
Implementing a Message-Passing Interpretation
of the Semi-Axiomatic Sequent Calculus (Sax)⋆

Adrian Francalanza1 ID , Gerard Tabone1 ID , and Frank Pfenning2 ID

1 University of Malta, Msida, Malta
{adrian.francalanza,gerard.tabone}@um.edu.mt
2 Carnegie Mellon University, Pittsburgh, PA, USA

fp@cs.cmu.edu

Abstract. We present language implementation based on a formula-
tion of sessions types for message-passing programs in terms of an ad-
joint intuitionistic logic. This logical formulation can naturally describe
asynchronous concurrency and can handle linear, affine, multicast and
replicated types. This allows the resulting language to express a variety of
common programming idioms such as service replicable, broadcast com-
munication and message cancellations within the same programming,
while still guaranteeing safety. Our tool consists of a type-checker and
an interpreter. It is implemented in the Go language, leveraging its con-
currency features in order to investigate the implementability of the op-
erational interpretation proposed by the adjoint logic formulation. We
assess the performance of our concurrent interpreter and show that it
scales adequately to the number of concurrent processes executed.

Keywords: behavioural types · concurrency · language implementation

1 Introduction

The Semi-Axiomatic Sequent Calculus (Sax) [10, 28] is a logical framework that
blends features of the sequent calculus with axiomatic presentations of intuition-
istic logic, replacing non-invertible rules by corresponding axioms. The frame-
work has been shown to elegantly handle a variety of substructural modalities
such as linear, affine, multicast and replication within one uniform formalism.
Sax also induces a natural operational interpretation in terms of active and pas-
sive parallel processes that interact asynchronously. Numerous variants of such
an interpretation have been studied for a variety of computational models, rang-
ing from shared memory concurrency [10], futures [32], and message-passing
concurrency [31]. Every proposed interpretation is shown to observe standard
⋆ This work has been supported by the Security Behavioural APIs project

(No: I22LU01-01) funded by the UM Research Excellence Funds 2021 and the Ter-
tiary Education Scholarships Scheme (Malta). This work is also supported by the
BehAPI project funded by the EU H2020 RISE of the Marie Skłodowska-Curie ac-
tion (No: 778233).

https://eapls.org/pages/artifact_badges/
https://www.orcid.org/0000-0003-3829-7391
https://www.orcid.org/0000-0001-9047-061X
https://www.orcid.org/0000-0002-8279-5817

2 Francalanza et al.

requirement such as progress and preservation, in addition to other operational
properties such as confluence and deadlock-freedom.

This paper focusses on the message-passing operational interpretation of
Sax, and investigates the implementability of the proposed operational model.
Concretely we build a type-checker that automates the verification of process
terms modelling session type specifications [20], according to the substructural
type system developed in the aforementioned paper. This gives us a language
for expressing safe message-passing concurrency that departs from the strict
linearity constraints: we can flexibly express a variety of common programming
idioms such as replicable services broadcast communication and message cancel-
lations. We also build an interpreter that executes typed programs according to
the concurrent reduction semantics given in [31]. Our interpreter targets the Go
programming language which natively supports message-based concurrency via
channels and goroutines [11]. More precisely, our implementation supports two
execution options (using unbuffered and buffered channels respectively) which
allows us to better asses the implementability of the asynchronous semantics
proposed.

Structure and Contribution. After reviewing the static and dyamic semantics
of our language (sec. 2) we outline the design decisions leading to our type-
checker (sec. 3). This is followed by a discussion on the implementation of the
interpreter (sec. 4). We finally evaluate our implementation in sec. 5. The accom-
panying tool, called Grits, is available at https://github.com/gertab/Grits
(archived [36]).

2 Sax for Message-Passing Concurrency

The asynchronous message-passing language proposed by Pruiksma et. al. [31]
centers around the intuitionistic judgement eq. (1) below. It defines an interface
specification for process P, asserting that it provides the behaviour described by
the proposition B on the channel denoted by variable y, assuming that some
Q1,...,Qk processes (to which it is client) each provide a behaviour described by
Ai on channel xi respectively.

x1 :A1, ... , xk :Ak ⊢ P :: (y :B) (1)

At runtime, the variables x1,...,xk,y in eq. (1) are instantiated to dynamically-
allocated channel names a1,...,ak,b, resulting in the process arrangement of fig. 1.
The behaviour described by the channel propositions in eq. (1) have a dual inter-
pretation. Process R in fig. 1 is a client on channel b whereas processes Q1,...,Qk

provide on channels a1,...,ak to which process P is a client. In the sequel, we let
identifiers u,v,w,... range over both names, a,b,c,d,... and variables x,y,z,....

Types. Channel propositions are session types, expressed as linear logic connec-
tives [4] indexed by a specific mode of truth, m (which is elided when implicit).

https://github.com/gertab/Grits

Implementing a Message-Passing Interpretation of Sax 3

R

P

Q1 ... Qk

b

a1 ak

a1 :A1, ... ,ak :Ak ⊢ P :: (b :B)

Client of P interacting on channel b adhering to proposition B

Providers to P on a1,...,ak following A1,...,Ak

Fig. 1: Hierarchical structure of processes, from P2’s perspective

Am,Bm ∈Type ::= Am⊗Bm |Am ⊸Bm | ⊕{l :Am
l }l∈L | &{l :Am

l }l∈L
| 1m | tm | ↑nm Am | ↓mn Am

m,n,o∈Mode ::= l (linear) | a (affine) | m (multicast) | r (replicable)

A tensor, Am⊗Bm, represents the sending of channel of type Am along with the
continuation channel of type Bm. Implication, Am⊸Bm, is its dual, representing
the receipt of a channel Am with the continuation of type Bm. A labelled n-ary
sum-type, ⊕{l : Am

l }l∈L, represents the internal choice from a range of labels
l∈L transferred along with the continuation channel having type Al, whereas the
external choice, &{l:Am

l }l∈L, receives such a label l∈L and continuation channel
at type Al. The unit type, 1m, and the recursion variable, tm, are standard; a
collection of contractive [16] equi-recursive type definitions, tm=Am, is assumed.

All logical connectives combine types at the same mode, except upshifts,
↑nm Am and downshifts, ↓mn Am. Four modes are considered, representing the
possible combinations of contraction and weakening. This induces a mode pre-
order, m⪰n (see axioms below), whenever m has more substructural properties
than n.

r⪰m r⪰ a m⪰ l a⪰ l

Whereas linear and replicable are bottom and top elements, affine allows only
weakening whereas multicast only permits contraction. Shifts, are subject to the
following mode ordering constraints: ↑mn An and ↓mn Am require that m⪰n.

Syntax. Our process syntax follows closely the one in [31]. The constructs in-
ducing interaction (i.e., send, select, close and cast) are all asynchronous (i.e.,
without any continuation process). Forwarding, spawning, splitting and drop-
ping are structural constructs (the latter two are implicit in [31]). The processes
assume a collection of named process definitions p(x) = P which are invoked
using p(u) (where p ranges over process names).

4 Francalanza et al.

Type Cont. Process Cont. Description

c :A⊗B − send c⟨a,d⟩ − provider sends a :A, d :B on c

⟨x,y⟩← recv c;P P [a,d/x,y] client receives a :A, d :B on c

c :A⊸B d :B ⟨x,y⟩← recv c;P P [a,d/x,y] provider receives a :A, d :B on c

send c⟨a,d⟩ − client sends a :A, d on c

c :⊕{l :Al}l∈L − c.k⟨d⟩ − provider selects k∈L with d:Ak on c

casec(l⟨y⟩⇒Pl)l∈L Pk [d/y] client branches to k∈L with d:Ak on c

c : &{l :Al}l∈L d :Ak casec(l⟨y⟩⇒Pl)l∈L Pk [d/y] provider branches to k∈L with d:Ak on c

c.k⟨d⟩ − client selects k∈L with d:Ak on c

c :↓mn Am − cast c⟨d⟩ − provider upshifts to d :Am on c

y← shift c;P P [d/y] client upshifts to d :Am on c

c :↑mn An − y← shift c;P P [d/y] provider downcasts to d :An on c

cast c⟨d⟩ − client downcasts to d :An on c

c :1 − close c − provider terminates on c

wait c;P P client receives termination on c

Tbl. 1: Session types mapped to processes

P,Q∈Proc ::= send u⟨v,w⟩ (send) | ⟨x,y⟩← recv u;P (receive)
| u.l⟨v⟩ (select) | caseu(l⟨y⟩⇒Pl)l∈L (branch)
| close u (close) | wait u;P (wait)
| cast u⟨v⟩ (cast) | x← shift u;P (shift)
| fwd u v (forward) | x← new P ;Q (spawn)
| ⟨x,y⟩← split u;P (split) | drop u;P (drop)
| p(u) (call)

Three synchronous processes (i.e., receive, branch and shift) together with spawn
and split, bind variables in the respective continuation processes (e.g. receive
binds variables x and y in P). To facilitate the mechanisation of typechecking,
we follow Sano et al. [33], Crary [7] and require every bound variable to be used
linearly (exactly once) in the binding scope. Process spawning, i.e., x←new P ;Q,
partially breaks this syntactic constraint and allows x to be used linearly in P
and in Q to generate a more standard formulation of the Cut rule (see below).

Type System. Based on eq. (1), the Sax type system for static and runtime
terms3 takes the form eq. (2) and observes mode independence: ∀i∈1..k . mi≥n.

u1 :A
m1
1 , ... , uk :A

mk

k ⊢ P :: (v :Bn) (2)

3 Static terms are closed (i.e., no free variables) and do not contain any names.

Implementing a Message-Passing Interpretation of Sax 5

Type environments, Γ , range over sequences of antecedents, ui :A
mi
i , subject to

exchange. The structural rules are fairly standard, augmented with mode consid-
erations. E.g. Cut (below) embodies computation via the interaction between
the spawning (client) process, Q, and the spawnee (provider), P , via the dynam-
ically allocated channel x. To preserve mode independence, all antecedent modes
typing P should be ordered w.r.t. the mode of channel x, Γ ⪰m, which should
also preserve independence w.r.t. the channel that Q provides on, m⪰n. Rules
Drp and Spl explicitly link weakening and contraction to structural terms.

u :Am ⊢ fwd w u :: (w :Am)
Id

Γ ⪰m⪰n Γ ⊢P :: (x:Am) Γ ′,x:Am ⊢Q :: (u:Bn)

Γ,Γ ′ ⊢x← new P ;Q :: (u :Bn)
Cut

m∈{a,r} Γ ⊢P :: (w:Bn)

Γ,u:Am ⊢ drop u;P :: (w:Bn)
Drp

m∈{m,r} Γ,x:Am,y:Am ⊢P :: (w:Bn)

Γ,u:Am ⊢ ⟨x,y⟩← split u;P :: (w:Bn)
Spl

There is a left and right rule for every logical connective. Crucially, in Sax, right
rules of positive connectives and left rules of negative connectives are axioms,
capturing the asynchronous nature of the constructs inducing interaction. We
detail the typing rules for the tensor and implication connectives below and
outline the relationship for the remaining connectives in tbl. 1.

u :Am,v :Bm ⊢ send w⟨u,v⟩ :: (w :Am⊗Bm)
⊗R

Γ,x :Am,y :Bm ⊢P :: (w :Cn)

Γ,u :Am⊗Bm ⊢ ⟨x,y⟩← recv u;P :: (w :Cn)
⊗L

Γ,x:Am ⊢P :: (y:Bm)

Γ ⊢ ⟨x,y⟩← recv w;P :: (w:Am ⊸Bm)
⊸R

u:Am,w:Am ⊸Bm ⊢ send w⟨u,v⟩ :: (v:Bm)
⊸L

For completeness, we list below the remaining rules used by the type system.
The environment Σ is fixed and left implicit; it stores the typing information for
all process definitions. For a comprehensive discussion of these rules, see [31].

Σ(p)= y :Am ⊢P :: (x :Bn)

u :Am ⊢ p(w,u) :: (w :Bn)
Call

· ⊢ close w :: (w : 1m)
1R

Γ ⊢P :: (w :An)

Γ,u : 1m ⊢wait u;P :: (w :An)
1L

l∈L

u :Am
l ⊢w.l⟨u⟩ :: (w :⊕{l :Al}ml∈L)

⊕R
Γ,yl :A

m
l ⊢Pl :: (w :Bn) for each l∈L

Γ,u :⊕{l :Al}ml∈L ⊢ caseu(l⟨yl⟩⇒Pl)l∈L :: (w :Bn)
⊕L

Γ ⊢Pl :: (yl :A
m
l) for each l∈L

Γ ⊢ casew (l⟨yl⟩⇒Pl)l∈L :: (w : &{l :Al}ml∈L)
&R

l∈L

u : &{l :Al}ml∈L ⊢u.l⟨w⟩ :: (w :Am
l)

&L

Γ ⊢P :: (y :An)

Γ ⊢ y← shift w;P :: (w :↑mn An)
↑R

u :↑mn An ⊢ cast u⟨w⟩ :: (w :An)
↑L

u :Am ⊢ cast w⟨u⟩ :: (w :↓mn Am)
↓R

Γ,x :Am ⊢P :: (w :Bo)

Γ,u :↓mn Am ⊢ x← shift u;P :: (w :Bo)
↓L

6 Francalanza et al.

Abstract Types Concrete Types Abstract Types Concrete Types

A⊗B A * B 1 1
A⊸B A -* B t t
⊕{l :Al}l∈L +{l1 : A1, ...} ↑nm Am m /\ n A
&{l :Al}l∈L &{l1 : A1, ...} ↓mn Am m \/ n A
tm = T type t = m T l,a,m,r lin, aff, mul, rep

Tbl. 2: Abstract and concrete mapping for types

Runtime. Closed processes execute concurrently by interacting on names as-
signed to channels. A running process takes the form

prc(N ; a; P)

The channel on which process P provides is referred to externally (by other
processes) via the set of names N = {b1,...,bn} (a unique name per reference),
and internally by P using name a (prc acts as a name binder for a in P). P may
in turn contain other names to refer to channels provided by other processes.
The semantics is given in terms of reduction rules; we use “_” in lieu of names, a,
or sets of names, N , when irrelevant (and unchanged between redex and reduct).

(Cut) prc(_; _; x← new P ;Q) −→ prc({b}; c; P [c/x]), prc(_; _;Q[b/x])

(Snd) prc({a}; b; send b⟨c,d⟩), prc(_; _; ⟨x,y⟩← recv a;P) −→ prc(_; _; P [c,d/x,y])

(Rcv) prc({a}; b; ⟨x,y⟩← recv b;P), prc(_; d; send a⟨c,d⟩) −→ prc(_; d; P [c,d/x,y])

For instance, Cut spawns a new process P [c/x] while allocating two names,
one internal, c, and one external, b (used by the spawning process Q) to refer
to the channel provided by the spawnee P [c/x]. Snd describes the sending by
a provider on a channel known by a client via the (external) name a; since
communication is asynchronous, the provider terminates after the interaction.
Dually, Rcv describes the receipt of a message by a process providing on a
channel known externally via name a. See Pruiksma et. al. [31] for details.

3 Static Type-Checker

We implement a tool called Grits, that defines a language for describing message-
passing programs that satisfy Sax type specifications and runtime, and execute
them. It is implemented in Go [11] and is publicly available on GitHub [36].

Programs are written in a syntax similar to the one in sec. 2, with a few minor
discrepancies. Types are written with the syntax mapping in tbl. 2. Moreover
processes are allowed to refer to the name of the channel they provide on via the
keyword self.4 The structure of a Grits program follows the general structure
4 Processes fully observe the linearity syntactic constraint since, in x← new P ;Q,

variable x is used linearly in Q exclusively, but not in P which uses self instead.

Implementing a Message-Passing Interpretation of Sax 7

outlined below. It starts with a series of type declarations, line 1, followed by a
series of named process template declarations, line 3, and a single main process
that starts the computation, line 5.

1 type t = m A // tm =Am

2 ...
3 let p(x1:A1,...,xk:Ak):B = P // p(x1,...,xk)=P with x1:A1,...,xk:Ak ⊢P :: (self:B)
4 ...
5 exec q()

Typechecking follows closely the typing rules outlined in sec. 2. Its automa-
tion is facilitated by the fact that most typing rules are syntax directed. The
only exception is rule Cut; its premises require the analysis to statically guess:

1. the type associated to the channel x provided by the spawned process P
2. how to split the antecedents across the two premises

Grits solves the first issue by allowing spawning to include type information
and be written as x :A← new P ;Q. The second issue is solved by limiting the
typing of P to analytic cuts (snips [10]). Concretely, the syntax of P is limited
to either asynchronous constructs (i.e., send, select, close and cast) or process
calls, since the antecedents in their (axiom) typing rules are precisely determined
from the structure of the term. More complex variations for P can always be
packaged as a separate process definition and then used via a process call.

Expressivity. The program excerpt below is adapted from [31, Ex. 10]. The map
process declaration takes two parameters: a map (f) and the original list of
numbers (l). The mapping function f is declared at a replicable mode since it
will be copied and used over each element of the list. Since the list elements are
linear numbers, the map has to first shift to linear mode before it is applied.

1 type nat = lin +{zero : 1, succ : nat}
2 type listNat = lin +{cons : nat * listNat , nil : 1}
3 type mapType = lin /\ rep (nat -* nat)

The type declarations nat and listNat define natural number and lists recur-
sively, whereas mapType defines the type of a replicable map function.

4 let map(f:mapType , l:listNat): listNat =
5 case l (
6 cons <l’> => <curr , l’’ > <- recv l’;
7 <f’, f’’ > <- split f; // map channel ’f’ copied
8 fl : lin (nat -* nat) <- new cast f’<self >;
9 curr_upd : nat <- new send fl <curr , self >;

10 k’’ : listNat <- new map(f’’ , l’’);
11 k’ : nat * listNat <- new send self <curr_upd ,k’’ >;
12 self.cons <k’>
13 | nil <l’> => drop f; // map channel ’f’ unused
14 self.nil <l’>
15)
16
17 let mapByInc () : mapType =
18 s <- shift self;
19 <toAdd , result > <- recv s;
20 self.succ <toAdd > // increment by one ’succ’

In the cons case of the map definition, the process creates two copies of the
replicable mapping process (line 7) before downcasting one to lin and applying

8 Francalanza et al.

it to the current element of the list (lines 8, 9). The remaining lines apply the
map recursively to the tail of the list and reconstruct a new list with the mapped
values. In the nil case, the mapping process is left unused (line 13). From lines
17 to 20 a replicable mapping process is defined behaving as a successor.

21 let main() : listNat = // main process
22 l : listNat <- new simpList ();
23 f : mapType <- new mapByInc ();
24 map(f, l)
25
26 exec main() // launch main process

The main process initialises a nat list process (code elided), launches a replicable
mapping process, and spawns a client map process to the former two.

27 prc[l] : listNat = simpleList ()
28 prc[f] : mapType = mapByInc ()
29 prc[b] : listNat = map(f, l) // f:mapType, l:listNat⊢ map(f, l) :: (self : listNat)

For debugging and modelling purposes, Grits allow the execution to start from
a particular snapshot, instead of having to launch all execution from one root
process. The alternative launching code above describes three processes that are
already running in parallel providing on channels named l, f and b (lines 27-29).

30 assuming l : listNat // instead of prc[l] : listNat = simpleList ()
31 prc[f] : mapType = mapByInc ()
32 prc[b] : listNat = map(f, l)

Grits also allows programs to be developed compositionally, by eliding parts
of the computation. For instance, line 30 in the excerpt above does not specify
the precise code of the process providing at channel l, instead describing its
interface specification. This still permits the program to be typechecked.

Bank Service Example. The services offered by a hypothetical bank are for-
malised by the affine type bankType (lines 1 to 2 below). Two choices are ini-
tially offered: a login option and another one for general queries (gen_query)
regarding opening times (details omitted). A login request is answered by either
an auth (authenticated) or an not_auth response; the latter response allows the
user to retry logging again. An authenticated user can initiate a transaction.
For this, the interaction must shift into linear mode (↑al transaction) to force
transaction termination; the labels start and finish delimit a (dummy) trans-
action.

1 type bankType = aff &{ login : authType
2 gen_query : ... }
3 type authType = aff +{ auth : lin /\ aff transaction ,
4 not_auth : bankType }
5 type transaction = lin +{ start : +{ finish : 1 } }

The behaviour dictated by the type bankType is implemented and typechecked
using Grits. The bank process waits to receive either a login or gen_query la-
bel (line 7). An authenticated user (line 8) is handled by authService() (line 8),
where a shift (into linear mode, line 14) is performed before executing the trans-
action (lines 15-17).

Implementing a Message-Passing Interpretation of Sax 9

6 let bank() : bankType =
7 case self (
8 login <s> => auth <- new authService ();
9 self.auth <auth >

10 | gen_query <s> => ...
11)
12
13 let authService () : lin /\ aff transaction =
14 s’ <- shift self; // handle transaction in linear mode
15 s’’ : lin 1 <- new close self;
16 s’’’ : lin +{ finish : 1} <- new self.finish <s’’ >;
17 self.start <s’’’ >

The execution launched below models an indecisive user (user1, line 18),
who initiates an interaction but promptly cancels it (line 19); this is permitted
by the bankService’s affine mode.

18 prc[bankService] : bankType = bank()
19 prc[user1] : lin 1 = drop bankService;
20 close self

Conversely, a different user (user2, line 23) requests a login and waits to
be authenticated (line 25). After shifting modes (line 26), the interaction with
bankService proceeds in linear mode (lines 26-31).

21 prc[user2] : lin 1 =
22 print _attempt_login_; // stdout notification
23 b : authType <- new bankService.login <self >;
24 case b (
25 authenticated <b’> =>
26 t : transaction <- new cast b’ <self >; // cannot drop t (linear)
27 case t (
28 start <t’> => case t’ (
29 finish <t’’ > => wait t’’; close self
30)
31)
32 | not_authenticated <b’ > => drop b’; close self
33)

4 Runtime Interpreter

Typechecked programs are executed by an interpreter that leverages the concur-
rency features of the Go language. Every process is mapped to a goroutine that
provides on a dedicated channel. This one-to-one mapping of concurrency units
allows us to better assess the implementability of the proposed model.

Copy Semantics. Contractible processes (i.e., in multicast or replicable mode)
can be assigned multiple names using ⟨x,y⟩← split u;P . The following reduction
rules achieve this in two steps (the suggestive name ι is used to denote the
internal name of the channel provided, analogous to the keyword self).

(Spl) prc({a}; ι; ⟨x,y⟩← split b;P) −→
prc({c,d}; ι; fwd ι b),

prc({a}; ι; P [c,d/x,y])

(Fwd) prc({b}; ι; P), prc(N ; ι; fwd ι b) −→ prc(N ; ι; P)

10 Francalanza et al.

Rule Spl generates two new names for the name being duplicated, connecting
them via forwarding, which then reacts with the process providing on the name
being duplicated to increase its set of external names, rule Fwd.

(Dup) prc({a,b}; ι; P) −→
prc(a; ι; Pσ1), prc(b; ι; Pσ2),{
prc({cσ1,cσ2}; ι; fwd ι c)

}
c∈fn(P)\{ι}

where P ̸= fwd _ _ and rename(fn(P)\{ι})= ⟨σ1,σ2⟩

Processes with multiple names are given a copy semantics. Rule Dup generates a
process copy P for each of the two name references a and b. By the hierarchical
arrangement resulting from typechecking, process P is the root of a tree of
processes that need to be duplicated as well. This is done in two steps. For every
reference P has towards its clients (i.e., immediate children), rule Dup generates
two new (unique) names using rename(fn(P)\{ι})=⟨σ1,σ2⟩ (σ1 and σ2 are maps
from names to names) and renames the two copies of P accordingly, i.e., Pσ1

and Pσ2. Moreover, for every (externally) renamed name in P , c∈ fn(P)\{ι},
it creates a forwarding associating it to its renaming, cσ1 and cσ2. This results
in a downwards chain of duplications to all child (provider) processes.

self.ok<c>

a b

c

−→Dup self.ok<c’> self.ok<c’’>

fwd self c

a b

c’ c”

c

For example, a process self.ok<c> (depicted above), which is multiply ref-
erenced by the names a and b, is split into two copies where each copy renames
the client reference name c to c′ and c′′. A corresponding forwarding process is
also created to propagate the copying to the client process with name c via a
combination of the rules Fwd and Dup.

(GrC) prc(∅; ι; P) −→
{
prc(∅; ι; fwd ι a)

}
a∈fn(P)\{ι} where P ̸= fwd _ _

Dually, unreferenced processes, i.e., N=∅, trigger a cascading garbage collection
procedure to its clients via forwarding; rule GrC above. Corresponding this
reduction discipline, processes executing non-structural commands (e.g. rules
Snd and Rcv) only become active when they are referenced by a single name.

Synchronous and Asynchronous Implementations. In a hierarchically organised
soup of processes that are typechecked according to a Sax specification, messages
can flow in two directions: either from a provider (bottom process) to its client
(top process) or vice versa. For example, in a Rcv reduction (diagram below,
left), messages flow downwards from a client, while in a Snd reduction (below,
right), messages flow upwards towards the client.5

5 Other non-structural reductions (e.g. label branching and shifting) behave similarly.

Implementing a Message-Passing Interpretation of Sax 11

send a<...>

<x,y> <- recv self; ...
a

m
es

sa
ge

fl
ow <x,y> <- recv b; ...

send self<...>

b

Although direct interactions between matching processes (e.g. send u⟨v,w⟩
with ⟨x,y⟩ ← recv u;P processes) are straightforward to implement, the pos-
sibility of having proxy processes mediating via forwarding (in order to alter
the hierarchical structure) complicate the implementation of the communication
protocol for the interpreter. Our interpreter offers two implementations to sup-
port our study: a synchronous setup, where Go channels are unbuffered, and an
asynchronous setup with buffered channels.

Synchronous. The synchronous setting employs two Go channels per provider.
A data channel is used for non-structural interactions such as send, (label) select
and cast (see rules Snd and Rcv above). In addition, a control channel is ded-
icated to structural interactions such as splitting and garbage-collection, which
are all conducted via forwarding (see rules Spl and GrC above and tbl. 1). The
implementation then makes use of the Go select construct to interact on either
of these channels depending on the surrounding process context.

send a’<...>

fwd self a

<x,y> <- recv self; ...

(FWD request)(No normal msg)

a’

a

<x,y> <- recv b’; ...

fwd self b

send self<...>

(Normal) (FWD request)

b’

b

Consider a variant of the previous two send and recv examples with a forward
process in between. In both the left and right cases, the fwd process is executed
uniformly by the interpreter: it sends a channel name on the control channel
indicating to the respective provider underneath it the name of the (new) data
channel to listen on (instead of the existing one). In the left scenario, a client
attempts to send a message downwards on channel a′; since the process providing
on a′ (the fwd process) is not ready to receive on the (synchronous) Go channel,
the communication blocks. Conversely, the recv process providing on channel a
waits for messages on both data and control channels. The fwd process does not
communicate on the data channel, but instead sends on the control channel.
This eventually succeeds, generating a provider recv process waiting on channel
a′, which can now react with the client sending on this channel.

12 Francalanza et al.

In the right scenario, the provider on channel b is ready to send on the data
channel while, simultaneously, waiting to receive on the control channel, result-
ing in a mixed choice [26]. This turns out not to be problematic in a synchronous
setting. Concretely, since the forwarding process is not ready to receive on the
data channel b, the message sending blocks. However, the forwarding process suc-
cessfully sends a forwarding request on the control channel, as the send provider
process on channel b is ready to accept it, completing a Fwd reduction.

Asynchronous. In a setup with buffered channels (where sending does not require
a handshake from the other channel endpoint), the execution strategy for the

fwd self b

send self<...>

(Normal) (FWD request)

b’

b

right hand scenario discussed above fails. In
an asynchronous setting (depicted on the side),
data messages will be sent upwards, in the oppo-
site direction of the forwarding requests (which
are sent downwards). Since neither are blocking,
both sending of messages will succeed in reach-
ing the respective channel buffer. Nevertheless,
neither message will eventually be read off this
buffer, leading to two deadlocked processes.

One compositional solution to this problem is not to use a uniform forward-
ing behavior. In an asynchronous setting, our interpreter categorises the forward
construct into two: an active (fwda) or passive forward (fwdp), aligning with
message flow direction. Apart from localising the change to the forwarding con-
struct, this change allows us to collapse the data and control channels and just
use one.

(FwdP) prc
(
b; γ; P+

)
, prc

(
N ; ι; fwdp ι b

)
, −→ prc

(
N ; γ; P+

)
(FwdA) prc

(
b; γ; P−

)
, prc

(
N ; ι; fwda ι b

)
, −→ prc

(
N ; γ; P−

)
When messages flow upwards, i.e., messages originate from a provider sending
on the data channel (P+ ranges over send u⟨v,w⟩, u.l⟨v⟩, close u and cast u⟨v⟩),
they may interact with a passive forwarding process. This forwarding process
passively waits for incoming messages before reducing to a P+ processes them-
selves (FwdP). Conversely, when a synchronous process (P− includes the re-
maining non-structural constructs) expects incoming messages from a client, it
may interact with an active forwarding process. Similar to the synchronous case,
active forwards initiate the interaction by sending a forwarding request message
(FwdA). Examples of passive and active forward processes are depicted below.

fwdA self a

<x,y> <- recv self; ...

(FWD request)

a’

a

fwdP self b

send self<...>

(Normal)

b’

b

Active Passive

Implementing a Message-Passing Interpretation of Sax 13

In [30, 29], different versions for the forward processes are also explored,
depending on the polarity of the forwarded channels. From an implementation
perspective this is similar to how we infer the direction of message flow, where
messages flowing upwards use positive channels (and passive forwards), while
messages flowing downwards use negative channels (and active forwards). The
information the channel polarities is obtained from the associated types in sec. 2.

5 Evaluation

The objective of this study is to evaluate the implementability of the proposed
asynchronous message-passing interpretation for Sax. Secs. 3 and 4 provide ev-
idence that this can be accomplished using a concurrent implementation. This
section assesses whether this implementation is satisfactory in terms of its ability
to scale with the number of spawned processes, thereby utilising any underlying
multicore architecture.

Setup. In order to measure the scalability of our implementation, we make use
of Sax Tool [28], which is the only other existing implementation of a message-
passing interpretation for Sax. The fact that we can express common programs
in both Grits and Sax Tool allows us to use the latter as a baseline for
comparing runtime performance. Although Sax Tool is a pedagogic tool with
limited focus on performance, it was developed using Standard ML: programs
are executed in a sequential setup which does not exploit any underlying parallel
architecture. In contrast, the implementation discussed in sec. 4 maintained a
one-to-one mapping to goroutines. Our evaluation utilises two inherently con-
current programs that can be parameterised to scale with the number of running
processes. We compare the respective execution time executed over Grits (using
synchronous and asynchronous semantics), against Sax Tool. All experiments
were carried out on a Apple M2 Pro (10-core) CPU machine with 16GB of mem-
ory, running Go 1.21.6 on macOS 14. The respective readings are reported in
the two graphs of fig. 2.

Natural Number Doubling. A program that can be interpreted both in Grits
and Sax Tool is a number doubling procedure (adopted from [28]). It is defined
as a process definition, double, that consumes a number and provides another
number doubled in value. We reuse the unary natural number type nat from
sec. 3, which allows us to represent natural numbers using a series of succes-
sor labels, e.g. +{succ: +{succ: +{zero: 1}}} represents the number 2. The
process recursively constructs a new number by first deconstructing the number
being received from a provider (x), and for every succ label obtained, two are
sent instead (lines 5-6), recursing until the number is fully exhausted (line 3).

1 type nat = lin +{zero : 1, succ : nat}
2 let double(x : nat) : nat =
3 case x (zero <x’> => self.zero <x’>
4 | succ <x’> => h <- new double(x’);
5 d : nat <- new self.succ <h>; // first succ
6 self.succ <d> // second succ
7)

14 Francalanza et al.

2 4 6 8 10 12 14 16

101
102
103
104
105
106
107
108

n

E
xe

cu
ti

on
T

im
e

(µ
s)

function double used n times

10 20 30 40 50
0 ·100

1 ·105

2 ·105

m

m parallel branches (for n=5)

Grits (Synchronous sem.) Grits (Asynchronous sem.) Sax

Fig. 2: Performance benchmarks comparing the different semantic implementa-
tions (from sec. 4) with Sax Tool. The execution time axis for the left graph
is logarithmic, while the right one uses normal axis.

Sequential Doubling. For the first evaluation scenario, we invoke double multiple
times in sequence, producing a natural number with an exponential size. E.g.,
for the process providing on n1 representing the number one (line 8) we double
twice “in sequence” (lines 13 and 14) to obtain the final value of 4 (=1×22).

8 prc[n1] : nat = // Produces the natural number 1, i.e. succ(zero)
9 t : 1 <- new close self;

10 z : nat <- new self.zero <t>;
11 self.succ <z>
12 prc[b] : nat =
13 d1 <- new double(n1);
14 d2 <- new double(d1); // double used twice
15 fwd self d2

The evaluation varies the number of times (n) the doubling function is re-
peated, to produce a number with exponential size (= 2n). The results are re-
ported in fig. 2 (left), showing the time taken (µs) by the interpreter to finish
executing. The Grits concurrent implementation initially performs less effi-
ciently for smaller programs (n≤7). This behavior is attributed to the overhead
incurred when spawning new threads with a very short lifespan. However, as the
program size increases, it exhibits better scalability, outperforming Sax Tool.

Concurrent Doubling. The second evaluation scenario induces more parallelism.
It invokes the aforementioned sequential doubling procedure, fixed at n=5, for
m times concurrently, generating a forest-like structure with m parallel trees.
The benchmark results (fig. 2, right) show a similar trend, with Sax Tool out-
performing our implementation for smaller programs, but the situation reversing

Implementing a Message-Passing Interpretation of Sax 15

for larger programs. We even observe that the execution of the Grits concurrent
implementation appears to grow linearly for the readings taken.

Results. Despite limiting our experiments to the testing sizes of 1≤n≤16 and 2≤
m≤50, the readings from both graphs in fig. 2 exhibit a clear trend. This allows
us to extrapolate and conclude that the proposed model of Pruiksma et. al. [31]
can be implemented adequately in concurrent fashion in order to be able to scale.
Although the asynchronous implementation of sec. 4 suggests that the proposed
model can also be implemented in a distributed setting where processes are
dispersed across different locations, we cannot draw conclusive evidence as to
how this performs in relation to the synchronous variant. This might stem from
the fact that the Sax model uses short-lived processes which might perform
very little work before terminating. For instance, instead of spawning a process
just to send a single message, a more efficient way would be to send a message
sequentially from an existing process.

Threats to Validity. The experiment setup could have suffered from limited gran-
ularity control, which is generally difficult to automate [39]. Our results rely on
Go’s handling of concurrency to maximise the underlying parallel hardware. We
did not consider higher process numbers to avoid the risk of running into stack
overflows once certain system limits are hit; this would have been caused by our
implementation design, where each reduction is performed via a function call,
and by Go’s lack of support for tail-recursion optimisation [17]. Our choice of ex-
periment programs could have also introduced biases. Similarly, our choice for a
baseline, namely Sax Tool, could have also affected our scalability assessments.

6 Related Work

We mainly compare our work with other implementations based on the Curry-
Howard interpretation [4] of intuitionistic linear logic. This induces a hierarchical
structuring of concurrent processes, thereby avoiding the need to use type du-
ality inherent in binary session type implementations [15, 20, 25, 34], or type
projections, in the case of multiparty session types [12, 21, 22, 24].

To our knowledge, the only implementation based on the semi-axiomatic se-
quent calculus is Sax Tool [28], used to establish a baseline in sec. 5. At the
time of writing, Sax Tool only support linear modes, and the mode-shifting
programs in sec. 3 cannot be expressed. Internally, Sax Tool relies on a se-
quential implementation in Standard ML to simulate concurrency, while Grits
uses native concurrency primitives to contend with the intricacies of the copy
semantics discussed in sec. 4.

Das et. al. [9] introduce Rast, a language integrating session types with arith-
metic refinements. It embeds assertions within the types to also account for a
program execution’s work and span. Similar to Sax Tool, Rast follows a se-
quential interpretation. Additionally, Das et. al. extended the work to obtain
Nomos [8], which applies resource-aware session types to smart contracts.

16 Francalanza et al.

Instead of developing bespoke languages, other projects integrate intuition-
istic session types over existing languages. Ferrite [6] extends the SILL calcu-
lus [29, 37] with process sharing [3] mechanisms to introduce shared session types
as a Rust library. CC0 [40, 35], a session-based extension of C0, adopts asyn-
chronous message-passing semantics. It offers a Go back end using goroutines for
processes and channels for message passing. For this variant, CC0 uses separate
channels for bidirectional communication, which was not needed in our tool due
to Sax’s model. The Go runtime version was compared and shown to outperform
a separate C-based implementation, where more heavyweight pthreads were used
for concurrent processes.

Polite by Lakhani et al. [23] adopts a form of adjoint modalities to control
type polarities, similar to SILL’s approach to message flow reversal [29]. Since
our channels are single-use, shifting allows us to seamlessly transition between
modalities. Nomos [8] and Ferrite [6] use modes and shifts to obtain exclusive
access to shared processes. Similar to the handling of forwarding in an asyn-
chronous implementation, discussed in sec. 4, the work in [9, 8, 32, 29] adopt
forwarding behavior based on polarity. Other frameworks, such as SILL and
SILLS [3], utilise global substitutions for forwarding, a strategy unsuitable for
our decentralised implementation. An adaptation of SILL is also used by Caires
and Toninho [5] to study a fully sequential and deterministic evaluation strategy.

7 Conclusion

We investigate the implementability of the message-passing interpretation of
Sax proposed in previous work [31]. This is conducted by building the tool
Grits, the first type-checker and interpreter to fully handle message-passing
programs satisfying Sax specifications. The interpreter executes programs in
decentralised fashion, leveraging concurrency features from the Go language such
as goroutines. Our empirical evaluation leads us to conclude that Sax’s [31]
proposed model is not based on any infeasible assumptions that might prevent
it from being implemented in a concurrent fashion.

Future Work. We plan to expand on the Sax semantics by integrating notions
of shared processes [3, 8, 6] that co-exists alongside replicated processes with a
copy semantics. Another planned extension is to consider the actor model [19, 2]
as an interpretation for Sax. Finally, we would like to investigate the use of
Sax as a basis for the systematic instrumentation of detection monitors [13],
partial-identity monitors [18] and enforcement monitors [1] for added assurances
related to the temporal properties of program data; the Sax proof system can
also be leveraged to enhance verdict explainability when property violations are
detected [14].

Implementing a Message-Passing Interpretation of Sax 17

References

[1] Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: Bidirectional Run-
time Enforcement of First-Order Branching-Time Properties. Log. Methods
Comput. Sci. 19(1) (2023)

[2] Agha, G.A.: ACTORS - a model of concurrent computation in distributed
systems. MIT Press series in artificial intelligence, MIT Press (1990)

[3] Balzer, S., Pfenning, F.: Manifest sharing with session types. Proc. ACM
Program. Lang. 1(ICFP), 37:1–37:29 (2017)

[4] Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions.
In: CONCUR. Lecture Notes in Computer Science, vol. 6269, pp. 222–236.
Springer (2010)

[5] Caires, L., Toninho, B.: The session abstract machine. In: Weirich, S. (ed.)
Programming Languages and Systems - 33rd European Symposium on Pro-
gramming, ESOP 2024, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxem-
bourg, April 6-11, 2024, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 14576, pp. 206–235. Springer (2024)

[6] Chen, R., Balzer, S., Toninho, B.: Ferrite: A judgmental embedding of ses-
sion types in rust. In: Ali, K., Vitek, J. (eds.) 36th European Conference on
Object-Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin, Ger-
many. LIPIcs, vol. 222, pp. 22:1–22:28. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2022)

[7] Crary, K.: Higher-order representation of substructural logics. In: ICFP.
pp. 131–142. ACM (2010)

[8] Das, A., Balzer, S., Hoffmann, J., Pfenning, F., Santurkar, I.: Resource-
aware session types for digital contracts. In: 34th IEEE Computer Security
Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021.
pp. 1–16. IEEE (2021)

[9] Das, A., Pfenning, F.: Rast: A language for resource-aware session types.
Log. Methods Comput. Sci. 18(1) (2022)

[10] DeYoung, H., Pfenning, F., Pruiksma, K.: Semi-axiomatic sequent calculus.
In: FSCD. LIPIcs, vol. 167, pp. 29:1–29:22. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020)

[11] Effective Go: Effective Go - The Go Programming Language (nd), https:
//go.dev/doc/effective_go#sharing

[12] Fowler, S.: An Erlang implementation of multiparty session actors. In:
Bartoletti, M., Henrio, L., Knight, S., Vieira, H.T. (eds.) Proceedings 9th
Interaction and Concurrency Experience, ICE 2016, Heraklion, Greece, 8-9
June 2016. EPTCS, vol. 223, pp. 36–50 (2016)

[13] Francalanza, A.: A Theory of Monitors. Inf. Comput. 281, 104704 (2021)
[14] Francalanza, A., Cini, C.: Computer says no: Verdict explainability for run-

time monitors using a local proof system. J. Log. Algebraic Methods Pro-
gram. 119, 100636 (2021)

[15] Francalanza, A., Tabone, G.: Elixirst: A session-based type system for Elixir
modules. J. Log. Algebraic Methods Program. 135, 100891 (2023)

https://go.dev/doc/effective_go#sharing
https://go.dev/doc/effective_go#sharing

18 Francalanza et al.

[16] Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta
Informatica 42(2-3), 191–225 (2005)

[17] Golang GitHub: Golang GitHub issue #22624 (2017), https://github.
com/golang/go/issues/22624

[18] Gommerstadt, H., Jia, L., Pfenning, F.: Session-typed concurrent contracts.
J. Log. Algebraic Methods Program. 124, 100731 (2022)

[19] Hewitt, C., Bishop, P.B., Steiger, R.: A universal modular ACTOR for-
malism for artificial intelligence. In: Nilsson, N.J. (ed.) Proceedings of the
3rd International Joint Conference on Artificial Intelligence. Standford, CA,
USA, August 20-23, 1973. pp. 235–245. William Kaufmann (1973)

[20] Honda, K.: Types for dyadic interaction. In: CONCUR. Lecture Notes in
Computer Science, vol. 715, pp. 509–523. Springer (1993)

[21] Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session
types. J. ACM 63(1), 9:1–9:67 (2016)

[22] Lagaillardie, N., Neykova, R., Yoshida, N.: Implementing multiparty ses-
sion types in rust. In: Bliudze, S., Bocchi, L. (eds.) Coordination Models
and Languages - 22nd IFIP WG 6.1 International Conference, COORDINA-
TION 2020, Held as Part of the 15th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June
15-19, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12134,
pp. 127–136. Springer (2020)

[23] Lakhani, Z., Das, A., DeYoung, H., Mordido, A., Pfenning, F.: Polarized
subtyping. In: Sergey, I. (ed.) Programming Languages and Systems - 31st
European Symposium on Programming, ESOP 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2022, Munich, Germany, April 2-7, 2022, Proceedings. Lecture Notes in
Computer Science, vol. 13240, pp. 431–461. Springer (2022)

[24] Neykova, R., Yoshida, N.: Multiparty session actors. Log. Methods Comput.
Sci. 13(1) (2017)

[25] Padovani, L.: A simple library implementation of binary sessions. J. Funct.
Program. 27, e4 (2017)

[26] Palamidessi, C.: Comparing the expressive power of the synchronous and
asynchronous pi-calculi. Math. Struct. Comput. Sci. 13(5), 685–719 (2003)

[27] Pfenning, F.: Lecture notes on Adjoint SAX (2023), Course notes for Sub-
structural Logics (15-836)

[28] Pfenning, F.: Lecture notes on Semi-Axiomatic Sequent Calculus
(2023), Course notes for Substructural Logics (15-836). Accompanying
tool available from https://www.cs.cmu.edu/~fp/courses/15836-f23/
resources.html

[29] Pfenning, F., Griffith, D.: Polarized substructural session types. In: Pitts,
A.M. (ed.) Foundations of Software Science and Computation Structures -
18th International Conference, FoSSaCS 2015, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings. Lecture Notes in Computer
Science, vol. 9034, pp. 3–22. Springer (2015)

https://github.com/golang/go/issues/22624
https://github.com/golang/go/issues/22624
https://www.cs.cmu.edu/~fp/courses/15836-f23/resources.html
https://www.cs.cmu.edu/~fp/courses/15836-f23/resources.html

Implementing a Message-Passing Interpretation of Sax 19

[30] Pfenning, F., Pruiksma, K.: Relating message passing and shared memory,
proof-theoretically. In: Jongmans, S., Lopes, A. (eds.) Coordination Models
and Languages - 25th IFIP WG 6.1 International Conference, COORDINA-
TION 2023, Held as Part of the 18th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2023, Lisbon, Portugal, June
19-23, 2023, Proceedings. Lecture Notes in Computer Science, vol. 13908,
pp. 3–27. Springer (2023)

[31] Pruiksma, K., Pfenning, F.: A message-passing interpretation of adjoint
logic. J. Log. Algebraic Methods Program. 120, 100637 (2021)

[32] Pruiksma, K., Pfenning, F.: Back to futures. J. Funct. Program. 32, e6
(2022)

[33] Sano, C., Kavanagh, R., Pientka, B.: Mechanizing session-types using a
structural view: Enforcing linearity without linearity. Proc. ACM Program.
Lang. 7(OOPSLA2), 374–399 (2023)

[34] Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: Kr-
ishnamurthi, S., Lerner, B.S. (eds.) 30th European Conference on Object-
Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy.
LIPIcs, vol. 56, pp. 21:1–21:28. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik (2016)

[35] Silva, M.E.P., Florido, M., Pfenning, F.: Non-blocking concurrent imper-
ative programming with session types. In: Cervesato, I., Fernández, M.
(eds.) Proceedings Fourth International Workshop on Linearity, LINEAR-
ITY 2016, Porto, Portugal, 25 June 2016. EPTCS, vol. 238, pp. 64–72 (2016)

[36] Tabone, G.: Grits: Implementing a Message-Passing Interpretation of the
Semi-Axiomatic Sequent Calculus (Sax) (artefact for Coordination’24) (Mar
2024), https://doi.org/10.5281/zenodo.10837897, https://github.
com/gertab/Grits

[37] Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions,
and sessions: A monadic integration. In: Felleisen, M., Gardner, P. (eds.)
Programming Languages and Systems - 22nd European Symposium on Pro-
gramming, ESOP 2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24,
2013. Proceedings. Lecture Notes in Computer Science, vol. 7792, pp. 350–
369. Springer (2013)

[38] Wadler, P.: Propositions as sessions. In: Proceedings of the 17th ACM SIG-
PLAN International Conference on Functional Programming. p. 273–286.
ICFP ’12, Association for Computing Machinery, New York, NY, USA
(2012)

[39] Westrick, S., Fluet, M., Rainey, M., Acar, U.A.: Automatic parallelism man-
agement. In: Proceedings of the ACM on Programming Languages. vol. 8,
pp. 1118–1149 (Jan 2024)

[40] Willsey, M., Prabhu, R., Pfenning, F.: Design and implementation of Con-
current C0. In: Fourth International Workshop on Linearity. pp. 73–82.
EPTCS 238 (Jun 2016)

https://doi.org/10.5281/zenodo.10837897
https://github.com/gertab/Grits
https://github.com/gertab/Grits

20 Francalanza et al.

A Further Examples

We express further examples including manipulation of lists and trees from [28],
along with an encoding of the examples from [31]. All examples shown are type-
checked using Grits, and are available with the tool.6

Natural Number List Example. The following is a simple list that stores the
numbers one and zero. This was omitted from sec. 3.

1 // Provide a list containing cons(1, cons(0, nil))
2 let simpList () : listNat =
3 n1’’ : lin 1 <- new close self;
4 n1’ : nat <- new self.zero <n1’’ >;
5 n1 : nat <- new self.succ <n1’ >; // succ(zero)
6 n0’ : lin 1 <- new close self;
7 n0 : nat <- new self.zero <n0’ >; // zero
8
9 lnil’ : lin 1 <- new close self;

10 lnil : listNat <- new self.nil <lnil’ >;
11 l0’ : nat * listNat <- new send self <n0, lnil >;
12 l0 : listNat <- new self.cons <l0’ >;
13 l1’ : nat * listNat <- new send self <n1, l0 >;
14 self.cons <l1’ >

List Printing. In order to better understand how the data is being manipulated,
we can utilise the printing construct. For instance we can preview the contents
of a natural number list (line 15) by using the printListNat process definition
(line 16) defined below (lines 17-41).

15 prc[a] : listNat = simpList ()
16 prc[b] : lin 1 = printListNat(a)

The printListNat process declaration takes a list and consumes each element
sequentially, printing its contents.

17 let printListNat(l : listNat) : lin 1 =
18 y <- new consumeListNat(l);
19 wait y;
20 close self
21
22 let consumeListNat(l : listNat) : lin 1 =
23 case l (cons <c> => print _cons_;
24 <element , remainingList > <- recv c;
25 elementDone <- new consumeNat(element);
26 wait elementDone;
27 rightDone <- new consumeListNat(remainingList);
28 wait rightDone;
29 close self
30 | nil <c> => print _nil_;
31 wait c; close self
32)
33
34 let consumeNat(n : nat) : lin 1 =
35 case n (zero <c> => print zero; wait c; close self
36 | succ <c> => print succ; consumeNat(c))
37
38 let printNat(n : nat) : lin 1 =
39 y <- new consumeNat(n);
40 wait y;
41 close self

6 https://github.com/gertab/Grits/tree/main/examples (archived: 10.5281/zen-
odo.10732024).

https://github.com/gertab/Grits/tree/main/examples
https://doi.org/10.5281/zenodo.10732024
https://doi.org/10.5281/zenodo.10732024

Implementing a Message-Passing Interpretation of Sax 21

List Append. We illustrate the append function, which concatenates two lists
of binary numbers. Binary numbers (bin) and lists (listBin) are represented
using the following types:

1 type bin = +{b0 : bin , b1 : bin , e : 1}
2 type listBin = +{cons : bin * listBin , nil : 1}

For instance, the number 6 is represented as e b1 b1 b0 (ignoring the +{...}
symbols), and a list containing 6 and 1 is represented as cons(e b1 b1 0,
cons(e b1, nil)). The append function is defined as follows.

3 let append(l1 : listBin , l2 : listBin) : listBin =
4 case l1 (
5 cons <c> =>
6 <x, l1’ > <- recv c;
7 remainingL <- new append(l1’ , l2);
8 reorderedL : bin * listBin <- new (send self <x, remainingL >);
9 self.cons <reorderedL >

10 | nil <c> => wait c;
11 fwd self l2
12)

It works by deconstructing the first list (l1, line 4) and in the case where it is
not empty, then the following binary number is appended to the other list l2
(lines 7-8).

List Reverse. We can also reverse a list as shown in the process definition
reverse.

13 let reverse(l : list) : list =
14 c : 1 <- new close self;
15 nilList : list <- new self.nil <c>;
16 reverse_inner(l, nilList)
17
18 let reverse_inner(l : listBin , accum : listBin) : listBin =
19 case l (cons <p> =>
20 <x, l’ > <- recv p;
21 t : bin * listBin <- new send self <x, accum >;
22 accum2 : listBin <- new self.cons <t>;
23 reverse_inner(l’, accum2)
24 | nil <u> =>
25 wait u;
26 fwd self accum
27)

To reverse a list l, we start by preparing another temporary empty list (line 15)
and call the reverse_inner process definition (line 16) passing the two lists as
parameters. Then, reverse_inner takes the first element from l (line 19), and
appends it to the beginning of the other list (line 22). When the list being reverse
is fully exhausted (line 24), then the temporary list is provided as a result (line
26).

MapReduce. We consider the MapReduce program described in [27] but not
implemented by Sax Tool due to the use of modalities. In addition to the nat
type, we use the treeNat type which defines a tree of natural numbers.

28 type treeNat = lin +{node : treeNat * treeNat , leaf : nat}

22 Francalanza et al.

The function mapreduce takes parameters for reduction (fs), mapping (hs)
and the original tree of natural numbers (t). Note that the names fs and hs
have (an overall) modality of replicable since they will be duplicated and used
multiple times to eventually produce the expected result. This contrasts with
the inputted tree t which is linear – this restriction is enforces that the tree is
traversed exactly once.

29 let mapreduce(fs : lin /\ rep ((nat * nat) -* nat),
30 hs : lin /\ rep (treeNat -* nat),
31 t : treeNat) : nat =
32 case t (
33 node <t’> => <l, r> <- recv t’;
34 <fs’ , fs’’ > <- split fs; // Duplicate fs
35 <fs’’ , fs’’’ > <- split fs’’;
36 <hs’ , hs’’ > <- split hs; // Duplicate hs
37
38 // Traverse the child nodes
39 y1 <- new mapreduce(fs’ , hs’ , l);
40 y2 <- new mapreduce(fs’’ , hs’’ , r);
41
42 // Perform the reduction part
43 p : nat * nat <- new send self <y1, y2 >;
44 fl : ((nat * nat) -* nat) <- new cast fs’’’ <self >;
45 send fl<p, self >
46
47 | leaf <t’> => // Perform the mapping part
48 hl : lin (nat -* nat) <- new cast hs<self >;
49 drop fs;
50 send hl<t’ , self >
51)

Examples From [31]. Furthermore, Grits can verify formal examples presented
in [31], using the Curry-Howard correspondence [4, 38], where session types
represent propositions and processes act as proofs. For instance, we mechanize a
proof demonstrating the distribution of up shifts over implication, as discussed
by Pruiksma and Pfenning [31, Ex. 5]. Formally,

f :↑ml (Al ⊸Bl)⊢P :: (result : (↑ml Al)⊸ (↑ml Bl))

where P is the program representing the proof required. We show that this
holds by defining process definition upDist, which successfully typechecks for
up shifting from linear to multicast (however this works for other modes as
wells).

52 type A = lin 1 // A and B can be any linear type
53 type B = lin 1 * 1
54
55 type before = lin /\ mul (A -* B)
56 type after = (lin /\ mul A) -* (lin /\ mul B)
57
58 let upDist(f : before) : after =
59 <x, y> <- recv self;
60 y’ <- shift self;
61 x’ : A <- new cast x<self >;
62 f’ : A -* B <- new cast f<self >;
63 send f’<x’ ,self >

The remaining examples from [31] are listed below.

Implementing a Message-Passing Interpretation of Sax 23

1 // Example 1
2 // A1 * B1 ⊢ B1 * A1 (showing types only)
3
4 type A1 = mul 1 * 1
5 type B1 = mul 1
6 let eg1(x : A1 * B1) : B1 * A1 =
7 <y, x’ > <- recv x;
8 send self <x’, y>
9

10 // Example 2
11 // +{left : A2, right : B2}, &{left : A2, right : B2} ⊢ A2 * B2
12
13 type A2 = lin 1
14 type B2 = lin 1
15 type lr = +{left : A2, right : B2}
16 type lr’ = &{left : A2, right : B2}
17
18 let eg2(x : lr, y : lr’) : A2 * B2 =
19 case x (
20 left <x’> => y’ : B2 <- new y.right <self >;
21 send self <x’, y’>
22 | right <x’ > => y’ : A2 <- new y.left <self >;
23 send self <y’, x’>
24)
25
26 // Example 3
27 // &{left : A3, right : B3} ⊢ A3 * B3 (modes must admit contraction)
28
29 type A3 = rep 1
30 type B3 = rep 1
31
32 type C3 = &{left : A3, right : B3}
33
34 let eg3(p : C3) : A3 * B3 =
35 q : C3 <- new fwd self p;
36 <p1, p2> <- split q;
37 x : A3 <- new p1.left <self >;
38 y : B3 <- new p2.right <self >;
39 send self <x, y>
40
41 // Example 4
42 // A4 * B4 ⊢ &{left : A4, right : B4} (modes must admit weakening)
43
44 type A4 = aff 1
45 type B4 = aff 1
46
47 let eg4(x : aff A4 * B4) : aff &{left : A4, right : B4} =
48 case self (
49 left <p1> => <y, z> <- recv x;
50 drop z;
51 fwd p1 y
52 | right <p2 > => <y, z> <- recv x;
53 drop y;
54 fwd p2 z
55)
56
57 // Example 5
58 // ↓mk (A5 -* B5) ⊢ ↓mk (A5) -* ↓mk B5 (taking mode k as linear , and m as multicast)
59
60 type A5 = mul 1
61 type B5 = mul 1 * 1
62
63 let eg5(f : mul \/ lin (A5 -* B5)) : (mul \/ lin A5) -* (mul \/ lin B5) =
64 <x, y> <- recv self;
65 w <- shift f;
66 v <- shift x;
67 z : B5 <- new send w<v, self >;
68 cast y<z>

24 Francalanza et al.

69
70 // Example 6
71 // +{left: A6 , right: B6} -* C6 ⊢ &{left: A6 -* C6 , right: B6 -* C6}
72
73 type A6 = 1
74 type B6 = 1
75 type C6 = 1
76
77 type xType = +{left : A6 , right : B6} -* C6
78 type resType = &{left : A6 -* C6, right : B6 -* C6}
79 let eg6(x : xType) : resType =
80 case self (
81 left <ac> => <a, c> <- recv self;
82 ab : +{left : A6 , right : B6} <- new self.left <a>;
83 send x<ab , self >
84 | right <bc > => <b, c> <- recv self;
85 ab : +{left : A6 , right : B6} <- new self.right ;
86 send x<ab , self >
87)
88
89 // Example 6 (reverse direction)
90 // &{left: A6’ -* C6’ , right: B6’ -* C6’} ⊢ +{left: A6’ , right: B6’} -* C6’
91
92 type A6’ = 1
93 type B6’ = 1
94 type C6’ = 1
95
96 type yType’ = &{left : A6’ -* C6’ , right : B6’ -* C6’}
97 type resType’ = +{left : A6’ , right : B6’} -* C6’
98 let eg6reverse(y : yType’) : resType’ =
99 <ab, c> <- recv self;

100 case ab (
101 left <a> => ac : A6’ -* C6’ <- new y.left <self >;
102 send ac<a, c>
103 | right => bc : B6’ -* C6’ <- new y.right <self >;
104 send bc<b, c>
105)
106
107 // Example 7 and 8 revisit previous examples
108
109 // Example 9 (Circuits)
110 // bits , bits ⊢ bits
111
112 type bits = +{b0 : bits , b1 : bits}
113 let nor(x : bits , y : bits) : bits =
114 case x (
115 b0<x’> => case y (
116 b0 <y’> => z’ <- new nor(x’, y’);
117 self.b1<z’ >
118
119 | b1<y’> => z’ <- new nor(x’ , y’);
120 self.b0<z’ >
121)
122 | b1<x’> => case y (
123 b0<y’> => z’ <- new nor(x’, y’);
124 self.b0<z’ >
125 | b1<y’> => z’ <- new nor(x’ , y’);
126 self.b0<z’ >
127)
128)
129
130 let or(x : bits , y : bits) : bits =
131 w <- new nor(x, y);
132 <u, u’> <- split w;
133 nor(u, u’)
134
135 // Example 10 refers to list mapping , discussed earlier

Implementing a Message-Passing Interpretation of Sax 25

Extended Banking Example. The last example that we consider is a modified
version of the banking example from sec. 3.

In this case, the services offered by a hypothetical bank are formalised by
the linear type bankType (lines 1 to 2 below). Two choices are initially offered:
a secure option to perform a transaction (details omitted) and another one for
an unsecure option. An unsecure request forces the interaction to shift into
affine mode (↓al gen_query), offering a less restricted interaction mode, since this
mode only replies to some general queries (gen_query).

1 type bankType = lin &{ secure : ...,
2 unsecure : aff \/ lin gen_query }
3 type gen_query = aff +{ some_query : 1}

The behaviour dictated by the new type bankType is implemented below.
The bank process waits to receive either a secure or unsecure label (line 5). An
unsecure request (line 8) is handled by shifting into affine mode (line 9), before
handling the general query (line 8).

4 let bank() : bankType =
5 case self (
6 secure <s> => ...
7 | unsecure <s> => s’ : aff 1 <- new close self;
8 s’’ : gen_query <- new self.some_query <s’ >;
9 cast self <s’’ >

10)

The execution launched below models a user (user, line 11), who initiates
a linear interaction but promptly cancels it (line 16); this is permitted by the
bankService’s affine mode after performing the shift (line 15).

11 prc[bankService] : bankType = bank()
12 prc[user] : lin 1 =
13 print _unsecure_connection_drop_;
14 b : aff \/ lin gen_query <- new bankService.unsecure <self >;
15 b’ <- shift b; // b’ is now affine
16 drop b’;
17 close self

26 Francalanza et al.

B Type System

Figs. 3 and 4 are the complete typing rules used by our type-checker, Grits.

Γ ⪰m⪰n Γ ⊢P :: (x :Am) Γ ′,x :Am ⊢Q :: (w :Bn)

Γ,Γ ′ ⊢x← new P ;Q :: (w :Bn)
Cut

m∈{a,r} Γ ⊢P :: (w:Bn)

Γ,u:Am ⊢ drop u;P :: (w:Bn)
Drp

m∈{m,r} Γ,x:Am,y:Am ⊢P :: (w:Bn)

Γ,u:Am ⊢ ⟨x,y⟩← split u;P :: (w:Bn)
Spl

u :Am ⊢ fwd w u :: (w :Am)
Id

Σ(p)= y :Am ⊢P :: (x :Bn)

u :Am ⊢ p(w,u) :: (w :Bn)
Call

Fig. 3: Type Rules (for processes with a copy semantics)

· ⊢ close w :: (w :1m)
1R

Γ ⊢P :: (w :An)

Γ,u :1m ⊢wait u;P :: (w :An)
1L

u :Am,v :Bm ⊢ send w⟨u,v⟩ :: (w :Am⊗Bm)
⊗R

Γ,x :Am,y :Bm ⊢P :: (w :Cn)

Γ,u :Am⊗Bm ⊢ ⟨x,y⟩← recv u;P :: (w :Cn)
⊗L

Γ,x :Am ⊢P :: (y :Bm)

Γ ⊢ ⟨x,y⟩← recv w;P :: (w :Am ⊸Bm)
⊸R

u :Am,w :Am ⊸Bm ⊢ send w⟨u,v⟩ :: (v :Bm)
⊸L

l∈L
u :Am

l ⊢w.l⟨u⟩ :: (w :⊕{l :Al}ml∈L)
⊕R

Γ,yl :A
m
l ⊢Pl :: (w :Bn) for each l∈L

Γ,u :⊕{l :Al}ml∈L ⊢ caseu(l⟨yl⟩⇒Pl)l∈L :: (w :Bn)
⊕L

Γ ⊢Pl :: (yl :A
m
l) for each l∈L

Γ ⊢ casew (l⟨yl⟩⇒Pl)l∈L :: (w : &{l :Al}ml∈L)
&R

l∈L
u : &{l :Al}ml∈L ⊢u.l⟨w⟩ :: (w :Am

l)
&L

Γ ⊢P :: (y :An)

Γ ⊢ y← shift w;P :: (w :↑mn An)
↑R

u :↑mn An ⊢ cast u⟨w⟩ :: (w :An)
↑L

u :Am ⊢ cast w⟨u⟩ :: (w :↓mn Am)
↓R

Γ,x :Am ⊢P :: (w :Bo)

Γ,u :↓mn Am ⊢x← shift u;P :: (w :Bo)
↓L

Fig. 4: Type Rules

Implementing a Message-Passing Interpretation of Sax 27

C Dynamics

For completeness, we list all operational semantic rules. Fig. 5 supplements the
dynamic rules introduced in sec. 2. Fig. 6 lists the forwarding reductions used
in our asynchronous interpreter (sec. 4).

Dup prc({a,b}; ι; P) −→
prc({a}; ι; Pσ1), prc({b}; ι; Pσ2),{
prc({cσ1,cσ2}; ι; fwd ι c)

}
c∈fn(P)\{ι}

where P ̸= fwd _ _ and rename(fn(P)\{ι})= ⟨σ1,σ2⟩
Fwd prc({b}; γ; P), prc(N ; ι; fwd ι b), −→ prc(N ; γ; P)

Cut prc({a}; ι; x← new P ;Q) −→ prc({b}; γ; P [γ/x]), prc({a}; ι;Q[b/x])

Drp prc({a}; γ; drop b;Q) −→ prc(∅; ι; fwd ι b), prc({a}; γ;Q)

GrC prc(∅; γ; P), −→ prc(∅; γ; fwd γ a)a∈fn(P)\{γ} where P ̸= fwd _ _
Spl prc({a}; ι; ⟨x,y⟩← split b;Q)−→ prc({c,d}; γ; fwd γ b), prc({a}; ι;Q[c,d/x,y])

Call prc(N ; ι; p(ι,a)) −→ prc(N ; ι; P [ι,a/x,y]) where Σ(p)= y :Am ⊢P :: (x :Bn)

Snd prc({b}; ι; send ι⟨c,d⟩), prc({a}; γ; ⟨x,y⟩← recv b;P) −→ prc({a}; γ; P [c,d/x,y])

Rcv prc({b}; ι; ⟨x,y⟩← recv ι;P), prc({a}; γ; send b⟨c,γ⟩) −→ prc({a}; γ; P [c,γ/x,y])

Sel prc({b}; ι; ι.k⟨c⟩), prc({a}; γ; caseb(l⟨yl⟩⇒Pl)l∈L) −→ prc({a}; γ; Pk [c/yk]) where k∈L
Bra prc({b}; ι; case ι(l⟨yl⟩⇒Pl)l∈L), prc({a}; γ; b.k⟨γ⟩) −→ prc({a}; γ; Pk [γ/yk]) where k∈L
Cst prc({b}; ι; cast ι⟨c⟩), prc({a}; γ; y← shift b;P) −→ prc({a}; γ; P [c/y])

Shf prc({b}; ι; y← shift ι;P), prc({a}; γ; cast b⟨γ⟩) −→ prc({a}; γ; P [γ/y])

Cls prc({b}; ι; close ι), prc({a}; γ; wait b;P) −→ prc({a}; γ; P)

Fig. 5: Operational semantic rules

FwdP prc
(
b; γ; P+), prc

(
N ; ι; fwdp ι b

)
, −→ prc

(
N ; γ; P+)

FwdA prc
(
b; γ; P−), prc

(
N ; ι; fwda ι b

)
, −→ prc

(
N ; γ; P−)

Fig. 6: Rules FwdA/P replace Fwd from fig. 5

28 Francalanza et al.

D Language Grammar of Programs Accepted by Grits

<prog > ::= <statement >*

<statement > ::= type <label > = <type > // labelled session type
| let <label > ([<param >]) : <type > = <term >

// function declaration
| assuming <param > // add name type assumptions
| prc ’[’ <name > ’]’ : <type > = <term >// create processes
| exec <label > () // execute function

<param > ::= <name > : <type > [, <param >] // typed variable names

<type > ::= [<modality >] <type_i > // session type with
// optional modality

<type_i > ::= <label > // session type label
| 1 // unit type
| + { <branch_type > } // internal choice
| & { <branch_type > } // external choice
| <type_i > * <type_i > // send
| <type_i > -* <type_i > // receive
| <modality > /\ <modality > <type_i > // upshift
| <modality > \/ <modality > <type_i > // downshift
| (<type_i >)

<branch_type > ::= <label > : <type_i > [, <branch_type >]
// labelled branches

<modality > ::= r | rep | replicable // replicable mode
| m | mul | multicast // multicast mode
| a | aff | affine // affine mode
| l | lin | linear // linear mode

<term > ::= send <name > ’<’ <name > , <name > ’>’ // send names
| ’<’ <name > , <name > ’>’ <- recv <name > ; <term >

// receive names
| <name > . <label > ’<’ <name > ’>’ // send label
| case <name > (<branches >) // receive label
| <name > [: <type >] <- new <term >; <term > // spawn new process
| <label > ([<names >]) // function call
| fwd <name > <name > // forward name
| ’<’ <name > , <name > ’>’ <- split <name > ; <term > // split name
| close <name > // close name
| wait <name > ; term // wait for name to close
| cast <name > ’<’ <name > ’>’ // send shift
| <name > <- shift <name > ; <term > // receive shift
| (<term >)

<branches > ::= <label > ’<’ <name > ’>’ => <term > [’|’ <branches >]
// term branches

<names > ::= <name > [’,’ <names >] // list of names

<name > ::= ’self ’ // provider channel[s]
| <channel_name > // channel name
| <polarity > <channel_name > // channel with explicit polarity

<polarity > ::= + // positive polarity
| - // negative polarity

Others: - Whitespace is ignored
- <label > is an alpha -numeric combination , typically used to represent

a choice option
- // Single line comments
- /* and multi line comments */

	Implementing a Message-Passing Interpretation of the Semi-Axiomatic Sequent Calculus (Sax)

