
Better Late Than Never or: Verifying
Asynchronous Components at Runtime

Duncan Paul Attard1,2(B) , Luca Aceto2,3 , Antonis Achilleos2 ,
Adrian Francalanza1 , Anna Ingólfsdóttir2 , and Karoliina Lehtinen4

1 University of Malta, Msida, Malta
{duncan.attard.01,afra1}@um.edu.mt

2 Reykjavík University, Reykjavík, Iceland
{duncanpa17,luca,antonios,annai}@ru.is

3 Gran Sasso Science Institute, L’Aquila, Italy
luca.aceto@gssi.it

4 CNRS, Aix-Marseille University and University of Toulon, LIS,
Marseille, France

lehtinen@lis-lab.fr

Abstract. This paper presents detectEr, a runtime verification tool for
monitoring asynchronous component systems. The tool synthesises exe-
cutable monitors from properties expressed in terms of the safety frag-
ment of the modal μ-calculus. In this paper, we show how a number
of useful properties can be flexibly runtime verified via the three forms
of instrumentation—inline, outline, and offline—offered by detectEr to
cater for specific system set-up constraints.

Keywords: Runtime verification · Instrumentation · Monitoring

1 Do You Want to Know a Secret

In the Cockaigne of software development, programs are verified using a smor-
gasbord of pre-deployment techniques, and executed only when their correct-
ness is ascertained. Reality, however, tells a different story. Mainstream verifi-
cation practices, including testing [47], only reveal the presence of errors [29].
Exhaustive approaches like model checking [41] are laborious to use, e.g. building
effective program models is non-trivial, and known to suffer from state explo-
sion problems [27]. Other methods such as type systems [48] are intentionally
lightweight to prevent disrupting the software development lifecycle; this, in turn,
limits their precision since type-based analyses occasionally rule out well-behaved

Supported by the doctoral student grant (No: 207055-051) and the MoVeMnt project
(No: 217987-051) under the Icelandic Research Fund, the BehAPI project funded by the
EU H2020 RISE under the Marie Skłodowska-Curie action (No: 778233), the ENDEAV-
OUR Scholarship Scheme (Group B, national funds), and the MIUR project PRIN
2017FTXR7S IT MATTERS.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Peters and T. A. C. Willemse (Eds.): FORTE 2021, LNCS 12719, pp. 207–225, 2021.
https://doi.org/10.1007/978-3-030-78089-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78089-0_14&domain=pdf
http://orcid.org/0000-0002-2448-5394
http://orcid.org/0000-0002-2197-3018
http://orcid.org/0000-0002-1314-333X
http://orcid.org/0000-0003-3829-7391
http://orcid.org/0000-0001-8362-3075
http://orcid.org/0000-0003-1171-8790
https://doi.org/10.1007/978-3-030-78089-0_14

208 D. P. Attard et al.

programs. Present-day software poses even more challenges. Static verification
often relies on having access to the program source code, which is not necessarily
available when software is constructed from libraries or components subject to
third-party restrictions. Moreover, modern applications are increasingly devel-
oped in decentralised fashion, where the constituent parts are not always known
pre-deployment. This tends to increase both the complexity of software and
the resources required to verify it, while at the same time, decreasing the time
available to conduct its verification. Lately, with the availability of large data
volumes, cutting-edge software components rely on machine learning to adapt
their behaviour without the need to be explicitly programmed. Analysing these
types of software artifacts statically is difficult, not least because their internal
representation is notoriously hard to understand.

Although the proverbial correctness cake cannot be had and eaten, slices
of it may still be savoured after the program has been deployed. In certain
cases, post-deployment techniques such as Runtime Verification (RV) [20,37]
can be used instead of, or in tandem with, static techniques to increase cor-
rectness assurances about a program or System under Scrutiny (SuS). RV uses
monitors—computational entities consisting of logically-distinct instrumenta-
tion and analysis units—to observe the execution of the SuS. Analysers, i.e.,
sequence recognisers [13], are typically synthesised automatically from formal
descriptions of correctness properties expressed in a specification logic.

When devising a RV tool, substantial effort is focussed on the specification
language that is used to describe correctness properties, and the synthesis proce-
dure which generates the analysis that runtime checks these properties [6,20,45].
Arguably, less attention is given to the instrumentation aspect, particularly, how
the SuS is equipped to run with monitors, and the manner in which the com-
putation of the SuS is extracted and reported for analysis. There is no one-size-
fits-all solution to these challenges. For instance, inline instrumentation—the de
facto technique employed by state-of-the-art RV [20,34]—relies on access to the
program source or unobfuscated binary, thus obliging the RV monitors to be
expressed in the same language as that of the SuS. The hallmark of a flexible
RV tool is, therefore, its ability to support various instrumentation techniques
to cater for the different scenarios where RV is used. The RV tool should also
provide a common interface for describing what properties should be verified,
agnostic of the underlying instrumentation mechanism dealing with the techni-
calities of how the verification is performed. This contributes to lowering the
learning curve of the tool and facilitate its adoption.

This paper presents the RV tool detectEr that addresses the analysis and
instrumentation aspects of runtime monitoring. Our tool targets asynchronous
component systems. It automatically synthesises correct analyser code from
properties expressed in terms of the monitorable safety fragment of the modal
μ-calculus. Since the correctness of the synthesised analysers is studied in prior
work (see [1,5,17,39]), our account elaborates on the usability and instrumenta-
tion aspects of the tool. detectEr, developed on top of the Erlang [15,26] ecosys-
tem, supports three instrumentation methods to cater for different SuS set-ups:

Better Late Than Never or: Verifying Asynchronous Components at Runtime 209

Fig. 1. Our calculator server and its abstraction in terms of symbolic actions

Inline: targets programs written in the Erlang language;
Outline: accommodates program binaries that are compiled for and run on the

Erlang Virtual Machine (EVM), but whose source code is unavailable;
Offline: analyses recorded runs of programs that may execute outside the EVM.

We show how, from the same correctness specifications, detectEr is able to run-
time monitor system components using these different instrumentation methods.

The paper is structured as follows. Section 2 introduces our running example
that captures the typical interaction between concurrent processes, along with
useful properties one may wish to runtime check on such systems. Sections 3 and
4 focus on the specification logic used by detectEr and how this is synthesised
into executable analysis code. Section 5 summarises the role the instrumentation
has with respect to the runtime analysis, and the mechanism detectEr employs
to identify the SuS components in need of monitoring. Sections 6–8 overview the
three instrumentation methods mentioned above, while Sect. 9 concludes.

2 A Day in the Life

We consider an idiomatic calculator server that handles client requests for arith-
metic computation. Our server can be naturally expressed as an actor (pro-
cess) [12] that blocks, and waits for client requests sent as asynchronous mes-
sages. These messages are addressed to the server using its unique process ID
(PID), and deposited in its mailbox that buffers multiple client requests. The
server unblocks upon consuming a message from the mailbox. In our client-server
protocol, messages contain the type of operation to be executed on the server, its
arguments (if applicable), and the client PID to whom the corresponding server
reply is addressed.

210 D. P. Attard et al.

Our calculator server is implemented as the Erlang module, calc_server, in
Fig. 1a. The server logic is encapsulated in the function loop(Tot) that is forked
to execute as an independent process by the launcher invoking start(), line 1.
Processes in Erlang are forked via the built-in function spawn(), parametrised
on line 1 by the module name, calc_server, the name of the function to spawn,
loop, and the list of arguments accepted by loop, [0]. The server process reads
messages from its mailbox (line 3), and pattern-matches against the three types
of operations requested by clients, Clt: (i) addition (add) and multiplication
(mul) requests carry the operands A1 and A2, lines 4 and 8, and, (ii) stop (stp)
requests that carry no arguments, line 12. Pattern variables Clt, A1 and A2 in
Fig. 1a are instantiated to concrete data in client request messages via pattern
matching. Every request fulfilled by the server results in a corresponding reply
that is sent to the PID of the client instantiated in variable Clt, lines 5, 9 and
13. Server replies carry the status tag, ok or bye, and the result of the requested
operation. Parameter Tot of loop() is used by the server to track the number
of client requests serviced, and is returned in reply to a stp request. The server
loops on add and mul requests, incrementing Tot before recursing, lines 6 and
10; a stp request does not loop and terminates the server computation.

In the sequel, we focus on a system set-up consisting of one server and client to
facilitate our exposition. The forked loop(Tot) function for some initial service
count Tot induces a server runtime behaviour that can be abstractly described
by the state transition model in Fig. 1b. Transitions between the states of Fig. 1b
denote the computational steps that produce (visible) program events (e.g. event
Srv:Clt ! {bye , Tot } that carries the concrete payload values Srv, Clt and Tot).
There are a number of correctness properties we would like such behaviour to
observe. For instance, we do not control the value Tot that the server loop is
launched with and, therefore, could require the invariant

“The service request count returned on shutdown is never negative.” (P1)

Similarly, one would expect the safety properties

“Replies are always sent to the client indicated in the request” (P2)

and “A request for adding two numbers always returns their sum” to hold,
amongst others. The properties are data-dependent, which makes them hard
to ascertain using static techniques such as type systems. Besides properties
that reason on data, the implementation in Fig. 1a is expected to comply with
control properties, such as,

“Client requests are never serviced more than once”, (P3)

that describe the message exchanges between the server and client processes. All
these properties are hard to ascertain without access to the source code.

Better Late Than Never or: Verifying Asynchronous Components at Runtime 211

3 I Want to Tell You

We overview the detectEr specification syntax, sHML [4,10,38], which is the
safety logical fragment of the modal μ-calculus [43,44], and show how a selection
of the properties in Sect. 2 can be formally specified in this logic.

The Logic. Specifications in sHML are defined over the states of transition
models (such as the one of Fig. 1b), and are generated from the following gram-
mar:

ϕ ∈ sHML ::= tt (truth) | ff (falsehood) | x (fix-point variable)

| ∧
i∈I [pi, ci]ϕi (conj. necessities) | maxx.ϕ (max. fix-point)

sHML expresses recursive properties as maximal fix-point formulae maxx.ϕ,
that bind free occurrences of x in ϕ. A central construct to sHML is the universal
modal operator, [p, c]ϕ. To handle reasoning over event data, sHML modalities
are augmented with symbolic actions [10], consisting of event patterns p ∈ Pat,
and decidable constraints, c ∈ BExp. This is similar to how sets of actions are
expressed in tools such as CADP [40] and mCRL 2 [22]. The pattern p contains
data variables, A,B, . . . ∈ Var, that bind free data variables in c, along with
any other free variables in constraints of the continuation ϕ. The pair (p, c)
describes a concrete set of actions, a ∈ Act (i.e., program events). An action a
is in this set when: (i) p matches the shape of a, and maps the variables in p to
the payload data in a as the substitution σ, and (ii) the instantiated constraint
cσ of p also holds. A state Q of the SuS (model) satisfies [p, c]ϕ if the following
holds: whenever Q transitions to state Q′ with action a that is included in the
set described by (p, c) with σ, then Q′ must satisfy the instantiated continuation
formula ϕσ.

The logical variant [4,10] we use for detectEr combines necessities and
conjunctions into one construct,

∧
i∈I [pi, ci]ϕi, to denote [p1, c1]ϕ1 ∧ . . . ∧

[pn, cn]ϕn, I = {1, . . . , n} being a finite index set. Conjunctions assume that
every pair (pi, ci) describes a disjoint set of actions to facilitate the generation
of deterministic monitors [35,36]. detectEr supports the five action patterns of
Table 1 that capture the lifecycle of, and interactions between the processes of
the SuS. A fork action is exhibited by a process when it creates a child process;
its dual, init, is exhibited by the corresponding child upon initialisation. Pro-
cess exit actions signal termination, while send and recv describe interaction.
The labelled state transition model of Fig. 1b uses the actions send and recv
from Table 1.

Example 1. Recall the SuS behaviour in Fig. 1b. Formula ϕ0 with symbolic
action (p, c) describes a property requiring that a state does not exhibit an
output event that consists of 〈Ack ,Tot〉, acknowledged with bye AND A NEG-
ATIVE TOTAL, Tot .

∧
[

pattern p
︷ ︸︸ ︷
Srv:Clt ! 〈Ack ,Tot〉,

constraint c
︷ ︸︸ ︷
Ack = bye ∧ Tot < 0] ff (ϕ0)

212 D. P. Attard et al.

Table 1. Trace event actions capturing the behaviour exhibited by the SuS

Action a Action pattern p Variables Description

forkinit P1 →P2, M:F (A)

P1 ←P2, M:F (A)

P1 PID P1 of the parent process forking P2

P2 PID P2 of the child process forked by P1

M:F (A) Function signature forked by P1

exit P1 ��Dat P1 PID P1 of the terminated process
Dat Exit data, e.g. termination reason, etc.

send P1:P2 !Req P1 PID P1 of the process issuing the request
P2 PID P2 of the recipient process
Req Request payload, e.g. integers, tuples, etc.

recv P2 ?Req P2 PID P2 of the recipient process
Req Request payload, e.g. integers, tuples, etc.

The universal modality states that, for any event satisfying the symbolic action
(p, c) from a state Q, the state Q′ it transitions to must then satisfy the continu-
ation formula. No state can satisfy the continuation ff, and formula ϕ0 can only
be satisfied when Q does not exhibit the event described by (p, c). All the states
in Fig. 1b trivially satisfy this property (as there are no outgoing state transi-
tions on (p, c) of formula ϕ0) with the exception of Q3. If this state exhibits
the concrete event pid1:pid2 ! 〈bye ,−1〉, it matches the pattern p, yielding the
substitution σ = {Srv �→ pid1,Clt �→ pid2,Ack �→ bye,Tot �→ −1}. As cσ also
holds, then we can conclude that Q3 violates formula ϕ0. The formula ϕ1 below
extends ϕ0 to one that is invariant for any state reachable from the current state;
this formalises property P1 from Sect. 2.

maxx.
∧ (

1
︷ ︸︸ ︷
[Srv ?Req, �]x,

2
︷ ︸︸ ︷
[Srv:Clt ! 〈Ack ,Tot〉, Ack = bye ∧ Tot < 0]ff,

[Srv:Clt ! 〈Ack ,Ans〉, Ack = ok ∨ (Ack = bye ∧ Ans ≥ 0)]
︸ ︷︷ ︸

3

x

)

(ϕ1)

Whereas 2 corresponds to formula ϕ0, 1 and 3 cover the other possible actions
produced in Fig. 1b, recursing on the fix-point variable x. �

Note that the formula variables Srv, Clt, Tot , etc. in Example 1 are different to
the program variables of Fig. 1a bearing the same name. In our setting, program
behaviour is observed as events, and formulae variables are used to pattern-
match and reason about data in these events. We adopt the convention of naming
formulae and program variables identically, merely to indicate the link between
program and event data to readers.

The Tool. The syntax used by detectEr deviates minimally from sHML. Con-
cretely, the comma symbol delimiting patterns and constraints is dropped in

Better Late Than Never or: Verifying Asynchronous Components at Runtime 213

favour of the when keyword, whereas vacuous constraints, i.e., when �, may
be omitted. The tool also supports a shorthand notation for patterns to specify
atomic values directly; these are implicitly matched against action data, e.g. sub-
formula 2 from Example 1 can be abbreviated to [Srv:Clt ! 〈bye ,Tot〉 when Tot <
0] . Moreover, redundant data variables can be replaced by the ‘don’t care’ pat-
tern, (_), that matches arbitrary data values. This sugaring enables us to rewrite
ϕ1 from Example 1 as:

maxx.
∧ (

[_?_]x, [_:_! 〈bye ,Tot〉 when Tot < 0]ff,
[_:_! 〈Ack ,Ans〉 when Ack = ok ∨ (Ack = bye ∧ Tot ≥ 0)]x

)

Example 2. Property P2 from Sect. 2 describes a fragment of the client-server
interaction, asserting that server replies are always addressed to the clients issu-
ing them. Unlike ϕ1, this property induces data dependency across nested for-
mulae.

maxx.
∧

⎛

⎝

1
︷ ︸︸ ︷
[Srv1 ? 〈Clt1 ,_〉] ∧

(
2

︷ ︸︸ ︷
[Srv2:Clt2 !_ when Srv1 = Srv2 ∧ Clt1 	= Clt2]ff,
[Srv2:Clt2 !_ when Srv1 = Srv2 ∧ Clt1 = Clt2]
︸ ︷︷ ︸

3

x

)

⎞

⎠

(ϕ2)

P2 can be formalised as the formula ϕ2, where the data dependency is expressed
via the binders Srv1 and Clt1 in 1 , which are then used in the constraint of
sub-formulae 2 and 3 . The constraint Srv1 = Srv2 scopes our reasoning to
a single server instance. Formula ϕ2 is violated when Clt1 	= Clt2 (since the
continuation would need to satisfy ff), and recurs on x otherwise. Recall that
the aforementioned comparisons between variable instantiations is possible since
the substitution σ obtained from matching the symbolic action of modality 1

extends to the context of sub-formulae 2 and 3 . �

Example 3. Property P3 specifies a control aspect of the client-server interaction,
demanding that requests issued by clients are never serviced more than once.
Formula ϕ3 expresses this requirement via a guarded fix-point that recurs on x
for sequences of send-recv actions; this captures normal server operation that
corresponds to sub-formulae 1 followed by 2 , and then 4 followed by 2 .

∧
1

︷ ︸︸ ︷
[_?_] maxx.

∧

(

[Srv1:Clt1 !_]
︸ ︷︷ ︸

2

∧
(

3
︷ ︸︸ ︷
[Srv2:Clt2 !_ when Srv1 = Srv2 ∧ Clt1 = Clt2]ff,
[_?_]
︸ ︷︷ ︸

4

x

)) (ϕ3)

Formula ϕ3 is violated when a send action matched by 2 is followed by a second
send action that is matched by 3 . The constraint Clt1 = Clt2 in sub-formula 3

ensures that duplicate send actions concern the same recipient. �

214 D. P. Attard et al.

Our earlier formula ϕ2 of Example 2 does not account for the case where the
server interacts with more than one client. It disregards the possibility of other
interleaved events, that are inherent to concurrent settings where processes are
unable to control when messages are received. For instance, while sub-formula 1

matches an initial recv action, a second recv action (e.g. due to a second client
C2 that interacts with the server) matches neither 2 nor 3 . This does not reflect
the requirement of our original property P2. The problem can be addressed by
augmenting formulae with clauses that ‘eat up’ non-relevant actions.

maxx.
∧

⎛

⎜
⎜
⎝

[Srv1 ? 〈Clt1 ,_〉]
1

︷ ︸︸ ︷
maxy.

∧

⎛

⎝
[Srv2:Clt2 !_ when Srv1 = Srv2 ∧ Clt1 	= Clt2]ff,
[Srv2:Clt2 !_ when Srv1 = Srv2 ∧ Clt1 = Clt2]x,
[_?_] y
︸ ︷︷ ︸

2

⎞

⎠

⎞

⎟
⎟
⎠

As the refinement of ϕ2 above shows however, this bloats specifications, which
is why we chose to scope our exposition to a single client-server set-up for the
benefit of readers. Introducing the nested maximal fix-point 1 and sub-formula
2 filters recv actions by recursing on variable y; the rest of ϕ2 is unaltered.

4 What Goes on

Often, post-deployment verification techniques such as RV, do not have access to
the entire execution graph of a SuS, e.g. the transition model in Fig. 1b. Instead,
these are limited to the trace of (program) events that is generated by the cur-
rent execution of the SuS. For instance, an execution might generate the trace of
events ‘pid1 ? 〈pid2 , stp〉 . pid1:pid2 ! 〈bye ,−1〉’, that corresponds to the (finite)
path traversal Q0 → Srv ? 〈Clt , stp〉 → Q3 → Srv:Clt ! 〈bye ,Tot〉 → Q4 in the
transition model of Fig. 1b. In traces, events consist of concrete values instead of
variable placeholders, e.g. pid1 instead of Srv, etc. This limitation can be prob-
lematic when verifying specifications that reason about entire SuS transition
models, e.g. properties expressed in the μ-calculus [11,43,44], CTL [19,41], and
other branching-time logics. Recent studies show that finite traces suffice to ade-
quately verify a practically-useful subset of these properties, as long as the ver-
ification is confined to either determining satisfaction or violation [1,5,7,38,39]
(not both). This is more commonly referred to as specification monitorability [39].
sHML, used in Sect. 3 to encode properties P1–P3, has been shown to be a
maximally-expressive subset of the μ-calculus for the runtime analysis of viola-
tions. This means that (i) any program that violates a property expressed as a
sHML formula can be detected at runtime, (ii) any μ-calculus property whose
violations can be detected at runtime can be expressed as a sHML formula.

From Specification to Analysis. detectEr synthesises automata-like analy-
sers in Erlang from sHML; these inspect trace events incrementally and reach
irrevocable verdicts. An analyser flags a rejection verdict when it processes a

Better Late Than Never or: Verifying Asynchronous Components at Runtime 215

trace exhibiting the program behaviour that violates a property of interest—
crucially, it never flags verdicts associated with the satisfaction of the prop-
erty [1,7,39]. Intuitively, this is because the trace observed at runtime can never
provide enough information to rule out the existence of violating behaviour in
other execution branches of the program. The synthesised analyser code embeds
this reasoning: when a trace event is not included in the set of actions denoted
by the symbolic action of a necessity modality, an inconclusive verdict is flagged.

Our synthesis translates a sHML specification to Erlang code encoded as a
higher-order function, tasked with the analysis of trace events. This function
accepts an event as input, and returns a new function of the same kind that
performs the residual analysis following the event just processed. The synthesis,
�−�, that maps sHML constructs to Erlang syntax is as follows:

�ff� � (fun (_) → io:format("Rejection") end) ()

�max x. ϕ� � (fun x() → �ϕ� end) () �x� � x()

�
∧

i∈I

[pi, ci]ϕi� �

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

fun(p1) when c1 → �ϕ1�
...
(pn) when cn → �ϕn�

(_) → (fun (_) → io:format("Stopped") end) ()
end

In �−�, ff is translated into an anonymous function that flags rejection, mod-
elling formula violations; tt is not synthesised into analysis code since it can
never be violated. Maximal fix-point formulae are translated to named functions
that can be referenced by �x�. The conjunction of necessities,

∧
i∈I [pi, ci]ϕi,

maps naturally to a sequence of function clauses, where the pattern pi matches
the shape of the trace event, and the constraint ci—expressed as an Erlang
guard [26]—operates on variables bound in pi and those instantiated in the
parent function scope. Inconclusive verdicts are modelled via the catch-all
clause (_) that matches any events other than those described by the clauses,
fun(pi) when ci. The order of clauses in Erlang does matter, and affects our syn-
thesis in two ways: (i) it conveniently allows us to handle the inconclusive verdict
case using a catch-all clause at the end of function definitions; (ii) the mutually-
exclusive symbolic actions in a necessity conjunction allows us to synthesise them
in the order specified, without affecting the commutativity of conjunctions. Note
that the synthesis applies the generated functions, i.e., (), to unfold them once.

Figure 2 depicts the behaviour of the analyser that is synthesised from for-
mula ϕ2 of Example 2. It consists of two states, Q0, Q1, the rejection verdict
state ✗, and the inconclusive verdict state ? . The transition from Q0 to Q1

in Fig. 2 corresponds to the modality [Srv1 ? 〈Clt1 ,_〉] , 1 in formula ϕ2, while
the transitions between Q1 and ✗, Q1 and Q0 express sub-formulae 2 and 3 .
The auxiliary transitions from states leading to ? correspond to the catch-all
(_) clause inserted by the synthesis for conjuncted necessities. Figure 2 illus-
tratively labels these transitions by the complement of the set of actions from

216 D. P. Attard et al.

Fig. 2. Abstract model of the analyser synthesised from formula ϕ2

a given state. For example, the symbolic action set Pat \ {_? 〈_,_〉} from Q0

to ? matches anything but recv events; recv events are, in turn, matched by
Srv1 ? 〈Clt1 ,_〉 labelling the transition between Q0 and Q1. Verdict irrevocability,
a prevalent RV requirement [6], is modelled by the detectEr synthesis in terms of
final states (✗ and ? in Fig. 2). The analysis stops when a final state is reached.

Specification, in Practice. detectEr processes sHML formulae specified in
plain text files. The syntax follows the one given in Sect. 3, albeit with two
adaptations: (i) the keyword and is used in lieu of

∧
, and, (ii) we adopt the

Erlang operators for writing boolean constraint expressions, e.g. =:= instead of
=, andalso instead of ∧, orelse instead of ∨, etc. Analysers resulting from the
synthesis, �−�, are compiled to binaries to be packaged with the SuS executables.

5 The Magical Mystery Tour

Instrumentation is central to RV. It refers to the extraction of the computation
of interest in the form of a sequence of trace events from an executing program,
and its reporting to the runtime analysis discussed in Sect. 3. Formulae can be
rendered unverifiable at runtime when the program events they assume cannot
be extracted and reported by the instrumentation. The instrumentation also
plays a role in dropping extraneous events that can infiltrate the trace being
observed and potentially, interfere with the analysis.

What to Monitor. We provide the meta keywords with and monitor to target
the SuS component of interest for a particular specification. The with keyword
picks out the signature of the function that is forked whereas the monitor keyword
defines the property to be analysed. For example, to runtime verify the behaviour
of the calculator server of Fig. 1a against formula ϕ2, we write:

with
calc_server : loop(_)

monitor

maxx.
∧

⎛

⎝
[Srv1 ? 〈Clt1 ,_〉] ∧

(
[Srv2:Clt2 !_ when Srv1 = Srv2 ∧ Clt1 	= Clt2]ff,
[Srv2:Clt2 !_ when Srv1 = Srv2 ∧ Clt1 = Clt2]x

)
⎞

⎠

(ϕ′
2)

Better Late Than Never or: Verifying Asynchronous Components at Runtime 217

Fig. 3. Inline, outline and offline instrumentation methods offered by detectEr

From an instrumentation standpoint, with establishes the set of trace events
corresponding to the SuS component it targets, thus enabling the specification
to abstract from the events generated by other components. This helps to keep
the size of specifications compact whenever possible. In using with, formula ϕ′

2

need not account for superfluous events (e.g. those of another server component)
that tend to make the specification exercise tedious and error-prone.

How to Monitor. detectEr offers three instrumentation methods, inline
(Sect. 6), outline (Sect. 7), and offline (Sect. 8), to cater for different situations
where the RV is conducted. These methods are depicted by the three set-ups of
Fig. 3 that are instantiated with our calculator server, labelled by S, and its par-
ent launcher process, labelled by L. Inlining statically instruments system com-
ponents with the analyser, AS, which then executes as part of the SuS. Outline
instrumentation decouples the SuS components from the extraction and analy-
sis of trace events by way of the tracing infrastructure provided by the EVM.
The offline set-up extends the latter notion to a SuS that (possibly) executes
outside the EVM, mirroring the same architecture of Fig. 3b to enjoy the same
outline arrangement (elided from Fig. 3c). The with keyword directs detectEr to
instrument the analyser code over the relevant SuS components regardless of
the instrumentation method used, to ensure that the same set of trace events
is reported to the runtime analysis. This makes the analysers generated by our
synthesis of Sect. 4 agnostic of the underlying instrumentation.

6 Come Together

Inlining [34] is the most efficient instrumentation method detectEr offers. While
it assumes access to the source code of the SuS, it carries advantages such as

218 D. P. Attard et al.

Fig. 4. Instrumentation pipeline for inlined program monitoring via weaving

low runtime overhead [31,32] and immediate detections [20]. detectEr instru-
ments invocations to synthesised analysers via code injection by manipulating
the program abstract syntax tree (AST). This procedure is depicted in Fig. 4.
In step 1 , the Erlang program source code is preprocessed and parsed into the
corresponding AST, step 2 . The Erlang compilation pipeline includes a parse
transformation phase [26], step 3 , that offers an optional hook to allow the AST
to be processed externally, prior to code generation. Our custom-built weaver
leverages this mechanism to transform the program AST in step 4 and produce
the modified AST in step 5 ; this is subsequently compiled by the Erlang com-
piler into the program binary, step 6 . The compilation phase depends on the
detectEr core modules and analyser binaries, as does the SuS, once it executes.

Instrumentation, in One Go. Step 4 in Fig. 4 performs two transformations
on the program AST. The first transformation initialises an analyser. It weaves
code instructions that store the function encoding of the synthesised analyser
(refer to Sect. 4) in the process dictionary (PD) of the instrumented process
(PDs are process-local, mutable key-value stores with which Erlang actors are
initialised). The weaver identifies spawn() calls that carry the function signature
to be executed as a process. It then replaces the spawn() call with a counterpart
which accepts an anonymous wrapper function that (i) stores the analyser func-
tion in the PD, and, (ii) applies the function specified inside the original spawn()
call. Figure 5a recalls the function start() that forks our calculator server loop,
line 1. The corresponding weaved version of its AST—given as Erlang code for
illustration in Fig. 5a—performs the initialisation of (i) and (ii). Line 3 contains
(omitted) boilerplate logic that determines whether a particular spawn() call
should be instrumented. The meta keyword with from Sect. 5 is used to this end:
it results in the synthesis of auxiliary code that enables the weaver to effect
this judgement. For example, the specification ‘with calc_server:loop(_). . . ’
of formula ϕ′

2 informs the weaver to initialise the analyser only for the function
name loop forked by the invocation of spawn() on line 1 in Fig. 5a. In line 8, the
encoding of the analyser function, AnlFun0, is stored in the PD. The signature
used in the original spawn() call on line 1 is applied on line 10, where Mod0,

Better Late Than Never or: Verifying Asynchronous Components at Runtime 219

Fig. 5. Transformations to the AST of the calc_server program (shown as code)

Fun0, and Args0 are respectively instantiated to values calc_server, loop, and
[0] by the boilerplate logic on line 3 (omitted).

The second transformation decorates the program AST with calls at points
of interest: these correspond to the actions catalogued in Table 1. Each call con-
structs an intermediate trace event description that is dispatched to the analyser.
Lines 9 and 12 in Fig. 5a construct events init and fork, and dispatch them to
the analyser using the function anl:dsp() exposed by the core detectEr modules.
The events recv and send are analogously handled on lines 4 and 6 in Fig. 5b.

Our weaver performs the two transformations outlined above regardless of
whether monitoring is required by the SuS. This induces a modular design where
the SuS is weaved once, while the analyser binaries may be independently regen-
erated, e.g. to refine or add sHML specifications. Updates in these binaries can
afterwards be put into effect by restarting the weaved SuS. To determine whether
to analyse a trace event, the dispatcher implementation anl:dsp() internally
checks against the PD whether an analyser function has been initialised for
the instrumented process. When the analyser function is initialised, anl:dsp()
applies the function to the event, and saves the resulting unfolded analyser
function back to the PD; otherwise, anl:dsp() discards the event. An irrevoca-
ble verdict is reached by the analyser function once its application to an event
returns the internal value that encodes ✗ or ? .

Weaving makes it difficult to extract exit trace events, since abnormal ter-
mination due to crashes cannot be easily anticipated. This limits the ability to
runtime check correctness properties concerning process termination. An instru-
mentation approach via external observation easily sidesteps this restriction.

7 Tell Me What You See

Outlining externalises the acquisition and analysis of SuS trace events. It relies
on the tracing infrastructure provided by the EVM [26], and supports any soft-

220 D. P. Attard et al.

ware component that is developed for the EVM ecosystem, e.g. Erlang, Elixir [42]
and Clojerl [33]. Figure 3b in Sect. 5 shows the outlined set-up for our calculator
server example. Outlining uses tracers, actor processes tasked with the handling
of trace events exhibited by the SuS. Tracers register with the EVM tracing
infrastructure to be notified of process events in connection to the actions of
Table 1. Our outlining algorithm instruments tracers on-demand, depending on
what processes need to be analysed. This approach departs considerably from
inline instrumentation in Sect. 6, and rather than weaving the SuS statically,
outlining defers the decision of what to instrument until runtime.

While outline instrumentation tends to induce higher runtime overhead, it
offers a number of benefits over inlining. It takes a non-invasive approach that
leverages the EVM to trace components without modification, making it easy
to enable and disable the runtime analysis without the need of restarts or rede-
ployments. By decoupling the SuS and tracer components, outlining induces a
degree of partial failure—a faulty analyser does not compromise the running
system, nor does a crashed system component affect the external tracer. As a
result of this arrangement, exit trace events can be detected, giving us the full
expressiveness with respect to the system actions of Table 1. The implementation
of an adequate outline monitoring set-up comes with its own set of challenges.
For example, the instrumentation should be engineered to scale in line with the
SuS, while the runtime analysis of trace events is underway. It has to contend
with the race conditions (e.g. trace event reordering) that arise from the asyn-
chronous execution of the SuS and tracer components. Scalability requires the
instrumentation to explicitly manage garbage collection, where redundant tracer
processes are discarded to minimise resource consumption. Inline instrumenta-
tion is spared these complications since the analysis logic is weaved directly in
SuS processes. Although our outline instrumentation algorithm handles these
aspects, we refrain from providing further detail in this presentation. Interested
readers are encouraged to consult [8] for more details.

Instrumentation, as We Go. The EVM tracing infrastructure enables pro-
cesses to register their interest in receiving trace event messages from other pro-
cesses. Erlang provides the built-in function trace(), that processes may invoke
to enable and disable process tracing dynamically at runtime. Our tracers from
Fig. 3b leverage this functionality to fork other tracers, and scale the RV set-up
as the SuS executes. We configure the EVM tracing to automatically assign the
tracer of an already-traced SuS process to the children it forks [26]. Using this as
a default setting allows us to analyse groups of processes as one component. The
with keyword guides the targeting of which processes tracers need to track and
analyse. By contrast to inlining—where the set of trace events of a component
is implicitly determined as a byproduct of weaving—outlining must actively iso-
late processes from a group to assign dedicated tracers. Recall the specification
‘with calc_server:loop(_). . . ’ of formula ϕ′

2. This instructs our outline instru-
mentation to set up an independent tracer process for the calculator server loop
forked by spawn() on line 1 in Fig. 5a.

Better Late Than Never or: Verifying Asynchronous Components at Runtime 221

Fig. 6. Outline instrumentation for the calculator server (analysers omitted)

Tracers are programmed to react to fork and exit events in the trace.
Figure 6 illustrates how the process creation sequence of the SuS is exploited
to instrument a dedicated tracer for our calculator server. A tracer instruments
other tracers whenever it encounters fork events. The initial RV configuration is
shown in Fig. 6a, where the root tracer, TL, is assigned to the launcher process,
L, in step 1 . L forks the server function loop() to execute as the process S
which is automatically assigned the same tracer TL, as steps 2 both indicate.
Subsequently, TL instruments a new tracer, TS, when it processes the fork trace
event due to L in step 3 . The data carried by fork contains the PID of the forked
process (see Table 1) that designates the SuS process to be instrumented, S, in
this case. At this point, TS takes over the tracing of S from the root tracer TL by
invoking trace() to handle S independently of TL, steps 4 and 5 . TS resumes
its analysis of S, receiving the init event in step 7 ; this is followed by recv
in step 9 as a result of the service request issued by the client, C, in step 8 .
In a similar way, the service reply sent by the server to C in step 10 results in
send being exhibited by S and received by TS in step 11 . Process L eventually
exits after the fork completes, step 12 . The ensuing exit event in step 13 is
interpreted by the root tracer TL as the cue to self-terminate in step 14 . This
garbage collection measure maintains the lowest possible runtime overhead.

8 I’m Only Sleeping

We extend the notion of outline instrumentation to the offline case where the
SuS may potentially run outside the EVM. To support offline instrumentation,
detectEr implements a middleware that emulates the EVM tracing infrastruc-
ture, while preserving the configuration mentioned in Sect. 7, i.e., where forked
system processes automatically inherit the tracer assigned to their parent. This
enables detectEr to employ the same outline instrumentation algorithm for offline
monitoring. Offline set-ups are generally the slowest in terms of verdict detec-
tion, by comparison to the inline and outline forms of instrumentation. This

222 D. P. Attard et al.

stems from the dependence outline instrumentation has on the timely availabil-
ity of pre-recorded runtime traces that are subject to external software entities
such as files, databases, and the SuS itself. However, the outline set-up and
SuS can reside on different hardware since they are mutually detached. Such an
arrangement makes overhead issues secondary.

Figure 3c from Sect. 5 overviews our offline arrangement. It mirrors the set-
up in Fig. 3b: the only difference lies in how the offline tracing infrastruc-
ture obtains events. Our Log Tracer component in Fig. 3c exposes a trace()
function, providing the same EVM feature subset relevant to outlining. The
implementation relies on log files as the medium through which the SuS can
communicate trace events to the offline set-up. It can process log files with
complete system executions, or actively monitor files for changes to dynami-
cally dispatch events to tracers while the SuS executes and writes events to
file. Offline tracing supports the event actions in Table 1; these carry the event
data and are assumed to follow a pre-defined format. For instance, the offline
event description fork(pid1, pid2, {calc_server, loop, [0]}) is mapped to
the action pid1 → pid2, calc_server:loop([0]) by the Log Tracer of Fig. 3c.
Our file-based approach to collecting SuS events is motivated by the fact that
file logging is widely-adopted in practice, and is offered by popular frameworks
such as Lager [21] for Erlang, Log4J 2 [16] for Java [46], and the Python [49]
logging facility. Besides logging, events may also be extracted from the SuS via
other tracing frameworks, e.g. DTrace [23], LTTng [28], and OpenJ9 Trace [30].

9 Here, There and Everywhere

This paper presents detectEr, a RV tool that analyses program correctness post-
deployment against properties expressed in a logic that has been traditionally
used for static verification [14,22,40]. Sects. 5–8 describe how detectEr can flex-
ibly runtime check the same specifications via three instrumentation methods.
The tool can be found at https://duncanatt.github.io/detecter.

Future Work. We intend to asses the merits of our three instrumentation
methods in terms of the multi-faceted overhead metrics proposed by [9]. We
also plan to extend detectEr to handle sHML specifications where conjunctions
and universal modalities can be treated as separate logical constructs [3,4,17,
18,24,25,39]. This facilitates the composition of properties via conjunctions, e.g.
formulae ϕ1–ϕ3 from Sect. 3 can be combined as ϕ1 ∧ ϕ2 ∧ ϕ3 to synthesise one
global monitor. Although detectEr focusses on properties that are known to be
runtime monitorable, new results argue that monitoring can be systematically
extended to the entire class of regular properties, albeit, with possibly weakened
detection guarantees [2,7]. We aim to incorporate these results within this tool.

https://duncanatt.github.io/detecter

Better Late Than Never or: Verifying Asynchronous Components at Runtime 223

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: Monitoring for silent
actions. In: FSTTCS. LIPIcs, vol. 93, pp. 7:1–7:14 (2017)

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A framework for param-
eterized monitorability. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS,
vol. 10803, pp. 203–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89366-2_11

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.: On
the complexity of determinizing monitors. In: Carayol, A., Nicaud, C. (eds.) CIAA
2017. LNCS, vol. 10329, pp. 1–13. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60134-2_1

4. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.:
Determinizing monitors for HML with recursion. JLAMP 111, 100515 (2020)

5. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adven-
tures in monitorability: from branching to linear time and back again. Proc. ACM
Program. Lang. 3(POPL), 52:1–52:29 (2019)

6. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: An opera-
tional guide to monitorability with applications to regular properties. Softw. Syst.
Model. 20(2), 335–361 (2021). https://doi.org/10.1007/s10270-020-00860-z

7. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: The best
a monitor can do. In: CSL. LIPIcs, vol. 183, pp. 7:1–7:23 (2021)

8. Aceto, L., Attard, D.P., Francalanza, A., Ingólfsdóttir, A.: A choreographed outline
instrumentation algorithm for asynchronous components. CoRR abs/2104.09433
(2021)

9. Aceto, L., Attard, D.P., Francalanza, A., Ingólfsdóttir, A.: On benchmarking for
concurrent runtime verification. FASE 2021. LNCS, vol. 12649, pp. 3–23. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-71500-7_1

10. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On runtime enforcement
via suppressions. In: CONCUR. LIPIcs, vol. 118, pp. 34:1–34:17 (2018)

11. Aceto, L., Ingólfsdóttir, A.: Testing Hennessy-Milner logic with recursion. In:
Thomas, W. (ed.) FoSSaCS 1999. LNCS, vol. 1578, pp. 41–55. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-49019-1_4

12. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor compu-
tation. JFP 7(1), 1–72 (1997)

13. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117–126 (1987). https://doi.org/10.1007/BF01782772

14. Andersen, J.R., et al.: CAAL: concurrency workbench, Aalborg edition. In:
Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp.
573–582. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9_33

15. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

16. ASF: Log4J 2 (2021). https://logging.apache.org/log4j/2.x
17. Attard, D.P., Francalanza, A.: A monitoring tool for a branching-time logic. In:

Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 473–481. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_31

18. Attard, D.P., Francalanza, A.: Trace partitioning and local monitoring for asyn-
chronous components. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017. LNCS, vol.
10469, pp. 219–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66197-1_14

https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-60134-2_1
https://doi.org/10.1007/978-3-319-60134-2_1
https://doi.org/10.1007/s10270-020-00860-z
https://doi.org/10.1007/978-3-030-71500-7_1
https://doi.org/10.1007/3-540-49019-1_4
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/978-3-319-25150-9_33
https://logging.apache.org/log4j/2.x
https://doi.org/10.1007/978-3-319-46982-9_31
https://doi.org/10.1007/978-3-319-66197-1_14
https://doi.org/10.1007/978-3-319-66197-1_14

224 D. P. Attard et al.

19. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

20. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5_1

21. Basho: Lager (2021). https://github.com/basho/lager
22. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,

T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1_2

23. Cantrill, B.: Hidden in plain sight. ACM Queue 4(1), 26–36 (2006)
24. Cassar, I., Francalanza, A., Attard, D.P., Aceto, L., Ingólfsdóttir, A.: A suite of

monitoring tools for Erlang. In: RV-CuBES, vol. 3, pp. 41–47. Kalpa Publications
in Computing (2017)

25. Cassar, I., Francalanza, A., Said, S.: Improving runtime overheads for detectEr.
In: FESCA. EPTCS, vol. 178, pp. 1–8 (2015)

26. Cesarini, F., Thompson, S.: Erlang Programming: A Concurrent Approach to Soft-
ware Development. O’Reilly Media, Sebastopol (2009)

27. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-
6_1

28. Desnoyers, M., Dagenais, M.R.: The LTTng tracer: a low impact performance and
behavior monitor for GNU/Linux. Technical report, École Polytechnique de Mon-
tréal (2006)

29. Dijkstra, E.W.: Chapter I: notes on structured programming, p. 1–82. Academic
Press Ltd. (1972)

30. Eclipse/IBM: Openj9 (2021). https://www.eclipse.org/openj9
31. Erlingsson, Ú.: The inlined reference monitor approach to security policy enforce-

ment. Ph.D. thesis, Cornell University (2004)
32. Erlingsson, Ú., Schneider, F.B.: SASI enforcement of security policies: a retrospec-

tive. In: NSPW, pp. 87–95 (1999)
33. Facorro, J.: Clojerl language (2021). http://clojerl.org
34. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying run-

time verification tools. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol.
11237, pp. 241–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03769-7_14

35. Francalanza, A.: Consistently-detecting monitors. In: CONCUR. LIPIcs, vol. 85,
pp. 8:1–8:19 (2017)

36. Francalanza, A.: A theory of monitors. Inf. Comput. 104704 (2021). https://doi.
org/10.1016/j.ic.2021.104704

37. Francalanza, A., et al.: A foundation for runtime monitoring. In: Lahiri, S., Reger,
G. (eds.) RV 2017. LNCS, vol. 10548, pp. 8–29. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67531-2_2

38. Francalanza, A., Aceto, L., Ingolfsdottir, A.: On verifying Hennessy-Milner logic
with recursion at runtime. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 71–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23820-3_5

39. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy-
Milner logic with recursion. FMSD 51(1), 87–116 (2017). https://doi.org/10.1007/
s10703-017-0273-z

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://github.com/basho/lager
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://www.eclipse.org/openj9
http://clojerl.org
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1007/s10703-017-0273-z

Better Late Than Never or: Verifying Asynchronous Components at Runtime 225

40. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z

41. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

42. Jurić, S.: Elixir in Action. Manning (2019)
43. Kozen, D.: Results on the propositional μ-calculus. In: Nielsen, M., Schmidt, E.M.

(eds.) ICALP 1982. LNCS, vol. 140, pp. 348–359. Springer, Heidelberg (1982).
https://doi.org/10.1007/BFb0012782

44. Larsen, K.G.: Proof systems for satisfiability in Hennessy-Milner logic with recur-
sion. TCS 72(2&3), 265–288 (1990)

45. Leucker, M., Schallhart, C.: A brief account of runtime verification. JLAP 78(5),
293–303 (2009)

46. Loy, M., Niemeyer, P., Leuck, D.: Learning Java: An Introduction to Real-World
Programming with Java. O’Reilly Media, Sebastopol (2020)

47. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley, Hoboken
(2011)

48. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
49. Python: Logging Facility for Python (2021). https://docs.python.org/3/library/

logging.html

https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/BFb0012782
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html

	Better Late Than Never or: Verifying Asynchronous Components at Runtime
	1 Do You Want to Know a Secret
	2 A Day in the Life
	3 I Want to Tell You
	4 What Goes on
	5 The Magical Mystery Tour
	6 Come Together
	7 Tell Me What You See
	8 I'm Only Sleeping
	9 Here, There and Everywhere
	References

