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Abstract Runtime enforcement and control system
synthesis are two verification techniques that automate
the process of transforming an erroneous system into a
valid one. As both techniques can modify the behaviour
of a system to prevent erroneous executions, they are
both ideal for ensuring safety. In this paper, we inves-
tigate the interplay between these two techniques and
identify control system synthesis as being the static
counterpart to suppression-based runtime enforcement,
in the context of safety properties.
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1 Introduction

Our increasing reliance on software systems is raising
the demand for ensuring their reliability and correct-
ness. Several verification techniques help facilitate this
task by automating the process of deducing whether the
system under scrutiny (SuS) satisfies a predefined set
of correctness properties. Properties are either verified
pre-deployment (statically), using techniques such as
model checking (MC) [3, 13], or post-deployment (dy-
namically), as per runtime verification (RV) [12, 21, 28].
In both cases, any error discovered during the verifica-
tion serves as guidance for identifying the invalid parts
of the system that require adjustment.

Other post-deployment techniques, such as runtime
enforcement (RE), additionally attempt to automat-
ically transform the invalid system into a valid one.
Runtime enforcement [6, 16, 27, 29] adopts an intrusive
monitoring approach by which every observable action
executed by the SuS is scrutinized and modified as nec-
essary by a monitor at runtime. Monitors in RE may be
described in various ways, such as: transducers [6, 9, 33],
shields [27] and security automata [18, 29, 35]. They
may opt to replace the invalid actions by valid ones, or
completely suppress them, thus rendering them imma-
terial to the environment interacting with the SuS; in
certain cases, monitors can even insert actions that may
directly a↵ect the environment. Di↵erent enforcement
strategies are applied depending on the property that
needs to be enforced.

A great deal of e↵ort [7, 14, 23, 24, 26] has been
devoted to studying the interplay between static and
dynamic techniques, particularly to understand how the
two can be used in unison to minimise their respective
weaknesses. It is well established that runtime verifi-
cation is the dynamic counterpart of model checking,
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which means that a subset of the properties verifiable
using MC can also be verified dynamically via RV. In
fact, multi-pronged verification approaches often use RV
in conjunction with MC. For instance, system verifica-
tion based on MC is often carried out with respect to a
model of the environment in which the studied system
operates. This makes the sole use of model-checking tech-
niques problematic in settings, such as mobile robotics,
where the precise conditions in which systems operate
are often known only at runtime and may change over
time. Here RV can be used to check post-deployment
the environmental conditions used to validate systems
at design time [14]. Sometimes, MC is used to statically
verify the parts of the SuS which cannot be verified dy-
namically (e.g., due to inaccessible code or high impact
on the performance of the SuS), while RV is then used
to verify other parts dynamically in order to minimise
the state explosion problem inherent to MC.

A natural question to ask is which technique can be
considered as the static counterpart to runtime enforce-
ment, i.e., a technique that can statically achieve the
same (or equivalent) results as per runtime enforcement.
Identifying such a technique is quite desirable as it would
allow for properties to be enforced statically when dy-
namic verification is not ideal, e.g., when the monitor’s
runtime overheads are infeasible, and vice versa e.g., to
mitigate state explosions during static analysis. Such a
technique therefore enables the possibility of adopting
a multi-pronged enforcement approach that is similar
to the one used for verification with RV and MC, but
from an enforcement perspective. One promising static
technique that has several aspects in common with run-
time enforcement is controlled system synthesis (CSS)
[10, 15, 25, 31]. This approach analyses the state space
of the SuS and reformulates it pre-deployment to remove
the system’s ability of executing erroneous behaviour.
As a result, a restricted (yet valid) version of the SuS is
produced; this is known as a controlled system.

The primary aim of both RE and CSS is to force
the resulting monitored/controlled system to adhere to
the respective property � this is known as soundness
in RE and validity in CSS. Further guarantees are also
generally required to ensure minimal disruption to valid
systems � this is ensured via transparency in RE and
maximal permissiveness in CSS. As both techniques may
adjust systems by omitting their invalid behaviours, they
are ideal for ensuring safety. These observations, along
with other commonalities, hint at the existence of a re-
lationship between runtime enforcement and controlled
system synthesis, in the context of safety properties.

In this paper we conduct a preliminary investigation
on the interplay between the above mentioned two tech-
niques with the aim of establishing a static counterpart

for runtime enforcement. We intend to identify a set
of properties that can be enforced either dynamically,
via runtime enforcement, or statically via controlled
system synthesis. In this first attempt, we however limit
ourselves to study this relationship in the context of
safety properties. As a vehicle for this comparison, we
choose the recent work on CSS by van Hulst et al. [25],
and compare it to our previous work, presented in [6],
on enforcing safety properties via action suppressions.
We chose these two bodies of work as they are accu-
rate representations of the two techniques. Moreover,
they share a number of commonalities including their
choice of specification language, modelling of systems,
etc. To further simplify our comparison, we formulate
both techniques in a core common setting and show that
there are subtle di↵erences between them even in that
scenario. Specifically, we identify a common core within
the work presented in [6, 25] by:

– working with respect to the Safe Hennessy Milner
Logic with invariance (sHMLinv), that is, the inter-
section of the logics used by both works, namely, the
Safe Hennessy Milner Logic with recursion (sHML)
in [6] and the Hennessy Milner Logic with invariance
and reachability (HML

reach
inv ) in [25],

– removing constructs and aspects that are supported
by one technique and not by the other, and by

– taking into account the assumptions considered in
both bodies of work.

To our knowledge, no one has yet attempted to
identify a static counterpart to RE, and an insightful
comparison of RE and CSS has not yet been conducted.
As part of our investigation we o↵er the following con-
tributions:

(i) We prove that the monitored system obtained from
instrumenting a suppression monitor derived from
a formula, and the controlled version of the same
system (by the same formula) are trace (language)
equivalent, that is, they can execute the same set of
traces, Theorem 2.

(ii) When restricted to safety properties, controlled sys-
tem synthesis is the static counterpart (Definition 3)
to runtime enforcement, Theorem 3.

(iii) In spite of (i) and (ii), both of the obtained systems
need not be observationally equivalent, Theorem 4.

Although (i) su�ces to deduce (ii) since it is well known
that trace equivalent systems satisfy the exact same set
of safety properties, Theorem 1, (iii) entails that a very
powerful external observer can, at least in principle, tell
the di↵erence between these two resultant systems [1].

Structure of the paper. This article is an extended ver-
sion of [8]; it includes improved and more expanded
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explanations and examples, along with the complete
proofs for our theorems.

The rest of the paper is structured as follows. Sec-
tion 2 provides the necessary preliminary material de-
scribing how we model systems as labelled transition
systems and properties via the chosen logic. In Sec-
tion 3 we give an overview of the simplified versions
of the enforcement model presented in [6] and the con-
trolled system synthesis rules of [25]. In Section 4 we
then present our first set of contributions consisting of
a mapping function that derives enforcement monitors
from logic formulas, and the proof that the obtained
monitored and controlled versions of a given system
are trace equivalent. Section 5 then presents a deeper
comparison of the di↵erences and similarities between
the two models, followed by our second contribution
which disproves the observational equivalence of the two
techniques. This allows us to establish that controlled
system synthesis is the static counterpart to enforcement
when it comes to safety properties. Section 6 overviews
related work, and Section 7 concludes.

2 Preliminaries

The Model: We assume systems described as labelled
transition systems (LTSs), which are triples hSys, (Act[
{⌧}),!i defining a set of system states, s, r, q 2Sys, a
finite set of observable actions, ↵,� 2Act, and a dis-
tinguished silent action ⌧ /2Act, along with a transi-
tion relation, �! ✓ (Sys⇥Act [ {⌧}⇥ Sys). We let

µ2Act[ {⌧} and write s
µ��! r in lieu of (s, µ, r) 2!.

We use s
↵
=) r to denote weak transitions representing

s(
⌧�!)⇤· ↵��! r and refer to r as an ↵-derivative of s.

Traces t, u 2 Act
⇤ range over (finite) sequences of ob-

servable actions, and we write s
t
=) r for a sequence of

weak transitions s
↵1==) . . .

↵n==) r where t = ↵1, . . . ,↵n

for some n � 0; when n = 0, t is the empty trace "
and s

"
=) r means s

⌧�!*r. For each µ2Act[ {⌧}, the
notation µ̂ stands for " if µ= ⌧ and for µ otherwise.
We write traces(s) for the set of traces executable from

system state s, that is, t 2 traces(s) i↵ s
t
=) r for some

r. We use the syntax of the regular fragment of CCS [30]
to concisely describe LTSs in our examples. We also as-
sume the classic notions for trace (language) equivalence
and observational equivalence, that is, weak bisimilarity
[30, 34].

Definition 1 (Trace Equivalence) Two LTS system
states s and r are trace equivalent i↵ they produce the
same set of traces, i.e., traces(s) = traces(r).

Definition 2 (Observational Equivalence) A rela-
tion R over a set of system states is a weak bisimulation

Syntax

', 2 sHML ::= tt (truth) | ↵ (falsehood)

| '^ (conjunction) | [↵]' (necessity)

| maxX.' (greatest fp.) | X (fp. variable)

Semantics

Jtt, ⇢K def
= Sys J↵, ⇢K def

= ; JX, ⇢K def
= ⇢(X)

J [↵]', ⇢K def
=

�
s | 8r · s if s

↵
=) r then r 2 J', ⇢K

 

J'^ , ⇢K def
= J', ⇢K \ J , ⇢K

JmaxX.', ⇢K def
=

S�
S | S ✓ J', ⇢[X 7! S]K

 

We also encode ⇤' as maxX.'^
V

�2Act
[�]X where X is a

fresh variable.

Fig. 1 The syntax and semantics for sHML.

i↵ whenever (s, r) 2 R the following transfer properties
are satisfied, for every action µ:

– s
µ��! s0 implies there exists a transition r

µ̂
=) r0

such that (s0, r0) 2 R; and

– r
µ��! r0 implies there exists a transition s

µ̂
=) s0

such that (s0, r0) 2 R.

Two system states s and r are observationally equivalent,
denoted by s ⇡ r, i↵ there exists a weak bisimulation
that relates them.

The Logic: The safety logic sHML [2, 3] is defined
as the set of formulas generated by the grammar of
Figure 1. It assumes a countably infinite set of logical
variables X,Y 2LVar and provides the standard con-
structs of truth, tt, falsehood, ↵, and conjunctions, '^ .
As a shorthand, we occasionally denote conjunctions
as

V
i2I 'i, where I is a finite set of indices, and when

I = ;,
V

i2; 'i stands for tt. The logic is also equipped
with the necessity (universal) modality, [↵]', and allows
for defining recursive properties using greatest fixpoints,
maxX.', which bind free occurrences of X in '. We
additionally encode the invariance operator, ⇤', requir-
ing ' to be satisfied by every reachable system state, as
the recursive property, maxX.'^

V
�2Act

[�]X, where
X is not free in '.

Formulas in sHML are interpreted over the system
powerset domain where S2P(Sys). The semantic def-
inition of Figure 1, J', ⇢K, is given for both open and
closed formulas. It employs a valuation from logical vari-
ables to sets of states, ⇢ 2 (LVar ! P(Sys)), which
permits an inductive definition on the structure of the
formulas. In that definition, ⇢0 = ⇢[X 7! S] denotes
the valuation where ⇢0(X)=S and ⇢0(Y )= ⇢(Y ) for all
other Y 6= X. We assume closed formulas, i.e., without
free logical variables, and write J'K in lieu of J', ⇢K since
the interpretation of a closed formula ' is independent
of the valuation ⇢. A system (state) s satisfies formula
' whenever s2 J'K.
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', 2 sHMLinv ::= tt | ↵ | '^ | [↵]' | ⇤'

Fig. 2 The syntax for sHMLinv.

Example 1 Consider two systems (a good system, sg,
and a bad one, sb) implementing a server that repeatedly
accepts requests, answers them in response, and logs
the serviced request. It also terminates upon accepting
a close request. Whereas sg outputs a single answer
(ans) for every request (req), sb occasionally produces
multiple answers for a given request (see the underlined
branch in the description of sb below). Both systems
terminate with cls.

sg = recx.req.
�
ans.log.x+ cls.nil

�

sb = req.recx.(ans.(ans.x+ log.req.x) + cls.nil)

We can specify that a request followed by two consecu-
tive answers indicates invalid behaviour via the sHML

formula '0.

'0
def

= ⇤ [ans][ans]↵
def

= maxX.[ans][ans]↵^
V

↵2Act
[↵]X

where Act
def

= {ans, req, cls}. The above formula defines
an invariant property requiring that, at every reach-
able state, whenever the system produces an answer, it
cannot produce a subsequent answer i.e., [ans]↵. Using
the semantics in Figure 1, one can check that sg2J'0K,
whereas sb 62J'0K since it exhibits the violating trace

sb
req��! · ans���! · ans���! . . ., amongst others.

3 Controlled System Synthesis and Suppression
Enforcement

We present the simplified models for suppression en-
forcement and controlled system synthesis adapted from
[6] and [25], respectively. Both models describe the com-
posite behaviour attained by the respective techniques.
In suppression enforcement, the composite behaviour
describes the observable behaviour obtained when the
monitor and the SuS interact at runtime, while in con-
trolled system synthesis, it describes the structure of
the resulting controlled system obtained statically prior
to deployment.

To enable our comparison between both approaches,
we standardise the logics used in both works and restrict
ourselves to sHMLinv, defined in Figure 2. sHMLinv is
a strict subset of sHML which results from the intersec-
tion of sHML, used for suppression enforcement in [6],
and HML

reach
inv , used for controlled system synthesis in

[25].

Although the work on CSS in [25] assumes that sys-
tems do not perform internal ⌧ actions and that output
labels may be associated to system states, the work on
RE assumes the converse. We therefore equalise the sys-
tem models by working with respect to LTSs that do not
associate labels to states, and do not perform ⌧ actions.
We however assume that the resulting monitored and
controlled systems may still perform ⌧ actions.

Since we do not focus on state-based properties, the
removal of state labels is not a major limitation as we
are only forgoing additional state information from the
SuS. Although the removal of ⌧ actions requires the SuS
to be fully observable, this does not impose significant
drawbacks as the work on CSS can easily be extended
to allow such actions.

Despite the fact that controlled system synthesis dif-
ferentiates between system actions that can be removed
(controllable) and those which cannot (uncontrollable),
the work on enforcement does not. This is also not a
major limitation since enforcement models can easily be
adapted to make such a distinction. However, in our first
attempt at a comparison, we opt to simplify the models
as much as possible, and so to enable our comparison we
assume that every system action is controllable and can
be removed and suppressed by the respective techniques.

Finally, since we do not liberally introduce constructs
that are not present in the original models of [6, 25],
the simplified models are just restricted versions of the
original ones. Hence, the results proven with respect
to these simplified models should either apply to the
original ones or can be extended easily to the more
general setting.

3.1 A Model for Suppression Enforcement

We use a simplified version of the operational model of
enforcement presented in [6], which uses the transducers
m,n 2 Trn defined in Figure 3. Transducers define
transformation pairs, ��, µ�, which intuitively state that
� actions performed by the system should be trans-
formed into µ actions. A transformation pair thus acts
as a function that takes as input a system action ↵ and
transforms it into µ whenever ↵ = �. As a shorthand,
we sometimes write ��� in lieu of ��,�� to signify that
actions equal to � will remain unmodified.

The transition rules in Figure 3 yield an LTS with la-
bels of the form ↵Iµ. Intuitively, a transition m

↵Iµ���! n
denotes the fact that the transducer in state m trans-
forms the visible action ↵ (produced by the system) into
action µ and transitions into state n. In this sense, the
transducer action ↵I↵ denotes the identity transforma-
tion, while ↵I⌧ encodes the suppression transformation
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Syntax

m,n 2 Trn ::= �↵, µ�.m (where µ2 {↵, ⌧})
| P

i2I mi | recx.m | x

Dynamics

eSel
mj

↵Iµ����! nj

P
i2I mi

↵Iµ����! nj

j2I

eRec
m{recx.m/x} ↵Iµ���! n

recx.m
↵Iµ���! n

eTrn

�↵, µ�.m ↵Iµ����! m

Instrumentation

iTrn
s

↵�! s0 m
↵Iµ���! n

m[s]
µ�! n[s0]

iDef
s

↵�! s0 m 6↵�!
m[s]

↵�! id[s0]

where id
def
= recx.

X

�2Act

���.x and m 6↵�! def
= @m0, µ · m ↵Iµ����!

m0.

Fig. 3 A model for transducers.

of action ↵. The key transition rule is eTrn. It states
that the transformation-prefix transducer �↵, µ�.m can
transform action ↵ into µ, as long as the specifying
action ↵ is the same as the action performed by the
system. In this case, the transformed action is µ, and
the transducer state that is reached is m.

The remaining rules eSel and eRec respectively
define the standard selection and recursion operations.
A sum of transducers

P
i2I mi (where I is a finite set)

can reduce via eSel to some nj over some action ↵Iµ,
whenever there exists a transducer mj in the summation
that reduces to nj over the same action. Rule eRec

enables a recursion transducer recx.m to reduce to some
n when its unfolded instance m{recx.m/x} reduces to
n as well. We encode the identity monitor, id, and the
suppression monitor, sup, as recx.

P
�2Act

���.x and
recx.

P
�2Act

��, ⌧ �.x respectively, i.e., as recursive mon-
itors respectively defining an identity and suppression
transformation for every possible action � 2 Act that
can be performed by the system.

Figure 3 also describes an instrumentation relation,
which composes the behaviour of the SuS s with the
transformations of a transducer monitor m that agrees
with the (observable) actions Act of s. The term m[s]
thus denotes the resulting monitored system whose tran-
sitions are labelled with actions in Act[ {⌧} from the
system’s LTS. Concretely, rule iTrn states that when
a system s transitions with an observable action ↵ to
s0 and the transducer m can transform this action into
µ and transition to n, the instrumented system m[s]
transitions with action µ to n[s0]. Rule iDef is anal-
ogous to standard monitor instrumentation rules for

ms[sb] ms[s1b]

m0
s[s

2
b]ms[nil]

ms[s3b] sup[nil] sup[s3b]

sup[s1b] sup[s2b]

req

cls
⌧

⌧ ⌧

⌧
⌧

⌧

ans log

req

where sb
def
= req.s1b s1b

def
= ans.s2b + cls.nil

s2b
def
= ans.s1b + log.s3b s3b

def
= req.s1b.

Fig. 4 The runtime execution graph of the monitored system.

premature termination of the transducer [5, 19, 20, 22],
and accounts for underspecification of transformations.
Thus, if a system s transitions with an observable action
↵ to s0, and the transducer m does not specify how to
transform that action (m 6↵�!), the system is still allowed
to transition while the transducer defaults to acting like
the identity monitor, id, from that point onwards.

Example 2 Consider the suppression transducer ms be-
low:

ms
def

= recx.(�ans�.m0
s + �req�.x+ �cls�.x+ �log�.x

m0
s

def

= �ans, ⌧ �.sup+ �req�.x+ �cls�.x+ �log�.x

where sup recursively suppresses every action � 2Act

that can be performed by the system from that point
onwards. When instrumented with system sb from Ex-
ample 1, the monitor prevents the monitored system
ms[sb] from answering twice in a row by suppressing
the second answer and every subsequent visible action:

ms[sb]
req.ans
====) · ⌧�! sup[sb].

When equipped with this dynamic action suppression
mechanism, the resulting monitored systemms[sb] never
violates formula '0 at runtime � this is illustrated by
the runtime execution graph in Figure 4.

3.2 Synthesising Controlled Systems

Figure 5 presents a synthesis function that takes a sys-
tem hSys,Act,!i and a formula '2 sHML and con-
structs a controlled version of the system that satis-
fies the formula. The new system is synthesised in two
stages. In the first stage, a new transition relation 7�!✓
(Sys⇥ sHML)⇥Act⇥ (Sys⇥ sHML) is constructed
over the state-formula product space, (Sys ⇥ sHML).
Intuitively, a state (s,') represents a version of state s
that is controlled according to the constraints required
by '. A µ-transition (s,')

µ��! (s0,'0) represents a
reduction from one controlled state to another. The
transition relation associates a sHML formula to the
initial system state and defines how this changes when
the system transitions to other subsequent states. The
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Static Composition

cBool
s

↵��! s0 b 2 {tt,↵}
(s, b)

↵7��! (s0, b)

cNec1
s

↵��! s0

(s, [↵]')
↵7��! (s0,')

cNec2
s

���! s0 � 6= ↵

(s, [↵]')
�7��! (s0, tt)

cAnd
(s,')

↵7��! (s0,'0) (s, )
↵7��! (s0, 0)

(s,'^ ) ↵7��! (s0,min('0^ 0))

cMax
(s,'{maxX.'/X}) ↵7��! (s0, )

(s,maxX.')
↵7��! (s0,min( ))

Synthesizability Test

 2 {tt, X, [↵]'}
(s,') #  

(s,') #  1 (s,') #  2

(s,') # ( 1^ 2)

(s,') #  
(s,') # maxX. 

Invalid Transition Removal

cTr
(s,')

↵7��! (s0,'0) (s0,'0) # '0

(s,')
↵�! (s0,'0)

Fig. 5 The Controlled System Synthesis.

composite behaviour of the formula and the system is
statically computed using the first five rules in Figure 5.

cBool adds a transition from (s, b) when the for-
mula is b2

�
tt,↵

 
if that transition is possible in s.

Rules cNec1 and cNec2 add a transition from [↵]'
to ' when s has a transition over ↵, and to tt if it
reduces over � 6= ↵. cAnd adds a transition for con-
junct formulas, '^ , when both formulas can reduce
independently to some '0 and  0, with the formula of
the end state of the new transition being min('0^ 0).
Finally, cMax adds a fixpoint maxX.' transition to
min( ), when its unfolding can reduce to  . In both
cAnd and cMax, min(') stands for a minimal logically
equivalent formula of '. This is an oversimplification
of the syntactic manipulation techniques used in [25]
to avoid synthesising an infinite LTS due to invariant
formulas and conjunctions, see [25] for more details.

Example 3 Formulas '0^tt, '0^↵ and '^ ^ are logi-
cally equivalent to (and can thus be minimized into) '0,
↵ and '^ respectively.

Instead of defining a rule for fixpoints, the authors
of [25] define a synthesis rule directly for invariance
stating that when (s,')

↵7��! (s0,'0), then (s,⇤')
↵7��!

(s0,min(⇤'^'0)). We, however, opted to generalize this
rule to fixpoints to simplify our comparison, while still
limiting ourselves to sHMLinv formulas. This is possible
since by encoding ⇤' as maxX.'^

V
�2Act

[�]X, we get

that (s,maxX.'^
V

�2Act
[�]X)

↵7��! (s0,min( )) when

(s,')
↵7��!(s0,'0) where  

def

=(maxX.'^
V

�2Act
[�]X)^'0

and min( ) is the encoded version of min(⇤'^'0).
The second stage of the synthesis involves using rule

cTr to remove invalid transitions that lead to violating
states; this yields the required transition function for the
controlled system. This rule relies on the synthesizability
test rules to tell whether a controlled state, (s,'), is valid
or not. Intuitively, the test rules fail whenever the current
formula ' is semantically equivalent to ↵, e.g., formulas
maxX.([↵]X^↵) and '^↵ both fail the synthesizability
test rules as they are equivalent to ↵. Concretely, the
test is vacuously satisfied by truth, tt, logical variables,
X, and guarded formulas, [↵]', as none of them are
logically equivalent to ↵. Conjunct formulas,  1^ 2,
pass the test when both  1 and  2 pass independently.
A fixpoint, maxX.'0, is synthesisable if '0 passes the
test.

Transitions that lead to a state that fails the test are
therefore removed, and transitions outgoing from failing
states become redundant as they are unreachable. The
resulting transition function is then used to construct
the controlled LTS h(Sys⇥ sHMLinv),Act,!i.

Example 4 From '0 and sb of Example 1 we can syn-
thesise a controlled system in two stages. In the first
stage we compose them together using the composition
rules of Figure 5. We start by generating the composite
transition (sb,'0)

req7��! (s1b,'0) via rules cMax and

cNec since sb
req��! s1b, and keep on applying the re-

spective rules to the rest of sb’s transitions until we
obtain the LTS of Figure 6. The (grey) ans transition
leading to the test failing state, (sb,↵) 6#, is then re-
moved in the second stage along with its outgoing (grey)
transitions, therefore generating the required (black)
controlled system.

4 Establishing a static counterpart to
enforcement

To be able to establish whether CSS is a static counter-
part to suppression enforcement, we must first formalise
the meaning of a “static counterpart”. We thus define
it as Definition 3.

Definition 3 (Static Counterpart) A static veri-
fication technique S is the static counterpart of sup-
pression enforcement (in the context of safety prop-
erties) when, for every LTS hSys,Act,!i, formula
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(sb,'0) (s1b,'0) (s3b,'0) (s2b,↵)

(nil,'0) (s2b,'0^[ans]↵) (s1b,↵)

(s3b,↵)

(nil,↵)

req

cls log

req

ans

ans cls

ans

log

reqans

Fig. 6 The LTS obtained from controlling sb via '5.

'2 sHMLinv and s 2 Sys, there exists a transducer
m so that m[s] 2 J'K i↵ S(s) 2 J'K (where S(s) is
a statically reformulated version of s obtained from
applying S).

Determining that CSS is the static counterpart of
suppression enforcement (as stated by Definition 3) is
inherently di�cult as it requires showing that every
sHMLinv formula (of which there is an infinite amount)
can be enforced using both techniques. Despite this, Ex-
amples 2 and 4 already provide the intuition that there
exists some level of correspondence between these two
techniques. In fact, from the monitored execution graph
of Figure 4 and the controlled LTS in Figure 6 one can
notice that they both execute the same set of traces,
and are therefore trace equivalent. Since trace equiva-
lent systems satisfy the same set of safety properties
(Theorem 1), establishing trace equivalence su�ces to
conclude that the controlled LTS is statically achieving
the same result obtained dynamically by the monitored
one, and that it is therefore its static counterpart.

We thus begin by showing that trace equivalent
systems satisfy the same set of safety properties. As the
(recursion-free) subset of sHML characterises regular
safety properties [22], this means that systems sharing
the same traces also satisfy the same sHML formulas.

Theorem 1 Let s and r be system states in an LTS.
Then traces(s) = traces(r) i↵ s and r satisfy exactly the
same sHML formulas.

The proof for this theorem we present relies on the
work on detection (runtime verification) monitors by
Francalanza et al. in [22]. Detection monitors d in [22]
can reject a trace t at runtime by issuing the verdict no
whenever they detect that an sHML formula has been

violated by t, i.e., d
t
=) no. In respect to these detection

monitors, Francalanza et al. prove the following results.

– Detection Soundness: For every sHML formula

', system s, trace t and detection monitor d, if s
t
=)

and d
t
=) no then s /2 J'K.

– Detection Completeness: For every sHML for-
mula ', system s, if s /2 J'K then there exists a

trace t and a detection monitor d such that s
t
=)

and d
t
=) no.

Detection soundness states that if a system state s
executes a trace t that gets rejected by a detection

monitor d, then s violates '. Completeness states the
converse. Using this framework we can now easily prove
Theorem 1 as follows.

Proof for Theorem 1. Assume that

traces(s) ✓ traces(r) and that (1)

s /2 J'K. (2)

Knowing (2) and Detection Completeness from [22],
we can infer that there exists a trace t, and detection
monitor d, such that when s executes t, d rejects it for

being invalid, i.e., d
t
=) no. Hence, since from (1) we

know that the invalid trace t can also be executed by r,
by Detection Soundness from [22] we can also conclude
that r /2 J'K as required, and we are done.

Hence, since trace equivalent systems satisfy the
same set of safety properties (Theorem 1), it su�ces to
conclude that the controlled LTS can produce the same
set of traces as that generated by a monitored one at
runtime.

Theorem 2 (Trace Equivalence) For every formula
' 2 sHMLinv, there exists a monitor m such that for
every s2Sys, traces(m[s]) = traces((s,')).

The existential quantification on the monitor m in
Theorem 2 entails the need of using some sort of mapping
that maps sHMLinv formulas to suppression monitors.
To be able to prove this result, we thus define a function
that maps sHMLinv formulas to enforcement trans-
ducers. We reduce the complexity of this mapping by
defining it over the normalised sHML formulas instead.

Definition 4 (sHML normal form) The set of nor-
malised sHML formulas is defined as:

', 2 sHMLnf ::= tt | ↵ |
V

i2I [↵i]'i

| X | maxX.'.

In addition, a normalised sHML formula ' must satisfy
the following conditions:

1. In each subformula of ' of the form
V

i2I [↵i]'i, the

↵i’s are pairwise di↵erent, denoted as #i2I ↵i, i.e.,
8i, j 2 I · if i 6= j then ↵i 6= ↵j .

2. For every maxX.' we have X 2 fv(').
3. Every logical variable is guarded by a modal necessity.

8



In previous work [4, 6] we proved that, despite be-
ing a syntactic subset of sHML, sHMLnf is semanti-
cally equivalent to sHML. Hence, since sHMLinv is a
(strict) subset of sHML, for every sHMLinv formula
we can always find an equivalent sHMLnf formula. This
means that by defining our mapping function in terms
of sHMLnf, we can still map every formula in sHMLinv

to the respective monitor.
We proceed to define our mapping function over

normalised sHML formulas.

Definition 5 We define our mapping L� M : sHMLnf 7!Trn

inductively as:

LX M def

= x L tt M def

= id L↵ M def

= sup

LmaxX.' M def

= recx.L' M L
^

i2 I

[↵i]'i M
def

=
X

i2I

mi

where mi
def

=

⇢
�↵i,↵i�.L'i M if 'i 6=↵
�↵i, ⌧ �.L↵ M otherwise

The function is compositional. It assumes a bijec-
tive mapping between fixpoint variables and monitor
recursion variables and converts logical variables X ac-
cordingly, whereas maximal fixpoints, maxX.', are con-
verted into the corresponding recursive monitor. The
function also converts truth and falsehood formulas, tt
and ↵, into the identity monitor id and the suppres-
sion monitor sup respectively. Normalized conjunctions,V

i2 I [↵i]'i, are mapped into a summation of monitors,P
i2I mi, where every branch mi can be either prefixed

by an identity transformation when 'i 6= ↵, or by a
suppression transformation otherwise.

Notice that the requirement that 'i 6= ↵ in Defi-
nition 5 is in some sense analogous to the pruning of
transitions applied by the CSS rule cTr of Figure 5 to
retain the valid transitions only. In this mapping func-
tion, this requirement is essential to ensure that only
the actions that do not lead to violations of the input
formula remain unsuppressed by the resulting monitor.

Example 5 Recall formula '0 from Example 1 which
can be normalised as:

'0
def

= maxX.[ans]'0
0^[req]X^[log]X^[cls]X

'0
0

def

= [ans]↵^[req]X^[log]X^[cls]X.

Using the mapping function defined in Definition 5, we
generate monitor

L'0 M = recx.�ans�.L'0
0 M + �req�.x+ �log�.x+ �cls�.x

L'0
0 M = �ans, ⌧ �.sup+ �req�.x+ �log�.x+ �cls�.x

which is identical to ms from Example 2.

With this mapping function in hand, we are able to
prove Theorem 2 as a corollary of Proposition 1.

Proposition 1 For every LTS hSys,Act,!i, sHMLnf

formula ', s 2 Sys and trace t, it holds that t 2
traces(m[s]) i↵ t 2 traces((s,')) where L' M = m.

In our proof we rely on Lemma 1.

Lemma 1 For every system s and r, sHMLnf formula

' and action ↵, if L' M[s] ↵
=) r then L' M[s] ↵��! r.

The proof for this lemma is provided after that of Propo-
sition 1. We now proceed to prove the if and only-if
cases separately as follows.

Proof for the only-if case. We proceed by induction on
the length of t.

Case t = ". This case holds vacuously since the
empty trace can be executed by every system, that is,
" 2 traces((s,')) as required.

Case t = ↵t0. Assume that ↵t0 2 traces(L' M[s]) and
so by the definition of traces we know that there exists
a system r such that

t0 2 traces(r) (3)

and that L' M[s] ↵
=) r. Hence, by Lemma 1 we get that

L' M[s] ↵��! r. (4)

We now proceed by case analysis on '.

– ' 2 {X,↵}: These cases do not apply since they
contradict assumption (4), namely since @m · LX M =
m, and since 8t 2 Act · L↵ M[s] 6 t=) where L↵ M = sup.

– ' = tt: Since L tt M = id, by rule iTrn, from (4) we get
that

s
↵��! s0 (5)

and that r = id[s0] = L tt M[s0] which in conjunction
with (3) and the inductive hypothesis we can deduce
that

t0 2 traces((s0, tt)). (6)

Since ' = tt and knowing (5) we can synthesise the
controlled transition (s, tt)

↵��! (s0, tt) so that from
(6) we conclude that ↵t0 2 traces((s, tt)) as required.

– ' =
V

i2I [↵i]'i: Since L
V

i2I [↵i]'i M synthesises the

monitor
⇣X

i2I

⇢
�↵i,↵i�.L'i M if 'i 6= ↵
�↵i, ⌧ �.L↵ M otherwise

⌘
, we must

explore the instrumentation rules that permit for the
↵-reduction in (4).
– iTrn: By applying rule iTrn to (4) we have that

s
↵��! s0 (7)

r = m[s0] (8)
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and that
⇣X

i2I

⇢
�↵i,↵i�.L'i M if 'i 6= ↵
�↵i, ⌧ �.L↵ M otherwise

⌘
↵I↵����!

m so that by rules eSel and eTrn we know that

9j 2 I · ↵j = ↵ (9)

m = L'j M (where 'j 6= ↵). (10)

Knowing (7), (9) and that 'j 6= ↵ we can synthesise
the controlled transition

(s, [↵j ]'j)
↵7��! (s0,'j). (11)

Moreover, since the conjunct modal necessities are
pairwise disjoint, from (9) we infer that for every
i 2 I \ {j}, ↵i 6= ↵ and so we can synthesise the
controlled transition (s, [↵i]'i)

↵7��! (s0, tt) which
in conjunction with (11) can be synthesised as the
transition

(s,
V

i2I [↵i]'i)
↵��! (s0,'j) (12)

since min('j^
V

i2I\{j} tt) = 'j . Finally, since by
(3), (8), (10) and the inductive hypothesis we have
that t0 2 traces((s0,'j)), from (12) we conclude that
↵t0 2 traces((s,

V
i2I [↵i]'i)) as required.

– iDef: By rule iDef we get that

s
↵��! s0 (13)

r = id[s0] (14)

and that
⇣X

i2I

⇢
�↵i,↵i�.L'i M if 'i 6= ↵
�↵i, ⌧ �.L↵ M otherwise

⌘
6↵��! from

which we can infer that for every i 2 I, ↵i 6= ↵. With
this result, from (13) we can thus synthesise the con-
trolled transition (s,

V
i2I [↵i]'i)

↵��! (s0, tt) and so
since L tt M = id and by (3), (14) and the inductive
hypothesis we have that t0 2 traces((s0, tt)). Hence,
we can conclude that ↵t0 2 traces((s,

V
i2I [↵i]'i))

as required.

– ' = maxX.'0: Since X 2 fv('0) we can deduce that
'0 /2 {tt,↵}, and also that '0 6= X since logical vari-
ables are required to be guarded in sHMLnf. We can
thus infer that '0 adheres to a specific structure, that
is, maxY0...Yn.

V
i2I [↵i]'i (where maxY0...Yn. is an

arbitrary number of fixpoint declarations, possibly
none). Hence, since from (4) we can also infer that
LmaxX.maxY0...Yn.

V
i2I [↵i]'i M[s]

↵��! r, and since
fixpoint unfolding preserves semantics, we get that

L
V

i2I [↵i]'i{..} M[s] ↵��! r

where {..} def

= {maxXY0...Yn.
V

i2I [↵i]'i/X, . . .} (15)

After reaching the point where we know (15), the
proof proceeds as per the previous case (i.e., when ' =V

i2I [↵i]'i). We thus skip this part of the proof and

simply deduce that ↵t0 2 traces((s,
V

i2I [↵i]'i{..})).
Hence, since unfolded recursive formulas are equiva-
lent to their folded versions, and since '0 is defined
as maxY0...Yn.

V
i2I [↵i]'i, we can thus deduce that

↵t0 2 traces((s,maxX.'0)) as required, and so we are
done.

Proof for the if case. We again proceed by induction on
the structure of t.

Case t = ". This case holds vacuously since " 2
traces(L' M[s]) as required.

Case t = ↵t0. Assume that ↵t0 2 traces((s,')) and so
by the definition of traces we know that there exists a
system r such that

(s,')
↵��! r (16)

t0 2 traces(r). (17)

We proceed by case analysis on '.

– ' 2 {↵, X}: These cases do not apply because state
(s,') is invalid.

– ' = tt: Since (s, tt)
↵��! (s0, tt) this case holds trivially

since r = (s0, tt) and so by (17) and the inductive
hypothesis we get that t0 2 traces(L tt M[s0]) and since
L tt M = id, by rules iTrn and eTrn we have that
L tt M[s] ↵��! L tt M[s0] which allows us to conclude that
↵t0 2 traces(L tt M[s]).

– ' =
V

i2I [↵i]'i and #i2I ↵i: In this case we have
that

(s,
V

i2I [↵i]'i)
↵7��! r (18)

9 · r = (s0,min( )) (19)

and so since the branches of the conjunction are dis-
joint, we only need to further investigate the following
cases:
– 8i2 I · ↵i 6=↵: Hence, from (18) we can infer that

for every i 2 I we have that (s, [↵i]'i)
↵7��! (s0, tt)

and that

s
↵��! s0 (20)

min( ) = tt (since  =
V

i2I tt). (21)

Therefore, as we know (20) and that for every i 2 I
then ↵i 6= ↵, by rules eTrn and eSel we can infer

that
⇣X

i2I

⇢
�↵i,↵i�.L'i M if 'i 6= ↵
�↵i, ⌧ �.L↵ M otherwise

⌘
6↵��! and so

by the definition of L� M and rule iDef we conclude
that

L
V

i2I [↵i]'i M[s]
↵��! L tt M[s0]. (22)
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Finally, from (17), (19), (21) and by the inductive
hypothesis we have that t0 2 traces(L tt M[s0]) and so
from (22), we infer that ↵t0 2 traces(L

V
i2I [↵i]'i M[s]).

– 9j 2 I · ⌘j =↵ but 8i2 I \ {j} · ↵i 6=↵: In this case,
from the controlled synthesis rules and from (18) and
(19) we can infer that 9j 2 I · (s, [↵j ]'j)

↵7��! (s0,'j)

and that 8i 2 I \ {j} · (s, [↵i]'i)
↵7��! (s0, tt) and

finally that

s
↵��! s0 (23)

min( ) = min('j^
V

i2I tt) = 'j (24)

where 'j 6= ↵, as otherwise, if 'j =↵ the resulting
state (s0,min(↵)) would be invalid and thus removed
by the synthesis along with any transitions leading to
it (including (18)). Knowing that there exists j 2 I
so that ↵j 6= ↵ and by rule eTrn we can also deduce

that �↵j ,↵j�.L'j M ↵I↵����! L'j M and so by rule eSel

we have that
⇣X

i2I

⇢
�↵i,↵i�.L'i M if 'i 6= ↵
�↵i, ⌧ �.L↵ M otherwise

⌘
↵I↵����!

L'j M. This means that by (23), rule iTrn and the
definition of L� M we conclude that

L
V

i2I [↵i]'i M[s]
↵��! L'j M[s0]. (25)

Finally, since from (17), (19), (24) and the inductive
hypothesis we know that t0 2 traces(L'j M[s0]), from
(25) we can infer that ↵t0 2 traces(L

V
i2I [↵i]'i M[s])

as required.

– ' = maxX.'0 and X 2 fv('0): We now have that
(s,maxX.'0)

↵��! (s0, ) because

(s,'0{maxX.'0/X}) ↵7��! (s0, ) (26)

and so since '0 can neither be X (since sHMLnf

requires fixpoint variables to be guarded) nor ↵ or tt
(since X 2 fv('0)) we can deduce that '0 must have
the form maxY0...Yn.

V
i2I [↵i]'i and so since fixpoint

unfolding preserves formula semantics, from (26) we
can subsequently deduce that (s,

V
i2I [↵i]'i{..})

↵7��!
(s0, ) where {..} def

= {maxXY0...Yn.
V

i2I [↵i]'i/X, . . .}.
From this point onwards the proof proceeds as per
the previous case (' =

V
i2I [↵i]'i), we thus skip this

part of the proof and safely conclude that

↵t0 2 traces(L
V

i2I [↵i]'i{..} M[s]). (27)

Since fixpoint folding preserves semantics and '0 =
maxY0...Yn.

V
i2I [↵i]'i, from (27) we thus conclude

that ↵t0 2 traces(LmaxX.'0 M[s]) as required, and so
we are done.

We now prove the auxiliary lemma Lemma 1 as
follows. The reader may safely skip the following proofs
upon first reading and proceed from 12.

Proof for Lemma 1. We must prove that for every sys-
tem state s and r, sHMLnf formula ' and action ↵, if
L' M[s] ↵

=) r then L' M[s] ↵��! r.

Since we assume that the SuS s does not perform ⌧
actions, by the rules in our enforcement model we know
that the only case when a ⌧ reduction is part of a mon-
itored execution occurs when the monitor suppresses
a (visible) action of s. We proceed by case analysis on '.

Case ' 2 {X,↵}. These cases do not apply since
@m · LX M = m and since L↵ M = sup and so @� 2
Act · sup[s] �

=).

Case ' = tt. Since L tt M = id cannot suppress any ac-
tion, we deduce that the weak transition in (L tt M, s) ↵

=)
r is in fact a strong one and so that (L tt M, s) ↵��! r as
required.

Case ' =
V

i2I [↵i]'i. Assume that

(
X

i2I

⇢
�↵i�.L'i M if 'i 6= ↵
�↵i, ⌧ �.L↵ M otherwise )[s]

↵
=) r. (28)

From the weak reduction in (28) we infer that the system
must perform some action � which is then suppressed by
one of the monitor’s branches, and so there must exist

an index j 2 I so that ↵j = � and �↵j , ⌧ �.L↵ M �I⌧
===)

L↵ M. However, since L↵ M = sup, we know that if any
invalid action � were to be executed by s and, as a
consequence, suppressed by the monitor, any subsequent
action (including ↵) would also be suppressed by sup,
in which case the instrumented system in (28) would
be unable to eventually execute ↵ and thus yield a
contradiction. Therefore, the only way that transition
(28) can happen is when the monitor does not suppress
any action prior to executing ↵, which thus means that
the weak reduction in (28) is in fact a strong one, i.e.,

(
X

i2I

⇢
�↵i�.L'i M if 'i 6= ↵
�↵i, ⌧ �.L↵ M otherwise )[s]

↵��! r as required.

Case ' = maxX.'0 where X 2 fv('0). Assume that
LmaxX.'0 M[s] ↵

=) r and so since JmaxX.'0K is logically
equivalent to J'0{maxX.'0/X}K we can deduce that

L'0{maxX.'0/X} M[s] ↵
=) r. (29)

Since '0{maxX.'0/X} 2 sHMLnf, by the restrictions
imposed by sHMLnf we know that '0 cannot be X
because (bound) logical variables are required to be
guarded, and it also cannot be tt or ↵ since X is required
to be defined in ', i.e., X 2 fv('0). Hence, we know
that '0 can only have the form of

'0 = maxY0...Yn.
V

i2I [↵i]'i (30)
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where maxY0 . . . Yn. . . . represents an arbitrary number
of fixpoint declarations, possibly none. Hence, since
J'0K is logically equivalent to J

V
i2I [↵i]'i{..}K where

{..} def

= {maxXY0...Yn.
V

i2I [↵i]'i/X, . . .}, from (29) and
(30) we have that

L
V

i2I [↵i]'i{..} M[s] ↵
=) r. (31)

Having reached the point where we know (31), the
proof becomes identical as per the previous case (' =V

i2I [↵i]'i), we thus skip this part of the proof and

safely conclude that L
V

i2I [↵i]'i{..} M[s] ↵��! r. Hence,
knowing (30) and that J'0K = J

V
i2I [↵i]'i{..}K, from

(29) and (30) we conclude that LmaxX.'0 M[s] ↵��! r as
required, and so we are done.

Having concluded the proof of Theorem 2 and know-
ing Theorem 1, we can finally obtain our main result
with respect to Definition 3.

Theorem 3 Controlled system synthesis is the static
counterpart of suppression enforcement in the context
of safety properties.

5 Distinguishing between Suppression
Enforcement and CSS

Despite concluding that CSS is the static counterpart
to suppression enforcement, there are still a number of
subtle di↵erences between these two techniques. For one,
since suppression enforcement is a dynamic technique,
the monitor and the system still remain two separate
entities, and the instrumentation between them is merely
a way for the monitor to interact with the SuS. In
general, the monitor does a↵ect the execution of the SuS
itself, but rather modifies its observable trace of actions,
such as its inputs and outputs. By contrast, when a
controlled system is synthesised, an existing system is
paired up with a formula and statically reconstructed
into a new (correct) system that is incapable of executing
the erroneous behaviour.

By removing invalid transitions entirely, controlled
system synthesis is more ideal to guarantee the property
compliance of the internal (less observable) behaviour of
a system. For example, this can be useful to ensure that
the system does not use a shared resource before locking
it. By contrast, the invalid actions are still executed by
the system in suppression enforcement, but their e↵ect is
rendered invisible to any external observer. This makes
suppression enforcement more suitable to ensure that the
external (observable) behaviour of the system complies
with a desired property. For instance, one can ensure
that the system does not perform an output that is

innocuous to the system itself, but may be providing
harmful information to the external environment.

Moreover, it turns out that although both techniques
produce composite systems that are trace equivalent to
each other, an external observer may still be able to
tell them apart by merely observing them. One way of
formally assessing this is to use observational equivalence
(characterised by weak bisimilarity) as a yardstick, thus:

8' 2 sHML, s 2 Sys, 9m 2 Trn ·m[s]⇡ (s,'). (32)

We show by means of a counter example that (32) is in
fact false and as a result prove Theorem 4.

Theorem 4 (Observational Di↵erence) There ex-
ist an sHMLinv formula ', an LTS hSys,Act,!i and a
system state s2Sys such that for all monitors m2Trn,
m[s] 6⇡(s,').

Proof sketch. Recall the controlled LTS with initial state
(sb,'0) obtained in Example 4. To prove Theorem 4
we must show that for every action suppression mon-
itor m (that can only apply suppression and identity
transformations), one cannot find a weak bisimulation
relation R so that (m[sb], (sb,'0)) 2 R. An elegant way
of showing this claim, is by playing the weak bisimula-
tion games [3] starting from the pair (m[sb], (sb,'0)),
for every possible m. The game is played between two
players, namely, the attacker and the defender. The at-
tacker wins the game by finding a sequence of moves
from the monitored state m[sb] (or the controlled state
(sb,'0)), which the defender cannot counter, i.e., the
move sequence cannot be performed by the controlled
state (sb,'0) (resp. monitored state m[sb]). Note that
the attacker is allowed to play a transition from either
the current monitored state or the controlled state at
each round of the game. A winning strategy for the
attacker entails that the composite systems are not ob-
servationally equivalent.

We start playing the game from the initial pair
(m[sb], (sb,'0)) for every monitor m. Pick any monitor
that suppresses any action other than a second consecu-
tive ans, such as m0

def

= �req, ⌧ �.m0
0. In this case, it is easy

to deduce that the defender always loses the game, that
is, if the attacker attacks with (sb,'0)

req��! (s1b,'0) the

defender is defenceless since m0[sb] 6req==). This remains
true regardless of the “depth” at which the suppression
of the first req transition occurs.

On the one hand, using the same game characteri-
sation, one can also deduce that by picking a monitor
that fails to suppress the second consecutive ans ac-
tion, such as m1

def

= �req�.�ans�.�ans�.m0
1, also prevents

the defender from winning. If the attacker plays with
m1[sb]

req.ans.ans
=======) m0

1[sb], the defender loses since it can

only counter the first two transitions, i.e., (sb,'0)
req.ans
====)
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6ans==). Again, this holds regardless of the “depth” of the
first such failed suppression.

On the other hand, any monitor that actually sup-
presses the second consecutive ans action, such as m2

def

=
�req�.�ans�.�ans, •�.m0

2, still negates a win for the de-

fender. In this case, the attacker can play (sb,'0)
req.ans
====)

(s2b,'0^[ans]↵) to which the defender must reply with

m2[sb]
req.ans
====) �ans, •�.m0

2[s
2
b]. The attacker can sub-

sequently play �ans, •�.m0
2[s

2
b]

⌧�! m0
2[s

1
b], which can

only be countered by an inaction on behalf of the
defender, i.e., the controlled system remains in state
(s2b,'0^[ans]↵).

Since we do not know the form ofm0
2, we consider the

following two cases, namely, when m0
2 suppresses cls, and

the case when it does not. In the first case, the attacker
can attack with m0

2[s
1
b]

⌧�! m00
2 [nil] (for some m00

2) where
⌧ represents the suppression of the cls action. Once again
the defender can only counter with an inaction and stay
in state (s2b,'0^[ans]↵). At this point the attacker wins

the play by attacking with (s2b,'0^[ans]↵)
log��! (s3b,'0)

since m00
2 [nil] 6log==). In the second case, the attacker also

wins by attacking with m0
2[s

1
b]

cls��! m000
2 [nil] (for some

m000
2 ) since (s2b,'0^[ans]↵) 6cls==) .
The same result can be obtained using monitor ms

from Example 2. In this case, the attacker can play
(sb,'0)

req.ans
====) (s2b,'0^[ans]↵) to which the defender

can only reply with ms[sb]
req.ans
====) m0

s[s
2
b]. The attacker

can subsequently play m0
s[s

2
b]

⌧�! sup[s1b], which can
only be countered by an inaction on behalf of the
defender, i.e., the controlled system remains in state
(s2b,'0^[ans]↵). However, the attacker can subsequently

play (s2b,'0^[ans]↵)
log��! (nil,'0) which is indefensible

since sup[sb] 6log==).
These cases therefore su�ce to deduce that for every

possible monitor the attacker always manages to win
the game, and hence we conclude that Theorem 4 holds
as required.

This result is important since it proves that powerful
external observers, such as the ones presented by Abram-
sky in [1], can still distinguish between the resulting
monitored and controlled systems.

6 Related Work

Several works comparing formal verification techniques
can be found in the literature. In [25] van Hulst et al. ex-
plore the relationship between their work on controlled
system synthesis and the synthesis problem in Ramadge
and Wonham’s Supervisory Control Theory (SCT) [32].
The aim in SCT is to generate a supervisor controller

from the SuS and its specification (e.g., a formal prop-
erty). If successfully generated, the synchronous product
of the SuS and the controller is computed to obtain a su-
pervised system. To enable the investigation, van Hulst
et al. developed language-based notations akin to that
used in [32], and proved that Ramadge and Wonham’s
work can be expressed using their theory.

Ehlers et al. in [15] establish a connection between
SCT and reactive synthesis � a formal method that
attempts to automatically derive a valid reactive system
from a given specification. To form this connection, the
authors first equalise both fields by using a simplified
version of the standard supervisory control problem
and focus on a class of reactive synthesis problems that
adhere to the requirements imposed by SCT. They then
show that the supervisory control synthesis problem can
be reduced to a reactive synthesis problem.

Basile et al. in [11] explore the gap between SCT and
coordination of services, which describe how control and
data exchanges are coordinated in distributed systems.
This was achieved via a new notion of controllability
that allows one to reduce the classical SCT synthesis
algorithms to produce orchestrations and choreogra-
phies describing the coordination of services as contract
automata.

Falcone et al. made a brief, comparison between
runtime enforcement and SCT in [17] in the context of
K-step opacity, but established no formal results that
relate these two techniques.

7 Conclusion

We have presented a novel comparison between suppres-
sion enforcement and controlled system synthesis � two
verification techniques that automate system correction
for erroneous systems. We were able to conclude that
controlled system synthesis is the static counterpart
to suppression enforcement in the context of safety, as
defined by Definition 3. This required developing a func-
tion that maps logic formulas to suppression monitors,
Definition 5, and proving inductively that for every sys-
tem and formula, one can obtain a monitored and a
controlled system that execute the same set of traces at
runtime, Theorem 2. As trace equivalent systems satisfy
the same safety properties, Theorem 1, this result was
enough to reach our conclusion, Theorem 3. Using a
counter-example we however deduced that these two
techniques are di↵erent modulo observational equiva-
lence, Theorem 4. An Abramsky-type external observer
[1] can therefore tell the di↵erence between a monitored
and controlled system resulting from the same formula
and SuS. To our knowledge this is the first formal com-
parison to be made between these two techniques.
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Future Work Having established a connection between
suppression enforcement and control system synthesis
with respect to safety properties, it is worth expanding
this work at least along two directions and explore how:

(i) runtime enforcement and controlled system synthesis
are related with respect to properties other than
those representing safety, and how

(ii) suppression enforcement relates to other verification
techniques such as supervisory control theory, reac-
tive synthesis, etc.

Exploring (i) may entail looking into other work on en-
forcement and controlled system synthesis that explores
a wider set of properties. It might be worth investigating
how other enforcement transformations, such as action
replacements and insertions, can be used to widen the
set of enforceable properties, and how this relates to
controlled system synthesis. The connection established
by van Hulst et al. in [25] between control system syn-
thesis and supervisory control, along with the other
relationships reviewed in Section 6, may be a starting
point for conducting our future investigations on (ii).
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A, Kjartansson SÖ (2016) Determinizing monitors
for HML with recursion. arXiv preprint

5. Aceto L, Achilleos A, Francalanza A, Ingólfsdóttir A
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(2017) A survey of runtime monitoring instrumen-
tation techniques. In: PrePost2017, pp 15–28

13. Clarke EM, Grumberg O, Peled D (1999) Model
Checking. MIT press

14. Desai A, Dreossi T, Seshia SA (2017) Combining
model checking and runtime verification for safe
robotics. In: Runtime Verfication (RV), Springer
International Publishing, Cham, LNCS, pp 172–189

15. Ehlers R, Lafortune S, Tripakis S, Vardi M (2014)
Bridging the gap between supervisory control and re-
active synthesis: Case of full observation and central-
ized control. IFAC Proceedings Volumes 47(2):222 –
227, 12th IFAC International Workshop on Discrete
Event Systems (2014)

16. Erlingsson U, Schneider FB (1999) Sasi enforcement
of security policies: A retrospective. In: Proceedings
of the 1999 Workshop on New Security Paradigms,
ACM, New York, NY, USA, NSPW ’99, pp 87–95

17. Falcone Y, Marchand H (2013) Runtime enforce-
ment of k-step opacity. In: 52nd IEEE Confer-
ence on Decision and Control, pp 7271–7278, DOI
10.1109/CDC.2013.6761043

18. Falcone Y, Fernandez JC, Mounier L (2012) What
can you verify and enforce at runtime? International
Journal on Software Tools for Technology Transfer
14(3):349

14



19. Francalanza A (2016) A Theory of Monitors. In: In-
ternational Conference on Foundations of Software
Science and Computation Structures, Springer, pp
145–161

20. Francalanza A (2017) Consistently-Detecting Moni-
tors. In: 28th International Conference on Concur-
rency Theory (CONCUR 2017), Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many, Leibniz International Proceedings in Infor-
matics (LIPIcs), vol 85, pp 8:1–8:19

21. Francalanza A, Aceto L, Achilleos A, Attard DP,
Cassar I, Della Monica D, Ingólfsdóttir A (2017) A
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