✏-transitions, which are eliminated from deterministic automata. However,
we cannot readily eliminate ⌧ -transitions from deterministic monitors. For instance, we
need to be able to activate the recursive operators. Instead we require that monitor tran-
sitions denote functions that take us to a unique next state, and moreover that whenever
a monitor can transition with an observable action ↵, it cannot perform silent actions.
A closer inspection of the derivation rules of Table 1 immediately reveals that such
choices can only be introduced by sums — that is, monitors of the form

P
i2I mi with

|I| � 2; we can therefore attain the required behavior via syntactic constraints.

Definition 2. A monitor m is syntactically deterministic iff every sum of at least two
summands that appears in m is of the form

P
↵2A ↵.m↵, where A ✓ ACT. ⌅

As we will see below, this set of monitors is in fact maximally expressive. Lemma 1
demonstrates that the syntactic determinism of Definition 2 ensures that such monitors
will always arrive at the same verdict for a given trace. Following Lemma 1, we will
simply refer to syntactically deterministic monitors as deterministic monitors.

Lemma 1. If m is syntactically deterministic, m t
=) n, and m

t
=) n0, then n ⇠ n0. ut

The first main result of the paper is that given a nondeterministic monitor, we can always
find an equivalent deterministic monitor.

Theorem 1. For each monitor m 2 MON there exists a deterministic monitor, m0 2
MON, such that m ⇠ m0. ut

Besides the constructions we present in this paper, in [1] we present two more methods
to determinize monitors. The first is by reducing monitor determinization to the deter-
minization of CCS processes modulo trace equivalence, which has been accomplished
by Rabinovich in [22]. The second method is specific to the synthesis procedure of
[11] via the determinization of µHML formulas. In either case, it is not easy to extract
complexity bounds from these methods. See [1] for more details.
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RECF
recx.mx

⌧�! mx

RECB
x

⌧�! px

Table 2. System N is the result of replacing rule REC by rules RECF and RECB.

2.3 Size Conventions

When we extract complexity bounds for our constructions, we assume that the set of
actions, ACT, is of constant size. The size |m| of a monitor m is the size of its syntactic
description as given in Section 2.1, defined recursively thus: |x| = |yes| = 1; |a.m| =
|m|+1; |

P
i2I mi| =

P
i2I |mi|+ |I|� 1; and |rec x.m| = |m|+1. Notice that |m|

coincides with the total number of submonitor occurrences — namely, symbols in m.

Example 1. Consider the monitor m = rec x.(0.x+1.x+1.2.yes). It accepts process
states that can produce traces from the language (0 + 1)⇤12(0 + 1 + 2)⇤, that is, traces
(words) in which the action 2 appears at least once and the action preceding this 2 action
is a 1. An equivalent deterministic monitor is

m0 = rec y.(0.y + 1.rec x.(0.y + 1.x+ 2.yes))

Notice that the size of the deterministic monitor m0 is greater than that of its original
non-deterministic counterpart m. In fact, |m| = 10 and |m0| = 14. ⌅

2.4 Semantic Transformations

For convenience, we slightly alter the behavior of monitors from [11] to simplify our
constructions and arguments. Specifically, we provide another set of transition rules
and show that the new and old rules are equivalent with respect to the traces that can
reach a yes verdict (the same applies for no verdicts). Consider a single monitor, m

0

,
which appears at the beginning of the derivation under consideration — that is, all
other monitors are submonitors of m

0

. We assume, without loss of generality, that each
variable x appears in the scope of a unique monitor of the form rec x.m, which we call
px; namely, mx is the monitor such that px = rec x.mx. The monitors may behave
according to one of two systems of rules. System O is the old system of rules, as given
in Table 1. System N is given by replacing rule REC by the rules given in Table 2. The
transition relations µ�! and t

=) are defined as before, but they are called µ�!O and t
=)O

when they result from System O and µ�!N and t
=)N when they result from System N .

We can show that the two LTSs are equivalent with respect to verdicts.

Lemma 2. For a monitor m and trace t, m t
=)N yes iff m t

=)O yes. ut

There are three reasons for changing the operational semantics rules of monitors. One
is that, for the bounds we prove, we need to track when recursion is used in a derivation.
Another is that in System N (unlike in System O) it is clear which monitors may appear
in a derivation starting from monitor m (namely, at most all submonitors of m), which
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in turn makes it easier to construct an LTS — and also to transform a monitor into an
automaton. For instance, consider m = rec x.(↵.x + �.yes). In System O, m ⌧�!
↵.(rec x.(↵.x+�.yes))+�.yes, which is not a subterm of m. On the other hand, in
System N, m ⌧�! ↵.x+ �.yes, which is a subterm of m. Finally, and partly due to the
previous observation, we can see that a monitor, viewed as an LTS, has a specific form:
it is a rooted tree with labeled edges provided by µ�!, with some back edges, which
result from recursion (namely, from the rule RECB in Table 2). For the remainder, we
use system N and drop subscripts from µ�!N and t

=)N .
When using this new system, we need to be more careful with the definition of de-

terminism. Notice that it is possible to have a nondeterministic monitor, which has a
deterministic submonitor. For instance, px = rec x.(↵.x+ ↵.yes) is nondeterminis-
tic, while according to our definition of determinism, ↵.x is deterministic (specifically,
all variables are deterministic). The issue here is that although ↵.x is deterministic in
form, it can transition to (x and then to) px, which is not. This is not a situation we
encountered in System O, because there variables do not derive anything on their own
and all monitors we consider are closed. In System N, though, a variable x can appear
in a derivation and it can derive px, so it is not a good idea to judge that any variable
is deterministic — and thus judge the determinism of a monitor only from its struc-
ture. In other words, our definition of a deterministic monitor additionally demands that
said monitor is closed; alternatively, for a monitor which appears in a derivation to be
deterministic, we demand that the initial monitor p

0

be deterministic (by Definition 2).

3 Monitor Determinization

We provide methods to transform monitors to automata and back which, in turn, allows
us to use the classic subset construction for the determinization of NFAs and thus de-
terminize monitors. An advantage of this method is that it is not hard to extract upper
bounds on the size of the constructed monitors. Another benefit is that, when transform-
ing a monitor into an equivalent automaton, the constructed NFA may be smaller than
the original monitor, thus resulting in a smaller deterministic monitor.

3.1 From Monitors to Finite Automata

A monitor can be seen as a finite automaton with its submonitors as states and the
composition ✏

=) · ↵�! as its transition relation. Here we make this observation explicit.3
For a monitor m, we define the automaton A(m) to be (Q, ACT, �, q

0

, F ), where

– Q, the set of states, is the set of submonitors of m;
– ACT, the set of actions, is also the alphabet of the automaton;
– q0 2 �(q,↵) iff q ✏

=) · ↵�! q0;
– q

0

, the initial state, is m;
– F = {yes} \Q, that is, yes is the only accepting state (if it exists).

3 This is also possible, because System N only transitions to submonitors of an initial monitor;
otherwise we would need to consider all monitors reachable through transitions and, perhaps,
it would not be as clear which ones these are (see the previous explanation in Section 2.4).
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Proposition 1. For every monitor m and t 2 ACT⇤, A(m) accepts t iff m t
=) yes. ut

Thus, all languages recognized by monitors are regular. Notice that A(m) has at most
|m| states (because Q only includes submonitors of m), but possibly fewer, since two
occurrences of the same monitor as submonitors of m give the same state; we can cut
the state size down further by removing submonitors which can only be reached through
⌧ -transitions. Furthermore, if m is deterministic, then A(m) is deterministic.

Corollary 1. For every monitor m, there is an automaton that accepts the same lan-
guage and has at most |m| states. The automaton is deterministic if so is m. ut

3.2 From Automata to Monitors

We would also like to be able to transform a finite automaton to a monitor and thus
recognize regular languages by monitors. However, this is not always possible because
there are simple regular languages that are not recognized by any monitor. Consider,
for example, the language (11)⇤, which includes all strings of ones of even length.
Since ✏ is in that language, a monitor m for (11)⇤ is such that m ✏

=) yes and thus
accepts everything (so, this conclusion is also true for any regular language of the form
✏+ L 6= ACT⇤).

One of the properties differentiating monitors from automata is that verdicts are
irrevocable for monitors. Therefore, if for a monitor m and finite trace t, m t

=) yes,
then for every trace t0, it is also the case that m tt0

=) yes (this is due to rule VER which
ensures that yes t0

=) yes, for every t0). Stated otherwise, if L is a regular language on
ACT that is recognized by a monitor, then L must be suffix-closed. Since this property
stems from the fact that monitor verdicts are irrevocable, in the rest of this paper we
instead refer to such languages as irrevocable.

Now, consider an automaton that recognizes an irrevocable language. Then, if q is
any (reachable) accepting state of the automaton, and q can be reached through a word
t, then t is clearly in the language but so is every word t↵. Thus, we can safely add an
↵-transition from q to an accepting state (for example, itself) if no such transition exists.
We call an automaton that can always transition from an accepting state to an accepting
state for each ↵ 2 ACT irrevocable. Note that, in the case of an irrevocable DFA, all
transitions from accepting states must go to accepting states.

Corollary 2. A language is regular and irrevocable if and only if it is recognized by an
irrevocable NFA (or DFA). ut

Given an irrevocable NFA, we can construct an equivalent monitor through a procedure
that can be described informally as follows (see Figure 1 for an example). We first
unravel the NFA into a tree: for every transition sequence that starts from the initial state
and that does not repeat any states, we keep a copy of its ending state. For example, for
the automaton of Figure 1, we can reach q

2

through q
0

0�! q
1

1�! q
2

and q
0

1�! q
1

1�! q
2

,
which gives us two copies of q

2

. Then, we map each node of this tree to a monitor,
so that, at the end, the root is mapped to the resulting equivalent monitor. The leaves
that correspond to an accepting state are mapped to yes. We use action transitions to
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q
0

q
1

q
2

0,1

1

0

0,1

q
0

q
1

q
2

q
1

q
2

0

1

0

0,1

1

1

0

0,1

recx.(0.(1.yes+ 0.x) + 1.(1.yes+ 0.x))

1.yes+ 0.x

yes

1.yes+ 0.x

yes

0

1

0 1

1

0

Fig. 1. Transforming an automaton into a monitor: DFA to tree unraveling to monitor.

describe forward tree edges and recursion for back edges — there is no need for cross
edges. If the automaton is deterministic, so is the resulting monitor.

Theorem 2. Given an irrevocable NFA (resp. DFA) A of n states, there is a monitor
(resp. deterministic monitor) of size 2O(n logn) (resp. 2O(n)) that accepts L(A). ut

By applying the transformations from a monitor into an NFA, into a DFA, and into a
deterministic monitor, we obtain the following space complexity upper bound.

Corollary 3. For every monitor m, there exists an equivalent deterministic monitor of
size 2O(2

|m|). ut

4 Lower Bounds

As this section demonstrates, we cannot significantly improve the bounds of Section 3.

4.1 Lower Bound for (Nondeterministic) Monitor Size

It is easier to understand the intuition behind the lower bounds for constructing monitors
after realizing that the LTS of a monitor is a rooted tree with additional back edges
(when we consider each submonitor occurrence to be distinct). The tree is the monitor’s
syntactic tree; a transition generated by rules ACT and RECF (and then, possibly, SEL)
is a transition from a parent to a child and a transition generated by rule RECB (and
then, possibly, SEL) is a transition to an ancestor (rule VER gives self-loops for the
leaves). Furthermore, from every node, distinct actions transition to distinct nodes. This
is the form generated from the construction of Theorem 2.

We initially consider the family of regular languages (Ln)n, where Ln, for n � 1, is
described by (0+ 1)⇤1(0+ 1)n�1. This is a well-known example of a regular language
recognizable by an NFA of n + 1 states, by a DFA of 2n states, but by no DFA of
fewer than 2n states. As we have previously remarked, monitors do not behave exactly
the same way automata do and can only recognize irrevocable languages. Therefore,
we modify Ln to mark the ending of a word with a special character, e, and make it
irrevocable. Let Mn = {↵e� 2 {0, 1, e}⇤ | ↵ 2 Ln}.

Note that an automaton (deterministic or not) accepting Ln can easily be trans-
formed into one (of the same kind) accepting Mn by introducing two new states, Y and

8



N , where Y is accepting and N is not, so that all transitions from Y go to Y and from
N go to N (N is a junk state, thus unnecessary for NFAs); then we add an e-transition
from all accepting states to Y and from all other states to N . The reverse transformation
is also possible: From an automaton accepting Mn, we can have a new one accepting Ln

by removing all e-transitions and turning all states that can e-transition to an accepting
state of the old automaton to accepting states. The details are left to the reader.

So, there is an an NFA for Mn with n + 2 states and a DFA for Mn with 2n + 2
states, but no fewer. Let A = {0, 1}n�1 and m = rec x.(0.x+1.x+1.

P
t2A t.e.yes).

Then, m mimics the behavior of the NFA for Mn and |m| = O(2n).
The idea behind showing that there is no monitor for Mn of size less than 2n is that,

for every w 2 {0, 1}n�1, the trace 1we constitutes an accepted trace. Furthermore, after
reading the first letter, the monitor tree is not allowed to use a back edge (i.e. recursion),
or else it could accept a shorter trace. By the above observation regarding the tree-form
of monitors, the monitor is (at least) a complete binary tree of height n� 1.

Proposition 2. Let m be a monitor for Mn. Then, |m| � 3 · 2n�1. ut

The above result means that monitors of size exponential with respect to n are required
to recognize languages Mn, and thus we have a lower bound on the construction of a
monitor from an NFA, which is close to the respective upper bound of Theorem 2.

4.2 Lower Bounds for the Size of Deterministic Monitors

Theorem 3. Let m be a deterministic monitor for Mn. Then, |m| = 22
⌦(n)

. ut

Therefore, a construction of a deterministic monitor from an equivalent NFA can result
in a doubly-exponential blow-up in the size of the monitor, and building a deterministic
monitor from an equivalent nondeterministic one can result in an exponential blow-up
in the size of the monitor. Hence, the upper bounds provided by Theorem 2 cannot be
improved significantly. As Theorem 4 demonstrates, the situation is actually even worse
for the determinization of monitors.

Theorem 4. For every n 2 N, there is an irrevocable regular language on two sym-
bols4 that is recognized by a nondeterministic monitor of size O(n), but which cannot
be recognized by any deterministic monitor of size 22

o

(

p
n log n

)

. ut

The proof of Theorem 4 relies on a result by Chrobak [7] for unary languages (lan-
guages on only one symbol), who showed that, for every n, there is a unary language
Chn that is recognized by an NFA with n states, but by no DFA with eo(

p
n logn) states.

Un is then the set of words w 2 {0, 1}, such that the 0’s or the 1’s in w are a word from
Chn. Then, from a deterministic monitor for Un we can extract a unary DFA for Chn

by following the 0⇤1- or 1⇤0-transitions of the monitor, until the first time recursion was
used (i.e. a back edge was followed). Therefore, the first time the deterministic monitor
has a back edge is at distance at least e⌦(

p
n logn) from the root; so, the deterministic

monitor contains at least a complete binary tree of height e⌦(
p
n logn).

4 For unary languages, determinizing monitors is significantly easier; see [1].
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5 Conclusions

We provided a method for determinizing monitors. We have focused on monitors for
the co-safety fragment of µHML, as constructed in [11]. We showed that we can add a
runtime monitor to a system without having a significant effect on the execution time
of the system. Specifically, evaluating a nondeterministic monitor for a runtime trace
may amount to keeping track of all possible monitor states reachable along that trace.
By using a deterministic monitor, each trace event leads to a unique monitor state from
the current state, which is easier to compute. However, this speed-up can come at a
severe cost, since we may have to use up to doubly-exponential more space to store the
monitor; even if this is stored in a more efficient form such as its LTS, the deterministic
monitor may require an exponential additional space.

From the established bounds, NFAs can be exponentially more succinct than moni-
tors as a specification language, and doubly exponentially more succinct than determin-
istic monitors; DFAs can be exponentially more succinct than deterministic monitors.
Therefore, it is much more efficient to use monitors not in their syntactic forms, but as
automata — or to use a monitor’s syntax DAG instead of its syntax tree.

Summary of Bounds: We proved upper and lower bounds for several constructions
related to monitor determinization. Table 3 summarizes the bounds we have proven,
those which were known, and the ones we can further infer from these results. We
discuss these below:

– Corollary 3 informs us that from a nondeterministic monitor of size n, we can
construct a deterministic one of size 2O(2

n

).
– Theorem 4 explains that we cannot do much better, because there is an infinite

family of monitors such that, for each monitor of size n in the family, there is no
equivalent deterministic monitor of size 22

o(

p
n log n)

.
– Theorem 2 tells us that an irrevocable NFA of n states can be converted to an

equivalent monitor of size 2O(n logn).
– Proposition 2 reveals that there is an infinite family of NFAs, for which every n-

state NFA of the family is not equivalent to any monitor of size 2o(n).
– Corollary 3 yields that an irrevocable NFA of n states can be converted to an equiv-

alent deterministic monitor of size 2O(2

n

); Theorem 3 makes this bound tight.
– Theorem 2 also allows us to convert a DFA of n states to a deterministic monitor

of 2O(n) states; Theorem 3 makes this bound tight.
– We can convert a (single-verdict) monitor of size n to an equivalent DFA of O(2n)

states, by first converting the monitor to an NFA of n states (Proposition 1) and
then using the classical subset construction.

– If we could convert any monitor of size n to a DFA of 2o(
p
n logn) states, then we

could use the construction in the proof of Theorem 2 to construct a deterministic
monitor of 22

o(

p
n log n)

states, which contradicts the lower bound of Theorem 4;
therefore, 2⌦(

p
n logn) is a lower bound for converting monitors to equivalent DFAs.
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from/to DFA monitor det. monitor

NFA tight: O(2n) upper: 2O(n logn)

lower: 2⌦(n)

tight: 2O(2

n

)

DFA X upper: 2O(n) tight: 2O(n)

nondet.
monitor

upper: O(2n)

lower: 2⌦(

p
n logn)

X upper: 2O(2

n

)

lower: 22
⌦(

p
n log n)

Table 3. Bounds on the cost of construction (X signifies that the conversion is trivial)

Optimizations: Monitors to be used in runtime verification are expected not to affect the
systems they monitor as much as possible. Therefore, the efficiency of monitoring must
be taken into account to reduce overhead. To use a deterministic monitor, we would
naturally want to keep its size as small as possible. It would help to preserve space (and
time for each transition) to store the monitor in its LTS form — as a DFA. We should
also aim to use the smallest possible monitor we can. There are efficient methods for
minimizing a DFA, so one can use these to find a minimal DFA and then turn it into
monitor form using the construction from Theorem 2, if such a form is required. The
resulting monitor will be (asymptotically) minimal.

On the other hand, it would be good to keep things small from an earlier point of
the construction, before the exponential explosion of states of the subset construction
takes place. In other words, it would be good to minimize the NFA we construct from
the monitor, which can already be smaller than the original monitor. Unfortunately,
NFA minimization is a hard problem — specifically PSPACE-complete [14] — and it
remains NP-hard even for classes of NFAs that are very close to DFAs [4]. NFA mini-
mization is even hard to approximate or parameterize [12, 13]. Still, it would be better
to use an efficient approximation algorithm from [13] to process the NFA and save on
the number of states before we determinize. This raises the question of whether (non-
deterministic) monitors are easier to minimize than NFAs, although a positive answer
seems unlikely in the light of the hardness results for NFA minimization.
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18. Qingzhou Luo and Grigore Roşu. EnforceMOP: A Runtime Property Enforcement System
for Multithreaded Programs. In International Symposium on Software Testing and Analysis,
pages 156–166, 2013.

19. Albert R Meyer and Michael J Fischer. Economy of Description by Automata, Grammars,
and Formal Systems. In 12th Annual Symposium on Switching and Automata Theory, 1971.

20. R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 1982.

21. Michael O Rabin and Dana Scott. Finite automata and their decision problems. IBM journal
of research and development, 3(2):114–125, 1959.

22. Alexander Rabinovich. A complete axiomatisation for trace congruence of finite state behav-
iors. In International Conference on Mathematical Foundations of Programming Semantics,
pages 530–543, 1993.

23. Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security (TISSEC), 3(1):30–50, February 2000.

24. Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Roşu. Efficient decentralized moni-
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