
Towards an Abstraction for
Remote Evaluation in Erlang

Adrian Francalanza

CS, ICT, University of Malta

adrian.francalanza@um.edu.mt

Tyron Zerafa

CS, ICT, University of Malta

tzer0001@um.edu.mt

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features—
Control structures

General Terms Distributed Programming, Message-Passing
Concurrency

Keywords Distributed Erlang, Code Migration.

1. Introduction

Erlang is an industry-standard cross-platform functional
programming language and runtime system (ERTS) in-
tended for the development of concurrent and distributed
systems[1]. An Erlang system consists of a number of ac-
tors [3] (processes) executing concurrently across a number
of nodes. These actors interact with one another (mainly)
through asynchronous messaging and are also capable of
spawning further actors, either locally or at a remote node.

2. Local and Remote Process Spawn

In Erlang, process spawning is programmed using the spawn
built-in function (BIF), the basic version of which accepts
a module, a function (contained in that module) and a list
of values as its arguments, and creates a new process at
the local node executing the function applied to the values
in the list; the BIF returns the process identifier (PID) of
the new process to the spawning actor. Erlang also provides
a variant of this BIF, used to program remote evaluations
[2]; an additional node name argument is passed to the BIF
variant, specifying the host node where to spawn the process.

The remote spawn BIF variant aims to emulate the func-
tionality of local spawning, by abstracting away from the ad-
ditional tasks required to perform the remote process launch
[1, 6]. However, this emulation relies on an important as-
sumption: the source node and the remote node must share
the same codebase, i.e., the same set of modules and func-
tion definitions. When this is not the case, remote spawn
execution may differ: if an actor attempts to spawn a func-
tion at a remote node where the function is not defined, the

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Erlang ’13, September 28, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2385-7/13/09.
http://dx.doi.org/10.1145/2505305.2505316

remote spawn fails; alternatively, if the remote node holds a
(spawned) function definition that differs from that at the
local node, the computation may be different as well. Simi-
lar, but more intricate, discrepancies between local and re-
mote spawning arise when the code for the spawned function
depends on other functions, possibly from other modules.

There are a number of circumstances where code homo-
geneity across nodes is too strong of an assumption. Reasons
for this range from induced code updates (which may be ar-
bitrarily frequent), differing node hardware (which may re-
quire dedicated software or may otherwise restrict the code-
base, due to resource limitations such as memory size) and
node-specific security constraints (e.g., one node may trust
the newest version of a code package, whereas another would
prefer to work with a previous, more stable, version.) When-
ever discrepancies exist, codebase homogeneity may be in-
feasible (or even impossible) to attain. For instance, keeping
track of persistent codebase changes is a complicated and
expensive task, whereas individual node trust policies may
explicitly prohibit such homogeneity.

We argue towards a solution that adheres to the original
aims of the remote spawn mechanisms, i.e., emulating the
behaviour of local spawn, in a setting with codebase hetero-
geneity across nodes. We also explain why existing Erlang
support is not adequate in order to attain this and discuss
the main difficulties in attaining the aforementioned aims.

3. Inadequacies of the Existing Support

Erlang provides lower-level mechanisms for dynamic module
loading inside a remote ERTS. Dynamic remote code loading
can be achieved through mechanisms such as c:nl/1, which
broadcasts code-migration and update to all participating
nodes. However, this mechanism is too coarse for our needs,
since code migration is forced upon nodes that have nothing
to do with the remote spawn that needs to be carried out.

A more accurate approach would need to resort to the
BIF load binary/3 (together with some mechanism for re-
mote evaluation), which only loads the necessary missing
code at the destination node where the remote spawn is to
launch the remote process. This approach is clearly less ex-
pensive, since it only involves code migration between two
nodes. However, it sits at a lower level of abstraction than
that of c:nl/1 and requires the explicit handling of code bi-
naries directly as a data.

The two approaches just discussed may be inadequate
still in the general case of remote spawns involving mis-
matching codebases. For starters, neither of these mech-
anisms performs any dependency analysis on the code to
be spawned. More specifically, in order to emulate the be-
haviour of a local spawn, one cannot simply check whether



the function to be spawned is present at the destination
node, but needs also to check that the functions that the
spawned function uses (which could potentially be dispersed
across multiple modules and could transitively depend on
other functions themselves) are also present at the destina-
tion node. Such a dependency code analysis may be explic-
itly determined through existing Erlang BIFs, such as those
found in module xref. However this approach is fairly low
level, thus prone to programming errors.

There are further complications associated with mis-
matching codebases. For instance, if the binaries relating
to the function to be remotely spawned are already present
at the remote node, one must then ensure that they corre-
spond to the compiled binaries at the local node. Ensuring
such code correspondence is non-trivial with the current
level of support offered by the Erlang platform. But even if
determining whether the respective binaries correspond or
not was possible, it would still leave the programmer with a
conundrum, in cases where binaries differ: on the one hand,
executing the remote spawn with different binaries at the
remote node may yield unexpected results; on the other,
loading the local version of the binaries at the remote node
would overwrite the existing versions, which may in turn
corrupt current computation at the remote node.

Since Erlang supports higher-order functions, the diffi-
culties discussed above are not limited to the function be-
ing spawned, but also the arguments that are passed to the
function when spawned, which may be functions themselves.
Erlang’s standard serialisation mechanism encodes data into
an intermediate representation known as the External Term
Format (ETF); in the case of functions, these values are en-
coded as a data type composed of a number of attributes in-
cluding a symbolic link to the respective module’s binary file
(called a BEAM file) containing the function’s code. When
a remote spawn is executed with function arguments, only
the respective function ETF (with its symbolic references to
the BEAM file) is sent to the remote node. As before, dis-
crepancies between node codebases may cause this link to be
broken at the remote node which again causes the remote
spawn to behave differently from it local counterpart. Stated
otherwise, similar code-management mechanisms need to be
applied for functions passed as parameters as well.

4. Considerations for Proposed Solutions

Although solutions for handling remote spawning in a het-
erogeneous codebase setting can be programmed, they in-
creases the responsibility and effort on the part of applica-
tion developer, which would need to contend with the dif-
ficulties discussed in § 3, but also low-level implementation
concerns such as the possibility of name-structure clashes
across codebases. Instead, we advocate for a solution that
abstracts over these difficulties and automates the function-
ality for code-dependency analysis, code correspondence and
code migration, in line with the fine-grain code mobility ap-
proaches proposed in [4, 5]. Such an automation should as-
pire to mimic the behaviour of a local spawn using the least
possible bandwidth and storage overheads.

The solution would need to determine a feasible unit of
code migration to adopt. More specifically, whereas the unit
of process spawning is the Erlang function, the ERTS stan-
dard unit of code loading is the Erlang module. Issues may
arise when, in order to remote spawn a particular function
whose code is not present at the destination node, an ar-
bitrarily large module (containing the spawned function)

would need to be migrated and loaded; the problem could be
more acute in the case of transitive function dependencies.

Conventions for how to migrate code would also need
to be established. At one extreme, the solution may de-
cide to migrate the missing code eagerly in one phase, once
the missing dependencies are statically determined. Alter-
natively, code migration may happen incrementally in lazy
fashion, whereby only the immediately execution functions
are sent. The latter approach is in general more complex and
may incur more bandwidth overhead. However it is able to
use runtime information relating to code dependencies, e.g.,
code branches taken by the spawned remote actor, so as to
minimise the code that is migrated—the function dependen-
cies in branches that are not taken need not be migrated.
The proposed solution may even decide to adopt a hybrid
model of code migration, that adapts according to the re-
quirements of the nodes and that of the underlying network.

The proposed solution should also take into considera-
tion the different requirements of the individual nodes. For
instance a remote node may prohibit migrated code of a cer-
tain size, originating from certain untrusted nodes, or else
lacking certain security certificates. In a setting where mul-
tiple codebases are handled, a remote node may also require
that certain code dependencies use the local version of the
codebase, as opposed to that of the originating node; such
restrictions are particularly relevant to dependencies involv-
ing standard Erlang code libraries.

Ideally, the solution should also embrace the realities of
distributed computing and adhere to the philosophy of the
host language, i.e., Erlang. Failures such as nodes crashing
and flaky node connections should not be ruled out by the
proposed solution, which should in turn affect the underlying
architecture and operations. For instance, in order to with-
stand a degree of failure, the proposed solution should be as
decentralised as possible. Moreover, once the missing code
dependencies are determined, the code need not be migrated
from the source node; instead it may be obtained from an-
other node having a faster or more reliable connection to the
remote node where the actor is to be spawned.

5. Conclusion

We have argued why that the existing mechanisms for re-
mote evaluations in Erlang is inadequate for a distributed
setting with heterogeneous codebases. We then outlined pos-
sible requirements to consider for a language extension that
addresses these shortcomings. We are currently working on
a prototype that takes these suggestions into account.

References
[1] F. Cesarini and S. Thompson. Erlang Programming. O’Reilly,

2009.

[2] A. Fuggetta, G. Picco, and G. Vigna. Understanding Code
Mobility. IEEE Trans. on Softw. Eng., 24(5):342 –361, 1998.

[3] C. Hewitt, P. Bishop, and R. Steiger. A universal modular
actor formalism for artificial intelligence. In IJCAI, pages
235–245. Morgan Kaufmann, 1973.

[4] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained
Mobility in the Emerald System. ACM Trans. Comput. Syst.,
6(1):109–133, Feb. 1988.

[5] C. Mascolo, G. P. Picco, and G.-C. Roman. A fine-grained
model for code mobility. SIGSOFT Softw. Eng. Notes, 24(6):
39–56, Oct. 1999.

[6] C. Wikström. Distributed Programming in Erlang. In Symp.
on Parallel Symbolic Computation, pages 412–421, 1994.


