
Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Determinizing monitors for HML with recursion ✩

Luca Aceto a,b, Antonis Achilleos b,∗, Adrian Francalanza c, Anna Ingólfsdóttir b,
Sævar Örn Kjartansson b

a Gran Sasso Science Institute, viale F. Crispi 7, 67100 L’Aquila, Italy
b School of Computer Science, Reykjavik University, Menntavegi 1, Reykjavik 101, Iceland
c Dept. of Computer Science, ICT, University of Malta, Msida, Malta

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 July 2019
Received in revised form 12 December 2019
Accepted 21 December 2019
Available online 31 December 2019

Keywords:
Monitorability
Runtime verification
Hennessy-Milner logic
Determinization
Complexity bounds

We examine the determinization of monitors for HML with recursion. We demonstrate that
every monitor is equivalent to a deterministic one, which is at most doubly exponential
in size with respect to the original monitor. When monitors are described as CCS-like
processes, this doubly exponential bound is optimal. When (deterministic) monitors are
described as finite automata (or as their labeled transition systems), then they can be
exponentially more succinct than their CCS process form.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Monitors are computational entities that observe the executions of other computing devices (hereafter referred to as
systems, or, in more formal settings, as processes) with the aim of accruing system information [33,29], comparing system
executions against behavioral specifications [23,24], or reacting to observed executions via adaptation or enforcement pro-
cedures [4,14,37]. Monitor descriptions can vary substantially, from pseudocode [25,21], to mathematical descriptions [51,
18,22], to executable code in a domain-specific or general-purpose language [19,41]. Since they are part of the trusted com-
puting base, monitor descriptions are expected to be “correct”, and a prevalent correctness requirement is that they exhibit
deterministic behavior.

Monitors are central for the field of Runtime Verification, where typically we use monitors to observe the trace produced
during a run of a process. The monitor is expected to be able to reach a verdict after reading a finite part of the execution
trace, if it can conclude that the monitored process violates (or, dually, satisfies) a certain specification property. Such
specification properties are often expressed in an appropriate logical language, such as LTL [44,20,10,12,11], CTL, CTL∗ [17],
and μHML [34,1,35,23]. We refer the interested readers to [9] for an extensive introduction to Runtime Verification and
to [36] for a brief overview of that research field.

✩ This research was partially supported by the projects “TheoFoMon: Theoretical Foundations for Monitorability” (grant number: 163406-051) and
“Epistemic Logic for Distributed Runtime Monitoring” (grant number: 184940-051) of the Icelandic Research Fund, and by the MIUR project PRIN
2017FTXR7S “IT-MaTTerS” (Methods and Tools for Trustworthy Smart Systems).

* Corresponding author.
E-mail addresses: luca.aceto@gssi.it, luca@ru.is (L. Aceto), antonios@ru.is (A. Achilleos), adrian.francalanza@um.edu.mt (A. Francalanza), annai@ru.is

(A. Ingólfsdóttir).
https://doi.org/10.1016/j.jlamp.2019.100515
2352-2208/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jlamp.2019.100515
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:luca.aceto@gssi.it
mailto:luca@ru.is
mailto:antonios@ru.is
mailto:adrian.francalanza@um.edu.mt
mailto:annai@ru.is
https://doi.org/10.1016/j.jlamp.2019.100515
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2019.100515&domain=pdf

2 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
In [23,24], Francalanza et al. studied the monitorability of properties expressed in full μHML interpreted over states in la-
beled transition systems [32]. They determined a maximal monitorable fragment of the logic in that branching-time setting,
called mHML, for which they introduced a compositional monitor-generating procedure as well as a converse, compositional
formula-synthesis function from monitor descriptions. Intuitively, mHML consists of the safety properties in μHML and their
complements.

Since one of the goals of the work presented in the above-mentioned references was to identify exactly what properties
can be monitored within the framework described therein, it was natural to choose a very expressive logic as a specification
language. To our mind, μHML [1,35] is an excellent touchstone logic. Indeed, μHML is a variation on the propositional
μ-calculus [34], tailored to the description of properties of states in labeled transition systems, which can express all the
bisimulation-invariant properties that can be written in monadic second order logic [30] and specification logics such as
LTL, CTL and CTL∗ . This makes the characterization of the properties that can be monitored at runtime given in [23,24] very
general.

In the framework developed in [23,24], which is also used in [7] to identify an expressiveness hierarchy of monitorable
fragments of μHML in linear-time settings, monitors are described using expressions in a variation on Milner’s CCS [43].
The use of a language for specifying monitors naturally supports the definition of correct-by-construction, compositional
monitor-synthesis procedures from formulae, as well as the compositional construction of formulae from monitors. The
latter, formula-synthesis function plays a key role in showing the maximality of the monitorable fragments of μHML iden-
tified in [3,7,23,24]. To the best of our knowledge, these maximality results do not have any counterpart in the literature on
runtime monitoring.

The monitors constructed from the synthesis procedure in [23,24] can be nondeterministic, depending on the μHML
formula from which they were constructed. In the light of the importance of deterministic monitors in Runtime Verification,
we would like to be able to determinize these monitors.

In this paper we tackle the problem of determinizing monitors for μHML in the framework of [23,24], where monitors
are described using syntax close to the regular fragment of CCS processes [43], and we provide a detailed analysis of the
succinctness of various alternative formalisms for describing such monitors. In particular, we demonstrate that every monitor
can be transformed into an equivalent deterministic one, but the price can be a hefty one: there are monitors which require
a doubly exponential blowup in size to determinize. Although we focus on the monitors employed in [23,24], our methods
and results can be extended to other cases of similar monitors, when these monitors are described using syntax that is
close to that of the regular fragment of CCS processes. Furthermore, we demonstrate that finite automata, as a specification
language, can be exponentially more succinct than monitors as we define them, exponentially more succinct than the
monitorable fragment of μHML, and doubly exponentially more succinct than the deterministic monitorable fragment of
μHML.

Table 6 on page 29 summarizes the main complexity bounds we obtain in this article. We trust that those results
may serve as a reference for researchers in the choice of a formalism for the description of monitors that, on the one hand,
allows for compositional monitor- and formula-synthesis procedures and, on the other, keeps the representation of monitors
reasonably small.

As mentioned earlier, the deterministic behavior of monitors is desirable as a correctness requirement and also due to
efficiency concerns. A monitor is expected to not overly affect the observed system and thus each transition of the monitor
should be performed as efficiently as possible. For each observed action of a system, the required transition of a monitor
is given explicitly by a deterministic monitor, but for a nondeterministic monitor, we need to keep track of all its possible
configurations, which can introduce a significant overhead to the monitored system.

On the other hand, as we argue below, nondeterminism arises naturally in some scenarios in the behavior of monitors.
In those cases, the most natural monitors synthesized from the properties of interest are nondeterministic and might need
to be determinized in order to increase the efficiency of the monitoring process. This observation motivates our study of
monitor determinization and its complexity.

Empirical evidence for the nondeterministic behavior of monitors By most measures, monitoring is a relatively new software
technique and thus not very widespread. Therefore, we substantiate our posit that nondeterministic monitors would occa-
sionally occur (should the technique gain wider acceptance) by considering testing as a related pervasive technique. Despite
intrinsic differences1 tests share several core characteristics with many monitors: they rely on the execution of a system to
infer correctness attributes, they often fall under the responsibility of quality assurance software teams and, more crucially,
they are also expected to behave deterministically [53,38]. We contend that monitors are generally more complex artifacts
than tests, which allows us to claim reliably that evidence of nondeterminism found in testing carries over to monitoring.
When compared to tests, monitors typically employ more loop and branching constructs in their control structures since
monitored runs last longer than test executions. Moreover, monitoring is generally regarded as background processing, and
this expected passivity forces monitoring code to cater for various eventualities, aggregating system execution cases that
would otherwise be treated by separate (simpler) tests driving the system.

1 Tests are executed pre-deployment, and employ more mechanisms to direct the execution of the system under scrutiny e.g. mocking by inputting
specific values.

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 3
Table 1
Dynamics of processes.

Act

α.p
α−→ p

Rec

recx. p
τ−→ p[recx. p/x]

SelL

p
μ−→ p′

p + q
μ−→ p′

SelR

q
μ−→ q′

p + q
μ−→ q′

where α ∈ Act and μ ∈ Act ∪ {τ }.

In testing, the impact of nondeterministic (a.k.a. flaky) tests on software development processes is substantial enough
(for instance, as reported in [38], about 4.56% of test failures of the Test Anything Protocol system at Google are caused by
flaky tests) to warrant the consideration of various academic studies [40,39,38]. These studies concede that flaky tests are
hard to eradicate. Detection is hard, partly because tests are executed in conjunction with the system (where the source
of nondeterministic behavior is harder to delineate), or because nondeterminism occurs sporadically, triggered only by
specific system runs. Once nondeterminism has been detected, its causes may be even harder to diagnose: test runs are not
immune to Heisenbugs [27] and problems associated with test dependence are not uncommon [53], all of which impacts
on the capacity to fix the offending tests. In fact, it is common practice to live with nondeterministic tests by annotating
them (e.g. @RandomFail in Jenkins), perhaps requiring reruns for these tests (e.g. @Repeat in Spring). Curiously, studies
have shown that developers are often reluctant to remove detected flaky tests (for instance, by using the @Ignore tag in
JUnit) because they may still reveal system defects (albeit inconsistently) [38,40].

Overview In Section 2, we give the necessary background for our investigation. We introduce μHML formulae and our
framework for processes, monitors, and finite automata. In Section 3, we prove that all monitors for μHML can be deter-
minized. We provide two methods for the determinization of monitors. One reduces the determinization of monitors to the
determinization of regular CCS processes, as performed by Rabinovich in [47]. The other applies a procedure for transform-
ing systems of equations, inspired from Rabinovich’s methods, directly on mHML formulae to turn them into a deterministic
form. Then, using the monitor synthesis procedure from [23], one can construct monitors which are immediately deter-
ministic. In Section 4, we examine the cost of determinizing monitors more closely and we compare the size and behavior
of monitors to the size (number of states in this case) and behavior of corresponding finite automata. We examine the
simpler case of single-verdict monitors, namely monitors which are allowed to reach verdict yes or verdict no, but not
both (or to halt without reaching an answer). Section 5 explains how to extend the methods and bounds of Section 4 from
single-verdict monitors to the general case of monitors with multiple verdicts. The reader is encouraged to see Section 6,
that draws further conclusions and presents an extensive summary of the technical results in this paper.

A previous version of this paper, presenting the main results from Section 4, has appeared as [2].

2. Background

We provide background on the main definitions and results for monitoring μHML formulae, as defined in [23], and
present the conventions we use in this paper.

2.1. Basic definitions: monitoring μHML formulae on processes

We begin by presenting the calculus used to model a system, the logic used to reason about the systems and finally the
monitors used to verify whether a system satisfies some specific formula in the logic.

2.1.1. The model
The processes whose properties we monitor (and on which we interpret the μHML formulae) are states of a labeled

transition system (LTS). A labeled transition system is a triple

〈Proc, (Act ∪ {τ }),→〉
where Proc is a set of states or processes, Act is a set of observable actions, τ /∈ Act is the distinguished silent action, and
→⊆ (Proc × (Act ∪ {τ }) × Proc) is a transition relation. The syntax of the processes in Proc is defined by the following
grammar:

p,q ∈ Proc :: = nil | α.p | p + q | recx. p | x

where α ∈ Act and x comes from a countably infinite set of process variables. These processes are a standard variation on
the regular fragment of CC S [43]; in [47], these processes are called μ-expressions. We simply call them processes in this
paper. As usual, the construct rec x. p binds the free occurrences of x in p. In what follows, unless stated otherwise, we
focus on processes without occurrences of free variables. The substitution operator p[q/x] is defined in the usual way. The
transition relation → and thus the behavior of the processes is defined by the derivation rules in Table 1.

4 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
For each p, p′ ∈ Proc and α ∈ Act, we use p α=⇒ p′ to mean that p can derive p′ using a single α action and any
number of τ actions, p(

τ−→)∗. α−→ .(
τ−→)∗ p′ . For each p, p′ ∈ Proc and trace t = α1.α2. . . . αr ∈ Act

∗ , we use p t=⇒ p′ to mean
p α1=⇒ . α2=⇒ . . .

αr=⇒ p′ if t is non-empty and p(
τ−→)∗ p′ if t is the empty trace ε .

2.1.2. The logic
We use μHML, the Hennessy-Milner logic with recursion, to describe properties of the processes.

Definition 1. The formulae of μHML are constructed using the following grammar:

ϕ,ψ ∈ μHML :: = tt | ff
| ϕ ∧ ψ | ϕ ∨ ψ

| 〈α〉ϕ | [α]ϕ
| min X . ϕ | max X . ϕ

| X

where X comes from a countably infinite set of logical variables LVar. �

Formulae are evaluated in the context of a labeled transition system and an environment, ρ : LVar → 2Proc , which
gives values to the logical variables in the formula. For an environment ρ , variable X , and set S ⊆ Proc, ρ[X → S] is the
environment which maps X to S and all Y �= X to ρ(Y). The semantics for μHML formulae is given through a function �·�,
which, given an environment ρ , maps each formula to a set of processes — namely the processes which satisfy the formula
under the assumption that each X ∈ LVar is satisfied by the processes in ρ(X). �·� is defined as follows:

�tt,ρ�def= Proc and �ff,ρ�def= ∅
�ϕ1 ∧ ϕ2,ρ�def= �ϕ1,ρ� ∩ �ϕ2,ρ�
�ϕ1 ∨ ϕ2,ρ�def= �ϕ1,ρ� ∪ �ϕ2,ρ�

�[α]ϕ,ρ�def=
{

p
∣∣ ∀q. p

α=⇒ q implies q ∈ �ϕ,ρ�}
�〈α〉ϕ,ρ�def=

{
p
∣∣ ∃q. p

α=⇒ q and q ∈ �ϕ,ρ�}
�max X . ϕ,ρ�def=

⋃{
S
∣∣ S ⊆ �ϕ,ρ[X → S]�}

�min X . ϕ,ρ�def=
⋂{

S
∣∣ S ⊇ �ϕ,ρ[X → S]�}

� X,ρ�def= ρ(X).

A formula is closed when every occurrence of a variable X is in the scope of the recursive operator rec x. Note that the
environment, ρ , has no effect on the semantics of a closed formula. For a closed formula ϕ , we often drop the environment
from the notation for �·� and write �ϕ� instead of �ϕ, ρ�. Henceforth we work only with closed formulae, unless stated
otherwise. Formulae ϕ and ψ are (logically) equivalent, written ϕ ≡ ψ , if �ϕ,ρ� = �ψ,ρ� for every environment ρ .

We focus on sHML, the safety fragment of μHML. Both sHML and its dual fragment, cHML (the co-safety fragment), are
defined by the grammar:

θ,ϑ ∈ sHML ::= tt | ff | [α]θ | θ ∧ ϑ | max X . θ | X

π,� ∈ cHML ::= tt | ff | 〈α〉π | π ∨ � | min X . π | X .

In what follows, we write mHML for the collection of all the safety and co-safety formulae in μHML, that is, mHML =
sHML ∪ cHML.

Example 1 (a formula). The formula ϕe = max X . [α]([α]ff∧ X) ∈ sHML will be used in several examples to follow. Notice
that the following logical equivalences hold:

ϕe ≡ [α]([α]ff∧ max X . [α]([α]ff∧ X))

≡ [α]([α]ff∧ [α]([α]ff∧ max X . [α]([α]ff∧ X)))

≡ [α][α]ff. �

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 5
Table 2
Monitor dynamics.

mAct

α.m
α−→ m

mRec

recx. m
τ−→ m[recx. m/x]

mSelL

m
μ−→ m′

m + n
μ−→ m′

mSelR

n
μ−→ n′

m + n
μ−→ n′

mVerd

v
α−→ v

where α ∈ Act and μ ∈ Act ∪ {τ }.

Table 3
Monitored processes.

iMon

p
α−→ p′ m

α−→ m′

m � p
α−→ m′ � p′

iTer

p
α−→ p′ m � α−→ m � τ−→
m � p

α−→ end � p′

iAsyP

p
τ−→ p′

m � p
τ−→ m � p′

iAsyM

m
τ−→ m′

m � p
τ−→ m′ � p

2.1.3. Monitors
We now define the notion of a monitor. Just like for processes, we use the definitions given in [23,24] to which we refer

our readers for motivation and further examples. Monitors are part of an LTS, much like processes.

Definition 2. The syntax of a monitor is identical to that of a process, with the exception that the nil process is replaced
by verdicts. A verdict can be one of yes, no and end, which represent acceptance, rejection and termination respectively.
A monitor is defined by the following grammar:

m,n ∈ Mon :: = v | α.m | m + n | recx. m | x

v ∈ Verd :: = end | no | yes
where x comes from a countably infinite set of monitor variables. The submonitors of m are its subterms. �

The behavior of a monitor is defined by the derivation rules of Table 2, which are discussed at length in [23,24]. Here we
limit ourselves to remarking that rule mVerd indicates that monitor verdicts are irrevocable. Rules mSelL and mSelR may
be referred to collectively as mSel for convenience.

Remark 1. Note that τ actions in monitor behaviors are generated by rule mRec in Table 2, which uses such actions to
unfold recursive definitions of monitors. This choice stems from [24] and we maintain it here since our main goal in this
article is to prove complexity bounds that apply directly to the model of monitors studied in that reference. We remark,
however, that all the results we prove in the remainder of this study hold also in the setting of τ -free monitors with the
classic unfolding rule for recursively-defined monitors, namely:

m[recx. m/x] α−→ m′

recx. m
α−→ m′

.

For each m, m′ ∈ Mon, α ∈ Act and trace t ∈ Act
∗ , the “weak transitions” m α=⇒ m′ and m t=⇒ m′ are defined as for pro-

cesses.

Example 2 (a monitor). Let me = rec x. α.(α.no+ x). Notice the similarities between me and ϕe . We will be using me and
ϕe as a running example in what follows. �

2.1.4. Monitored system
If a monitor m ∈ Mon is monitoring a process p ∈ proc, then it must mirror every visible action p performs. If m cannot

match an action performed by p and it cannot perform and internal action, then m becomes the inconclusive end verdict.
We are only looking at the visible actions and so we allow m and p to perform transparent τ actions independently of each
other.

Definition 3. A monitored system is a monitor m ∈ Mon and a process p ∈ Proc which are run side-by-side, denoted m � p.
The behavior of a monitored system is defined by the derivation rules in Table 3. �

If a monitored system m � p can derive the yes verdict, we say that m accepts p, and similarly m rejects p if the
monitored system can derive no.

6 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
Definition 4 (Acceptance/rejection). acc(m, p) def= ∃t, p′. m � p t=⇒ yes � p′ and rej(m, p) def= ∃t, p′. m � p t=⇒ no � p′ . �

Remark 2. Note that, according to the above definition, both acc(m, p) and rej(m, p) are possible for some monitor m
and process p. As shown in [24, Theorem 2, page 109], monitors that may report more than one verdict are necessarily
unsound, at least with respect to branching-time properties interpreted over processes. This is the reason why the work in
that reference, on which we build, restricts itself to single-verdict monitors, as considered in what follows. (See Section 2.2
to follow for a short summary of the results from [24] on monitorability of branching-time properties of processes.) We
remark, however, that, as shown in [7], multi-verdict monitors can be sound (and even ‘complete’) for some non-trivial
properties in a linear-time setting. We refer the interested reader to the above-mentioned references and to [5] for further
details on a variety of connections between monitor acceptance/rejection and whether processes or traces satisfy some
property.

2.1.5. Finite automata
We now present a brief overview of Finite Automata Theory, which we use in Section 4. The interested reader can see

[49] for further details.
A nondeterministic finite automaton (NFA) is a quintuple

A = (Q ,�, δ,q0, F),

where Q �= ∅ is a set of states, � is a set of symbols, called the alphabet — in our context, � = Act —, δ ⊆ Q × � × Q is a
transition relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final or accepting states. Given a word t ∈ �∗ , a run
of A on t = t1 · · · tk is a sequence q0q1 · · ·qk , such that for 1 ≤ i ≤ k, (qi−1, ti, qi) ∈ δ; the run is called accepting if qk ∈ F .
We say that A accepts t when A has an accepting run on t . We say that A accepts/recognizes a language L ⊆ �∗ when A
accepts exactly the words in L; L is then unique and we call it L(A). If δ is a function δ : Q × � → Q (depending on the
situation, one may just demand that δ is a partial function), then A is a deterministic finite automaton (DFA). It is a classical
result that for every NFA with n states, there is an equivalent DFA (i.e. a DFA which recognizes the same language) with at
most 2n states — furthermore, this upper bound is optimal.

Theorem 1 ([46]). If A is an NFA of n states, then there is a DFA of at most 2n states which recognizes L(A).

The way to construct such a DFA is through the classical subset construction. For more details, see [49], or another
introductory text for automata theory or theoretical computer science.

Are monitors automata? The reader may wonder at this point whether a monitor is simply an NFA in disguise. Certainly,
the LTS of monitor resembles an NFA, although there are differences. A monitor — at least in this paper — is identified
with its syntactic form, as defined above, although, as Section 4 demonstrates, it pays to be a little more relaxed on this
constraint. Monitors can also reach both a yes and a no verdict — and sometimes both for the same trace. Again, this
is often undesirable. Another difference is that once a monitor reaches a verdict, there is no way to change its decision
by seeing more of the trace: verdicts are irrevocable for monitors. For more on the relationship between monitors and
automata, we refer to Section 4.

2.2. Previous results

The results from [23,24] on which we build in this study are based on the following notion of monitorability for formulae
in μHML.

Definition 5 (Monitorable formula/logic). Let ϕ ∈ μHML and let m be a monitor. We say that

• m monitors ϕ for violations when, for each process p, rej(m, p) if and only if p /∈ �ϕ�;
• m monitors ϕ for satisfactions when, for each process p, acc(m, p) if and only if p ∈ �ϕ�;
• m monitors for ϕ when it monitors ϕ either for violations or for satisfactions; and
• ϕ is monitorable when there is some monitor m that monitors for it.

Let L ⊆ μHML. We say that L is monitorable when each ϕ ∈ L is monitorable. L is a maximally expressive monitorable
fragment of μHML if each monitorable formula in μHML is logically equivalent to some formula in L. �

The main result from [23,24] is to show that mHML, the subset of μHML that consists of the safety and co-safety
fragments of that logic, is monitorable and that it is maximally expressive. In particular, sHML is a maximally expressive
fragment of μHML whose formulae can be monitored for violations and cHML is a maximally expressive fragment of that
logic whose formulae can be monitored for satisfactions.

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 7
In the remainder of this section, we focus on surveying the monitorability result for sHML; the case of cHML is dual.
The interested reader can see [23,24] for more details, examples and motivation.

In order to prove that sHML is monitorable, in [23,24] Francalanza, Aceto, and Ingólfsdóttir define a monitor synthesis
function, �−�, which maps formulae to monitors, and show that, for each ϕ ∈ sHML, �ϕ� monitors ϕ for violations. This
function, which stems from [24, Definition 7], is used in the proofs in Section 3 and so we give the definition here. We
remark that the definition of the monitor �ϕ� assumes a bijection between logical variables and monitor variables, which
we leave implicit.

Definition 6 (Monitor synthesis).

�tt�def= yes �ff�def= no � X �def= x

�[α]ψ �def=
{
α.�ψ � if �ψ � �= yes

yes otherwise

�ψ1 ∧ ψ2 �def=

⎧⎪⎨
⎪⎩

�ψ1 � if �ψ2 � = yes�ψ2 � if �ψ1 � = yes�ψ1 � + �ψ2 � otherwise

�max X . ψ �def=
{
recx. �ψ � if �ψ � �= yes

yes otherwise �

Remark 3. The monitor-synthesis function over sHML we presented in the previous definition is the restriction to that frag-
ment of the function given in [24, Definition 7] over the whole of mHML. When synthesizing monitors for sHML formulae,
it would be possible to replace the clause

�tt�def= yes

with

�tt�def= end

and modify the construction accordingly. We decided not to do so in this paper since we want our results to apply directly
to the monitoring setting studied in the above-mentioned references.

Theorem 2 (Monitorability, [23,24]). For each ϕ ∈ sHML, �ϕ� monitors ϕ for violations.

Example 3. Notice that �ϕe � = me . On the other hand, we also know that for ϕ′
e = [α][α]ff, ϕe ≡ ϕ′

e . Therefore, me and
m′

e = �ϕ′
e � = α.α.no monitor for the same formula. �

Remark 4. As shown in [24], for each formula ϕ ∈ cHML, one can synthesize a monitor m that monitors ϕ for satisfactions.

Remark 5. The notion of monitorable formula was first defined by Pnueli and Zaks in their seminal paper [45]. Other
proposals for monitorability may be found in, for instance, the references [12,22,52]. Comparing the notion of monitorability
studied by Francalanza et al. in [23,24] with those presented in the literature is a very interesting and non-trivial research
endeavor. To begin with, the notion of monitorability considered in [23,24] is given for a branching-time interpretation of
mHML, whereas all the other notions are studied in a linear-time setting. Hence, a proper comparison requires a study of
the notion of monitorability by Francalanza et al. in a linear-time setting. The recent article [7] is entirely devoted to this
topic and also connects the branching- and linear-time notions of monitorability by Francalanza et al. within a unified and
principled framework. The work in [7] paves the way to a systematic comparison of various notions of monitorability, which
is presented in [5].

2.3. Determinism, verdicts, and the choices that we make

The purpose of this paper is to examine the determinization of monitors, which is the process of constructing a deter-
ministic monitor from an equivalent nondeterministic one. Therefore, we must establish what a deterministic monitor is
and what it means that two monitors are equivalent.

The papers [23,24] present several examples of nondeterministic monitors. For example, mc = α.yes+ α.no is nonde-
terministic. This monitor can reach a positive and a negative verdict for each trace which starts with α, but has no opinion
on any other trace. There are two ways to avoid this situation. One is to make sure that only different actions can transition
to different monitors, as in α.yes+ β.no, thus removing a nondeterministic choice; the other is to consider single-verdict
monitors (see Section 2.3.3) that can reach only one verdict, like α.yes+ α.m. We explore both approaches.

8 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
2.3.1. Conventions and definitions
We will call two monitors, m and m′ equivalent and write m ∼ m′ if for every non-empty trace t and verdict v ∈

{yes, no}, m t=⇒ v iff m′ t=⇒ v . Given a monitor, the set of processes it accepts, and thus the set of formulae it monitors, is
completely determined by the traces it accepts and rejects (see [23, Proposition 1]). Therefore, we compare two monitors
with respect to relation ∼. We assume that the set of actions, Act, is finite and, for the complexity results we present, of
constant size.

We call derivations of the form m ⇒ m trivial. If t = t1t2 ∈ Act
∗ , then t1 is an initial subtrace or prefix of t and we write

t1 � t . We define a sum of m as follows: m is a sum of m and if r is a sum of m, then so are r + r′ and r′ + r. We say that
a sum s of m is acting as m in a derivation d : s t=⇒ r if in the same derivation we can replace s by m without consequence
(i.e. the first step uses rule mSlet to use a derivation starting from m).

The size |m| of a monitor m is the size of its syntactic description, as given in Section 2.1, defined recursively: |x| = |v| =
1; |α.m| = |m| + 1; |m + m′| = |m| + |m′| + 1; and |rec x. m| = |m| + 1. Notice that |m| also coincides with the total number
of submonitor occurrences — namely, symbols in m. We also define the height of a monitor, h(m), in the following way:
h(v) = h(x) = 1; h(m + m′) = max{h(m), h(m′)}; h(α.m) = h(m) + 1; h(rec x. m) = h(m).

In what follows, we consider monitors modulo the equivalence v + v ∼ v .
The following lemma demonstrates that all instances of m + v can be replaced by m + ∑

α∈Act
α.v .

Lemma 1. Monitor m + v is equivalent to m + ∑
α∈Act

α.v.

Proof. Let μ ∈ Act ∪ {τ } and m′ a monitor. Then, m + v
μ−→ m′ iff m

μ−→ m′ or v
μ−→ m′ . But v

μ−→ m′ exactly when m′ = v

and μ ∈ Act, therefore v
μ−→ m′ exactly when

∑
α∈Act

α.v
μ−→ m′ . In conclusion, m + v

μ−→ m′ iff m + ∑
α∈Act

α.v
μ−→ m′ . �

We also assume that there is no (sub)monitor of the form rec x. v , where v is a verdict; otherwise, these can be
replaced by simply v . Notice then that there is no τ -transition to a verdict. Furthermore, we assume that a verdict appears
in all monitors we consider — otherwise the monitor does not accept/reject anything and is equivalent to end. We say that
a monitor m accepts/recognizes a language (set of traces) L ⊆ Act

∗ when for every trace t ∈ Act
∗ , t ∈ L iff m t=⇒ yes.

2.3.2. Determinism
For the purposes of [23], deterministic monitor behavior need only concern itself with the definite verdicts that can

be reached after observing a particular trace t . Stated otherwise, we can say that a monitor m behaves deterministically
whenever it transitions to verdict-equivalent monitors for every trace t . For instance, another case of a nondeterministic
monitor is m = α.α.yes+α.β.yes, because when this monitor reads an α, it has to make a choice and transition to either
α.yes or β.yes which are not equivalent, α.yes� β.yes. A deterministic monitor that is equivalent to m is α.(α.yes+
β.yes).

For Turing machines, algorithms, and finite automata, determinism means that from every state (in our case, monitor)
and input symbol (in our case, action), there is a unique transition to follow. In the case of monitors, we can transition
either through an action from Act, but also through a τ -action, which can occur without reading from a trace. In the
context of finite automata, these actions would perhaps correspond to ε-transitions, which are eliminated from deterministic
automata. We cannot eliminate τ -transitions from deterministic monitors, because we need to be able to activate the
recursive operators. What we can do is to make sure that there is never a choice between a τ -transition and any other
transition.

In other words, in order for a monitor to run deterministically, it cannot contain a nondeterministic choice between two
sub-monitors reached by the same action, m α−→ n1 and m α−→ n2, or a nondeterministic choice between performing an action
or performing the transparent action, m α−→ n1 and m τ−→ n2. It must also be impossible to derive these choices using the
derivation rules above. As we can see from Table 2, such choices can only be introduced by sums — that is, monitors of the
form m1 + m2; we can therefore attain the required behavior via syntactic constraints. Note that a sum m1 + m2 + · · · + mk

will also be written as
∑k

i=1 mi .

Definition 7. A monitor m is syntactically deterministic iff every sum of at least two summands which appears in m is of
the form

∑
α∈A α.mα , where A ⊆ Act. �

Note that under this definition, from every syntactically deterministic monitor m and action α ∈ Act, if m α=⇒ m′ , then
all derivations m α=⇒ begin with a unique transition. As we will see in the following sections, this set of monitors is in fact
maximally expressive, meaning that each monitorable formula can be monitored by a syntactically deterministic monitor.
Lemma 2 demonstrates that the syntactic determinism of Definition 7 ensures that such monitors will always arrive at the
same verdict for a given trace — Lemma 2 appears in Section 4 as Corollary 15, a direct consequence of Lemma 26.

Lemma 2. If m is syntactically deterministic, m t=⇒ n, and m t=⇒ n′ , then n ∼ n′ . �

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 9
rec x. (req.cls.no+ req.res.x)

req.cls.no+ req.res.rec x. (req.cls.no+ req.res.x)

cls.nores.rec x. (req.cls.no+ req.res.x) no

τ

req
req

cls

res

Fig. 1. The LTS of monitor m.

Thus, from now on, we simply refer to syntactically deterministic monitors as deterministic monitors.

Example 4. Notice that monitor me is not deterministic, but it has an equivalent deterministic monitor, which is m′
e . �

Example 5 (a simple server [23]). Assume that we have a very simple web server p that alternates between accepting a
request from a client, req, and sending a response back, res, until the server terminates, cls. We want to verify that the
server cannot terminate while in the middle of serving a client (after executing req but before executing res). We can
encode this property in the following sHML formula

ϕ = max X . ([req][cls]ff∧ [req][res]X).

Using the monitor synthesis function, we can then define a monitor that monitors ϕ for violations thus:

m = recx. (req.cls.no+ req.res.x).

The LTS of monitor m can be seen in Fig. 1. Since m contains a choice between req.cls.ff and req.res.x, it is
nondeterministic. However it is possible to define a deterministic monitor that monitors for ϕ . For example:

m′ = req.(res.recx. req.(res.x + cls.no) + cls.no) �

Example 6. Consider the monitor m = rec x. (0.x + 1.x + 1.2.yes). It accepts process states that can produce traces from
the language (0 + 1)∗12(0 + 1 + 2)∗ , that is, traces (words) in which the action 2 appears at least once and the action
preceding the first 2 action is a 1. An equivalent deterministic monitor is

m′ = rec y. (0.y + 1.rec x. (0.y + 1.x + 2.yes))

Notice that the size of the deterministic monitor m′ is greater than that of its original non-deterministic counterpart m. In
fact, |m| = 10 and |m′| = 14. �

In general, given a monitor produced by the monitor synthesis function, we can define a deterministic monitor that is
equivalent to it.

Theorem 3. For each formula ϕ ∈ mHML, there exists a deterministic monitor, m ∈ Mon, such that m monitors for ϕ .

Section 3 is devoted to providing two proofs for this theorem for formulae in sHML. (The proof for cHML is dual and
is therefore omitted.) The first one is presented in Subsection 3.1 and shows that for each valid monitor, there exists a
deterministic monitor that is equivalent to it. The second proof is presented in Subsection 3.2 and shows that there is a
subset of sHML for which the monitor synthesis function will always produce a deterministic monitor and that this subset
is a maximally expressive subset of sHML.

2.3.3. Multiple verdicts
As Francalanza et al. demonstrated in [23], to monitor for formulae of μHML, it is enough (and makes more sense) to

consider single-verdict monitors. These are monitors, which can use verdict yes or no, but not both. As we are interested
in determinizing monitors to use them for monitoring mHML properties, confining ourselves to single-verdict monitors is
reasonable. The constructions of Section 3 are independent of such a choice and are presented for all kinds of monitors,
but in Section 4 it is more convenient to consider only single-verdict monitors. Of course, monitor determinization is an
interesting problem in its own right and monitors may be useful in other situations besides just monitoring for mHML. We
still confine ourselves to determinizing single-verdict monitors, but we present a straightforward approach for dealing with
monitors which use both verdicts in Section 5. In Section 4, whenever we say monitor, we will mean single-verdict monitor.

10 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
Specifically, in Section 4, we assume that the verdict is yes (and end, which is often omitted), because we compare
monitors to automata and a monitor reaching a yes verdict on a trace intuitively corresponds to an automaton accepting
the trace.

3. Rewriting methods for determinization

In this section we present two methods for constructing a deterministic monitor. The first method, presented in subsec-
tion 3.1, uses a result by Rabinovich [47] for the determinization of processes. The second method, presented in subsection
3.2, uses methods similar to Rabinovich’s directly on formulae of sHML to transform them to a deterministic form, so
that when we apply the monitor synthesis function from [23] (Definition 6 of Section 2.1 in this paper), the result is a
deterministic monitor for the original formula.

3.1. Monitor rewriting

We show that, for each monitor, there exists an equivalent monitor that is deterministic. Thus, given a formula ϕ ∈
mHML, we can apply the monitor synthesis function to produce a monitor for ϕ and subsequently rewrite the monitor so
that it runs deterministically.

Definition 8. For a process p, T race(p) = {t ∈ Act
∗ | ∃q. p t=⇒ q}. We call two processes p, q trace equivalent when

T race(p) = T race(q). �

We use a result given by Rabinovich in [47], which states that each process is equivalent to a deterministic one, with
respect to trace equivalence — Rabinovich’s definition of determinism for processes coincides with ours when a process has
no free variables.

Let D : Proc → Proc be any function mapping each process p ∈ Proc (as defined in Subsection 2.1) to a trace equivalent
deterministic process. Such a mapping exists, as shown by Rabinovich in [47].

In order to apply the mapping D to the monitors, we must define a way to encode them as processes. We do this by
replacing each verdict v with a process v.nil, where v is treated as an action.

Definition 9. We define a mapping π : Mon → Proc as follows:

π(α.m) = α.π(m)

π(m + n) = π(m) + π(n)

π(recx. m) = recx. π(m)

π(v) = v.nil

π(x) = x

We define an “inverse” of π , which we call π−1:

π−1(s) = v when s is a sum of some v.p

π−1(α.p) = α.π−1(p)

π−1(p + q) = π−1(p) + π−1(q)

π−1(recx. p) = recx. π−1(p)

π−1(x) = x �

Note that π maps monitors to processes where each verdict action v must be followed by the nil process and the nil
process must be prefixed by a verdict action.

We want to use π on a nondeterministic monitor m to construct a process π(m); then, use Rabinovich’s D on π(m) to
determinize the process; then, use the inverse π−1 on D(π(m)) to end up with a deterministic monitor which is equivalent
to m. So, if two monitor encodings are trace equivalent, we want the monitors they encode to be equivalent. Remember
that we have assumed that all sums of verdict v are simply v (see Lemma 1).

Lemma 3. Let m be a monitor and p = π(m). Then, m t=⇒ v if and only if there is some t′ � t, such that p t′=⇒ v.nil.

Proof. Straightforward induction on the length of the derivation p t′=⇒ v.nil for the “if” direction and on the length of the
derivation m t=⇒ v for the “only if” direction. The definition of π is used in both inductions. �

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 11
Lemma 4. Let m = π−1(p). Then, for each t ∈ Act
∗ , there are some t′ � t and a sum s of some v.r, such that p t′=⇒ s, if and only if

m t=⇒ v.

Proof. Like for Lemma 3, by induction on the length of the derivations. �
Lemma 5. Let m and n = π−1(p) be monitors such that T race(π(m)) = T race(p). Then m ∼ n.

Proof. Assume that for a trace t and a verdict v , we have m t=⇒ v . By Lemma 3, for some t′ � t , π(m) t′=⇒ v.nil and so
t′.v ∈ T race(π(m)). Since π(m) and p are trace equivalent, we have p t′v=⇒ r for some r; therefore, p t′=⇒ s, where s is a sum
of some v.r, and so, by Lemma 4, n t=⇒ v .

If n t=⇒ v for some verdict v and trace t , then by Lemma 4, p t′=⇒ s, where s is a sum of v.q and t′ � t , so p t′v=⇒ q. Then,
π(m) t′ v=⇒ q′ , so q′ = nil. Since all sums of v are v in m, it is also the case that all sums of v.nil are v.nil in π(m); by
Lemma 3 and rule mVerd in Table 2, m t=⇒ v . �
Theorem 4 (Monitor rewriting). For each monitor m ∈ Mon there exists a deterministic monitor n ∼ m.

Proof. We define a new monitor n = π−1 ◦ D ◦ π(m). By Lemma 5, m and n are equivalent. Let n = π−1(p). Monitor n is
deterministic. To prove this, let s be a sum in n. We know that s = π−1(p′), where p′ appears in p, which is deterministic.
Then, either p′ is a sum of a v.q, so s = v , or p′ = ∑

α∈A α.p′
α and s = ∑

α∈A α.mα . �
Example 7. To determinize me = rec x. α.(α.no+ x), we convert it to p = π(me) = rec x. α.(α.[no].nil+ x). Then, we use
Rabinovich’s construction to determinize p into (for example) p′ = α.α.[no].nil. We can now see that π−1(p′) = m′

e . �

3.2. Formula rewriting

In this second approach, we show that each formula ϕ ∈ sHML is equivalent to some formula in deterministic form
which will yield a deterministic monitor if we apply the monitor synthesis function to it. We focus on formulae in sHML

but the proof for cHML is completely analogous. We work through an equivalent representation of formulae as systems of
equations, as this makes the steps in our constructions easier to define and follow. The reader can also see [47], where
Rabinovich uses very similar constructions to determinize processes. For the sake of readability, most of the proofs of the
technical results in this section have been placed in Appendix A.

3.2.1. Systems of equations
We give the necessary definitions and facts about systems of equations for sHML. These definitions and lemmata are

simplified versions of more general constructions. We state necessary lemmata without further explanation, but the reader
can see an appropriate source on fixed points and the μ-calculus (for example, [8]).

Given tuples of sets, a = (a1, . . . , ak) and b = (b1, . . . , bl), we use the notation a · b to mean (a1, . . . , ak, b1, . . . , bl). We
abuse notation and extend the operations

⋃
and

⋂
to tuples of sets, so that

⋃
(a, b) = a ∪ b and if a · B ∈ Sk+2,

⋃
(a · B) =

a ∪⋃
B; similarly for

⋂
. Also, for tuples of sets, a = (a1, . . . , ak) and b = (b1, . . . , bk), a ⊆ b iff for all 1 ≤ i ≤ k, ai ⊆ bi . For an

environment ρ , a tuple of distinct variables X = (X1, . . . , Xk) and a tuple of sets S = (S1, . . . , Sk), where k > 1, we define

ρ[X1 → S1, X2 → S2, . . . Xk → Sk] = (ρ[X1 → S1])[X2 → S2, . . . Xk → Sk]
and

ρ[X → S] = ρ[X1 → S1, X2 → S2, . . . Xk → Sk].
Finally, for an environment ρ and formulae ϕ1, . . . , ϕk ,�

n×
i=1

ϕi,ρ

�
=

n×
i=1

�ϕi,ρ�,

where ×n
i=1 Si is the n-ary cartesian product S1 × S2 × · · · × Sn .

Definition 10. A system of equations is a triple SYS = (Eq, X, Y) where X is called the principal variable in SYS, Y is a finite
set of variables and Eq is an n-tuple of equations:

12 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
X1 = F1,

X2 = F2,

...

Xn = Fn,

where for 1 ≤ i < j ≤ n, Xi is different from X j , Fi is an expression in sHML which can contain variables in Y ∪
{X1, X2, . . . , Xn} and there is some 1 ≤ i ≤ n, such that X = Xi . Y is called the set of free variables of SYS and is disjoint
from {X1, X2, . . . , Xn}. �

As we see further below, a system of equations can alternatively be understood as a simultaneous fixed point, but we
mostly use the following recursive definition to provide semantics, where Sol(SYS, ρ) = (S1(ρ), . . . , Sn(ρ)) is an n-tuple of
sets of processes from a labeled transition system, giving solutions to every variable Xi of the equation system, given an
environment ρ . We use the notations

ρ[SYS] def= ρSYS def= ρ

[(
n×

i=1

Xi

)
→ Sol(SYS,ρ)

]
,

depending on which is clearer in each situation. For n = 1, let

Sol(SYS,ρ) = �max X1. F1,ρ�.

Let SYS′ be a system SYS after adding a new first equation, X = F and removing X from Y ; then, for Sol(SYS, ρ) =
(S1(ρ), . . . , Sn(ρ)), let for every environment ρ ,

S0(ρ) =
⋃{

S | S ⊆
�

F ,ρ[X → S]SYS
	}

and

Sol(SYS′,ρ) = (S0(ρ), S1(ρ [X → S0(ρ)]), . . . , Sn(ρ [X → S0(ρ)])) .

If the primary variable of a system of equations, SYS, is Xi and

Sol(SYS,ρ) = (S1(ρ), . . . , Sn(ρ)),

then �SYS,ρ� = Si(ρ). We say that a system of equations SYS is equivalent to a formula ϕ of sHML with free variables from
Y when for every environment ρ , �ϕ, ρ� = �SYS, ρ�.

Example 8. A system of equations equivalent to ϕe = max X . [α]([α]ff ∧ X) is SYSe , which has no free variables and
includes the equations X0 = [α]X1 and X1 = [α]ff∧ X0, where X0 is the principal variable of SYSe . �

Given an environment ρ and such a system of equations SYS, notice that for any equation X = F of SYS, � X,ρ[SYS]� =� F ,ρ[SYS]� and that if X is the principal variable of SYS, then � X,ρ[SYS]� = �SYS,ρ�. We note that, as is well known, the
order of the calculation of the fixed points does not affect the overall outcome:

Lemma 6. Let SYS = (Eq1, X, Y) and SYS′ = (Eq2, X, Y), where Eq2 is a permutation of Eq1. Then, for all environments ρ , �SYS,ρ� =�SYS′,ρ�.

Therefore, for every equation X = F of the system SYS, if SYS′ is the result of removing X = F from the equations and
adding X to the free variables,

� X,ρ[SYS]� =
⋃{

S | S ⊆
�

F ,ρ[X → S]SYS′ 	}
.

Furthermore, we can compute parts of the solution of the system (or the whole solution) as simultaneous fixed points:

Lemma 7. Let SYS = (Eq1 · Eq2, X, Y), Eq1 =×1≤i≤k{Xi = Fi}, X1 = (X1, . . . , Xk), and SYS′ = (Eq2, X, Y ∪ X1). Let for all envi-
ronments ρ ,

S0(ρ) =
⋃{

S | S ⊆
�

k×Fi,ρ[×X1 → S]SYS′
�}

.

i=1

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 13
Then,

Sol(SYS,ρ) = S0(ρ) · Sol(SYS′,ρ[×X1 → S0(ρ)]). �

As a consequence, for a set of variables {Xi | i ∈ I} of a system of equations SYS,�
×
i∈I

Xi,ρ[SYS]
�

=
⋃⎧⎪⎨

⎪⎩S | S ⊆

��×

i∈I

F i,ρ

[
×
i∈I

Xi → S

]SYS′ ��
⎫⎪⎬
⎪⎭ ,

where SYS′ is the result of removing Xi = Fi from the equations and adding Xi to the free variables, for all i ∈ I .

3.2.2. Standard and deterministic forms
We begin by defining a deterministic form for formulae in sHML.

Definition 11. A formula ϕ ∈ sHML is in deterministic form iff for each pair of formulae ψ1 �= ψ2 that occur in the same
conjunction in ϕ , it must be the case that ψ1 = [α1]ψ ′

1 and ψ2 = [α2]ψ ′
2 for some α1 �= α2 or that one of ψ1 and ψ2 is a

free variable of ϕ . �

The following lemma justifies calling these formulae deterministic by showing that applying the monitor synthesis func-
tion to them will yield a deterministic monitor.

Lemma 8. Let ϕ ∈ sHML be a formula in deterministic form with no free variables. Then m = �ϕ� is deterministic.

Proof. By examining the definition of the monitor synthesis function, we can see that if �ϕ� contains a sum
∑

i∈A mi ,
then ϕ contains a conjunction

∧
i∈A∪B ϕi , where for i ∈ A, �ϕi � = mi �= yes and

∑
i∈A mi satisfies the constraints in Defini-

tion 7. �
Example 9. ϕe is not in deterministic form, but ψe = [α]([α]ff∧ X) is (because here X is free) and so is ϕ′

e = [α][α]ff. �

We also define a standard form for formulae in sHML.

Definition 12. A formula ϕ ∈ sHML is in standard form if all free and unguarded variables in ϕ are at the top level; that is,

ϕ = ϕ′ ∧
∧
i∈S

Xi

where ϕ′ does not contain a free and unguarded variable. �

Example 10. ϕe is in standard form and so is ψe = [α]([α]ff ∧ X) (although here X is free, it is also guarded). Formula
[α]ff∧ X is in standard form, because X is at the top level and so is ϕ′

e = [α][α]ff, because it has no variables. Formula
max X . ([α]X ∧ Y) is not is in standard form, but the construction in the proof of Lemma 9 below transforms it into
(max X . [α]X) ∧ Y which is. �

Lemma 9. Each formula in sHML is equivalent to some formula in sHML which is in standard form.

Lemma 10. Let SYS be a system of equations and X = F an equation of the system and let SYS′ result from replacing X = F by X = F ′ .
Let SYS0 be the result of removing the first equation from SYS and adding X1 to the free variables, Y . If for every environment ρ , � F ,ρ[SYS0]� = � F ′,ρ[SYS0]�, then SYS′ is equivalent to the original system, SYS.

Proof. Because of Lemma 6, it suffices to prove the lemma when replacing the equation of the primary variable X1 = F1 by
X1 = F ′

1. Then,

�SYS,ρ� =
=

⋃
{S1 | S1 ⊆

�
F1,ρ[X1 → S1]SYS0

	
}

=
⋃

{S1 | S1 ⊆
�

F ′
1,ρ[X1 → S1]SYS0

	
}

= �
SYS′,ρ

�
. �

14 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
We now extend the notion of standard and deterministic forms to systems of equations.

Definition 13. Let SYS be a system of equations that is equivalent to some formula ϕ ∈ sHML. We say that an equation,
Xi = Fi is in standard form if either Fi = ff, or

Fi =
∧
j∈Ki

[α j]X j ∧
∧
j∈Si

Y j

for some finite set of indices, Ki and Si . We say that SYS is in standard form if every equation in SYS is in standard form.

Lemma 11. For each formula ϕ ∈ sHML, there exists a system of equations that is equivalent to ϕ and is in standard form.

Example 11. The system of equations that results from the construction of Lemma 11 for formula ϕe = max X . [α]([α]ff∧
X) is SYS′

e , which has no free variables and includes the equations

X = [α]X1,

X1 = [α]X2 ∧ [α]X1,

X2 = ff,

where X is the principal variable of SYS′
e . �

Definition 14. Let SYS = (Eq, X1, Y) be a system of equations equivalent to a formula in sHML. We say that an equation
X = ∧

F in Eq is in deterministic form iff for each pair of expressions F1, F2 ∈ F \Y , it must be the case that F1 = [α1]Xi

and F2 = [α2]X j , for some α1, α2 ∈ Act and some i, j such that if α1 = α2 then Xi = X j . We say that SYS is in deterministic
form if every equation in Eq is in deterministic form. �

Lemma 12. For each sHML system of equations in standard form, there exists an equivalent system of equations that is in deterministic
form.

Example 12. The deterministic form of SYS′
e is SYS′′

e , which has no free variables and includes the equations

X = [α]X1,

X1 = [α]X12,

X2 = ff,

X12 = ff,

where X is the principal variable of SYS′
e . �

Lemma 13. Let SYS = (Eq, X1, Y) be a sHML system of equations in deterministic form. There exists a formula ϕ ∈ sHML that is in
deterministic form and is equivalent to SYS.

Finally, we are ready to prove the main theorem in this section.

Theorem 5. For each formula ϕ ∈ sHML there exists a formula ψ ∈ sHML that is equivalent to ϕ and is in deterministic form.

Proof. Follows from Lemmata 11, 12 and 13. �
Example 13. If we follow through all the constructions, starting from ϕe , using Lemma 11 we construct SYS′

e , which is a
system of equations in standard form. From SYS′

e , using Lemma 12, we build system SYS′′
e , which is in deterministic form.

Finally, from SYS′′
e we use Lemma 13 to obtain the deterministic form of ϕe , which happens to be ϕ′

e = [α][α]ff. �

This section’s conclusion is that to monitor an sHML formula, it is enough to consider deterministic monitors. On the
other hand, if we are concerned with the computational cost of constructing a monitor (and we are), it is natural to ask
what the cost of determinizing a monitor is. The following Section 4 is devoted to answering this and related questions.

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 15
Table 4
System N is the result of replacing rule mRec by rules
mRecF and mRecB.

mRecF

recx. mx
τ−→ mx

mRecB

x
τ−→ px

Table 5
System M is the result of replacing rule mRec by rules
mRecF and mRecP.

mRecF

recx. mx
τ−→ mx

mRecP

x
τ−→ mx

4. Bounds for determinizing monitors

The purpose of this section is to establish bounds on the sizes of monitors, to compare the succinctness of (nondeter-
ministic) finite automata and monitors, and to determine the cost of converting nondeterministic monitors into equivalent
deterministic ones. It is hard to extract bounds from the constructions of Section 3. Therefore, we examine a different ap-
proach in this section. We remind the reader that, in this section, we consider monitors which use only the yes verdict —
although treating monitors which use only the no verdict instead is completely analogous and we can also treat monitors
which use both verdicts as described in Section 5.

4.1. Semantic transformations

For convenience, we slightly alter the behavior of monitors to simplify this section’s arguments. Specifically, we provide
three different sets of rules to define the behavior of the monitors, but we prove these are equivalent with respect to the
traces which can reach a yes value, which is what we need for this section. Fix a reference monitor, which intuitively
corresponds to the start state of a monitor LTS we consider. All other monitors are submonitors of this reference monitor.
We assume without loss of generality that each variable x appears in the scope of a unique monitor px = rec x. mx . The
monitors may behave according to a system of rules. System O is the old system of rules, as given in Table 2 of Section 2.1;
system N is given by replacing rule mRec by the rules given by Table 4.

Derivations −→ and ⇒ are defined as before, but the resulting relations are called −→O and ⇒O , and −→N and
⇒N , respectively for systems O and N. This subsection’s main result, as given by Corollary 1, is that systems O and N are
equivalent. That is, for any monitor m, trace t , and value v ,

m
t=⇒O v if and only if m

t=⇒N v.

To prove the equivalence of the two systems, we introduce an intermediate system, which we call system M. This is the
result of replacing rule mRec of system O by the rules given by Table 5.

For system M as well, derivations −→ and ⇒ are defined as before, but the resulting relations are called −→M and ⇒M

for system M, to distinguish them from −→O , ⇒O , −→N , and ⇒N . Notice that the syntax used in system O and systems M
and N is necessarily different. While systems M and N require unique px and mx and no substitutions occur in a derivation,
the substitutions which occur in rule mRec produce new monitors and can result for each variable x in several monitors of
the form rec x. m. For example, consider monitor

m = rec x. (α.yes+ β.rec y. (α.x + β.y)).

In this case, px = m and p y = rec y. (α.x + β.y), but by rule mRec of system O,

m
τ−→ α.yes+ β.rec y.(α.rec x. (α.yes+ β.rec y. (α.x + β.y)) + β.y)

β−→ rec y. (α.rec x. (α.yes+ β.rec y. (α.x + β.y)) + β.y) = p′
y,

but p y �= p′
y and they are both of the form rec y. m, which means that they cannot both appear in a derivation of system

N or M. Thus, when comparing the two systems, we assume one specific initial monitor p0, from which all derivations
in both systems are assumed to originate. Monitor p0 satisfies the syntactic conditions for systems M and N and this is
enough, since all transitions that can occur in these systems only generate submonitors of p0.

The reason for changing the rules in the operational semantics of monitors is that for our succinctness results we need
to track when recursion is used to reach a previous state of the monitor (i.e. a previous monitor in the derivation) by
tracking when rule mRecB is used and then claim that this move takes us back a few steps in the derivation. Thus, we will
be using system N for the remainder of this section. However, before that we need to demonstrate that it is equivalent to
system O, in that for every monitor m, trace t , and value v , m t=⇒O v iff m t=⇒N v . We prove this claim in this subsection by
demonstrating equivalence of both systems to system M.

16 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
Lemma 14. Given monitors m, n and action α ∈ Act, m α−→N n iff m α−→M n iff m α−→O n.

Proof. Notice that in all three systems, m α−→ n can only be produced by a combination of rules mAct, mSelL, and mSelR (all
variants of mRec can only produce τ -transitions, which are preserved through mSelL and mSelR). Since all three rules are
present in all three systems, when this transition is provable in one of the systems, it can be replicated in each of them. �
Lemma 15. If m τ−→M n, then there is some variable x, such that m is a sum of x or of px and n = mx.

Proof. Notice that τ -transitions can only be introduced by rules mRecF and mRecP. Moreover, τ -transitions of monitors m1

and m2 are propagated to m1 + m2 via rules mSelL and mSelR. Then, it is not hard to verify that if m τ−→M n was produced
by mRecF or mRecP, then m, n satisfy the property asserted by the lemma. Moreover, rules mSelL and mSelR preserve this
property. �
Lemma 16. If m τ−→N n, then there is some variable x, such that either m is a sum of x and n = px, or m is a sum of px and n = mx.

Proof. Very similar to the proof of Lemma 15. �
Lemma 17. If m τ−→O n, then there is a monitor r = rec x. r′ , such that m is a sum of r and n = r′[r/x].

Proof. Again, very similar to the proof of Lemma 15. �
We first prove the equivalence of the systems M and N.

Lemma 18. For a monitor m, trace t, and value v, m t=⇒N v iff m t=⇒M v.

Proof. We first prove that if m t=⇒M v , then m t=⇒N v by induction on the length of the derivation m t=⇒M v .

If m = v , then we are done, as the trivial derivation exists for both systems.

If m
α−→M m′ t′=⇒M v , then m α−→N m′ by Lemma 14. By the inductive hypothesis, m′ t′=⇒N v and we are done.

If m
τ−→M m′ t=⇒M v , then by Lemma 15, there is some variable x, such that m is a sum of x or of px and m′ = mx . Then, if

m a sum of px , m τ−→N mx and if m a sum of x, then m τ−→N px
τ−→N mx = m′ . By the inductive hypothesis, m′ t=⇒N v

and we are done.

We now prove that if m t=⇒N v , then m t=⇒M v , again by induction on the length of the derivation m t=⇒N v . The only different
case from above is for when m τ−→N m′ t=⇒N v . In this case, by Lemma 16, there is some variable x, such that m is a sum of
x and m′ = px , or m is a sum of px and m′ = mx . Then, if m a sum of px , m τ−→M mx = m′ and by the inductive hypothesis,
m′ t=⇒M v and we are done. If m a sum of x, then m′ = px �= v , so the derivation is of the form m τ−→N m′ = px

τ−→N mx
t=⇒N v

(as px can only transition to mx), thus m τ−→M mx . By the inductive hypothesis, mx
t=⇒M v and we are done. �

Now we prove the equivalence of systems O and M.

Lemma 19. For a monitor m, trace t, and value v, m t=⇒M v iff m t=⇒O v.

Proof. As we mentioned before, the syntax used in systems O and M is necessarily different. While rule mRecP requires
a unique mx (and thus a unique px), the substitutions which occur in rule mRec often result in several monitors of the
form rec x. m. The central idea of this proof is that if the derivation we consider starts with a monitor whose submonitors
satisfy the uniqueness conditions we have demanded in systems M and N for rec x. m, then all produced monitors of the
form rec x. m are somehow equivalent.

Thus, we assume an initial monitor p0, such that all derivations considered are subderivations of a derivation initialized
at p0 and such that every x is bound in a unique submonitor rec x. m, which is px as required in system M. We define
≡ to be the smallest equivalence relation such that for all variables x, x ≡ px and that for all m and d ≡ x, m ≡ m[d/x]. We
now proceed to establish a number of auxiliary claims.

1. For every m = rec x. d which appears in a derivation in O from p0, m ≡ px . We prove this claim as follows. Since only
substitution can introduce new monitors of the form rec x. d and initially, for each variable x the only such monitor
is px , we can use induction on the overall number of substitutions in the derivation from p0 to prove the claim. If no

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 17
substitutions happened, the claim is trivial. Say the derivation so far is of the form p0
w=⇒O rec y. r

τ−→O r[rec y. r/y],
with r[rec y. r/y] being the latest substitution in the derivation, such that the claim holds for all submonitors of
monitors appearing in p0

w=⇒O rec y. r. Let m = rec x. d be a submonitor of r[rec y. r/y]. We know by the inductive
hypothesis that rec y. r ≡ p y ≡ y; then, there is some m′ = rec x. d′ submonitor of rec y. r (thus, m′ ≡ px) and
m = m′[rec y. r/y], but by the definition of ≡, m ≡ m′ ≡ px .

2. For a value v and monitor m, if v ≡ m, then m = v . To see this, notice that ≡M such that for value v , v ≡M m iff v = m and
for m, m′ which are not values, always m ≡M m′ , satisfies the above conditions, therefore ≡ ⊆ ≡M .

3. If m + d ≡ r, then there are m′ + d′ = r, where m ≡ m′ and d ≡ d′ . Indeed, notice that ≡ can be constructed as the
union

⋃
i∈N ≡i , where ≡0 includes all pairs (m, m), (x, px), (px, x), while ≡i+1 has all pairs in ≡i and all (m, m[d/x]),

(m[d/x], m) and (m, r), (r, m), where d ≡i x and m ≡i m′ ≡i r; also, notice that neither x not px is of the form m +d and
all steps of the construction preserve the claim.

4. If α.m ≡ r, then there is some α.d = r, where m ≡ d. The proof of this claim is the same as the one for the one above.
5. If rec x. m ≡ r or x ≡ r, then x = r or there is some rec x. d = r, where m ≡ d. This is proved as above.
6. If m ≡ r and m is a sum of d, then r is a sum of some d′ ≡ d. By induction on the construction of a sum and the claim for +.

By the second claim, it is enough to prove that if m ≡ m′ and m
μ−→O d, then there is some d′ ≡ d, such that m′ μ−→M d′ and

conversely, if m ≡ m′ and m′ μ−→M d′ , then there is some d ≡ d′ , such that m
μ−→O d (notice that this makes ≡ a bisimulation).

We now show these two statements separately.

Assume, first of all that m ≡ m′ and m
μ−→O d.

If μ = τ , then by Lemma 17, m is a sum of rec x. r and d = r[m/x] — from the last claim above, we assume for
simplicity that m = rec x. r and it does not affect the proof. By the claims above, either m′ = x or m′ = rec x. d′ , where
r ≡ d′ . Since r ≡ r[m/x] = d, if m′ = rec x. d′ , then m′ = rec x. d′ τ−→M d′ ≡ r ≡ d and we are done. Otherwise, m′ = x and
by the first claim, m ≡ px , so mx ≡ r ≡ d, therefore m′ = x τ−→M mx ≡ d and we are done.

If μ = α ∈ Act, then m is a sum of some α.d, so by the claims above, m′ is the sum of some α.d′ , where d′ ≡ d; thus,
m′ μ−→M d′ .

For the converse, let m ≡ m′ and m′ μ−→M d′ .
If μ ∈ Act, then the argument is as above. If μ = τ , then by Lemma 15, m′ is a sum of x or px and d′ = mx . Therefore,

by the claims above, either m = x, which cannot occur in system O, or m = rec x. d, for some d ≡ mx . Therefore, m τ−→O

d[m/x] ≡ d ≡ d′ . �
Corollary 1. For a monitor m, trace t, and value v, m t=⇒N v iff m t=⇒M v iff m t=⇒O v.

By Corollary 1, systems M, N, and O are equivalent, so we will be using whichever is more convenient in the proofs that
follow. For the remainder of this section, we use system N and we call →N and ⇒N simply → and ⇒, respectively.

There are three reasons for changing the operational semantics rules of monitors. One is that, for the bounds we prove,
we need to track when recursion is used in a derivation. Another is that in System N (unlike in System O) it is clear
which monitors may appear in a derivation starting from monitor m (namely, at most all submonitors of m), which in
turn makes it easier to construct an LTS — and also to transform a monitor into an automaton. For instance, consider
m = rec x. (α.x +β.yes). In System O, m τ−→ α.(rec x. (α.x +β.yes)) +β.yes, which is not a subterm of m. On the other
hand, in System N, m τ−→ α.x + β.yes, which is a subterm of m. Finally, and partly due to the previous observation, we can
see that a monitor, viewed as an LTS, has a specific form: it is a rooted tree with labeled edges provided by

μ−→, with some
back edges, which result from recursion (namely, from the rule RecB in Table 4).

When using System N, we need to be more careful with the definition of determinism. Notice that it is possible to have
a nondeterministic monitor, which has a deterministic submonitor. For instance, px = rec x. (α.x +α.yes) is nondetermin-
istic, while according to our definition of determinism, α.x is deterministic (specifically, all variables are deterministic). The
issue here is that although α.x is deterministic in form, it can transition to (x and then to) px , which is not. This is not a
situation we encountered in System O, because there variables do not derive anything on their own and all monitors we
consider are closed. In System N, though, a variable x can appear in a derivation and it can derive px , so it would not be
reasonable to consider a variable deterministic — and thus judge the determinism of a monitor only from its structure. In
other words, our definition of a deterministic monitor additionally demands that said monitor is closed; alternatively, for
a monitor which appears in a derivation to be deterministic, we demand that the initial monitor p0 be deterministic (by
Definition 7).

4.2. Size bounds for monitors

We present upper and lower bounds on the size of monitors. We first compare monitors to finite automata and then we
examine the efficiency of monitor determinization. Note that monitors can be considered a special case of nondeterministic
finite automata (NFA) and this observation is made explicit.

18 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
This section’s results are the following. We first provide methods to transform monitors to automata and back. One of
the consequences of these transformations is that we can use the classic subset construction for the determinization of NFAs
and thus determinize monitors. One advantage of this method over the one given in the previous sections is that it makes
it easier to extract upper bounds on the size of the constructed monitors. Another is that it can be applied to an equivalent
NFA, which can be smaller than the given monitor, thus resulting in a smaller deterministic monitor. Then, we demonstrate
that there is an infinite family of languages (Ln)n∈N , such that for each n, Ln is recognizable by an NFA of n + 1 states, a
DFA of 2n states, a monitor of size O (2n), and a deterministic monitor of size 22O (n)

. Furthermore, we cannot do better, as
we demonstrate that any monitor which accepts Ln must be of size �(2n) and every deterministic monitor which accepts
Ln must be of size 22�(n)

.

4.2.1. From monitors to finite automata
A monitor can be considered to be a finite automaton with its submonitors as states and ⇒ as its transition relation.

Here we make this observation explicit.2 For a monitor m, we define the automaton A(m) to be (Q , Act, δ, q0, F), where

• Q , the set of states, is the set of submonitors of m;
• Act, the set of actions, is also the alphabet of the automaton;

• d′ ∈ δ(d, α) iff d ⇒ α−→ d′;
• q0, the initial state is m;
• F = {yes}, that is, yes is the only accepting state.

Proposition 1. Let m be a monitor and t ∈ Act
∗ a trace. Then, A(m) accepts t iff t t=⇒ yes.

Proof. We actually prove that for every q ∈ Q , Aq(m) = (Q , Act, δ, d, F) accepts t iff q t=⇒ yes and we do this by induction
on t . If t = ε , then Aq(m) accepts iff q ∈ F iff q = yes iff q ⇒ yes. If t = αt′ , then
Aq(m) accepts t
iff there is some q′ ∈ δ(q, α) such that Aq′ (m) accepts t′

iff there is some q′ s.t. q ⇒ α−→ q′ and q′ t′=⇒ yes

iff q t=⇒ yes. �
Notice that A(m) has at most |m| states (because Q only includes submonitors of m), but probably fewer, since two

occurrences of the same monitor as submonitors of m give the same state — and we can cut that down a bit by removing
submonitors which can only be reached through τ -transitions. Furthermore, if m is deterministic, then A(m) is deterministic.

Corollary 2. For every monitor m, there is an automaton A which accepts the same language and has at most |m| states. Furthermore,
if m is deterministic, then A is a DFA.

Corollary 3. All languages recognized by monitors are regular.

q0

q1

q2q3 qno

req
req

req req

cls

res
res, cls

Fig. 2. The automaton corresponding to the monitor of Fig. 1 (in this case, the verdict used is no instead of yes).

See Fig. 2.

2 The definition to follow is possible because system N only transitions to submonitors of an initial monitor; otherwise we would need to consider all
monitors reachable through transitions and it would not be as clear which ones these are.

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 19
4.2.2. From automata to monitors
We would also like to be able to transform a finite automaton to a monitor and thus recognize regular languages

by monitors. This is not always possible, though, since there are simple regular languages not recognized by any monitor.
Consider, for example, (11)∗ , which includes all strings of ones of even length. If there were such a monitor for the language,
since ε is in the language, the monitor could only be yes, which accepts everything (so, this conclusion is also true for any
regular language of the form ε + L �= Act

∗).
One of the properties which differentiates monitors from automata is the fact that verdicts are irrevocable for monitors.

Therefore, if for a monitor m and finite trace t , m t=⇒ yes, then for every trace t′, it is also the case that m tt′=⇒ yes (because
of rule mVerd, which yields that for every t′ , yes t′=⇒ yes). So, if L is a regular language on Act recognized by a monitor,
then L has the property that for every t, t′ ∈ Act

∗ , if t ∈ L, then tt′ ∈ L. We call such languages irrevocable (we could also
call them suffix-closed).

Now, consider an automaton which recognizes an irrevocable language. Then, if q is any (reachable) accepting state of
the automaton, notice that if we can reach q through a word t , then t is in the language and so is every tα; therefore,
we can safely add an α-transition from q to an accepting state (for example, itself) if no such transition exists. We call an
automaton which can always transition from an accepting state to an accepting state irrevocable. Note that in an irrevocable
DFA, all transitions from accepting states go to accepting states.

Corollary 4. A language is regular and irrevocable if and only if it is recognized by an irrevocable NFA.

Corollary 5. A language is regular and irrevocable if and only if it is recognized by an irrevocable DFA.

Proof. Simply notice that the usual subset construction on an irrevocable NFA gives an irrevocable DFA. �
Let A = (Q , Act, δ, q0, F) be an automaton and n = |Q |. For 1 ≤ k ≤ n, q1, q2, . . . , qk ∈ Q and α1, α2, . . . , αk−1 ∈ Act, P =

q1α1q2α2 · · ·αk−1qk is a path of length k on the automaton if all q1, q2, . . . , qk are distinct and for 0 < i < k, qi+1 ∈ δ(qi, αi).
Given such path, P |qi = q1, q2, . . . , qi and qP = qk . By q ∈ P we (abuse notation and) mean that q appears in P . When
q1 = q0, we say that the path originates at q0.

Given an irrevocable NFA, we can construct an equivalent (in that it accepts the same traces) monitor through a pro-
cedure which can be described informally in the following way. We first unravel the NFA into a tree: we make a copy of
each state q for all paths from the initial state that end with q. Then, we map each node of this tree to a monitor, such
that in the end, the root is mapped to the resulting equivalent monitor. The leaves that correspond to an accepting state
are mapped to yes; we use action applications to describe forward tree edges and recursion for back edges — there is no
need for cross edges. (See Fig. 3 for an example of the transformation.) If the automaton is deterministic, so is the resulting
monitor.

q0

q1

q2

0,1

1

0

0,1

q0

q1

q2

q1

q2

0

1

0

0,1

1

1

0

0,1

recx. (0.(1.yes+ 0.x) + 1.(1.yes+ 0.x))

1.yes+ 0.x

yes

1.yes+ 0.x

yes

0

1

0 1

1

0

Fig. 3. Transformation of an automaton into a monitor: DFA to tree unraveling to deterministic monitor.

Theorem 6. Given an irrevocable NFA of n states, there is a monitor of size 2O (n log n) which accepts the same traces as the automaton.

Proof. Let A = (Q , Act, δ, q0, F) be an irrevocable finite automaton and n = |Q |. We can assume that F has a single accept-
ing state (since all states in F behave the same way), which we call Y . For some q ∈ Q , Aq = (Q , Act, δ, q, F), which is the
same automaton, but the run starts from q. Given a set S of monitors,

∑
S is some sum of all elements of S .

For every path P = q1α1 · · ·αk−1qk of length k ≤ n on Q , we construct a monitor m(P) by recursion on n − k.
If qP = Y , then m(P) = yes. Otherwise,

20 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
m(P) = rec xP .

⎛
⎝

∑{α.m(Pαq) | α ∈ Act and q ∈ δ(qP ,a) and q /∈ P }
+∑{α.xP |q | α ∈ Act and q ∈ δ(qP ,a) and q ∈ P }

⎞
⎠ .

This was a recursive definition, because if n = k, all transitions from qP lead back to a state in P . Let m = m(q0). Notice
that m satisfies our assumptions that all variables x (i.e. xP) are bound by a unique px (i.e. m(P)). Furthermore, following
the definition above, for each path P originating at q0 we have generated at most 2|Act| · n new submonitors of m(P) —
this includes all the generated sums of submonitors of the forms α.m(Pαq) and α.xPq and m(P) itself. Specifically, if the
number of transitions from each state is at most � (� is at most n|Act|), then for each path P originating at q0 we have
generated at most 2� new submonitors of m(P). If the number of paths originating at q0 is �, then

|m| ≤ 2� · �.

Let P = q1α1q2α2 · · ·αk−1qk be a path on Q . Notice that q1q2 · · ·qk is a permutation of length k of elements of Q and
α1α2 · · ·αk−1 is a (k − 1)-tuple of elements form Act. Therefore, the number of paths originating at q0 is at most

� ≤
n−1∑
k=1

|Act|k · (k!) ≤ (n − 1)! · |Act|n−1 · n = |Act|n−1 · (n!)

and thus,

|m| ≤ 2n|Act| · |Act|n−1 · (n!) = 2n|Act|n · (n!) = 2O (n log n).

To prove that m accepts the same traces as A, we prove the following claim.

Claim: for every such path P , m(P) t=⇒ yes if and only if AqP accepts t .
We prove the claim by induction on t .

If t = ε , then m(P) t=⇒ yes iff m(P) = yes iff qP = Y .
If t = αt′ and AqP accepts t , then there is some q ∈ δ(qP , α), such that Aq accepts t′ . We consider the following cases:

– if qP = Y , then m(P) = yes
t=⇒ yes;

– if q ∈ P , then m(P) α−→ xPq

τ−→ m(Pq) and by the inductive hypothesis, m(Pq)
t′=⇒ yes;

– otherwise, m(P) τ−→ α−→ m(Pαq) and therefore, by the inductive hypothesis, m(Pαq) t′=⇒ yes.

If t = αt′ and m(P) t=⇒ yes and qP �= Y , then there is some q ∈ δ(qP , α), such that either m(P) τ−→ α−→ m(Pαq) t′=⇒ yes (when
q /∈ P), or m(P) τ−→ α−→ xP |q

τ−→ m(P |q) t′=⇒ yes (when q ∈ P); in both cases, by the inductive hypothesis, Aq accepts t′ , so A
accepts t . �
Corollary 6. Given an irrevocable DFA of n states, there is a deterministic monitor of size at most 2n · |Act|n = 2O (n) which accepts the
same traces as the automaton.3

Proof. Notice that the proof of Theorem 6 works for DFAs as well. We use the same construction. Unless m = yes, every
recursive operator (except the first one), variable, and value is prefixed by an action; furthermore, if A is deterministic and
α.p1, α.p1 appear as part of the same sum, then p1 = p2. So, we have constructed a deterministic monitor.

Since A is deterministic, given a state q1, every path in A, q1α1 · · ·αk−1qk is fully defined by the sequence of actions
which appear in the path, α1α2 · · ·αk−1. Since k ≤ n, the number of such paths in A is thus at most

n∑
k=1

|Act|k−1 < n · |Act|n−1.

As we mentioned in the proof of Theorem 6, if the number of paths originating at q0 is � and the number of transitions
from each state is at most �, then

|m| ≤ 2� · �
and therefore,

|m| ≤ 2n|Act|n. �
3 Note that if |Act| = 1, then this Corollary claims a linear bound on the size of the deterministic monitor with respect to the number of states of the

DFA. See Corollary 18 at the end of this section and the discussion right above it for more details.

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 21
Corollary 7. A language is regular and irrevocable if and only if it is recognized by a (deterministic) monitor.

Corollary 8. Let m be a monitor for ϕ . Then, there is a deterministic monitor for ϕ of size 2O
(
2|m|)

.

Proof. Transform m into an equivalent NFA of at most |m| states, then to a DFA of 2|m| states, and then, into an equivalent
deterministic monitor of size 2O

(
2|m|)

. �
Now, this is a horrible upper bound. Unfortunately, as the remainder of this section demonstrates, we cannot do much

better.

4.2.3. Lower bound for (nondeterministic) monitor size
It is easier to understand the intuition behind the lower bounds for constructing monitors after realizing that the LTS

of a monitor is a rooted tree with additional back edges. The tree is the monitor’s syntactic tree; a transition generated by
rules mAct and mRecF (and then, possibly mSel) is a transition from a parent to a child and a transition generated by rule
mRecB (and then, possibly mSel) is a transition to an ancestor (rule mVerd gives self-loops for the leaves). Furthermore,
we note that from every node of this tree, distinct actions transition to distinct nodes. This is the form generated from the
construction of Theorem 6.

The family of languages we consider is (initially) the following. For n ≥ 1, let

Ln = {α1β ∈ {0,1}∗ | |β| = n − 1}.
This is a well-known example of a regular language recognizable by an NFA of n + 1 states, by a DFA of 2n states, but by
no DFA of fewer than 2n states. As we have mentioned, monitors do not behave exactly the way automata do and can only
recognize irrevocable languages. Therefore, we modify Ln to mark the ending of a word with a special character, e, and
make it irrevocable. Thus,4

Mn = {αeβ ∈ {0,1, e}∗ | α ∈ Ln}.
Note that an automaton (deterministic or not) accepting Ln can easily be transformed into one (of the same kind)

accepting Mn by introducing two new states, Y and N , where Y is accepting and N is not, so that all transitions from Y
go to Y and from N go to N (N is a junk state, thus unnecessary for NFAs); then we add an e-transition from all accepting
states to Y and from all other states to N . The reverse transformation is also possible: From an automaton accepting Mn , we
can have a new one accepting Ln by shedding all e-transitions and turning all states that can e-transition to an accepting
state of the old automaton to accepting states. The details are left to the reader.

Thus, there is an NFA for Mn with n + 2 states and a DFA for Mn with 2n + 2 states, but no less. We construct a
(nondeterministic) monitor for Mn of size O (2n). For every α ∈ {0, 1}∗ , where |α| = k ≤ n − 1, we construct a monitor mα

by induction on n − k: if k = n − 1, mα = e.yes; otherwise, mα = 0.mα0 + 1.mα1. Let m = rec x. (0.x + 1.x + 1.mε). Then,
m mimics the behavior of the NFA for Mn and |m| = 8 + |mε | = O (2n).

The idea behind showing that there is no monitor for Mn of size less than 2n is that for every w ∈ {0, 1}n−1, 1we is an
accepted trace. Furthermore, after reading the first letter, the monitor tree is not allowed to use a back edge (i.e. recursion),
or it could accept a shorter trace. By the observation above about the form of a monitor as a tree, the monitor is (at least)
a complete binary tree of height n − 1. In the following, we make this argument more explicit.

Definition 15. We call a derivation m t=⇒ m′ simple, if rules mRecB and mVerd are not used in the proof of any transition of
the derivation. We say that a trace t ∈ Act

∗ is simple for monitor m if there is a simple derivation m t=⇒ m′ . We say that a
set G of simple traces for m is simple for m. �

Lemma 20. Every subderivation of a simple derivation is simple.

Corollary 9. If t′ � t and t is a simple trace for monitor m, then t′ is also a simple trace for m.

Lemma 21. Let m be a monitor and G a (finite) simple set of traces for m. Then, |m| ≥ |G|.

Proof. By structural induction on m.

If m = v or x, then |G| is either empty or {ε} and |m| ≥ 1.

4 Note that we can also allow for infinite traces without consequence.

22 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
If m = α.d, then all non-trivial derivations that start from m, begin with m α−→ d. Therefore, all traces in G , except perhaps
for ε , are of the form αt . Let Gα = {t ∈ Act

∗ | αt ∈ G}. Then, |G| ≤ |Gα | + 1, as there is a 1-1 and onto mapping
from G \ {ε} to Gα , namely αt → t . By the inductive hypothesis, |d| ≥ |Gα |, so |m| = |d| + 1 ≥ |Gα | + 1 ≥ |G|.

If m = d + r, then notice that all derivations that start from m (including the trivial one, if you consider m ⇒ m and d ⇒ d
to be the same) can also start from either d or r. Therefore, G = Gd ∪ Gr , where Gd is simple for d and Gr is simple
for r. Then, |m| = |d| + |r| ≥ |Gd| + |Gr | ≥ |G|.

If m = rec x. d, then all non-trivial derivations that start from m, must begin with m τ−→ d. Therefore, it is not hard to see
that G is simple for d as well, so |m| = |d| + 1 > |G|. �

Corollary 10. Let t be a simple trace for m. Then, h(m) ≥ |t|.

Proof. Very similar to the proof of Lemma 21. �
Corollary 11. Let m be a monitor and G a simple set of traces for m. Then, G is finite.

Proof. Notice that |m| ∈N . �
Corollary 12. Let m be a monitor and t a simple trace for m. Then, t is finite.

Proof. A direct consequence of Corollary 10. �
Lemma 22. In a derivation m t=⇒ x, such that x is bound in m, a sum of px must appear acting as px.

Proof. By induction on the length of the derivation. If it is 0, then m = x and x is not bound. Otherwise, notice that
naturally, x is bound in m, but x is not bound in x. Let m t′=⇒ d

μ−→ d′ be the longest initial subderivation such that x remains
bound in d. Thus, it must be the case that x is not bound in d′ . The only rule which can have this effect is mRecF, possibly
combined with mSel, so d is a sum of px acting as px . �

The following lemma demonstrates that derivations which are not simple enjoy a property which resembles the classic
Pumping Lemma for regular languages.

Lemma 23. Let m t=⇒ d, such that t is not simple for m. Then, there are t = xuz, such that |u| > 0 and for every i ∈N , m xui z==⇒ d.

Proof. Let m t=⇒ d be a non-simple derivation D . We assume that there are no s(
τ−→)+ px parts in it, where s is a sum of px

acting as px; otherwise remove them and the resulting derivation is non-simple, because t is non-simple. Let s � t be the
longest prefix of t , such that subderivation m s=⇒ r is simple. Then, there is a sα � t , such that there is a subderivation of D ,
m s=⇒ r

α−→ r′ and in r α−→ r′ , either mVerd or mRecB is used and neither is used in m s=⇒ r. If mVerd is used, then m s=⇒ v as
part of D , so d = v and m sui=⇒ v , for su = t and i ∈ N . If mRecB is used, then m s=⇒ x τ=α−−−→ px; by Lemma 22, a sum of px

acting as px , say sx must appear in m s=⇒ x, so sx
u=⇒ px is thus part of the derivation and |u| > 0 by our assumption at the

beginning of the proof. Then, for some x, z, t = xuz and for every i ∈N , m xui z==⇒ d. �
Corollary 13. Let m be a monitor and t a trace, such that |t| > h(m). Then, there are t = xuz and a monitor d, such that |u| > 0 and

for every i ∈N , m xui z==⇒ d.

Proposition 2. Let m be a monitor for Mn. Then, |m| ≥ 3 · 2n−1 .

Proof. Because of Lemma 21, it suffices to find a set G of simple traces for m, such that |G| ≥ 3 · 2n−1. We define

G = {t ∈ {0,1, e}∗ | t � 1se, where s ∈ {0,1}n−1}.
Then, |G| ≥ 3 · 2n−1, so it suffices to demonstrate that all traces in G are simple. In turn, it suffices to demonstrate that for
s ∈ {0, 1}n−1, 1se is simple. If it is not, then by Lemma 23, since m 1se==⇒ yes, there is a (strictly) shorter trace t , such that
m t=⇒ yes, which contradicts our assumption that m is a monitor for Mn . �

We have thus demonstrated that for every n ≥ 1, there is a monitor for Mn of size O (2n) and furthermore, that there
is no monitor for Mn of size less than 3 · 2n−1. So, to recognize languages Mn , monitors of size exponential with respect

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 23
to n are required and thus we have a lower bound on the construction of a monitor from an NFA, which is close to the
respective upper bound provided by Theorem 6.

4.2.4. Lower bound for deterministic monitor size
We now consider deterministic monitors. We demonstrate (see Theorem 7) that to recognize languages Mn a determin-

istic monitors needs to be of size 22�(n)
. Therefore, a construction of a deterministic monitor from an equivalent NFA can

result in a double-exponential blowup in the size of the monitor; constructing a deterministic monitor from an equivalent
nondeterministic one can result in an exponential blowup in the size of the monitor. As Theorem 8 demonstrates, the sit-
uation is actually worse for the determinization of monitors, as there is a family Un of irrevocable regular languages, such
that for n ≥ 1, Un is recognized by a nondeterministic monitor of size O (n), but by no deterministic one of size 22o(

√
n log n)

.
The proof of Theorem 8 relies on a result by Chrobak [15] for unary languages (languages on only one symbol), who

showed that for every n, there is a unary language Chn which is recognized by an NFA with n states, but by no DFA with

e
o
(√

n log n
)

states. Un is then the set of word w ∈ {0, 1}, such that the 0’s or the 1’s in w are a word from Chn . Then, from
a deterministic monitor for Un we can extract a unary DFA for Chn by following the 0∗1- or 1∗0-transitions of the monitor,
until the first time recursion was used (i.e. a back edge was followed). Therefore, the first time the deterministic monitor

has a back edge is at distance at least e
o
(√

n log n
)

from the root; so, it contains at least a complete binary tree of height

e
o
(√

n log n
)

.

Lemma 24. Let m be a deterministic monitor. If m t=⇒ m′ , then m′ is deterministic.

Proof. Both m and m′ are submonitors of the original monitor p0. If m is deterministic, then so is p0, and so is m′ . �
Lemma 25. If m + m′ is deterministic, then m + m′ � τ−→.

Proof. The monitor m + m′ is a submonitor of the initial monitor, which is deterministic, so m + m′ must be of the form ∑
α∈A α.mα . We continue by induction on m + m′: if m = α.r and m′ = β.r′ , then by the production rules, only m + m′ α−→ r

and m + m′ β−→ r′ are allowed; if one of m, m′ is also a sum, then by the derivation rules, if m + m′ τ−→, then also m τ−→ or
m′ τ−→, but by the inductive hypothesis, this is a contradiction. �
Corollary 14. Only τ -transitions of the form x τ−→ px and rec x. m τ−→ m are allowed for deterministic monitors.

Lemma 26. Let m ∼ m′ be deterministic monitors. If m t=⇒ d and m′ t=⇒ d′ , then d ∼ d′ .

Proof. First, notice that x ∼ px , since all derivations from x are either trivial or must start with x τ−→ px . For the same reason,
rec x. m ∼ m. Therefore, by Corollary 14, if r τ−→ r′ , then r ∼ r′ . Now we can prove the lemma by induction on |t|.

If t = ε , then m =⇒ d and m′ =⇒ d′ , so (by the observation above) d ∼ m ∼ m′ ∼ d′ .
If t = αt′, then we demonstrate that if m α=⇒ r and m′ α=⇒ r′ , then r ∼ r′ and, by induction, we are done. In fact, by our

observations, it is enough to prove that if m α−→ r and m′ α−→ r′ , then r ∼ r′ . Thus, let m α−→ r and m′ α−→ r′; then,
m is a sum of α.r and of no other α. f (because m is deterministic) and m′ is a sum of α.r′ and of no other α. f .
If r � r′ , then there is a trace s and value v , such that r

s=⇒ v and r′ � s=⇒ v (or r′ s=⇒ v and r � s=⇒ v , but this case is
symmetric). Therefore, m αs=⇒ v , but since all derivations from m′ on trace αs must start from m′ α−→ r′ , if m′ αs=⇒ v ,
also r′ s=⇒ v , so m � m′ , a contradiction. Therefore, r ∼ r′ and the proof is complete. �

Corollary 15. If m is deterministic, m t=⇒ d, and m t=⇒ d′ , then d ∼ d′ .

Corollary 16. If m is deterministic, m t=⇒ d, and m t=⇒ v, where v is a value, then d = v.

Lemma 27. If m is a deterministic monitor and d is a submonitor of m, such that d is a sum of some px, then d = px.

Proof. By the definition of deterministic monitors, r + px is not allowed. �
Corollary 17. In a derivation m t=⇒ x, such that x is bound in m and m is deterministic, px must appear.

24 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
Proof. Combine Lemmata 22 and 27. �
Lemma 28. Let m t=⇒ d, such that t is not simple for m and m is deterministic. Then, there are t = xuz and monitor r, such that |u| > 0
and m x=⇒ r

u=⇒ r
z=⇒ d.

Proof. Similar to the proof of Lemma 23, but use Corollary 17, instead of Lemma 22. �
Theorem 7. Let m be a deterministic monitor for Mn. Then, |m| = 22�(n)

.

Proof. We construct a set of simple traces of size �((2n/3−1 − 1)!) and by Lemma 21 this is enough to prove our claim. Let
k = �n/3� − 1 (actually, for simplicity we assume n = 3k + 3, as this does not affect our arguments); let

A = {a ∈ {0,1}k | at least one 1 appears in a},
let

B = {1a10k1a ∈ {0,1}n | a ∈ A},
and let

G = {x ∈ {0,1}∗ | x � g, where g is a permutation of B};
then, |A| = |B| = 2k − 1 and |G| > |B|! = 2�(|B| log |B|) = 2�(k·2k) = 22�(n)

. It remains to demonstrate that all permutations g of
B , are simple traces for m. Let g be such a permutation. Let h = (2k − 1)! and g = g1 g2 · · · gh , where g1, g2, . . . , gh ∈ B and
for all such gi , let gi = 1bi10k1bi .

Notice that g is designed so that in every subsequence of length n of g , 0k can appear at most once, specifically as the
area of 0k in the middle of a gi ∈ B as defined. If 0k appears in an area of k contiguous positions, then that area cannot
include one of the separating 1’s, so it must be an a ∈ A, which cannot happen by the definition of A, or the area of 0k

in the middle of a b ∈ B as defined. If there is another area of 0k closer than 2k + 3 positions away, again, it must be
some a ∈ A, which cannot be the case. Furthermore, and because of this observation, for every a ∈ A, 0k1a and a10k appear
exactly once in g .

For traces x, y, we say that x ∼ y if for every trace z,

xz ∈ Mn iff yz ∈ Mn.

For trace x, if |x| ≥ n, we define l(x) to be such that |l(x)| = n and there is x′l(x) = x; if |x| < n, we define l(x) = 0n−|x|x.
Notice that for traces x, y, x ∼ y iff l(x) = l(y). Also, that if |x| ≥ n, l(x) must be in one of the three forms below:

1. l(x) = 0n1 1a11a210n2 for some n1 + n2 = k and a1, a2 ∈ A (in this case, 10k1a11a210n2 = 10n2 l(x) are the last n + n2
positions of x), or

2. l(x) = d11a110k1d2 for some d2 � a1 ∈ A, or
3. l(x) = d110k1a1d2 for some a′d1 = a1 ∈ A.

Claim: For x, y � g , if x ∼ y, then x = y. Otherwise, there are x, y � g , such that l(x) = l(y), but x �= y. We have the following
cases:

|x|, |y| ≤ n: in this case, there are n1, n2 ≤ n, such that 0n1 x = 0n2 y; because x and y start with 1, then n1 = n2 and x = y.
|x| < n < |y|: y must be in one of the forms described above, so if l(y) = 0n1 1a11a210n2 , then x = 1a11a210n2 , which is a

contradiction, because x is not in an appropriate form (right after 1a11, there should be 0k �= a2);
if l(x) = l(y) = d11a110k1d2, then 10k1 must appear exactly once in x, so d1 = 0n1 and a1 = b1, meaning that y is
an initial fragment of g , thus d1 = ε a contradiction, because l(x) starts with 0;
if l(x) = d110k1a1d2, then we already have a contradiction, because there is some |a′| > k + 1, such that x starts
with a′10k1, so d1 = a′ , but |d1| ≤ k.

|x|, |y| ≥ n: l(x) = l(y), so they must be of the same form; if l(x) = l(y) = 0n1 1a11a210n2 , then 10k1a11a210n2 are the last
n + n2 positions of x and of y, so if x �= y, then we found two different places in g where 10k1a1 appears, a
contradiction; the cases of the other forms are similar.

Now, if g is not simple, then by Lemma 28, there are x � y � g , such that m x=⇒ d and m y=⇒ d. Furthermore, by Corol-

lary 15, if m x=⇒ q1 and m y=⇒ q2, q1 ∼ d ∼ q2. If xz ∈ Mn , then m x=⇒ r
z=⇒ yes, so m y=⇒ r′ , where r′ ∼ r, so r′ z=⇒ yes, meaning

that yz ∈ Mn . Similarly, if yz ∈ Mn , then xz ∈ Mn , therefore x ∼ y. Finally, since x �= y and x ∼ y, we have a contradiction by
the claim we proved above, so g is simple and the proof complete. �

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 25
Language Mn above demonstrates an exponential gap between the state size of NFAs, (DFAs,) nondeterministic monitors,
and deterministic monitors. Therefore, the upper bounds provided by Theorem 6 and Corollary 6 cannot be improved signif-
icantly. On the other hand, it is not clear what the gap between a nondeterministic monitor and an equivalent deterministic
one has to be. Corollary 8 informs us that for every monitor of size n, there is an equivalent deterministic one of size 2O (2n);
on the other hand, Theorem 7 presents a language (namely Mn) which is recognized by a (nondeterministic) monitor of size
k (= O (2n)), but by no deterministic monitor of size 2o(k) . These bounds are significantly different, as there is an exponential
gap between them, and they raise the question whether there is a more sophisticated (and efficient) procedure than turning
a monitor into an NFA, then using the usual subset construction, and then turning the resulting DFA back into a monitor, as
was done in Corollary 8. Theorem 8 demonstrates that the upper bound of Corollary 8 cannot be improved much.

Theorem 8. For every n ∈ N , there is an irrevocable regular language on two symbols which is recognized by a nondeterministic

monitor of size O (n) and by no deterministic monitor of size 22
o
(√

n log n
)

.

Proof. For a word t ∈ {0, 1}∗ , we define the projections of t , t|0 and t|1 to be the result of removing all 1’s, respectively all
0’s, from t: for i ∈ {0, 1}, ε|i = ε , it′|i = i(t′|i), and (1 − i)t′|i = t′|i . For n ∈N , let

F (n) = max
m1+···+mk=n

lcm(m1, . . . ,mk),

where lcm(m1, . . . , mk) is the least common multiple of m1, . . . , mk , and X(n) = {m1, . . . , mk}, where m1 + · · · + mk = n and
lcm(m1, . . . , mk) = F (n).

The proof of Theorem 8 is based on a result by Chrobak [15] (errata at [16]), who demonstrated that for every natural
number n, there is a unary language (a language over exactly one symbol) which is recognized by an NFA with n states,

but by no DFA with eo
(√

n log n
)

states. The unique symbol used can be (in our case) either 0 or 1. We can use 1, unless we
make explicit otherwise. The unary language Chrobak introduced was

Chn = {1cm | m ∈ X(n), 0 < c ∈N}.
For some n ∈N , let Ch0

n be Chrobak’s language, where the symbol used is 0 and Ch1
n be the same language, but with 1

being the symbol used — so for i ∈ {0, 1}, Chi
n = {icm | m ∈ X(n), 0 < c ∈N}. Now, let

Un = {xey ∈ {0,1, e}∗ | x ∈ {0,1}∗ and for some i ∈ {0,1}, x|i ∈ Chi
n}.

Fix some n ∈ N and let X(n) = {m1, m2, . . . , mk}. Un can be recognized by the monitor p0 + p1 of size O (n), where for
{i, i} = {0, 1}, pi = p1

i + p2
i + · · · + pk

i , where for 1 ≤ j ≤ k, p j
i is the monitor defined recursively in the following way. Let

p j
i [m j] = rec xm j . (i.xml + i.x1 + e.yes);

for 0 ≤ l < m j , let

p j
i [l] = rec xl. (i.xl + i.p j

i [l + 1]);
finally, let p j

i = p j
i [0]. That is, after putting everything together and simplifying the variable indexes,

p j
i = rec x0. (i.x0 + i.rec x1. (i.x1 + · · · i.rec xm j . (i.xm j︸ ︷︷ ︸

m j

+i.x1 + e.yes) · · ·))).

Monitor p j
i essentially ignores all appearances of i and counts how many times i has appeared. If i has appeared a multiple

of m j times, then p j
i is given a chance to reach verdict yes if e then appears; otherwise it continues counting from the

beginning. That the size of p0 + p1 is O (n) is evident from the fact that for every i, j, |p j
i | = O (m j), which is not hard to

calculate since
∣∣∣p j

i [m j]
∣∣∣ = 9 and for l < m j ,

∣∣∣p j
i [l]

∣∣∣ =
∣∣∣p j

i [l + 1]
∣∣∣ + 5.

Let m be a deterministic monitor for Un and t ∈ {0, 1}∗ . To complete the proof of the theorem, it suffices to prove for
some constant c > 0 that if |t| < ec·√n log n , then t must be simple. Indeed, proving the above would mean that we have
constructed a simple set of traces of cardinality more than 2ec·√n log n

— that is, the set of traces on {0, 1} of length less than
ec·√n log n — which, by Lemma 21, gives the same lower bound for |m|. Specifically, we prove that if t is not simple for m,
then there is a DFA for Chrobak’s unary language, Chn , of at most |t| states, so by Chrobak’s results it cannot be that t is
not simple and |t| < ec·√n log n .

So, let t be a shortest non-simple trace on {0, 1}. Since t is not simple and is minimal, t = t1t2i, where i = 0 or 1 and
m t1=⇒ r

t2=⇒ s i=⇒ r (by Lemma 28). Without loss of generality, we assume i = 1. Let A be the DFA (Q , {1}, δ, m, F), where Q

26 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
is the set of all monitors appearing in the derivation m t1=⇒ r
t2=⇒ s 1=⇒ r, δ(q1, 1) = q2 iff q1

(
0=⇒
)∗ (

τ−→
)∗ 1−→ q2 is part of the

derivation above, and

F = {d ∈ Q | for all c ≥ 0, d
0ce==⇒ yes}.

Notice that A is, indeed, deterministic, since transitions move along the derivation and all monitors in Q transition exactly
once in m t1=⇒ r

t2=⇒ s 1=⇒ r — so the first 1−→ transition that appears after a state/monitor in the derivation exists and is unique.
We claim that A accepts Chn . By the definition of δ, if the run of A on w reaches state (submonitor) d, then there is

some wt ∈ {0, 1}∗ , such that wt |1 = w and m wt=⇒ d. Then,

A accepts w iff d ∈ F iff for all c ≥ 0, d
0ce==⇒ yes iff

for all c ≥ 0, m wt 0ce===⇒ yes (by Corollary 16) iff for every c ≥ 0, wt 0ce ∈ Un iff w ∈ Chn .
Finally, although we promised that we would only use two symbols, we have used three. However, a language of three

symbols can easily be encoded as one of two symbols, using the mapping: 0 → 00, 1 → 01, and e → 11. We can encode Un

like this and simply continue with the remaining of the proof. �
Notice that the lower bound given by Theorem 8 depends on the assumption that we can use two symbols in our regular

language; this can be observed both from the statement of the theorem and from its proof, which makes non-trivial use of
the two symbols. So, a natural question to ask is whether the same bounds hold for NFAs and monitors on one symbol.

Consider an irrevocable regular language on one symbol. If k is the length of the shortest word in the language, then
we can immediately observe two facts. The first is that the smallest NFA which recognizes the language must have at least
k + 1 states (and indeed, k + 1 states are enough). The second fact we can observe is that there is a deterministic monitor
of size exactly k + 1 which recognizes the language: 1k.yes. Therefore, things are significantly easier when working with
unary languages.

Corollary 18. If there is an irrevocable NFA of n states which recognizes unary language L, then, there is a deterministic monitor of size
at most n which recognizes L.

5. Determinizing with two verdicts

In Section 4 we have dealt with monitors which can only reach a positive verdict or a negative one but not both. This
was mainly done for convenience, since a single-verdict monitor is a lot easier to associate with a finite automaton and it
helped simplify several cases. It is also worth mentioning that, as demonstrated in [23], to monitor for mHML properties,
we are interested in single-verdict monitors. In this section, we demonstrate how the constructions and bounds of Section 4
transfer to the general case of monitors.

First, notice that there is no deterministic monitor equivalent to the monitor mc = α.yes+α.no, also defined in Subsec-
tion 2.3, since mc can reach both verdicts with the same trace. Thus, there are monitors, which are not, in fact, equivalent
to deterministic ones. These are the ones for which there is a trace through which they can transition to both verdicts. We
call these monitors conflicting.

To treat non-conflicting monitors, we reduce the problem to the determinization of single-verdict monitors. For this,
we define two transformations, very similar to what we did in Section 3 to reduce the determinization of monitors to the
determinization of processes. Let [no] be a new action, not in Act. We define ν in the following way:

ν(v) = v, if v ∈ {yes,end},
ν(no) = [no].yes,

ν(x) = x,

ν(α.m) = α.ν(m),

ν(m + n) = ν(m) + ν(n), and

ν(recx. m) = recx. ν(m).

We also define ν−1: if s is a sum of [no].yes, then ν−1(s) = no and otherwise,

ν−1(v) = v, if v ∈ {yes,end},
ν−1(x) = x,

ν−1(α.m) = α.ν−1(m),

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 27
ν−1(m + n) = ν−1(m) + ν−1(n), and

ν−1(recx. m) = recx. ν−1(m).

Lemma 29. Let m′ = ν(m). Then, m t=⇒ no if and only if there is some t′ � t, such that m′ t′=⇒ no.r.

Proof. Straightforward induction on the derivations. �
Lemma 30. Let m′ = ν−1(m), where verdict no does not appear in m. Then, there is some t′ � t and a sum s of [no].yes, such that
m t′=⇒ s, if and only if m′ t=⇒ no.

Proof. Straightforward induction on the derivations. �
Theorem 9. Let m be a monitor which is not conflicting. Then, there is an equivalent deterministic one of size 22O (|m|)

.

Proof. Let m be a monitor which is not conflicting, but uses both verdicts yes and no. By Lemma 1, we can assume
that there are no sums of no in m. Let m′ be the result of replacing no in m by [no].yes, where [no] is a new action
not appearing in m. Then, for some constant c > 0, m′ is a single-verdict monitor of size c · |m|, so as we have shown in
the preceding sections (Corollary 8), m′ is equivalent to a deterministic monitor n′ of size 2O (2c·|m|) . Let n be the result of
replacing all maximal sums of [no].yes by no. Then, n is deterministic, because there are no sums of no (they would have
been replaced) and all other sums remain in the form required by deterministic monitors. It remains to demonstrate that
m ∼ n, which we now do. Let t ∈ Act

∗ . Then,
m t=⇒ no
iff m t=⇒ no and m � t=⇒ yes (m is not conflicting)

iff there is a t′ � t and α ∈ Act, such that m′ t′=⇒ [no].yes and m′ � t′α=⇒ yes (by Lemma 29)

iff there is a t′ � t and α ∈ Act, such that m′ t′[no]===⇒ yes and m′ � t′α=⇒ yes (there are no sums of no in m)

iff there is a t′ � t and α ∈ Act, such that n′ t′[no]===⇒ yes and n′ � t′α=⇒ yes (m′ and n′ are equivalent)

iff there is a t′ � t , an α ∈ Act, and some s �= yes, such that n′ t′=⇒ s [no]==⇒ yes and n′ � t′α=⇒ yes

iff there is a t′ � t , an α ∈ Act, and a sum s of [no].yes, such that n′ t′=⇒ s and n′ � t′α=⇒ yes

iff there is a t′ � t and α ∈ Act, such that n t′=⇒ no and n � t′α=⇒ yes (by Lemma 30)

iff n t=⇒ no.
The case of the yes verdict is straightforward. �

Naturally, the same lower bounds as for single-verdict monitors hold for the general case of monitors as well.

Conflicting monitors
We demonstrated in this section how we can determinize any non-conflicting monitor. A deterministic and conflicting

monitor is a contradiction, as it would have to deterministically reach two different verdicts on the same trace. It would
be good, therefore, to be able to detect conflicting monitors. Here we sketch how this can be done using nondeterministic
logarithmic space.

For any monitor m, let Gm = (V , E) be a graph, such that

V = {(m,d) | m,d submonitors of m} and

E = {(m,d,m′,d′) ∈ V 2 | ∃α ∈ Act. m
α=⇒ m′ and d

α=⇒ d′}.
Then, m is conflicting iff there is a path from (m, m) to (yes, no) in Gm . This is a subproblem of the st-connectivity
problem, known to be in NL and solvable in time O (|V | + |E|) = O (|m|4) (by running a search algorithm in Gm).

6. Conclusions

We have provided three methods for determinizing monitors. One of them is by reducing the problem to the deter-
minization of processes, which has been handled by Rabinovich in [47]; another is by using Rabinovich’s methods directly
on the formulae of μHML, bringing them to a deterministic form, and then employing Francalanza et al.’s monitor synthesis
method from [23,24], ending up with a deterministic monitor; the last one transforms a monitor into an NFA, uses the clas-
sical subset construction from Finite Automata Theory to determinize the NFA, and then, from the resulting DFA constructs
a deterministic monitor.

28 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
The first method is probably the simplest and directly gives results, at the same time describing how the behavior
of monitors is linked to processes. The second method is more explicit, in that it directly applies Rabinovich’s methods;
furthermore, it is used directly on a μHML formula and helps us relate the (non-)deterministic behavior of monitors to the
form of the formula they were constructed to monitor. The third method links monitors to finite automata and allows us to
extract more precise bounds on the size of the constructed deterministic monitors.

Monitors are central for the runtime verification of processes. We have focused on monitors for μHML, as constructed
in [23,24]. We showed that we can add a runtime monitor to a system without having a significant effect on the execution
time of the system. Indeed, in general, evaluating a nondeterministic monitor of size n for some specific trace may amount
to keeping track of all possible monitor states reachable along that trace. Computing each transition can take time up to
n2, because for up to n submonitors we may need to transition to up to n submonitors. By using a deterministic monitor,
each transition is provided explicitly by the monitor description, so we can transition immediately at every step along a
trace — with a cost depending on the implementation. This speed-up can come at a severe cost, though, since we may have
to use up to doubly-exponential more space to store the monitor, and even stored in a more efficient form as its LTS, the
deterministic monitor may require exponential extra space.

Summary of bounds We were able to prove a number of upper and lower bounds for several constructions. Here we give
a summary of the bounds we have proven, the bounds which are known, and the ones we can further infer from these
results.

• Corollary 8 (actually, Theorem 9 for the general case) informs us that from a nondeterministic monitor of size n, we
can construct a deterministic one of size 2O (2n) .

• Theorem 8 explains that we cannot do much better, because there is an infinite family of monitors, such that for any
monitor of size n in the family, there is no equivalent deterministic monitor of size 22o(

√
n log n)

.
• As for when we start with an NFA, it is a classical result that an NFA of n states is equivalent to a DFA of 2n states [46];

furthermore, this bound is tight [42].
• Theorem 6 informs us that an irrevocable NFA of n states can be converted to an equivalent monitor of size 2O (n log n) .
• Proposition 2 reveals that there is an infinite family of NFAs, for which every NFA of the family of n states is not

equivalent to any monitor of size 2o(n) .
• Corollary 8 yields that an irrevocable NFA of n states can be converted to an equivalent deterministic monitor of size

2O (2n); Theorem 7 makes this bound tight.
• Corollary 6 allows us to convert a DFA of n states to a deterministic monitor of 2O (n) states; Theorem 7 makes this

bound tight.
• This 2O (n) is also the best upper bound we have for converting a DFA to a (general) monitor; it is unclear at this point

what lower bounds we can establish for this transformation.
• We can convert a (single-verdict) monitor of size n to an equivalent DFA of O (2n) states, by first converting the monitor

to an NFA of n states (Proposition 1) and then using the classical subset construction.
• If we could convert any monitor of size n to a DFA of 2o(

√
n log n) states, then we could use the construction of Corollary 6

to construct a deterministic monitor of 22o(
√

n log n)
states, which contradicts the lower bound of Theorem 8; therefore,

2�(
√

n log n) is a lower bound for converting monitors to equivalent DFAs.
• Using Lemma 5, we can reduce the problem of determinizing monitors to the determinization of processes (up to

trace-equivalence); by Theorem 8, this gives a lower bound of 22�(
√

n log n)
for Rabinovich’s construction in [47].

• Similarly, using the constructions of [23,24], one can convert a mHML formula into a monitor for it and a monitor into
a mHML formula of the same size (or smaller). Therefore, we can conclude that the lower bounds for determinizing
monitors also hold for determinizing mHML formulae as in Subsection 3.2. Hence, a cHML formula that holds precisely
for the traces in language Mn from Section 4 must be of size 2�(n) and an equivalent deterministic cHML formula
must be of size 22�(n)

. We conclude that, as a specification language, NFAs can be exponentially more succinct than the
monitorable fragment of μHML and doubly exponentially more succinct than the deterministic monitorable fragment
of μHML; DFAs can be exponentially more succinct than the deterministic monitorable fragment of μHML. We refer
the interested reader to [6, Section 5] for more complexity bounds on translations between formulae in a variety of
monitorable fragments of μHML in a linear-time setting.

• Corollary 18 informs us that it is significantly easier to convert an irrevocable NFA or monitor into a (deterministic)
monitor when the alphabet we use (the set of actions) is limited to one element: when there is only one action/symbol,
an irrevocable NFA of n states or nondeterministic monitor of size n can be converted into an equivalent deterministic
monitor of size at most n.

• In Section 5, we have argued that detecting whether a monitor is conflicting can be done in time O (n4) or in nonde-
terministic space O (log n) (and thus, by Savitch’s Theorem [48] in deterministic space O (log2 n)).

The bounds we were able to prove can be found in Table 6. We remark that the doubly exponential blow-up in converting
NFAs into deterministic monitors is due to the syntactic representation of monitor expressions. Just like processes and
formulae, one could describe (the DFA associated with) a deterministic monitor using systems of equations. The use of

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 29
Table 6
Bounds on the cost of construction and where they can be found (X signifies that the conversion is trivial).

From/to DFA Monitor Det. monitor

NFA
tight: O (2n)

from [46,42]

upper: 2O (n log n)

by Theorem 6

lower: 2�(n)

by Proposition 2

tight: 2O (2n)

by Corollary 8, Theorem 7

DFA X
upper: 2O (n)

by Corollary 6
tight: 2O (n)

by Corollary 6, Theorem 7

nondet. monitor

upper: O (2n)

by Corollary 2, Theorem 1, [46]

lower: 2�(
√

n log n)

by Corollary 6 Theorem 8

X

upper: 2O (2n)

by Theorems 1,6, Corollary 6; for dual-verdict 9

lower: 22�(
√

n log n)

by Theorem 8

systems of equations leads to an exponentially more succinct representation because, unlike syntactic monitor descriptions,
it allows one to express sharing. To our mind, one of the main contributions of our article is in spelling out exactly, and in
proving, the succinctness price that has to be paid when representing monitors using classic process-algebraic syntax, such
as the one we adopt. The use of syntax has its benefits, as it leads naturally to compositional definitions of monitor-synthesis
functions and to proofs of properties of monitors by structural and rule induction. We trust that the results presented in this
study can help researchers in choosing a suitable formalism for describing monitors that offers a good trade-off between
usability and complexity.

Optimizations Monitors to be used for the runtime verification of processes are expected to not affect the systems they
monitor as much as possible. Therefore, the efficiency of monitoring must be taken into account to restrict overhead. To use
a deterministic monitor for a μHML property, we would naturally want to keep its size as small as possible. It would help
to preserve space (and time for each transition) to store the monitor in its LTS form — as a DFA. We should also aim to
use the smallest possible monitor we can. There are efficient methods for minimizing a DFA, so one can use these to find
a minimal DFA and then turn it into monitor form using the construction from Theorem 6, if such a form is required. The
resulting monitor will be (asymptotically) minimal:

Proposition 3. Let A be a minimal DFA for an irrevocable language L, such that A has n states and there are at least � paths in A
originating at its initial state. Then, there is no deterministic monitor of size less than �, which recognizes L.

Proof. Since A is deterministic, all paths in A are completely described by a trace t ∈ Act
∗ . We show that for every de-

terministic monitor m which recognizes L, such a t is simple. Let t be the shortest trace which gives a path in A, but is
not simple for m. By Lemma 28, there are t′u = t , such that |u| > 0 and m t′=⇒ r

u=⇒ r. Since t represents a path in A and
A is deterministic, A can reach state q with trace t and q′ �= q with trace t′ . Since A is a minimal DFA, there must be
a trace s, such that (without loss of generality) A reaches an accepting state from q through s and a non-accepting state
from q′ through s. Therefore ts ∈ L and t′s /∈ L, which is a contradiction, because by Corollary 16 and the observation above,
m ts=⇒ yes iff m t′s=⇒ yes. �

As we see, DFA minimization also solves the problem of deterministic monitor minimization. On the other hand, it would
be good to keep things small from an earlier point of the construction, before the exponential explosion of states of the
subset construction takes place. In other words, it would be good to minimize the NFA we construct from the monitor,
which can already be smaller than the original monitor. Unfortunately, under standard complexity-theoretic assumptions,
NFA minimization is a hard problem — specifically PSPACE-complete [31] — and it remains NP-hard even for classes of
NFAs which are very close to DFAs [13]. NFA minimization is even hard to approximate or parameterize [26,28]. Still, it
would be better to use an efficient approximation algorithm from [28] to process the NFA and save on the number of states
before we determinize. This raises the question of whether (nondeterministic) monitors are easier to minimize than NFAs,
although a positive answer seems unlikely in light of the hardness results for NFA minimization.

The complexity bounds we present in this paper pertain to the worst-case scenarios that may arise in converting monitor
descriptions between pairs of formalisms for their representation that we consider. An interesting avenue for future research
is to conduct an experimental study of the efficiency of the various conversion procedures on benchmark or synthetic
examples and to study the overhead on system performance of various monitor representations. A paradigmatic example
of a study of this kind is given in [50]. In that paper, Tabakov, Rozier and Vardi argue for the algorithmic generation of
“correct” monitors from properties and report on an experimental study of the generation of monitors that offer the best
performance in terms of runtime overhead at simulation time.

30 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
Declaration of competing interest

The authors confirm that there are no known conflicts of interest associated with this publication and there has been no
significant financial support for this work that could have influenced its outcome.

Acknowledgements

We thank the anonymous reviewers for their careful reading of our paper and the constructive suggestions that have led
to several improvements.

Appendix A. Proofs from Section 3.2

Proof of Lemma 9. We define a function f as follows:

f (ϕ) = {i | Xi occurs free and unguarded in ϕ}
where X1, X2, . . . are all the variables that can occur in the formulae.

Then formally our claim is that for each ϕ ∈ sHML, there exists a formula, ψ ∈ sHML such that

ϕ ≡ ψ ∧
∧

i∈ f (ϕ)

Xi

where f (ψ) = ∅.
We use induction on the size of ϕ to prove this claim and go through each case below.

ϕ ∈ {tt,ff}: This case holds trivially since f (ϕ) = ∅ and

ϕ ≡ ϕ ∧
∧
i∈∅

Xi .

ϕ = X j : This case holds trivially since f (ϕ) = { j} and

ϕ ≡ tt∧
∧

i∈{ j}
Xi .

ϕ = [α]ϕ′: Since ϕ is prefixed with the [α] operator, all variables are guarded in ϕ and so f (ϕ) = ∅ and

ϕ ≡ ϕ ∧
∧
i∈∅

Xi .

ϕ = ϕ1 ∧ ϕ2: By the induction hypothesis, there exist formulae ψ1, ψ2 ∈ sHML such that

f (ψ1) = f (ψ2) = ∅,

ϕ1 ≡ ψ1 ∧
∧

i∈ f (ϕ1)

Xi,

and ϕ2 ≡ ψ2 ∧
∧

i∈ f (ϕ2)

Xi .

Using the fact that ϕ ∧ ϕ ≡ ϕ for each formula ϕ ∈ μHML, we have

ϕ ≡ ϕ1 ∧ ϕ2

≡
⎛
⎝ψ1 ∧

∧
i∈ f (ϕ1)

Xi

⎞
⎠ ∧

⎛
⎝ψ2 ∧

∧
i∈ f (ϕ2)

Xi

⎞
⎠

≡ (ψ1 ∧ ψ2) ∧
∧

i∈ f (ϕ1)

Xi ∧
∧

i∈ f (ϕ2)

Xi

≡ (ψ1 ∧ ψ2) ∧
∧

i∈ f (ϕ1)∪ f (ϕ2)

Xi

and since f (ψ1) = f (ψ2) = ∅, we have f (ψ1 ∧ ψ2) = ∅.

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 31
Each free and unguarded variable in ϕ must either be free and unguarded in ϕ1 or ϕ2 and each such variable
in ϕ1 or ϕ2 must also be free and unguarded in ϕ . This gives us f (ϕ1) ∪ f (ϕ2) = f (ϕ) and so we have

ϕ ≡ (ψ1 ∧ ψ2) ∧
∧

i∈ f (ϕ)

Xi .

ϕ = max X j . ϕ
′: By the induction hypothesis, there exists a formula ψ ∈ sHML such that

ϕ′ ≡ ψ ∧
∧

i∈ f (ϕ′)
Xi

where f (ψ) = ∅.
We use the following equivalences:

max X . ϑ ≡ ϑ[max X . θ/X] (A.1)

max X . (ϑ ∧ X) ≡ max X . ϑ (A.2)

Y [ϑ/X] ≡ Y where X �= Y (A.3)

From this we get:

ϕ ≡ max X j. ϕ
′

≡ max X j.

⎛
⎝ψ ∧

∧
i∈ f (ϕ′)\{ j}

Xi

⎞
⎠

≡
⎛
⎝ψ ∧

∧
i∈ f (ϕ′)\{ j}

Xi

⎞
⎠[

max X j .
(
ψ ∧

∧
i∈ f (ϕ′)\{ j} Xi

)/
X j

]

≡ ψ
[

max X j .
(
ψ ∧

∧
i∈ f (ϕ′)\{ j} Xi

)/
X j

]
∧

∧
i∈ f (ϕ′)\{ j}

Xi .

Since each variable in ψ is guarded, substituting a variable for a formula will not introduce unguarded variables
and so

f
(
ψ

[
max X j.

(
ψ ∧

∧
i∈ f (ϕ′)\{ j} Xi

)/
X j

])
= ∅.

The variables in ϕ that are free and unguarded are exactly the ones that are free and unguarded in ϕ′ , excluding
X j and so we have

f (ϕ) = f (ϕ′) \ { j}.
This gives us:

ϕ ≡ ψ
[

max X j .
(
ψ ∧

∧
i∈ f (ϕ′)\{ j} Xi

)/
X j

]
∧

∧
i∈ f (ϕ)

Xi . �

Proof of Lemma 11. We use structural induction to show how we can construct a system of equations from a formula ϕ
that is in standard form. As shown in Lemma 9, given a formula ϑ ∈ sHML we can define an equivalent formula ϑ ′ where
each free and unguarded variable is at the top level. We can therefore assume that for each fixed point max X . ψ that
occurs as a subformula in ϕ , each free and unguarded variable in ψ is at the top level of ψ and using the equivalence
max X . (ϑ ∧ X) ≡ max X . ϑ , we can also assume that X does not appear at the top level of ψ . Furthermore, we assume that
if ϕ1 ∧ ψ2 appears as a subformula of ϕ , then there is no variable which is free in ϕ1 and bound in ϕ2 (or vice-versa).

We now go through the base cases and each of the top level operators that can occur in ϕ .

ϕ = tt: We define a system of equations SYS = ({X = tt∧ tt}, X, ∅). Since
∧

j∈∅ ϑ j ≡ tt, SYS is in standard form and is
equivalent to ϕ .

ϕ = ff: We define a system of equations SYS = ({X = ff}, X, ∅). SYS is in standard form and is equivalent to ϕ .
ϕ = Y : We define a system of equations SYS = ({X = Y ∧ tt}, X, {Y }). SYS is in standard form and is equivalent to ϕ .

32 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
ϕ = [α]ψ : By the induction hypothesis, there exists a system of equations, SYS = (Eq, X1, Y) that is equivalent to ψ and is
in standard form.

We define a new system of equations

SYS′ = (Eq ∪ {X0 = [α]X1 ∧ tt}, X0,Y)

Each equation from SYS′ is in standard form and so SYS′ is in standard form. Since SYS is equivalent to ψ and X0

does not appear in SYS (so the first equation does not affect the fixed-point calculations),

�SYS′,ρ� =
= �[α]X1,ρ[X1 → �SYS,ρ�]�
= {p | p

α=⇒ q implies q ∈ �SYS,ρ�}
= {p | p

α=⇒ q implies q ∈ �ψ,ρ�}
= �[α]ψ,ρ�,

so SYS′ is equivalent to [α]ψ , which is ϕ .
ϕ = ψ1 ∧ ψ2: By the induction hypothesis, we know that there exist systems of equations SYS1 = (Eq1, X1, Y1) and SYS2 =

(Eq2, Z1, Y2) that are equivalent to ψ1 and ψ2 respectively and are in standard form. Let X1 = F1 be the principal
equation from SYS1 and let Z1 = G1 be the principal equation from SYS2.

We define a new system of equations

SYS = (Eq, X0,Y1 ∪Y2),

where

Eq = Eq1 ∪ Eq2 ∪ {X0 = F1 ∧ G1}.
Again, X0 does not appear in SYS1 or SYS2, so it does not play a part in the fixed-point calculation; furthermore,
for Xi = Fi an equation in Eq1, Xi /∈ Y2, i.e. Xi cannot be a free variable (or appear at all) in SYS2 and vice-versa.
Therefore, for i = 1, 2 and X j = F j an equation in Eq1 ∪ Eq2, �SYSi,ρ[X j → S j]� = �SYSi,ρ� (that is, ρ(X j) does
not affect the computation of �SYSi,ρ�) and therefore ρ[SYS1][SYS2] = ρ[SYS2][SYS1] and for i = 1, 2 and j = 3 − i,�

SYSi,ρ[SYSi]SYSj
	

=
�

SYSi,ρ[SYSj]SYSi
	

= �SYSi,ρ[SYSi]�. (A.4)

Finally,

�SYS,ρ� =

=
⋃{

S0 | S0 ⊆
�

F1 ∧ G1,ρ[X0 → S0]SYS1
SYS2

�}
=

�
F1 ∧ G1,ρ[SYS1]SYS2

	
(X0 does not appear anywhere)

=
�

F1,ρ[SYS1]SYS2
	

∩
�

G1,ρ[SYS1]SYS2
	

= �SYS1,ρ[SYS2]� ∩ �SYS2,ρ[SYS1]� (by (A.4))

= �SYS1,ρ� ∩ �SYS2,ρ�.

Since SYS1 is equivalent to ψ1 and SYS2 is equivalent to ψ2, SYS is equivalent to ϕ = ψ1 ∧ ψ2.
Both X1 = F1 and Z1 = G1 are in standard form and so we can write them as

F1 =
∧
j∈K1

[α j]X j ∧
∧
j∈S1

Y j

G1 =
∧
j∈K ′

1

[α j]Z j ∧
∧
j∈S ′

1

Y j

This allows us to rewrite the equation for X0 as follows:

X0 = F1 ∧ G1

=
∧
j∈K1

[α j]X j ∧
∧
j∈S1

Y j ∧
∧
j∈K ′

[α j]Z j ∧
∧
j∈S ′

Y j
1 1

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 33
≡
⎛
⎝ ∧

j∈K ′
1

[α j]X j ∧
∧
j∈K ′

1

[α j]Z j

⎞
⎠ ∧

∧
j∈S1∪S ′

1

Y j

Now SYS is in standard form and is equivalent to ϕ .
ϕ = max Y . ψ : By the induction hypothesis, there exists a system of equations SYS = (Eq, X1, Y) that is equivalent to ψ

and is in standard form.
If ψ does not contain Y , then ϕ ≡ ψ which means ϕ is equivalent to SYS and we are done.
If ψ does contain Y then we define a new system of equation:

SYS′ = (Eq ∪ {Y = F1}, Y ,Y \ {Y })
where X1 = F1 appears in SYS.

Let ρ be an environment. Then,

�ϕ,ρ� =
=

⋃
{S0 | S0 ⊆ �ψ,ρ[X0 → S0]�}

=
⋃

{S0 | S0 ⊆ �SYS,ρ[X0 → S0]�}
=

⋃
{S0 | S0 ⊆

�
F1,ρ[X0 → S0]SYS

	
}

= �
SYS′,ρ

�
.

By our assumption that for each maximum fixed point max X . ψ in ϕ , X does not appear unguarded in ψ , we
know that Y does not appear unguarded in F1.

However in general we cannot guarantee that Y does not appear unguarded in the equations from SYS, since
Y ∈ Y . To overcome this, we replace each unguarded occurrence of Y with its corresponding formula F1. Let
Xi = Fi be a formula that contains an unguarded occurrence of Y . Since Xi = Fi is in standard form in SYS, we
have

Xi =
∧
j∈Ki

[α j]X j ∧
∧
j∈Si

Y j

≡
∧
j∈Ki

[α j]X j ∧
∧

j∈Si\{t}
Y j ∧ Yt

where Y = Yt . We now change the equation for Xi by replacing the unguarded occurrence of Yt with F1 (by
Lemma 10):

Xi =
∧
j∈Ki

[α j]X j ∧
∧

j∈Si\{t}
Y j ∧ F1

=
∧
j∈Ki

[α j]X j ∧
∧

j∈Si\{t}
Y j ∧

∧
j∈K1

[α j]X j ∧
∧
j∈S1

Y j

≡
∧

j∈Ki∪K1

[α j]X j ∧
∧

j∈(Si\{ j})∪S1

Y j

(for simplicity, assume K1, Ki are disjoint) and the i’th equation is in standard form.
Since X1 = F1 is in standard form in SYS, Y = F1 is in standard form in SYS′ . For all other equations from SYS,

we can define equivalent equations that are in standard form in SYS′ by replacing every unguarded occurrence of
Y with F1. All equations in SYS′ are now in standard form and since SYS′ is equivalent to ϕ , this case holds. �

Proof of Lemma 12. Let SYS = (Eq, X1, Y) be a system of n equations in standard form that is equivalent to a formula
ϕ ∈ sHML and

Eq = (X1 = F1, X2 = F2, . . . , Xn = Fn).

We define some useful functions:

S(i) = {α j | [α j]X j is a sub formula in Fi}
D(i,α) = {r | [α]Xr is a sub formula in Fi}

E(i) = {r | Yr is unguarded in Fi}

34 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
We also define these functions for subsets of indices Q ⊆ {1, 2, . . . , n}:

S(Q) =
⋃
i∈Q

S(i),

D(Q ,α) =
⋃
i∈Q

D(i,α), and

E(Q) =
⋃
i∈Q

E(i).

For each equation Xi = Fi where Fi �= ff, using these functions we can rewrite the equation as follows:

Xi =
∧

α∈S(i)

⎛
⎝[α]

∧
j∈D(i,α)

X j

⎞
⎠ ∧

∧
j∈E(i)

Yi .

This equation may not be in deterministic form since it contains the conjunction of variables
∧

j∈D(i,α) X j and D(i, α)

may not be a singleton. To fix this, we define a new variable X Q for each subset Q ⊆ {1, 2, . . . , n}, such that X Q behaves
like

∧
j∈Q X j (in the sense that X Q is defined in such a way that the formula associated with it in the resulting equation

system is the conjunction of the formulae associated with the X j ’s); we identify X{i} with Xi .
If for any j ∈ Q we have Fi = ff then

∧
j∈Q F j ≡ ff and the equation for X Q is X Q = ff. Otherwise, the equation for

X Q is:

X Q =
∧

α∈S(Q)

⎛
⎝[α]

∧
i∈D(Q ,α)

Xi

⎞
⎠ ∧

∧
j∈E(Q)

Y j (= F Q).

We apply the following steps, each of which preserves the two conditions:

1. the resulting system is equivalent to the original system and
2. for every equation X A = F ′

A , where A ⊆ {1, 2, . . . , n}, in the current system SYS and environment ρ , � X A,ρ[SYS]� =� F A,ρ[SYS]�. Note that it may be the case that F ′
A �= F A , as we may have replaced F A in the original equation for X A

by F ′
A . This condition assures us that it doesn’t matter, because F A and F ′

A are semantically equivalent.

Notice that condition 2 implies that � X A,ρ[SYS]� = �∧i∈A Xi,ρ[SYS]�.
Consider an equation

X Q =
∧

α∈S(Q)

⎛
⎝[α]

∧
i∈D(Q ,α)

Xi

⎞
⎠ ∧

∧
i∈E(Q)

Yi,

which is already in the system and is not in deterministic form. As a first step, if there is no equation for XD(Q ,α) in the
system, then we introduce the equation for XD(Q ,α) as defined above (this gives an equivalent system, because XD(Q ,α) does
not appear in any other equation if its own equation is not already in the system and condition 2 is preserved trivially).

We now proceed with the second step of the construction. Let S1(Q) ∪ S2(Q) = S(Q) be such that for every α ∈ S1(Q),
Q = D(Q , α) and for every α ∈ S2(Q), Q �= D(Q , α). Then, let SYS0 be the result of removing the equation for X Q from
the system (and adding X Q to the free variables) and SYS′ the result of replacing it by

X Q =
∧

α∈S(Q)

[α]XD(Q ,α) ∧
∧

j∈E(Q)

Yi (= F ′
Q).

We claim that SYS and SYS′ are equivalent and after proving this claim we are done, because we can repeat these steps
until all equations are in deterministic form and we are left with an equivalent deterministic system. To prove the claim, it
is enough to prove that for every environment ρ , � X Q ,ρ[SYS]� = � X Q ,ρ[SYS′]� (by Lemma 6). Equivalently, we show that
A = B , where

A =
⋃{

S | S ⊆
�

F Q ,ρ[X Q → S]SYS0
	}

= � X Q ,ρ[SYS]�
and

B =
⋃{

S | S ⊆
�

F ′
Q ,ρ[X Q → S]SYS0

	}
= �

X Q ,ρ[SYS′]�
.

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 35
Thus, it suffices to prove that A ⊆ B and B ⊆ A. Notice that

A =
�

F Q ,ρ[X Q → A]SYS0
	

,

B =
�

F ′
Q ,ρ[X Q → B]SYS0

	
,

and that ρ[X Q → A]SYS0 = ρ[SYS] and ρ[X Q → B]SYS0 = ρ[SYS′]. Therefore, it suffices to prove:

A ⊆ �
F ′

Q ,ρ[SYS]�
and B ⊆ �

F Q ,ρ[SYS′]�
.

For the first direction,�
F ′

Q ,ρ[SYS]� =

=

� ∧

α∈S(Q)

([α]XD(Q ,α)

) ∧
∧

j∈E(Q)

Yi,ρ[SYS]
�

=

� ∧

α∈S(Q)

⎛
⎝[α]

∧
i∈D(Q ,α)

Xi

⎞
⎠ ∧

∧
j∈E(Q)

Y j,ρ[SYS]
�

(because of the preservation of condition 2)

= � F Q ,ρ[SYS]� = A.

On the other hand,�
F Q ,ρ[SYS′]� =

=

� ∧

α∈S(Q)

⎛
⎝[α]

∧
i∈D(Q ,α)

Xi

⎞
⎠ ∧

∧
j∈E(Q)

Y j,ρ[SYS′]
�

=

� ∧

α∈S1(Q)

⎛
⎝[α]

∧
i∈Q

Xi

⎞
⎠ ∧

∧
α∈S2(Q)

⎛
⎝[α]

∧
i∈D(Q ,α)

Xi

⎞
⎠ ∧

∧
j∈E(Q)

Y j,ρ[SYS′]
�

=

� ∧

α∈S1(Q)

⎛
⎝[α]

∧
i∈Q

Xi

⎞
⎠ ∧

∧
α∈S2(Q)

[α]XD(Q ,α) ∧
∧

j∈E(Q)

Y j,ρ[SYS′]
�,

because if Q �= D(Q , α), then � XD(Q ,α), ρ[SYS0]� =
�∧

i∈D(Q ,α) Xi,ρ[SYS0]
	

, by the preserved condition 2. If Q is a sin-

gleton, then we are done, because then
∧

i∈Q Xi = X Q and the last expression is just B . Therefore, we assume Q is not a
singleton; so, for all i ∈ Q , Q �= {i} and thus, � Xi,ρ[SYS′]� = � Fi,ρ[SYS′]�. For convenience, let

C =

� ∧

α∈S2(Q)

⎛
⎝[α]

∧
i∈D(Q ,α)

Xi

⎞
⎠ ∧

∧
j∈E(Q)

Y j,ρ[SYS′]
�

=

� ∧

α∈S2(Q)

[α]XD(Q ,α) ∧
∧

j∈E(Q)

Y j,ρ[SYS′]
�.

Then, let SYS′
Q be SYS′ after removing the equations for all Xi , i ∈ Q and inserting all Xi , where i ∈ Q in the set of free

variables, Y .

�
F Q ,ρ[SYS′]� =

�∧
i∈Q

Fi,ρ[SYS′]
� (by definition)

=

�∧

i∈Q

Xi,ρ[SYS′]
� =

⋂
i∈Q

�
Xi,ρ[SYS′]�

36 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
=
⋂×

i∈Q

�
Xi,ρ[SYS′]� =

⋂ �
×
i∈Q

Xi,ρ[SYS′]
�

=
⋂⋃⎧⎪⎨

⎪⎩T | T ⊆

��×

i∈Q

Fi,ρ

[
×
i∈Q

Xi →T

]SYS′
Q

��
⎫⎪⎬
⎪⎭ ,

because of Lemma 7. Similarly as to how we analyzed F Q ,

B = �
F ′

Q ,ρ[SYS′]� =

� ∧

α∈S1(Q)

[α]X Q ,ρ[SYS′]
� ∩ C . (A.5)

So, it suffices to prove that for k = |Q |,

Bk ⊆

��×

i∈Q

Fi,ρ

[
×
i∈Q

Xi → Bk

]SYS′
Q

��.

Let p = (p1, . . . , pk) ∈
�

F ′
Q ,ρ[SYS′]

	k = Bk . By (A.5), p ∈ Ck . Therefore, to prove that

p ∈

��×

i∈Q

Fi,ρ

[
×
i∈Q

Xi → Bk

]SYS′
Q

�� ,

it suffices to prove that for all 1 ≤ i ≤ k,

pi ∈

�� ∧

α∈S(i)∩S1(Q)

[α]
∧

j∈D(i,α)

X j,ρ

[
×
i∈Q

Xi → Bk

]SYS′
Q

��,

or equivalently that for every α ∈ S(i) ∩ S1(Q) and j ∈ D(i, α) ⊆ D(Q , α),

pi ∈

��[α]X j,ρ

[
×
i∈Q

Xi → Bk

]SYS′
Q

��. (A.6)

For any α ∈ S(i) ∩ S1(Q), j ∈ D(i, α) ⊆ D(Q , α) = B , and pi
α=⇒ qi , because pi ∈ B and because of (A.5), pi ∈ �[α]X Q ,ρ[SYS′]�,

so qi ∈ � X Q ,ρ[SYS′]� = B . Therefore,

qi ∈

�� X j,ρ

[
×
i∈Q

Xi → Bk

]SYS′
Q

�� = B,

which gives us (A.6) and the proof is complete. �
Proof of Lemma 13. We use induction on the number of equations in SYS.

For the base case, we assume that SYS contains a single equation, X1 = F1. Since X1 = F1 is the principal equation in
SYS, SYS is equivalent to the formula max X1. F1, which is in deterministic form.

Now assume that SYS contains n > 1 equations. Let SYS′ be the result of removing the first equation from SYS and adding
X1 to Y if X1 appears in the remaining equations of SYS′ . Then,

�SYS,ρ� =
⋃{

S1 | S1 ⊆
�

F1,ρ[X1 → S1]SYS′ 	}
;

by the inductive hypothesis, there are formulae ϕ2, . . . , ϕn in deterministic form, such that

�SYS,ρ� =
=

⋃
{S1 | S1 ⊆ � F1[ϕ2/X2, . . . ,ϕn/Xn],ρ[X1 → S1]�

= �max X1. F1[ϕ2/X2, . . . ,ϕn/Xn],ρ�}
and max X1. F1[ϕ2/X2, . . . , ϕn/Xn] is in deterministic form. �

L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515 37
References

[1] L. Aceto, A. Ingólfsdóttir, K.G. Larsen, J. Srba, Reactive Systems: Modelling, Specification and Verification, Cambridge Univ. Press, New York, NY, USA,
ISBN 0521875463, 2007.

[2] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, S.Ö. Kjartansson, On the complexity of determinizing monitors, in: A. Carayol, C. Nicaud (Eds.),
Implementation and Application of Automata – 22nd International Conference, CIAA 2017, in: Lecture Notes in Computer Science, vol. 10329, Springer,
ISBN 978-3-319-60133-5, 2017, pp. 1–13.

[3] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, A framework for parameterized monitorability, in: C. Baier, U.D. Lago (Eds.), Foundations of
Software Science and Computation Structures - 21st International Conference, FOSSACS 2018, in: Lecture Notes in Computer Science, vol. 10803,
Springer, ISBN 978-3-319-89365-5, 2018, pp. 203–220.

[4] L. Aceto, I. Cassar, A. Francalanza, A. Ingólfsdóttir, On runtime enforcement via suppressions, in: S. Schewe, L. Zhang (Eds.), 29th International Confer-
ence on Concurrency Theory, CONCUR 2018, in: LIPIcs, vol. 118, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, ISBN 978-3-95977-087-3, 2018,
pp. 34:1–34:17.

[5] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, K. Lehtinen, An operational guide to monitorability, in: P.C. Ölveczky, G. Salaün (Eds.), Soft-
ware Engineering and Formal Methods – 17th International Conference, SEFM 2019, in: Lecture Notes in Computer Science, vol. 11724, Springer,
ISBN 978-3-030-30445-4, 2019, pp. 433–453.

[6] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, K. Lehtinen, The cost of monitoring alone, in: E. Bartocci, R. Cleaveland, R. Grosu, O. Sokolsky
(Eds.), From Reactive Systems to Cyber-Physical Systems - Essays Dedicated to Scott A. Smolka on the Occasion of His 65th Birthday, in: Lecture Notes
in Computer Science, vol. 11500, Springer, ISBN 978-3-030-31513-9, 2019, pp. 259–275.

[7] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, K. Lehtinen, Adventures in monitorability: from branching to linear time and back again, Proc.
ACM Program. Lang. 3 (POPL 2019) (2019) 52:1–52:29, https://doi .org /10 .1145 /3290365.

[8] A. Arnold, D. Niwinski, Rudiments of μ-Calculus, Studies in Logic and the Foundations of Mathematics, Elsevier Science, ISBN 9780080516455, 2001,
https://books .google .is /books ?id =MkWZaiECJvQC.

[9] E. Bartocci, Y. Falcone (Eds.), Lectures on Runtime Verification — Introductory and Advanced Topics, Lecture Notes in Computer Science, vol. 10457,
Springer, ISBN 978-3-319-75631-8, 2018.

[10] A. Bauer, M. Leucker, C. Schallhart, The good, the bad, and the ugly, but how ugly is ugly?, in: RV, in: LNCS, vol. 4839, Springer,
ISBN 978-3-540-77394-8, 2007, pp. 126–138.

[11] A. Bauer, M. Leucker, C. Schallhart, Comparing LTL semantics for runtime verification, J. Log. Comput. 20 (3) (2010) 651–674.
[12] A. Bauer, M. Leucker, C. Schallhart, Runtime verification for LTL and TLTL, ACM Trans. Softw. Eng. Methodol. 20 (4) (2011) 14.
[13] H. Björklund, W. Martens, The tractability frontier for NFA minimization, J. Comput. Syst. Sci. 78 (1) (2012) 198–210.
[14] I. Cassar, A. Francalanza, On implementing a monitor-oriented programming framework for actor systems, in: E. Ábrahám, M. Huisman (Eds.), Integrated

Formal Methods - 12th International Conference, IFM 2016, in: Lecture Notes in Computer Science, vol. 9681, Springer, ISBN 978-3-319-33692-3, 2016,
pp. 176–192.

[15] M. Chrobak, Finite automata and unary languages, Theor. Comput. Sci. (ISSN 0304-3975) 47 (1986) 149–158, https://doi .org /10 .1016 /0304 -3975(86)
90142 -8, http://www.sciencedirect .com /science /article /pii /0304397586901428.

[16] M. Chrobak, Errata to: “Finite Automata and Unary Languages”, Theor. Comput. Sci. (ISSN 0304-3975) 302 (1) (2003) 497–498, https://doi .org /10 .1016 /
S0304 -3975(03)00136 -1, http://www.sciencedirect .com /science /article /pii /S0304397503001361.

[17] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using branching time temporal logic, in: Workshop on Logic of Programs,
Springer, 1981, pp. 52–71.

[18] M. d’Amorim, G. Rosu, Efficient monitoring of ω-languages, in: K. Etessami, S.K. Rajamani (Eds.), Computer Aided Verification, 17th International
Conference, CAV 2005, in: Lecture Notes in Computer Science, vol. 3576, Springer, ISBN 3-540-27231-3, 2005, pp. 364–378.

[19] S. Debois, T.T. Hildebrandt, T. Slaats, Safety, liveness and run-time refinement for modular process-aware information systems with dynamic sub
processes, in: N. Bjørner, F.S. de Boer (Eds.), FM 2015: Formal Methods – 20th International Symposium, in: Lecture Notes in Computer Science,
vol. 9109, Springer, ISBN 978-3-319-19248-2, 2015, pp. 143–160.

[20] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, D.V. Campenhout, Reasoning with temporal logic on truncated paths, in: CAV, in: LNCS, vol. 2725,
Springer, ISBN 3-540-40524-0, 2003, pp. 27–39.

[21] U. Erlingsson, The Inlined Reference Monitor Approach to Security Policy Enforcement, PhD thesis, Cornell University, 2004.
[22] Y. Falcone, J.-C. Fernandez, L. Mounier, What can you verify and enforce at runtime?, Int. J. Softw. Tools Technol. Transf. 14 (3) (2012) 349–382.
[23] A. Francalanza, L. Aceto, A. Ingólfsdóttir, On verifying Hennessy-Milner logic with recursion at runtime, in: E. Bartocci, R. Majumdar (Eds.), Runtime

Verification, in: Lecture Notes in Computer Science, vol. 9333, Springer International Publishing, ISBN 978-3-319-23819-7, 2015, pp. 71–86.
[24] A. Francalanza, L. Aceto, A. Ingólfsdóttir, Monitorability for the Hennessy-Milner logic with recursion, Form. Methods Syst. Des. 51 (1) (2017) 87–116,

https://doi .org /10 .1007 /s10703 -017 -0273 -z.
[25] M. Geilen, On the construction of monitors for temporal logic properties, in: RV, in: ENTCS, vol. 55, 2001, pp. 181–199.
[26] G. Gramlich, G. Schnitger, Minimizing NFA’s and regular expressions, J. Comput. Syst. Sci. (ISSN 0022-0000) 73 (6) (2007) 908–923, https://doi .org /10 .

1016 /j .jcss .2006 .11.002, http://www.sciencedirect .com /science /article /pii /S0022000006001735.
[27] J. Gray, Why do computers stop and what can be done about it?, in: Fifth Symposium on Reliability in Distributed Software and Database Systems,

SRDS 1986, IEEE Computer Society, ISBN 0-8186-0690-8, 1986, pp. 3–12.
[28] H. Gruber, M. Holzer, Inapproximability of nondeterministic state and transition complexity assuming P �=NP, in: T. Harju, J. Karhumäki, A. Lep-

istö (Eds.), Developments in Language Theory, 11th International Conference, DLT 2007, in: Lecture Notes in Computer Science, vol. 4588, Springer,
ISBN 978-3-540-73207-5, 2007, pp. 205–216.

[29] Y. He, X. Chen, G. Lin, Composition of monitoring components for on-demand construction of runtime model based on model synthesis, in: H. Mei, J. Lv,
X. Mao (Eds.), Proceedings of the 5th Asia-Pacific Symposium on Internetware, Internetware 2013, ACM, ISBN 978-1-4503-2369-7, 2013, pp. 20:1–20:4.

[30] D. Janin, I. Walukiewicz, On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic, in: U. Mon-
tanari, V. Sassone (Eds.), CONCUR ’96, Concurrency Theory, 7th International Conference, in: Lecture Notes in Computer Science, vol. 1119, Springer,
ISBN 3-540-61604-7, 1996, pp. 263–277.

[31] T. Jiang, B. Ravikumar, Minimal NFA problems are hard, SIAM J. Comput. (ISSN 0097-5397) 22 (6) (1993) 1117–1141, https://doi .org /10 .1137 /0222067.
[32] R.M. Keller, Formal verification of parallel programs, Commun. ACM 19 (7) (1976) 371–384, https://doi .org /10 .1145 /360248 .360251.
[33] J. Klein, I. Gorton, Runtime performance challenges in big data systems, in: C.M. Woodside (Ed.), Proceedings of the 2015 Workshop on Challenges in

Performance Methods for Software Development, WOSP-C’15, ACM, ISBN 978-1-4503-3340-5, 2015, pp. 17–22.
[34] D. Kozen, Results on the propositional μ-calculus, Theor. Comput. Sci. (ISSN 0304-3975) 27 (3) (1983) 333–354, https://doi .org /10 .1016 /0304 -3975(82)

90125 -6, http://www.sciencedirect .com /science /article /pii /0304397582901256.
[35] K.G. Larsen, Proof systems for satisfiability in Hennessy-Milner logic with recursion, Theor. Comput. Sci. 72 (2&3) (1990) 265–288, https://doi .org /10 .

1016 /0304 -3975(90)90038 -J.
[36] M. Leucker, C. Schallhart, A brief account of runtime verification, J. Log. Algebraic Program. (ISSN 1567-8326) 78 (5) (2009) 293–303, https://doi .org /

10 .1016 /j .jlap .2008 .08 .004, http://www.sciencedirect .com /science /article /pii /S1567832608000775.

http://refhub.elsevier.com/S2352-2208(19)30160-9/bib416365494C533A32303037s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib416365494C533A32303037s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib6369615F7061706572s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib6369615F7061706572s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib6369615F7061706572s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib416365746F4146493138s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib416365746F4146493138s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib416365746F4146493138s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib416365746F4346493138s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib416365746F4346493138s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib416365746F4346493138s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib416365746F4146494C3139s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib416365746F4146494C3139s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib416365746F4146494C3139s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib416365746F4146494C313961s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib416365746F4146494C313961s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib416365746F4146494C313961s1
https://doi.org/10.1145/3290365
https://books.google.is/books?id=MkWZaiECJvQC
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib426172746F6363694632303138s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib426172746F6363694632303138s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib676F6F6462616475676C79s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib676F6F6462616475676C79s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib636F6D706172696E674C544Cs1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib72764C544Cs1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib626A6F726B6C756E643230313274726163746162696C697479s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib436173736172463136s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib436173736172463136s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib436173736172463136s1
https://doi.org/10.1016/0304-3975(86)90142-8
http://www.sciencedirect.com/science/article/pii/0304397586901428
https://doi.org/10.1016/S0304-3975(03)00136-1
http://www.sciencedirect.com/science/article/pii/S0304397503001361
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib636C61726B653139383164657369676Es1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib636C61726B653139383164657369676Es1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib64416D6F72696D523035s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib64416D6F72696D523035s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4465626F697348533135s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4465626F697348533135s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4465626F697348533135s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib7472756E6361746564s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib7472756E6361746564s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib45726C696E6730343A696E6C696E6564s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib46616C636F6E65464D3132s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib72767061706572s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib72767061706572s1
https://doi.org/10.1007/s10703-017-0273-z
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4765696C656Es1
https://doi.org/10.1016/j.jcss.2006.11.002
http://www.sciencedirect.com/science/article/pii/S0022000006001735
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib477261793836s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib477261793836s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib477275626572483037s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib477275626572483037s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib477275626572483037s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4865434C3133s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4865434C3133s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4A616E696E573936s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4A616E696E573936s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4A616E696E573936s1
https://doi.org/10.1137/0222067
https://doi.org/10.1145/360248.360251
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4B6C65696E473135s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4B6C65696E473135s1
https://doi.org/10.1016/0304-3975(82)90125-6
http://www.sciencedirect.com/science/article/pii/0304397582901256
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1016/j.jlap.2008.08.004
http://www.sciencedirect.com/science/article/pii/S1567832608000775
https://doi.org/10.1016/0304-3975(86)90142-8
https://doi.org/10.1016/S0304-3975(03)00136-1
https://doi.org/10.1016/j.jcss.2006.11.002
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1016/j.jlap.2008.08.004

38 L. Aceto et al. / Journal of Logical and Algebraic Methods in Programming 111 (2020) 100515
[37] J. Ligatti, L. Bauer, D. Walker, Edit automata: enforcement mechanisms for run-time security policies, Int. J. Inf. Secur. 4 (1–2) (2005) 2–16, https://
doi .org /10 .1007 /s10207 -004 -0046 -8.

[38] Q. Luo, F. Hariri, L. Eloussi, D. Marinov, An empirical analysis of flaky tests, in: S. Cheung, A. Orso, M.D. Storey (Eds.), Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE-22, ACM, ISBN 978-1-4503-3056-5, 2014, pp. 643–653.

[39] P.D. Marinescu, P. Hosek, C. Cadar Covrig, A framework for the analysis of code, test, and coverage evolution in real software, in: C.S. Pasareanu, D.
Marinov (Eds.), International Symposium on Software Testing and Analysis, ISSTA ’14, ACM, ISBN 978-1-4503-2645-2, 2014, pp. 93–104.

[40] A.M. Memon, M.B. Cohen, Automated testing of GUI applications: models, tools, and controlling flakiness, in: D. Notkin, B.H.C. Cheng, K. Pohl (Eds.),
35th International Conference on Software Engineering, ICSE ’13, IEEE Computer Society, ISBN 978-1-4673-3076-3, 2013, pp. 1479–1480.

[41] P.O. Meredith, D. Jin, D. Griffith, F. Chen, G. Roşu, An overview of the MOP runtime verification framework, Int. J. Softw. Tools Technol. Transf. 14 (3)
(2012) 249–289.

[42] A.R. Meyer, M.J. Fischer, Economy of description by automata, grammars, and formal systems, in: 12th Annual Symposium on Switching and Automata
Theory, IEEE Computer Society, 1971, pp. 188–191.

[43] R. Milner, A Calculus of Communicating Systems, Springer-Verlag New York, Inc., Secaucus, NJ, USA, ISBN 0387102353, 1982.
[44] A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium on Foundations of Computer Science, 1977, IEEE, 1977, pp. 46–57.
[45] A. Pnueli, A. Zaks, PSL model checking and run-time verification via testers, in: J. Misra, T. Nipkow, E. Sekerinski (Eds.), FM 2006: Formal Methods, 14th

International Symposium on Formal Methods, in: Lecture Notes in Computer Science, vol. 4085, Springer, ISBN 3-540-37215-6, 2006, pp. 573–586.
[46] M.O. Rabin, D.S. Scott, Finite automata and their decision problems, IBM J. Res. Dev. 3 (2) (1959) 114–125, https://doi .org /10 .1147 /rd .32 .0114.
[47] A. Rabinovich, A complete axiomatisation for trace congruence of finite state behaviors, in: International Conference on Mathematical Foundations of

Programming Semantics, Springer, 1993, pp. 530–543.
[48] W.J. Savitch, Relationships between nondeterministic and deterministic tape complexities, J. Comput. Syst. Sci. (ISSN 0022-0000) 4 (2) (1970) 177–192,

https://doi .org /10 .1016 /S0022 -0000(70)80006 -X.
[49] M. Sipser, Introduction to the Theory of Computation. Computer Science Series, PWS Publishing Company, ISBN 9780534947286, 1997, https://books .

google .is /books ?id =cXcpAQAAMAAJ.
[50] D. Tabakov, K.Y. Rozier, M.Y. Vardi, Optimized temporal monitors for SystemC, Form. Methods Syst. Des. 41 (3) (2012) 236–268, https://doi .org /10 .1007 /

s10703 -011 -0139 -8.
[51] M. Vardi, P. Wolper, Reasoning about infinite computations, Inf. Comput. (ISSN 0890-5401) 115 (1) (1994) 1–37, https://doi .org /10 .1006 /inco .1994 .1092,

http://www.sciencedirect .com /science /article /pii /S0890540184710923.
[52] M. Viswanathan, M. Kim, Foundations for the run-time monitoring of reactive systems–fundamentals of the mac language, in: International Colloquium

on Theoretical Aspects of Computing, Springer, 2004, pp. 543–556.
[53] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M.D. Ernst, D. Notkin, Empirically revisiting the test independence assumption, in: Proceedings of the

2014 International Symposium on Software Testing and Analysis, ACM, New York, NY, USA, ISBN 978-1-4503-2645-2, 2014, pp. 385–396.

https://doi.org/10.1007/s10207-004-0046-8
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4C756F48454D3134s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4C756F48454D3134s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4D6172696E6573637548433134s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4D6172696E6573637548433134s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4D656D6F6E433034s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4D656D6F6E433034s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4D4A472B31316D6F70s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4D4A472B31316D6F70s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4D65796572463731s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4D65796572463731s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib4D696C6E65723A313938323A4343533A353339303336s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib706E75656C693139373774656D706F72616Cs1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib506E75656C695A3036s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib506E75656C695A3036s1
https://doi.org/10.1147/rd.32.0114
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib726162696E6F76696368s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib726162696E6F76696368s1
https://doi.org/10.1016/S0022-0000(70)80006-X
https://books.google.is/books?id=cXcpAQAAMAAJ
https://doi.org/10.1007/s10703-011-0139-8
https://doi.org/10.1006/inco.1994.1092
http://www.sciencedirect.com/science/article/pii/S0890540184710923
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib76697377616E617468616E32303034666F756E646174696F6E73s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib76697377616E617468616E32303034666F756E646174696F6E73s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib5A68616E673A32303134s1
http://refhub.elsevier.com/S2352-2208(19)30160-9/bib5A68616E673A32303134s1
https://doi.org/10.1007/s10207-004-0046-8
https://books.google.is/books?id=cXcpAQAAMAAJ
https://doi.org/10.1007/s10703-011-0139-8

	Determinizing monitors for HML with recursion
	1 Introduction
	2 Background
	2.1 Basic deﬁnitions: monitoring μHML formulae on processes
	2.1.1 The model
	2.1.2 The logic
	2.1.3 Monitors
	2.1.4 Monitored system
	2.1.5 Finite automata
	Are monitors automata?

	2.2 Previous results
	2.3 Determinism, verdicts, and the choices that we make
	2.3.1 Conventions and deﬁnitions
	2.3.2 Determinism
	2.3.3 Multiple verdicts

	3 Rewriting methods for determinization
	3.1 Monitor rewriting
	3.2 Formula rewriting
	3.2.1 Systems of equations
	3.2.2 Standard and deterministic forms

	4 Bounds for determinizing monitors
	4.1 Semantic transformations
	4.2 Size bounds for monitors
	4.2.1 From monitors to ﬁnite automata
	4.2.2 From automata to monitors
	4.2.3 Lower bound for (nondeterministic) monitor size
	4.2.4 Lower bound for deterministic monitor size

	5 Determinizing with two verdicts
	6 Conclusions
	Acknowledgements
	Appendix A Proofs from Section 3.2
	References

