
A Theory of Monitors (Extended Abstract)?

Adrian Francalanza

CS, ICT, University of Malta, Msida, Malta
adrian.francalanza@um.edu.mt

Abstract. We develop a behavioural theory for monitors — software
entities that passively analyse the runtime behaviour of systems so as to
infer properties about them. First, we extend the monitor language and
instrumentation relation of [17] to handle piCalculus process monitoring.
We then identify contextual behavioural preorders that allow us to re-
late monitors according to criteria defined over monitored executions of
piCalculus processes. Subsequently, we develop alternative monitor pre-
orders that are more tractable, and prove full-abstraction for the latter
alternative preorders with respect to the contextual preorders.

1 Introduction

Monitors (execution monitors [32]) are software entities that are instrumented to
execute along side a program so as determine properties about it, inferred from
the runtime analysis of the exhibited (program) execution; this basic monitor
form is occasionally termed (sequence) recognisers [28]. In other settings, moni-
tors go further and either adapt aspects of the monitored program [7, 11, 22] or
enforce predefined properties by modifying the observable behaviour [15, 28, 4].
Monitors are central to software engineering techniques such as monitor-oriented
programming [16] and fail-fast design patterns [8] used in fault-tolerant systems
[19, 34]; they are also used extensively in runtime verification [27], a lightweight
verification technique that attempts to mitigate state explosion problems asso-
ciated with full-blown verification methods such as model checking.

Monitoring setups typically consist of three components: apart from the pro-
gram being monitored, P , there is the monitor itself, M , and the instrumenta-
tion, the mechanism composing the monitor with the program, P /M . The latter
gives rise to a software composition relation that has seldom been studied in its
own right. This paper investigates compositional reasoning techniques for mon-
itors performing detections (recognisers), composed using the instrumentation
relation employed in [17], for programs expressed as piCalculus processes [29,
31], a well-studied concurrency model. We set out to develop monitor preorders

M1 vM2 (1)

stating that, when instrumented in the context of an arbitrary process P , if
P / M1 exhibits certain properties, then P / M2 exhibits them as well. Within

? The research was supported by the UoM research fund CPSRP05-04 and the research
grant COST-STSM-ECOST-STSM-IC1201-170214-038253.

this setup, we formalise the possible instrumentation properties one may require
from an instrumented (monitored) process, and show how these give rise to
different monitoring preorders.

Example 1. Consider the monitors M1 and M2 below. M1 monitors for output
actions on channel a with a payload that is not in the set C. Apart from detecting
the same outputs on channel a, M2 also detects outputs with payload b on
channels that are not in D (the + construct acts as an external choice [23]).

M1 = match a!x.if x 6∈ C thenX

M2 = (match a!x.if x 6∈ C thenX) + (match y!b.if y 6∈ D thenX)

One can argue that M2 is related to M1, i.e., M1 vM2, since all the detections
raised by M1 are also raised by M2. However, under different criteria, the two
monitors would not be related. Consider the case where a ∈ D (or b ∈ C):
for a process P exhibiting action a!b, monitor M2 may non-deterministically
fail to detect this behaviour; by contrast, M1 always detects the behaviour a!b
and, in this sense, M2 does not preserve all the properties of M1. Monitors are
also expected to interfere minimally with the execution of the analysed process,
giving rise to other criteria for relating monitors, as we will see in the sequel. �

There are various reasons why such preorders are useful. For a start, they act
as notions of refinement : they allow us to formally specify properties that are
expected of a monitor M by expressing them in terms of a monitor description,
SpecM , and then requiring that SpecM v M holds. Moreover, our preorders
provide a formal understanding for when it is valid to substitute one monitor
implementation for another while preserving elected monitoring properties. We
consider a general model that allows monitors to behave non-deterministically;
this permits us to study the cases where non-determinism is either tolerated or
considered erroneous. Indeed, there are settings where determinism is unattain-
able (e.g., distributed monitoring [18, 33]). Occasionally, non-determinism is also
used to expresses under-specification in program refinement.

Although formal and intuitive, the preorders alluded to in (1) turn out to be
hard to establish. One of the principal obstacles is the universal quantification
over all possible processes for which the monitoring properties should hold. We
therefore develop alternative characterisations for these preorders, M1 ≤ M2,
that do not rely on this universal quantification over process instrumentation.
We show that such relations are sound wrt. the former monitor preorders, which
serves as a semantic justification for the alternative monitor preorders. More
importantly, however, it also allows us to use the more tractable alternative re-
lations as a proof technique for establishing inequalities in the original preorders.
We also show that these characterisations are complete, thereby obtaining full-
abstraction for these alternative preorders.

The rest of the paper is structured as follows. Sec. 2 briefly overviews our
process model whereas Sec. 3 introduces our monitor language together with the
instrumentation relation. In Sec. 4 we formalise our monitor preorder relations
wrt. this instrumentation. We develop our alternative preorders in Sec. 5, where
we also establish the correspondence with the other preorders. Sec. 6 concludes.

Syntax

P,Q ∈ Proc ::= u!v.P (output) | u?x.P (input)

| nil (nil) | if u=v thenP else Q (conditional)

| recX.P (recursion) | X (process var.)

| P ‖Q (parallel) | new c.P (scoping)

Semantics

pOut
I . c!d.P

c!d−−−→ P
pIn

I . c?x.P
c?d−−−→ P [d/x]

pThn
I . if c=c thenP else Q

τ−−→ P
pEls

c] d

I . if c=d thenP else Q
τ−−→ Q

pRec
I . recX.P

τ−−→ P [recX.P/X]
pPar I . P

µ−−→ P ′

I . P ‖Q µ−−→ P ′ ‖Q

pCom
I, d . P

c!d−−−→ P ′ I, d . Q
c?d−−−→ Q′

I, d . P ‖Q τ−−→ P ′ ‖Q′
pRes

I, d . P
µ−−→ P ′ d] µ

I . new d.P
µ−−→ new d.P ′

pCls
I . P

c!d−−−→ P ′ I . Q
c?d−−−→ Q′ d] I

I . P ‖Q τ−−→ new d.(P ′ ‖Q′)
pOpn

I, d . P
c!d−−−→ P ′

I . new d.P
c!d−−−→ P ′

Fig. 1. piCalculus syntax and semantics

2 The Language

Fig. 1 presents our process language, a standard version of the piCalculus.
It has the usual constructs and assumes separate denumerable sets for chan-
nel names c, d, a, b ∈ Chans, variables x, y, z ∈ Vars and process variables,
X,Y ∈ PVars, and lets identifiers u, v range over the sets, Chans∪Vars. The
input construct, c?x.P , the recursion construct, recX.P , and the scoping con-
struct, new c.P , are binders where the free occurrences of the variable x, the pro-
cess variable X, and the channel c resp., are bound in the guarded body P . We
write fv(P), fV(P), fn(P),bV(P),bv(P) and bn(P) for the resp. free/bound
variables, process variables and names in P . We use standard syntactic conven-
tions e.g., we identify processes up to renaming of bound names and variables
(alpha conversion). For arbitrary syntactic objects o, o′, we write o] o′ when the
free names in o and o′ are disjoint e.g., P]Q means fn(P) ∩ fn(Q) = ∅.

The operational semantics of the language is defined by the Labelled Tran-
sition System (LTS) shown in Fig. 1. LTS judgements are of the form

I . P
µ−−→ P ′

where I ⊆ Chans denotes an interface of names known (or shared) by both the
process and an implicit observer (with which interactions occur), P is a closed
term, and fn(P) ⊆ I. We write I, c as a shorthand for I ∪ {c} where c 6∈ I, and
generally assume a version of the Barendregt convention whereby bn(P)] I.1

For arbitrary names c, d, actions µ ∈ Actτ range over input actions, c?d, output
actions, c!d, and a distinguished silent action, τ (α ∈ Act ranges over external
actions, that exclude τ). The rules in Fig. 1 are fairly standard, using I for
book-keeping purposes relating to free/bound names (we elide symmetric rules
for pPar, pCom and pCls); implicitly, c, d ∈ I in rule pOut and c ∈ I in
rule pIn (but d is not necessarily in I). We use s, t ∈ Act∗ to denote traces of
external actions. Although actions do not include explicit information relating to
extruded names, this may be retrieved using I as shown in Def. 1; the absence of
action name binding (as in [31, 24]) simplifies subsequent handling of traces. The
evolution of I after a transition is determined exclusively by the resp. action of
the transition, defined as aftr(I, µ) in Def. 1; note that both the process (through
outputs) and the implicit observer (through inputs) may extend I.

Definition 1 (Extruded Names and Interface Evolution).

ext(I, τ)
def
= ∅ ext(I, c!d)

def
= {d}\I ext(I, c?d)

def
= ∅

aftr(I, τ)
def
= I aftr(I, c!d)

def
= I ∪ {d} aftr(I, c?d)

def
= I ∪ {d}

We lift the functions in Def. 1 to traces, e.g., aftr(I, s), in the obvious way

and denote successive transitions I . P
µ1−−→ P1 and aftr(I, µ1) . P1

µ2−−→ P2 as

I .P
µ1−−→ aftr(I, µ1).P1

µ2−−→ P2. We write I .P 6 µ−−→ to denote 6 ∃P ′ ·I .P µ−−→ P ′

and I . P
s

=⇒ Q to denote I0 . P0
µ1−−→ I1 . P1

µ2−−→ I2 . P2 . . .
µn−−→ Pn where

P0 = P , Pn = Q, I0 = I, Ii = aftr(Ii−1, µi) for i ∈ 1..n, and s is equal to
µ1 . . . µn after filtering τ labels.

Example 2. Consider Psv = recX.c?x.new d.x!d.X, modelling the idiomatic server
that repeatedly waits for requests on c and answers back on the inputted channel
with a fresh channel. We can derive the following behaviour wrt. I = {c}:

I . Psv
c?a

==⇒ I, a . new d.a!d.Psv
a!d

==⇒

I, a, d . Psv
c?a

==⇒ I, a, d . new d.a!d.Psv
a!d′

===⇒ I, a, d, d′ . Psv

Above, bound outputs/inputs [31] are manifested as interface extensions. �

3 Monitor Instrumentation

Monitors, M,N ∈ Mon, are syntactically defined by the grammar of Fig. 2.
They may reach either of two verdicts, namely detection, X, or termination,
end, denoting an inconclusive verdict. Our setting is a mild generalisation to that

1 The rules in Fig. 1 still check explicitly for this; see rules pRes, pCls and pOpn.

Syntax

p, q ∈ Pat ::= u?v (input pattern) | u!v (output pattern)

w ∈ Verd ::= end (termination) | X (detection)

M,N ∈Mon ::= w (verdict) | p.M (pattern match)

|M +N (choice) | if u=v thenM else N (branch)

| recX.M (recursion) | X (monitor var.)

Monitor Semantics

mVer
w

α−−→ w
mPat

match(p, α) = σ

p.M
α−−→Mσ

mChL M
µ−−→M ′

M +N
µ−−→M ′

mRec
recX.M

τ−−→M [recX.M/X]
mChR N

µ−−→ N ′

M +N
µ−−→ N ′

mThn
if c=c thenM else N

τ−−→M
mEls

c] d

if c=d thenM else N
τ−−→ N

Instrumented System Semantics

iMon I . P
α−−→ P ′ M

α−−→ M ′

I . P / M
α−−→ P ′ / M ′

iAsyP I . P
τ−−→ P ′

I . P / M
τ−−→ P ′ / M

iTer
I . P

α−−→ P ′ M 6 α−−→ M 6 τ−−→
I . P / M

α−−→ P ′ / end
iAsyM M

τ−−→ M ′

I . P / M
τ−−→ P / M ′

Fig. 2. Monitor syntax, semantics and Instrumentation Semantics

in [17] since monitors need to reason about communicated names so as to ade-
quately monitor for piCalculus processes. They are thus equipped with a pattern
matching construct (used to observe external actions) and a name-comparison
branching construct. The remaining constructs, i.e., external branching and re-
cursion, are standard. Note that, whereas the syntax allows for monitors with
free occurrences of monitor variables, monitors are always closed wrt. (value)
variables, whereby the outermost occurrence of a variable acts as a binder. E.g.,
in the monitor (x?c.x!y.if y= d then end else X) pattern x?c binds variable x in
the continuation whereas pattern x!y binds variable y.

The monitor semantics is defined in terms of an LTS (Fig. 2), modeling the
analysis of the visible runtime execution of a process. Following [30, 15, 17], in
rule mVer verdicts are able to analyse any external action but transition to the
same verdict, i.e., verdicts are irrevocable. By contrast, pattern-guarded moni-
tors only transition when the action matches the pattern, binding pattern vari-
ables to the resp. action names, match(p, α) = σ, and substituting them in the
continuation, Mσ; see rule mPat. The remaining transitions are unremarkable.

A monitored system, P / M , consists of a process, P , instrumented with a
monitor, M , analysing its (external) behaviour. Fig. 2 defines the instrumen-
tation semantics for configurations, I . P / M , i.e., systems augmented with
an interface I, where again we assume P is closed and fn(P) ⊆ I. The LTS
semantics follows [17, 7] and relies on the resp. process and monitor semantics
of Fig. 1 and Fig. 2. In rule iMon, if the process exhibits the external action
α wrt. I, and the monitor can analyse this action, they transition in lock-step
in the instrumented system while exhibiting same action. If, however, a process
exhibits an action that the monitor cannot analyse, the action is manifested at
system level while the monitor is terminated ; see rule iTer. Finally, iAsyP and
iAsyM allow monitors and processes to transition independently wrt. internal
moves, i.e., our instrumentation forces process-monitor synchronisation for ex-
ternal actions only, which constitute our monitorable actions. We note that, as is
expected of recognisers, the process drives the behaviour of a monitored system:
if the process cannot α-transition, the monitored system cannot α-transition
either.

Example 3. Recall Psv from Ex. 2. Using the semantics of Fig. 2, one can derive
the monitored execution leading to a detection below, when composed with the
monitor M1 =

(
c?y.y!z.if z=c then end else X

)
, subject to I ′ = {c, a}:

I ′ . Psv / M1
c?a · a!d

=====⇒ Psv / X

Contrastingly, for the same I ′, monitoring withM2 = (y!z.if y=a then end else X)
does not lead to a detection for the same trace, because the first action, c?a (an
input) cannot pattern match with the output pattern, y!z. In fact, rule iTer
terminates the monitor after transition c?a, so as to avoid erroneous detections.

I ′ . Psv / M2
τ−→ c?x.new d.x!d.Psv / M2

c?a−−−→ new d.a!d.Psv / end
a!d

==⇒ Psv / end
(2)

For illustrative purposes, consider N = c?y.if y = c then end else y!z.c?z.X, an-
other monitor. We have the following (dissected) transition sequence for I = {c}:

I . Psv / N
τ−→ · c?a−−→ I, a .

(
new d.a!d.Psv

)
/ if a=c then end else a!z.c?z.X (3)

τ−→ I, a .
(
new d.a!d.Psv

)
/ a!z.c?z.X (4)

a!d−−−→ (I, a, d) . Psv / c?d.X (5)

τ−→ · c?b−−→ (I, a, d, b) . new d′.b!d′.Psv / end (6)

b!d′−−−→ (I, a, d, b, d′) . Psv / end (7)

In (3) the server (asynchronously) unfolds (pRec and iAsyP) and inputs on c the
fresh name a (pIn); the monitor can analyse c?a (mPat where match(c?y, c?a) =
{y 7→ a}), transitioning accordingly (iMon) while learning the fresh name a
for future monitoring. At this stage, the instrumentation temporarily stalls the

process, even though it can produce the (scope extruding) output a!d. More
precisely, although the monitor cannot presently analyse a!d, the rule iTer —
which terminates the monitor execution — cannot be applied, since the monitor
can silently transition and potentially become capable of analysing the action.
This is indeed the case, (4) using mEls, resulting in the second monitoring
transition, (5) using iMon, where the monitor learns the second fresh name d,
this time originating from the monitored process. After another unfolding, the
process is ready to input on c again. However, the monitor cannot match c?b
(match(c?d, c?b) is undefined) and since the monitor cannot silently transition
either, it is terminated (iTer) while still allowing the process to proceed, (6).
In (7), verdicts allow monitored processes to execute without any hindrance. �

Ex. 3 highlights two conflicting instrumentation requirements. On the one
hand, monitors should interfere minimally with the execution of a monitored
process where, observationally, a monitored process should behave like the orig-
inal one. On the other hand, instrumentation must also ensure bona fide detec-
tions, e.g., in (2) and (6), terminating monitoring when the observed process
behaviour does not correspond, (through rule iTer). But in order to do this
while avoiding premature termination, instrumentation needs to allow for mon-
itor internal computation, e.g., (4). Unfortunately, the premise caveat M 6 τ−→ in
rule iTer — necessary to prevent premature terminations — allows monitors to
affect (indirectly) process behaviour. For instance the monitor Ω below:

Ω = recX.(if c=c thenX else X) Ω′ = if c=c thenΩ else Ω (8)

is divergent, i.e., Ω
τ−→ Ω′

τ−→ Ω
τ−→ . . ., and unresponsive, i.e., ∀α · Ω 6 α−−→

and Ω′ 6 α−−→. As a result, it suppresses every process external behaviour when
instrumented: for arbitrary I . P we can show I . P / Ω 6 α−−→ and I . P / Ω′ 6 α−−→
for any α, since rules iMon and iTer cannot be applied. We revisit this point
in Sec. 4. We conclude with the property stating that verdicts are irrevocable.

Theorem 1 (Definite Verdicts). I . P / w
s

=⇒ Q / M implies M = w

4 Monitor Preorders

We can use the formal setting presented in Sec. 3 to develop the monitor pre-
orders discussed in the Introduction. We start by defining the monitoring pred-
icates we expect to be preserved by the preorder; a number of these predicates
rely on computations and detected computations, defined below.

Definition 2 (Detected Computations). The transition sequence

I . P / M
s

=⇒ I0 . P0 / M0
τ−→ I1 . P1 / M1

τ−→ I2 . P2 / M2
τ−→ . . .

is called an s-computation if it is maximal (i.e., either it is infinite or it is finite
and cannot be extended further using τ -transitions). An s-computation is called
detected (or a detected computation along s) iff ∃n ∈ N ·Mn = X. �

One criteria for comparing monitors considers the verdicts reached after ob-
serving a specific execution trace produced by the process under scrutiny. The
semantics of Sec. 3 assigns a passive role to monitors, prohibiting them from
influencing the branching execution of the monitored process. Def. 2 thus dif-
ferentiates between detected computations, identifying them by the visible trace
that is dictated by the process (over which the monitor should not have any
control).

Example 4. Consider P = new d.(d!‖d?.c!a‖d?.c!b), I = {c, b, a} and monitors:

M1 = c!a.X+ c!b.X M2 = c!a.X+ c!b.end M3 = c!a.X
M4 = c!a.X+ c!b.X+ c!b.end M5 = c!a.X+ c!b.X+ c!a.end + c!b.end

Configurations I . Mi / P for i ∈ 1..5 exhibit detecting computations along
s = c!a.ε. For trace t = c!b.ε, configurations I . Mj / P for j ∈ {1, 4, 5} detect
t-computations as well, whereas the resp. configurations with M2 and M3 do
not. Although the configuration with M1 always detects along t, those with M4

and M5 may fail to detect it along such a trace. Similarly, configuration with
M1 and M4 deterministically detect along trace s, but I . M5 / P does not. �

Ex. 4 suggests two types of computation detections that a monitor may exhibit.

Definition 3 (Potential and Deterministic Detection). M potentially de-
tects for I .P along trace s, denoted as pd(M, I, P, s), iff there exists a detecting
s-computation from I .P / M . M deterministically detects for I .P along trace
s, denoted as dd(M, I, P, s), iff all s-computation from I .P / M are detecting.�

Remark 1. If a monitored process cannot produce trace s, i.e., I . P 6 s=⇒, then
pd(M, I, P, s) is trivially false and dd(M, I, P, s) is trivially true for any M . �

The detection predicates of Def. 3 induce the following monitor preorders
(and equivalences), based on the resp. detection capabilities.

Definition 4 (Potential and Deterministic Detection Preorders).

M vpd N
def
= ∀I, P, s · pd(M, I, P, s) implies pd(N, I, P, s)

M vdd N
def
= ∀I, P, s · dd(M, I, P, s) implies dd(N, I, P, s)

M∼=pdN and M∼=ddN are the kernel equivalences induced by the resp. preorders,

i.e., M∼=pdN
def
= (MvpdN and NvpdM), and similarly for M∼=ddN . We write

M@pdN in lieu of (MvpdN and N 6vpd M) and similarly for M@ddN . �

Example 5. Recall the monitors defined in Ex. 4. It turns out that

M2
∼=pd M3 @pd M5

∼=pd M4
∼=pd M1 (9)

M5 @dd M2
∼=dd M3

∼=dd M4 @dd M1 (10)

Note that, whereas M5 can potentially detect more computations that M2 and
M3, (9), it can deterministically detect less computations than these monitors
(10); in fact, M5 cannot deterministically detect any computation. �

As opposed to prior work on monitors [15, 2, 10], the detection predicates
in Def. 3 consider monitor behaviour within an instrumented system. Apart
from acting as a continuation for the study in [17], this setup also enables us
to formally justify subtle monitor orderings, Ex. 6, and analyse peculiarities
brought about by the instrumentation relation, Ex. 7.

Example 6. Using the shorthand τ.M for recX.M where X 6∈ fV(M), we have:

X ∼=pd τ.X but X @dd τ.X

For process P = Ω, defined as in (8), predicate dd(X, I, P, ε) holds trivially,
but predicate dd(τ.X, I, P, ε) does not, due of the non-detecting ε-computation

I . Ω / τ.X
τ−→ · τ−→ Ω / τ.X

τ−→ · τ−→ . . ., refuting the inequality Xvdd τ.X. �

Example 7. Recalling the divergent monitor Ω from (8), we have:(
end ∼=dd c!a.end

)
@dd c!a.X @dd Ω @dd X (11)

Ω + end @dd

(
Ω ∼=dd Ω +X ∼=dd recX.(τ.X +X)

)
(12)

Ω + c!a.X @pd Ω +X but Ω + c!a.X ∼=dd Ω +X (13)

In (11), every computation starting with monitor X is trivially detected. Mon-
itor Ω limits all computations to ε-computations, i.e., irrespective of I . P ,
configuration I . P / Ω exhibits no s-computations for any s where |s| > 0,
rendering dd(Ω, I, P, s) for |s| > 0 vacuously true (see Rem. 1). By contrast,

dd(c!a.X, I, P, s) holds only whenever s = c!a.t (for arbitrary t) and I . P
s

=⇒.
In (12), monitor Ω+ end does not deterministically detect any computation:

when composed with an arbitrary I . P , it clearly can never reach a detection,
but it can neither prohibit the process from producing visible actions, as in
the case of Ω (see rules mVer, mChR and iMon). Monitor Ω + X can either
behave like Ω or transition to X after one external action observed; in both
cases, it deterministically detects all s-computation where |s| > 0. The monitor
recX.(τ.X + X) first silently transitions to (τ.recX.(τ.X +X)) + X and then
either transitions back to the original state or else transitions to X with an
external action; in either case, when composed with any process I . P , it also
deterministically detects all s-computation for |s| > 0.

In (13), although monitor Ω + c!a.X potentially detects less computations
than Ω + X (e.g., for I = {c, a, b}, P = c!b.nil and s = c!b.ε, the predicate
pd(Ω+X, I, P, s) holds but pd(Ω+c!a.X, I, P, s) does not), both deterministically
detect the same computations, i.e., all s-computation where |s| > 0. Specifically,
if a process being monitored, say I . P , can produce an action other than c!a,
the instrumentation with monitor Ω + c!a.X restrains such an action, since the
monitor cannot transition with that external action (it can only transition with
c!a) but, at the same time, it can τ -transition (see rules iMon and iTrm). �

The preorders in Def. 4 are not as discriminating as one might expect.

Example 8. Consider the monitor Many = x?y.X+ x!y.X.

Many
∼=pd Many +Ω and Many

∼=dd Many +Ω (14)

c!a.end ∼=pd c!a.end + c!a.Ω and c!a.end ∼=dd c!a.end + c!a.Ω (15)

Intuitively, Many potentially and deterministically detects any s-computation
when |s| > 0. It turns out that Many + Ω produces the same potential and
deterministic detections, yielding the resp. equalities in (14). In (15), neither
monitor produces any potential or deterministic detections and they are thus
equivalent according to the resp. kernel equivalences of Def. 4. �

There are however settings where the equalities established in Ex. 8 are
deemed too coarse. E.g., in (15), whereas monitor c!a.end is innocuous when in-
strumented with a process, monitor c!a.end + c!a.Ω may potentially change the
observed behaviour of the process under scrutiny after the action c!a is emitted
(by suppressing external actions, as explained in Ex. 7); a similar argument ap-
plies for the monitors in (14). We thus define a third monitor predicate called
transparency [28, 15, 5], stating that whenever a monitored process cannot per-
form an external action, it must be because the (unmonitored) process is unable
to perform that action (i.e., the monitoring does not prohibit that action).

Definition 5 (Transparency Preorder). M is transparent for I.P wrt. trace

s, denoted as tr(M,P, I, s), iff
(
I.P /M

s
=⇒ Q/N and aftr(I, s) . (Q / N) 6 α=⇒

)
implies aftr(I, s) . Q 6 α=⇒. We define the induced preorder as expected:

M vtr N
def
= ∀I, P, s · tr(M, I, P, s) implies tr(N, I, P, s) �

Although the preorders in Def. 4 and Def. 5 are interesting in their own right,
we define the following relation as the finest monitor preorder in this paper.

Definition 6 (Monitor Preorder).

M v N def
= M vpd N and M vdd N and M vtr N

�

Example 9. We have Many 6v Many + Ω because Many 6vtr Many + Ω, since
¬tr(Many +Ω, I, P, s) for I = {c, a}, P = c!a.c!a.nil and s = c!a.ε. Similarly, we
also have c!a.end 6v c!a.end + c!a.Ω. �

Inequalities from the preorders of Def. 4 and Def. 5 are relatively easy to
repudiate. For instance, we can use P, I and t from Ex. 4 as counter examples
to show that pd(M5, I, P, t) and ¬pd(M3, I, P, t), thus disproving M5 vpd M3.
However, it is much harder to show that an inequality from these preorders
holds because we need to consider monitor behaviour wrt. all possible processes,
interfaces and traces. As shown in Ex. 6, Ex. 7 and Ex. 8, this often requires
intricate reasoning in terms of the three LTSs defined in Fig. 1 and Fig. 2.

5 Characterisation

We define alternative monitor preorders for which positive statements about
their inequalities are easier to establish. The new preorders are defined exclu-
sively in terms of the monitor operational semantics of Fig. 2, as opposed to how
they are affected by arbitrary processes as in Def. 6 (which considers also the
process and instrumentation LTSs). We show that the new preorders coincide
with those in Sec. 4. Apart from equipping us with an easier mechanism for de-
termining the inequalities of Sec. 4, the correspondence results provide further
insight into the properties satisfied by the preorders of Def. 4 and Def. 5.

We start with the potential-detection preorder. We first define a restricted
monitor LTS that disallows idempotent transitions from verdicts, w

α−−→ w: these
are redundant when considering the monitor operational semantics in isolation.
Note, however, that we can still used rule mVer, e.g., to derive X+M

α−−→r X.

Definition 7 (Restricted Monitor Semantics). A derived monitor transi-

tion, M
µ−−→r N , is the least relation satisfying the conditions M

µ−−→ N and
M 6= w. M

s
=⇒r N denotes a transition sequence in the restricted LTS. �

We use the restricted LTS to limit the detecting transition sequences on the
left of the implication of Def. 8. However, we permit these transitions to be
matched by transition sequences in the original monitor LTS, so as to allow the
monitor to the right of the inequality to match the sequence with a prefix of
visible actions (which can then be padded by X

α−−→ X transitions as required).

Definition 8 (Alternative Potential Detection Preorder).

M �pd N
def
= ∀s ·M s

=⇒r X implies N
s

=⇒ X

Theorem 2 (Potential-Detection Preorders). M vpd N iff M �pd N

Example 10. By virtue of Thm. 2, to show that Ω+c!a.X vpd Ω+X from (13) of

Ex. 7 holds, we only need to consider Ω+ c!a.X
c!a

==⇒r X, which can be matched

by Ω+X
c!a

==⇒ X. Similarly, to show (x!a.if x=c thenX else end) vpd X, we only

need to consider (x!a.if x=c thenX else end)
c!a

==⇒r X, matched by X
c!a−−→ X. �

For the remaining characterisations, we require two divergence judgements.

Definition 9 (Divergence and Strong Divergence).

– M ↑ denotes that M diverges, meaning that it can produce an infinite tran-
sition sequence of τ -actions M

τ−→M ′
τ−→M ′′

τ−→ . . .
– M ⇑ denotes that M strongly diverges, meaning that it cannot produce finite

transition sequence of τ -actions M
τ−→M ′

τ−→ . . .M ′′ 6 τ−→. �

Lemma 1. M
τ−→ implies M 6= w

The alternative preorder for deterministic detections, Def. 11 below, is based
on three predicates describing the behaviour of a monitor M along a trace s. The
predicate blk(M, s) describes the potential for M to block before it can complete
trace s. Predicate fl(M, s) describes the potential for failing after monitoring
trace s, i.e., an s-derivative of M reaches a non-detecting state from which no
further τ actions are possible, or it diverges (implicitly, by Lem. 1, this also
implies that the monitors along the diverging sequences are never detecting).
Finally nd(M, s) states the existence of a non-detecting s-derivative of M .

Definition 10 (Monitor Block, Fail and Non-Detecting).

blk(M, s)
def
= ∃s1, α, s2, N · s=s1αs2 and M

s1==⇒ N 6 τ−→ and N 6 α−→

fl(M, s)
def
= ∃N ·M s

=⇒ N and
(
(N 6= X and N 6 τ−→) or N ↑

)
nd(M, s)

def
= ∃N ·M s

=⇒ N and N 6= X

Note that blk(M, s)implicitly requires |s| ≥ 1 for the predicate to hold. �

Corollary 1. blk(M, s) implies ∀t · blk(M, st)

Definition 11 (Alternative Deterministic Detection Preorder).

M �dd N
def
= ∀s ·

blk(N, s) implies blk(M, s) or fl(M, s)

fl(N, s) implies blk(M, s) or fl(M, s)

nd(N, s) implies nd(M, s) or blk(M, s)

We write M 'dd N to denote the kernel equality (M �dd N and N �dd M). �

Theorem 3 (Deterministic-Detection Preorders). M vdd N iff M �dd N

Example 11. Consider M = c?a.end + x!b.end and N = c?a.end. By virtue of
Thm. 3, to determine M vdd N we prove M �dd N as follows:

1. We have blk(N, s) whenever s = αs′ and α 6= c?a. We have two subcases:
– If match(x!b, α) is undefined, we show blk(M,αs′) by first showing that

blk(M,αε) and then generalising the result for arbitrary s′ using Cor. 1.
– If ∃σ · match(x!b, α) = σ, we show fl(M,αs′) by first showing fl(M,αε)

and then generalising the result for arbitrary s′ using Thm. 1.
2. For any s, we have fl(N, c?a.s): we can show fl(M, c?a.s), again using Thm. 1

to alleviate the proof burden.
3. For any s, we have nd(N, c?a.s): the required proof is analogous to the pre-

vious case. �

Example 12. Due to full abstraction (i.e., completeness), we can alternatively
disprove X vdd τ.X from Ex. 6 by showing that X 6�dd τ.X: we can readily
argue that whereas nd(τ.X, ε), we cannot show either nd(X, ε) or blk(X, ε). �

Example 13. Recall the equalities Ω ∼=dd Ω +X ∼=dd recX.(τ.X +X) claimed in
(12) of Ex. 7. It is arguably easier to determine these equalities by considering
only the monitor LTSs to show that Ω 'dd Ω +X 'dd recX.(τ.X +X) since:

1. For any s 6= ε we have ¬blk(Ω, s), ¬blk(Ω+X, s) and ¬blk(recX.(τ.X+X), s).

2. We only have fl(Ω, ε), fl(Ω +X, ε) and fl(recX.(τ.X +X), ε).

3. Similarly, we only have nd(Ω, ε), nd(Ω+X, ε) and nd(recX.(τ.X +X), ε). �

Remark 2. The alternative preorder in Def. 11 can be optimised further using
refined versions of the predicates fl(M, s) and nd(M, s) that are defined in terms
of the restricted monitor transitions of Def. 7, as in the case of Def. 3. �

The alternative transparency preorder, Def. 13 below, is defined in terms
of divergence refusals which, in turn, rely on strong divergences from Def. 9.
Intuitively, divergence refusals are the set of actions that cannot be performed
whenever a monitor reaches a strongly divergent state following the analysis of
trace s. These actions turn out to be those that are suppressed on a process
when instrumented with the resp. monitor.

Definition 12 (Divergence Refusals).

dref(M, s)
def
=
{
α | ∃N ·M s

=⇒ N and N ⇑ and N 6 α=⇒
}

Definition 13 (Alternative Transparency Preorder).

M �tr N
def
= ∀s · dref(N, s) ⊆ dref(M, s)

Theorem 4 (Transparency Preorders). M vtr N iff M �tr N

Example 14. Recall monitors c!a.end and c!a.end + c!a.Ω from (15) of Ex. 8.
The inequality c!a.end + c!a.Ω vtr c!a.end follows trivially from Thm. 4, since
∀s ·dref(c!a.end, s) = ∅. The symmetric case, c!a.end vtr c!a.end+c!a.Ω, can also
be readily repudiated by plying Thm. 4. Since dref((c!a.end+c!a.Ω), c!a.ε) = Act
(and dref(c!a.end, c!a.ε) = ∅) we trivially obtain a violation of the set inclusion
requirements of Def. 13. �

Example 15. Recall again Ω + X and recX.(τ.X + X) from (12). We can dif-
ferentiate between these monitors from a transparency perspective, and Thm. 4
permits us to do this with relative ease. In fact, whereas dref((Ω+X), ε) = Act

(since Ω+X
τ−→ Ω and dref(Ω, ε) = Act) we have dref((recX.(τ.X+X)), ε) = ∅;

for all other traces |s| ≥ 1 we obtain empty divergence refusal sets for both mon-
itors. We thus can positively conclude that Ω + X vtr recX.(τ.X + X) while
refuting recX.(τ.X +X) vtr Ω +X. �

Definition 14 (Alternative Monitor Preorder).

M � N def
= M �pd N and M �dd N and M �tr N

�

Theorem 5 (Full Abstraction). M v N iff M � N

6 Conclusion

We have presented a theory for (recogniser) monitors that allows us to substitute
a monitor M1 in a monitored process P / M1 by another monitor M2 while
guaranteeing the preservation of a number of monitoring properties relating to
(behaviour) detection and monitor interference. The theory is compositional,
since it enables us to ensure the preservation of properties by analysing the resp.
monitors M1 and M2 in isolation, without needing to consider the process being
monitored, P (which may be arbitrarily complex). To the best of our knowledge,
it is the first monitor theory of its kind and could be used to alleviate efforts for
proving monitors correct e.g., [26]. The concrete contributions are:

1. The definition of three monitor preorders, each requiring the preservation of
different monitoring properties: Def. 3, Def. 4 and Def. 5.

2. The characterisation of these preorders in terms of alternative preorders that
are more tractable, Thm. 2, Thm. 3 and Thm. 4.

Related and Future Work. The instrumentation relation we consider is adopted
from [17] and embodies synchronous instrumentation (where the external ac-
tions constituted the monitorable actions). Synchronous instrumentation is the
most prevalent method used in monitoring tools (e.g., [25, 9, 14, 1]) because it
carries benefits such as timely detections. There are however variants such as
asynchronous instrumentation (e.g., [12, 20]) as well as hybrid variations (e.g.,
[9, 30, 6, 7]). Our theory should be applicable, at least in part, to these variants.

In runtime verification, three-verdict monitors [2, 15, 10, 17] are often con-
sidered, where detections are partitioned into acceptances and rejections. The
monitors studied here express generic detections only; they are nevertheless max-
imally expressive for branching-time properties [17]. They also facilitate compar-
isons with other linear-time preorders (see below). We also expect our theory to
extend smoothly to settings with acceptances and rejections.

Our potential and deterministic detection preorders are reminiscent of the
classical may and must preorders of [13, 23] and, more recently (for the determin-
istic detection preorder), of the subcontract relations in [3, 21]. However, these
relations differ from ours in a number of respects. For starters, the monitor
instrumentation relation of Fig. 2 assigns monitors a passive role whereas the
parallel composition relation composing processes (servers in [3, 21]) with tests
(clients in [3, 21]) invites tests to interact with the process being probed. Another
important difference is that testing preorders typically relate processes, whereas
our preorders are defined over the adjudicating entities i.e., the monitors. The
closest work in this regard is that of [3], where the authors develop a must the-
ory for clients. Still, there are significant discrepancies between this must theory
and our deterministic detection preorder (further to the differencies between the
detected (monitored) computations of Def. 2 and the successful computations
under tests of [13, 23, 3] as outlined above — success in the compliance relation
of [21] is even more disparate). Concretely, in our setting we have equalities such
as c!a.X ∼=dd c!a.X + c!b.end (see (10) of Ex. 6), which would not hold in the

setting of [3] since their client preorder is sensitive to external choices (vdd is
not because monitored executions are distinguished by their visible trace). The
two relations are in fact incomparable, since divergent processes are bottom el-
ements in the client must preorder of [3], but they are not in vdd. In fact, we
have Ω 6vdd Ω + end in (12) of Ex. 7 or, more clearly, Ω 6vdd Ω + α.end; at an
intuitive level, this is because the instrumentation relation of Fig. 2 prioritises
silent actions over external actions that cannot be matched by the monitor.

Transparency is usually a concern for enforcement monitors whereby the
visible behaviour of a monitored process should not be modified unless it vio-
lates some specified property [28, 15, 5]. We adapted this concept to recognisers,
whereby the process behaviour should never be suppressed by the monitor.

To our knowledge, the only body of work that studies monitoring for the
piCalculus is [5, 11, 22], and focusses on synthesising adaptation/enforcement
monitors from session types. The closest to our work is [5]: their definitions
of monitor correctness are however distinctly different (e.g., they are based on
branching-time equivalences) and their decomposition methods for decoupling
the monitor analysis from that of processes rely on static type-checking.

Acknowledgements. The paper benefited from discussions with Luca Aceto, Gio-
vanni Bernardi, Matthew Hennessy and Anna Ingólfsdóttir.

References

1. H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. E. Rydeheard. Quantified
Event Automata: Towards Expressive and Efficient Runtime Monitors. In FM,
volume 7436 of LNCS, pages 68–84. Springer, 2012.

2. A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL.
TOSEM, 20(4):14, 2011.

3. G. Bernardi and M. Hennessy. Mutually testing processes. LMCS, 11(2:1), 2015.
4. N. Bielova and F. Massacci. Do you really mean what you actually enforced?:

Edited automata revisited. Int. J. Inf. Secur., 10(4):239–254, Aug. 2011.
5. L. Bocchi, T.-C. Chen, R. Demangeon, K. Honda, and N. Yoshida. Monitoring

networks through multiparty session types. In FMOODS/FORTE 2013, volume
7892 of LNCS, pages 50–65, 2013.

6. I. Cassar and A. Francalanza. On Synchronous and Asynchronous Monitor Instru-
mentation for Actor Systems. In FOCLASA, volume 175, pages 54–68, 2014.

7. I. Cassar and A. Francalanza. Runtime Adaptation for Actor Systems. In RV,
volume 9333 of LNCS, pages 38–54. Springer, 2015.

8. F. Cesarini and S. Thompson. Erlang Programming. O’Reilly, 2009.
9. F. Chen and G. Roşu. MOP: An Efficient and Generic Runtime Verification Frame-

work. In OOPSLA, pages 569–588. ACM, 2007.
10. C. Cini and A. Francalanza. An LTL Proof System for Runtime Verification. In

TACAS, volume 9035, pages 581–595. Springer, 2015.
11. M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Self-adaptive monitors for

multiparty sessions. In PDP, pages 688–696. IEEE Computer Society, 2014.
12. B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H. B.

Sipma, S. Mehrotra, and Z. Manna. Lola: Runtime monitoring of synchronous
systems. In TIME. IEEE, 2005.

13. R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes. TCS,
34(1-2):83–133, 1984.

14. N. Decker, M. Leucker, and D. Thoma. jUnitRV - Adding Runtime Verification to
jUnit. In NASA FM, volume 7871 of LNCS, pages 459–464. Springer, 2013.

15. Y. Falcone, J.-C. Fernandez, and L. Mounier. What can you verify and enforce at
runtime? STTT, 14(3):349–382, 2012.

16. Formal Systems Laboratory. Monitor Oriented Programming. University
of Illinois at Urbana Champaign. http://fsl.cs.illinois.edu/index.php/

Monitoring-Oriented Programming.
17. A. Francalanza, L. Aceto, and A. Ingólfsdóttir. On Verifying Hennessy-Milner

Logic with Recursion at Runtime. In RV, volume 9333 of LNCS, pages 71–86.
Springer, 2015.

18. A. Francalanza, A. Gauci, and G. J. Pace. Distributed System Contract Monitor-
ing. JLAP, 82(5-7):186–215, 2013.

19. A. Francalanza and M. Hennessy. A Theory for Observational Fault Tolerance.
JLAP, 73(12):22 – 50, 2007.

20. A. Francalanza and A. Seychell. Synthesising Correct concurrent Runtime Moni-
tors. FMSD, 46(3):226–261, 2015.

21. N. G. Giuseppe Castagna and L. Padovani. A theory of contracts for web services.
ACM Trans. Program. Lang. Syst., 31(5), 2009.

22. C. D. Giusto and J. A. Perez. Disciplined Structured Communications with Disci-
plined Runtime Adaptation. Sci. of Computer Programming, 97(2):235–265, 2015.

23. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
24. M. Hennessy. A Distributed Pi-Calculus. Cambridge University Press, 2007.
25. M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: A

run-time assurance approach for Java programs. FMSD, 24(2):129–155, 2004.
26. J. Laurent, A. Goodloe, and L. Pike. Assuring the Guardians. In RV, volume 9333

of LNCS, pages 87–101. Springer, 2015.
27. M. Leucker and C. Schallhart. A brief account of Runtime Verification. JLAP,

78(5):293 – 303, 2009.
28. J. Ligatti, L. Bauer, and D. Walker. Edit automata: enforcement mechanisms for

run-time security policies. Int. J. Inf. Secur., 4(1-2):2–16, 2005.
29. R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1989.
30. G. Roşu and K. Havelund. Rewriting-based techniques for runtime verification.

Automated Software Engg., 12(2):151–197, Apr. 2005.
31. D. Sangiorgi and D. Walker. PI-Calculus: A Theory of Mobile Processes. Cam-

bridge University Press, 2001.
32. F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,

3(1):30–50, Feb. 2000.
33. K. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient Decentralized Monitoring of

Safety in Distributed Systems. In ICSE, pages 418–427. IEEE, 2004.
34. P. Verissimo and L. Rodrigues. Distributed Systems for System Architects. Kluwer

Academic Publishers, 2001.

