
If At First You Don’t Succeed: Extended
Monitorability through Multiple Executions

Antonis Achilleos
Reykjavik University
Reykjavik, Iceland

antonios@ru.is

Adrian Francalanza
University of Malta

Msida, Malta
adrian.francalanza@um.edu.mt

Jasmine Xuereb
Reykjavik University and University of Malta

Reykjavik, Iceland, and Msida, Malta
jasmine.xuereb.15@um.edu.mt

Abstract—This paper studies the extent to which branching-
time properties can be adequately verified using runtime mon-
itors. We depart from the classical setup where monitoring
is limited to a single system execution and investigate the
enhanced observational capabilities when monitoring a system
over multiple runs. To ensure generality, we focus on branching-
time properties expressed in the modal µ-calculus, a well-studied
foundational logic. Our results show that the proposed setup
can systematically extend established monitorability limits for
branching-time properties. We validate our results by instanti-
ating them to verify actor-based systems. We also prove bounds
that capture the correspondence between the syntactic structure
of a property and the number of required system runs.

Index Terms—Runtime verification, Branching-time logics,
Monitorability

I. INTRODUCTION

Branching-time properties have long been considered the
preserve of static analyses, verified using established tech-
niques such as model checking [1], [2]. Unfortunately, these
verification techniques cannot be used when the system model
is either too expensive to build and analyse (e.g. state-
explosion problems), poorly understood (e.g. system logic
governed by machine-learning procedures) or downright un-
available (e.g. restrictions due to intellectual property rights).
Recent work has shown that runtime monitoring can be used
effectively (in isolation or in conjunction with other verifica-
tion techniques) to verify certain branching-time properties [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16]. Specifically, (execution) monitors (or sequence recog-
nisers) [17], [18], [19], [20] passively observe the execution
of a system-under-scrutiny (SUS), possibly aided by auxiliary
information, to compare the observed behaviour (instead of its
state space) against a correctness property of interest.

The use of monitors for verification purposes is called
runtime verification (RV) [21], [22]. It is weaker than static
techniques for verifying both linear-time and branching-time
properties: monitor observations are constrained to the current
(single) computation path of the SUS limiting the range of
verifiable properties. For instance, the linear-time property Gψ

Supported by the doctoral student grant of the Reykjavik University Reseach
Fund, by the grant “Mode(l)s of Verification and Monitorability” (MoVeMent)
(grant no 217987) of the Icelandic Research Fund, and by the grants “Security
Behavioural APIs” (grant no I22LU01) and “Runtime Monitoring for IoT”
(grant no CPSRP01-25) of University of Malta Research Seed Fund.

(i.e., ψ must always hold) can only be monitored for violations
but not satisfactions, whereas infinite renewal properties such
as GF ψ (i.e., always, eventually ψ) cannot be monitored
for at all. Monitorability limits are more acute for branching-
time properties: the maximal monitorable subset for the modal
µ-calculus was shown to be semantically equivalent to the
syntactic fragment SHML∪CHML [8], [11].

Example I.1. Consider a server SUS exhibiting four events:
receive queries (r), service queries (s), allocate memory (a)
and close connection (c). Modal µ-calculus properties1 such
as “all interactions can only start with a receive query”, i.e.,
ϕ0

def
= [s]ff∧ [a]ff∧ [c]ff ∈ SHML can be runtime verified since

any SUS execution observed that starts with event s, a or c
confirms that the running SUS violates the property (irrespec-
tive of any execution events that may follow). However, the
branching-time property “systems that can perform a receive
action, ⟨r⟩tt, cannot also close, [c]ff”, i.e.,

ϕ1
def
= ⟨r⟩tt⇒ [c]ff ≡ [r]ff ∨ [c]ff ̸∈ SHML∪ CHML

is not monitorable with respect to either satisfactions or
violations. No (single) trace prefix provides enough evidence
to conclude that a system satisfies this property, whereas an
observed trace starting with r (dually c) is not enough to
conclude that the emitting SUS (state) violates the property:
one would also need evidence that the same state can also
emit c (dually r). ■

There are various approaches for extending the set of
monitorable properties. One method is to weaken the detection
requirements expected of the monitors [23], [24] effecting
the verification (e.g. by allowing certain violations to go
undetected). This, in turn, impinges on what it means for a
property to be monitorable. Another approach is to increase
the monitors’ observational capabilities. Aceto et al. [25]
investigate the increase in monitor observational power after
augmenting the information recorded in the trace: apart from
reporting computational steps that happened, they consider
trace events that can also record branching information such as
the computation steps that could have happened at a particular
state, or the computation steps that could not have happened.

1Formula [α]ff describes states that cannot perform α transitions whereas
its dual, ⟨α⟩tt describes states that can perform α transitions.

This approach treats the SUS as a grey-box [13], [26] since the
augmented traces reveal specific system information about the
SUS states reached. This paper builds on Aceto et al.’s work
while sticking, as much as possible, to a black-box treatment
of the SUS. We study the increase in observational power
obtained from considering multiple execution traces for the
same SUS without relying directly on information about the
specific intermediary states reached during monitoring.

Example I.2. Property ϕ1 from Ex. I.1 can be monitored for
violations over two executions of the same system: a first trace
starting with event, r, and a second trace starting with event, c,
is sufficient evidence to conclude that the SUS violates ϕ1. ■

Analysing multiple traces is not always sufficient to con-
clude that a system violates a property with disjunctions since
the same prefix could, in principle, reach different states.

Example I.3. Consider the property “after any receive query,
[r] . . ., if a SUS can service it, ⟨s⟩tt, then (it takes precedence
and) it should not allocate more memory, [a]ff”, expressed as

ϕ2
def
= [r](⟨s⟩tt⇒ [a]ff) ≡ [r]([s]ff ∨ [a]ff)

Intuitively, ϕ2 is violated when the state reached after event
r can perform both events s and a. Observing traces rs · · ·
and ra · · · along two executions is not enough to conclude
that the SUS violates ϕ2: although both executions start from
the same state, say p, distinct intermediary states could be
reached after event r, i.e., p r−→ p1

s−→ p2 and p r−→ p′1
a−→ p′2

where p1 ̸= p′1. ■

Although non-deterministic SUS behaviour cannot be ruled
out in general, many systems are deterministic w.r.t. a subset of
actions, such as asynchronous LTSs and output actions [27],
[28] (e.g. if r was an asynchronous output in Ex. I.3 then
p1 = p′1.) Moreover, deterministic behaviour is not necessarily
required to runtime-verify all the behaviours specified.

Example I.4. Consider the property that, in addition to the
behaviour described by ϕ2, it requires that “. . . the SUS does
not exhibit any action after a close event”, formalised as ϕ3.

ϕ3
def
=

(
[r]([s]ff ∨ [a]ff)

)
∧

(
[c]([r]ff ∧ [s]ff ∧ [a]ff ∧ [c]ff)

)
It might be reasonable to assume that a SUS behaves deter-
ministically for receive actions (e.g. when a single thread is
in charge of receiving). Moreover, no determinism assumption
is required for close actions to runtime verify the subformula
[c]([r]ff∧ [s]ff∧ [a]ff∧ [c]ff); any trace from either cr · · · ,cs · · · ,
ca · · · or cc · · · suffices to infer the violation of ϕ3. ■

The properties discussed in this paper are formalised in
terms of a variant of the modal µ-calculus [29] called
Hennessy-Milner Logic with Recursion [30], RECHML. This
logic is a natural choice for describing branching-time prop-
erties and is employed by state-of-the-art model checkers,
including mCRL2 [31] and UPPAAL [32], as well as de-
tectEr [12], [33], a stable RV tool. It has been shown to
embed standard logics such as LTL, CTL and CTL* [2],
[1], [23]. Moreover, existing maximality results for branching-

time logics [8], [25], [24] have only been established for
RECHML. Our exposition focusses on “safety” properties
that can be monitored for violations; monitoring for satis-
factions of branching-time properties is symmetric [8]. This
paper presents an augmented monitoring setup that repeatedly
analyses a (potentially non-deterministic) SUS across multiple
executions, so as to study how the monitorability limits
established in [11], [8] are affected. Our contributions are:

1) A formalisation of a monitoring setup that gathers infor-
mation over multiple system runs (Sec. III).

2) An analysis, formalised as a proof system, that uses sets
of partial traces to runtime verify the system against a
branching-time property (Sec. III).

3) A definition formalising what it means for a monitor to
correctly analyse a property over multiple runs (Sec. IV)
and, dually, what it means for a property to be moni-
torable over multiple runs (Sec. V).

4) The identification of an extended logical fragment that is
monitorable over the augmented monitoring setup han-
dling multiple runs (Sec. V), and the establishment that
the extended fragment is maximally expressive (Sec. V).

5) An instantiation of the multi-run RV framework to actor-
based systems (Sec. VI), a popular concurrency paradigm.

6) A method for systematically determining the number of
SUS executions required to conduct RV from the syntac-
tic structure of the formula being verified (Sec. VII).

Full proofs and additional explanations and examples may
be found in the companion technical report [34].

II. PRELIMINARIES

We assume a set of actions, η ,ξ∈ACT=TACT⊎{τ}, with a
distinguished silent (untraceable) action τ and a set of trace-
able actions, µ,λ∈TACT=EACT⊎IACT, that consists of two
disjoint sets. External actions, α,β∈EACT, describe computa-
tion steps observable to an outside entity which are the subject
of correctness specifications. Internal actions, γ,δ ∈ IACT, are
not of concern to correctness specifications but can still be
discerned by a monitor with the appropriate instrumentation
mechanism. Notably, silent actions (denoted by τ) cannot be
traced by monitors.

A SUS is modelled as an Instrumentable Labelled Transi-
tion System (ILTS), a septuple of the form

⟨PRC,≡,EACT, IACT,{τ},−→,DET⟩

SUS states are denoted by processes, p,q ∈ PRC, with an
associated equivalence relation, ≡⊆ PRC×PRC. The transition
relation, −−→⊆ (PRC×ACT×PRC), is defined over arbitrary
actions (i.e., silent, internal and external). We write p

η−→ q
instead of (p,η ,q) ∈−−→, and p ̸η−→ whenever ∄q such that
p

η−→ q. ILTS transitions abstract over equivalent states:

for any p ≡ q, if p
η−→ p′ then there exists q′ such that

q
η−→ q′ where p′ ≡ q′.

Instrumentation also can abstract over (non-traceable) silent
transitions because they are confluent w.r.t. other actions:

for any p, whenever p τ−→ p′ and p
η−→ p′′ then,

either η = τ and p′ ≡ q′, or there exists a state q and
transitions p′

η−→ q and p′′ τ−→ q joining the diamond.

An ILTS partitions traceable actions via the predicate DET :
TACT → BOOL where all actions µ satisfying the predicate,
DET(µ) = true, must be deterministic (up to ≡):

if p
µ−→ p′ and p

µ−→ p′′ then p′ ≡ p′′.

Weak transitions, p=⇒ q, abstract over both silent and internal
actions whereas weak traceable transition, p =⇒

T
q, abstract

over silent actions only. Thus, p=⇒ q holds when p= q or ∃p′

and η ∈
(
{τ}∪ IACT

)
such that p

η−→ p′ =⇒ q. Analogously,

p =⇒
T

q holds if p = q or ∃p′ such that p τ−→ p′ =⇒
T

q. We

write p α
==⇒ q when ∃p′, p′′ such that p=⇒ p′ α−→ p′′ =⇒ q, and

write p
µ
==⇒

T
q when ∃p′, p′′ such that p =⇒

T
p′

µ−→ p′′ =⇒
T

q.
Actions can be sequenced to form traces, t,u ∈ TRC = TACT∗,
representing prefixes of system runs. A trace with action µ at
its head and continuation t is denoted as µt, whereas a trace
with prefix t and action µ at its end is denoted as tµ . For
t = µ1 · · ·µn, we write p t

=⇒
T

q instead of the sequence of

transitions p
µ1==⇒

T
· · · µn

==⇒
T

q. A system (state) p produces

a trace t when ∃q such that p t
=⇒

T
q. The set of all the

traces produced by the state p is denoted by Tp. Histories
H∈HST where HST⊆TRC are finite sets of traces where H, t
is shorthand for the disjoint union H ⊎{t}.

Remark 1. An ILTS provides two (global) views of a SUS:
an external one, as viewed by an observer limited to EACT,
and a lower-level view as seen by an instrumented monitor
privy to TACT and DET. The SUS treatment is still considered
black-box for two reasons. First, the information on traceable
actions TACT (needed anyway for instrumentation reasons)
together with their deterministic properties DET, characterises
an infinite class of systems, not one specific SUS. Second,
ILTS determinism guarantees permit a monitor to reason about
states within the same equivalence class (i.e., p ≡ q), not
directly on specific states. ILTSs do not limit the range of
systems modelled. Deterministic systems can be described
by requiring DET(µ)=true for all actions, whereas general
systems would have DET(µ)=false. Silent actions capture β -
moves [35], [36] which arise naturally in linearly-typed system
and as thread-local moves in concurrent systems. ■

Properties are formulated for the external SUS view in terms
of RECHML formulae. This logic is defined by the negation
free grammar in Fig. 1, which assumes a countably infinite set
of formula variables X,Y, . . .∈TVARS. Apart from the stan-
dard constructs for truth, falsity, conjunction and disjunction,
the logic includes existential and universal modalities that
operate over the external actions EACT. Least and greatest
fixed points, minX.ϕ and maxX.ϕ respectively, bind free
instances of variable X in ϕ . We assume standard definitions

recHML Syntax
ϕ,ψ ∈ RECHML ::= X (rec. variable)
| tt (truth) | ⟨α⟩ϕ (existential modality)
| ff (falsehood) | [α]ϕ (universal modality)
| ϕ ∧ψ (conjunction) | minX.ϕ (least fixed point)
| ϕ ∨ψ (disjunction) | maxX.ϕ (greatest fixed point)

Branching-Time Semantics
Jtt,ρK def

= PRC Jff,ρK def
= /0

Jϕ ∨ψ,ρK def
= Jϕ,ρK∪ Jψ,ρK Jϕ ∧ψ,ρK def

= Jϕ,ρK∩ Jψ,ρK

J[α]ϕ,ρK def
=
{

p | ∀q · p α
=⇒ q implies q ∈ Jϕ,ρK

}
J⟨α⟩ϕ,ρK def

=
{

p | ∃q · p α
=⇒ q and q ∈ Jϕ,ρK

}
JminX.ϕ,ρK def

=
⋂{

P | Jϕ,ρ[X 7→ P]K ⊆ P
}

JX,ρK def
= ρ(X)

JmaxX.ϕ,ρK def
=

⋃{
P | P ⊆ Jϕ,ρ[X 7→ P]K

}
Fig. 1. RECHML in the Branching-Time Setting.

for open and closed formulae and work up to α-conversion,
assuming formulae to be closed and guarded, unless otherwise
stated. For formulae ϕ and ψ , and variable X, ϕ[ψ/X] denotes
the substitution of all free occurrences of X in ϕ with ψ .

The denotational semantics function J−K in Fig. 1 gives a
branching-time interpretation to RECHML by mapping for-
mulae to sets of system states, J−K : RECHML → P(PRC).
This function is defined with respect to an environment ρ ,
which maps formula variables to sets of states, ρ : TVARS →
P(PRC). Given a set of states P, ρ[X 7→ P] denotes the envi-
ronment mapping X to P, mapping as ρ on all other variables.
Existential modalities ⟨α⟩ϕ denote the set of system states
that can perform at least one α-labelled (weak) transition
and reach a state that satisfies the continuation ϕ . Conversely,
universal modalities [α]ϕ denote the set of systems that reach
states satisfying ϕ for all (possibly none) their α-transitions.
The set of systems that satisfy least fixed point formulae
(resp. greatest fixed point) is given by the intersection (resp.
union) of all pre-fixed points (resp. post-fixed points) of the
function induced by the corresponding binding formula. The
remaining cases are standard. The interpretation of closed
formulae is independent of ρ; we write JϕK in lieu of Jϕ,ρK.
A state p satisfies ϕ if p ∈ JϕK and violates it if p /∈ JϕK;
equivalent states satisfy (resp. violate) the same formulae,
Prop. II.1. Two formulae ϕ and ψ are said to be equivalent,
denoted as ϕ ≡ ψ , whenever JϕK = JψK. The negation of a
formula can be obtained by duality in the usual way, e.g.
¬(minX.⟨α⟩tt∨ [β]X) =maxX.[α]ff ∧⟨β ⟩X.

Proposition II.1 (Behavioural Equivalence). For all (closed)
formulae ϕ∈RECHML, if p∈JϕK and p≡q then q∈JϕK. ■

Several logical formulae from Fig. 1 are not monitorable
w.r.t. classical RV limited to one (partial) execution of the
system. The safety subset of monitorable RECHML formulae
is characterised by the syntactic fragment SHML [37].

Theorem II.2 (Monitorability [8]). Any ϕ∈RECHML is mon-
itorable (for violations) iff there exists ψ ∈ SHML and ϕ ≡ψ:

ϕ,ψ ∈ SHML ::= tt | ff | [α]ϕ | ϕ ∧ψ | maxX.ϕ | X ■

Example II.1. The property “after any number of serviced
queries, [r][s] . . ., a state that can close a connection, ⟨c⟩tt,
cannot allocate memory, [a]ff” is not monitorable.

ϕ4
def
= maxX.

(
[r][s]X∧ (⟨c⟩tt⇒ [a]ff)

)
≡ maxX.

(
[r][s]X∧ ([c]ff ∨ [a]ff)

)
Specifically, a system violates ϕ4 if it is capable of producing
both actions a and c after an unbounded, but finite, sequence of
alternating r and s actions. E.g. the system p1

def
= recX.

(
r.s.X+

(a.X + c.0)
)

(see [34, Def A.1] for CCS syntax) violates this
property since after zero or more serviced queries, p1 reaches
a state that can produce both a and c actions. However, no
single trace prefix provides enough evidence to detect this. ■

III. A FRAMEWORK FOR REPEATED MONITORING

Instrumentation permits the monitor to observe the current
execution of the SUS until it detects certain behaviour. We
formalise an extended online setup, where monitoring is per-
formed in two steps: history aggregation and history analysis.
During aggregation, monitors gather SUS information over
multiple executions. Each time a new trace is added to the
history, the analysis step uses a proof system to determine
whether the SUS generating such a history is rejected. If it
fails to reject that history, these two steps are repeated until a
verdict is reached. SUS instrumentation sits at a lower level
of abstraction to the external view used by RECHML which
allows monitors to operate with action sequences from TACT.

A. History Aggregation

Monitors. Our runtime analysis, defined in Fig. 2, records
the traceable actions, TACT, that lead to rejection states. An
executing-monitor state consists of a tuple (t,m), where t is
the trace (i.e., sequence of traceable actions) collected from
the beginning of the run, up to the current execution point,
and m is the current state of the monitor after analysing
it. In order to streamline monitor synthesis from formulae
(which only mention external actions) the monitor syntax does
not reference internal actions, e.g. α.m where α ∈ EACT in
Fig. 2. Accordingly, its monitor semantics determines which
external actions to record, rules IMON and MACT. Internal
actions, used to improve the precision of the history analysis,
are recorded by the instrumentation semantics; see rule IASI,
discussed later.

Executing-monitor transitions are defined w.r.t. a history H
that stores the trace prefixes accumulated in prior executions:
(t,m)

η−→H (t ′,m′) denotes that (t,m) transitions to (t ′,m′)
either by observing an external action, i.e.,η =α , produced by
the SUS or by evolving autonomously via the silent action, i.e.,
η = τ; monitor transitions are never (SUS) internal actions. A
monitor execution can reach one of two final states: a rejection
verdict, no, or an inconclusive state, end. The latter behaves

like an identity, transitioning to itself when analysing any ex-
ternal SUS action; see rule MEND. Differently, a rejection state
indicates to the instrumentation that the (partial) trace analysed
thus far should be aggregated to the history. After aggregating
the trace, it then behaves as end; see instrumentation rule INO,
discussed later. Rule INO is the only rule that extends the
history H by the aggregated trace t as (H, t).

The current recorded trace is accrued via monitor sequenc-
ing, α.m, via rule MACT. Besides sequencing, (sub-)monitors
can be composed as a parallel conjunction, m⊗n, or disjunc-
tion, m⊕ n. When analysing SUS actions, parallel monitors,
m⊙n where ⊙ ∈ {⊕,⊗}, move either autonomously, rule
MTAUL, or in unison, rule MPAR1. When a sub-monitor
cannot analyse the action proffered by the SUS it is discarded
(rule MPAR2L); this does not prohibit the former monitor from
potentially recording a new trace. An analogous mechanism
is also implemented by the instrumentation rule ITER. Four
rules determine how a rejection verdict sub-monitor is handled.
Rule MVRP2L asserts that verdict no supersedes its parallel
counterpart whenever the accumulated (violating) trace is new,
i.e., t /∈ H; when no ⊙ n transitions to no, it allows the
instrumentation rule INO to add t to the history. Dually, if
t∈H, the rejection verdict is discarded, i.e., no⊙n transitions
to n, to allow n to potentially collect violating traces with
common prefixes, rule MVRP1L. The remaining monitor rules
are standard, where symmetric rules are elided. Although trace
collection does not distinguish between parallel conjunction
and disjunctions, history analysis does; see Fig. 3.

Instrumentation. The behaviour of an executing-monitor is
connected to that of a SUS via the instrumentation relation
in Fig. 2. It is defined over monitored systems, H ▷ (t,m)◁ p,
triples consisting of a SUS p, an executing-monitor (t,m), and
a history H. The transition H ▷ (t,m) ◁ p

η−→ H ′ ▷ (t ′,m′) ◁ p′

denotes that the executing-monitor (t,m) transits to (t ′,m′)
when analysing a SUS evolving from p to p′ via action
η , while updating the history from H to H ′. Rule IMON
formalises the analysis of an external action, whereas rule INO,
previewed earlier, handles the storing of new traces that lead
to a rejection verdict. Instrumentation also allows the SUS
and executing-monitor to (internally) transition independently
of one another, rules IASS and IASM. Rule IASI allows the
SUS to transition with an internal action: γ is recorded as
part of the aggregated trace while concealing it as a τ action.
When (t,m) can neither analyse a SUS action, nor perform
an internal transition, the instrumentation forces it to termi-
nate prematurely by transitioning to the inconclusive verdict
(rule ITER). This ensures instrumentation transparency [20],
[38], where the monitoring infrastructure does not block the
behaviour of the SUS whenever the executing monitor cannot
analyse an event. We adopt a similar convention to Sec. II;
e.g. we define weak transitions in a similar manner and write
H ▷ (t,m)◁ p u

=⇒H ′ ▷ (t ′,m′)◁ p′ in lieu of H ▷ (t,m)◁ p
α1==⇒

·· · αn==⇒ H ′ ▷ (t ′,m′)◁ p′ for u=α1· · ·αn.

Our monitor semantics departs from prior work [8], [11]; it

Monitor Syntax m,n ∈ MON ::= no | end | α.m | recX.m | X | m⊕n | m⊗n (⊙∈{⊕,⊗})

Monitor Semantics
MEND

(t,end) α−→H (tα,end)

MVRP1L
t ∈ H

(t,no⊙n) τ−→H (t,n)

MVRP2L
t /∈ H

(t,no⊙n) τ−→H (t,no)

MACT

(t,α.m)
α−→H (tα,m)

MREC

(t, recX.m)
τ−→H (t,m[recX.m/X])

MTAUL

(t,m)
τ−→H (t,m′)

(t,m⊙n) τ−→H (t,m′⊙n)

MPAR1

(t,m)
α−→H (t ′,m′) (t,n) α−→H (t ′,n′)

(t,m⊙n) α−→H (t ′,m′⊙n′)

MPAR2L

n ̸= no (t,m)
α−→H (t ′,m′) (t,n) ̸α−→ H (t,n) ̸ τ−→ H

(t,m⊙n) α−→H (t ′,m′)

Instrumentation Semantics

INO

H ▷ (t,no)◁ p τ−→ (H, t)▷ (t,end)◁ p

ITER

m ̸= no p α−→ p′ (t,m) ̸α−→ H (t,m) ̸ τ−→ H

H ▷ (t,m)◁ p α−→ H ▷ (tα,end)◁ p′

IASS

m ̸= no p τ−→ p′

H ▷ (t,m)◁ p τ−→ H ▷ (t,m)◁ p′

IASI

m ̸= no p
γ−→ p′

H ▷ (t,m)◁ p τ−→ H ▷ (tγ,m)◁ p′

IASM

(t,m)
τ−→H (t ′,m′)

H ▷ (t,m)◁ p τ−→ H ▷ (t ′,m′)◁ p

IMON

p α−→ p′ (t,m)
α−→H (t ′,m′)

H ▷ (t,m)◁ p α−→ H ▷ (t ′,m′)◁ p′

Fig. 2. Monitors and Instrumentation

does not flag violations but limits itself to aggregating traces.
Every monitored execution starts with t = ε and can, at most,
increase the history the current trace accrued. Our monitors
work over multiple runs of the same SUS. Starting from
an empty history H0= /0, traces leading to no states, can be
accumulated over a sequence of monitored SUS executions
by passing history Hi obtained from the ith monitored execu-
tion on to execution i+1, inducing a (finite) totally-ordered
sequence of histories, /0=H0⊆H1⊆·· ·

Example III.1. Monitor m1
def
= recX.

(
r.s.X⊗ (a.no⊕ c.no)

)
reaches state no after observing actions a or c, following
a sequence of serviced queries. System p2

def
= recX.

(
r.s.X +

(δ1.a.X+δ2.c.0)
)

extends p1 from Ex. II.1, where the decision
on whether to allocate memory or close depends on checking
whether there is free memory or not, expressed as the internal
actions δ1 and δ2 respectively. When p2 is instrumented
with the executing-monitor (ε,m1) and history H0 = /0, it
can reach state no through the prefix t1 = rsδ1a as shown
below. With the augmented history H1 = {t1}, the monitored
SUS H1 ▷ (ε,m1) ◁ p2 can then aggregate t2 = rsδ2c in a
subsequent run, i.e., H1 ▷ (ε,m1) ◁ p2

t2==⇒ H2 ▷ (t2,end) ◁ p2

where H2 = {t1, t2}.

H0 ▷ (ε,m1)◁ p2
τ−→ · τ−→ (IASS,IASM)

H0 ▷ (ε,r.s.m1 ⊗ (a.no⊕ c.no))◁ r.s.p2 +(δ1.a.p2 +δ2.c.0)
r−→ H0 ▷ (r,s.m1)◁ s.p2

s−→ H0 ▷ (rs,m1)◁ p2 (IMON)
τ−→ · τ−→ (IASP, IASM)

H0 ▷ (rs,r.s.m1 ⊗ (a.no⊕ c.no))◁ r.s.p2 +(δ1.a.p2 +δ2.c.0)
τ−→ H0 ▷ (rsδ1,r.s.m1 ⊗ (a.no⊕ c.no))◁ a.p2 (IASI)
a−→ H0 ▷ (rsδ1a,no)◁ p2 (IMON)
τ−→ H0 ∪{rsδ1a}▷ (rsδ1a,end)◁ p2 (INO)

Note that, since monitors assume a passive role [20], they
cannot steer the behaviour of the SUS, meaning the SUS may
not exhibit different behaviour across multiple executions. ■

The instrumentation mechanism needs to aggregate overlap-
ping trace prefixes that lead to rejection states.

Example III.2. The SUS p2 from Ex. III.1 generates traces
of the form (rsδ1a)∗. Monitor m2

def
= recX.

(
r.s.X⊗ a.X ⊗

(a.no⊕ c.no)
)

revises m1 where sequences of rs actions can
be interleaved with finite sequences of a actions described by
the sub-monitor a.X . When (ε,m2) is instrumented on p2 with
H0 = /0, it can record the prefix rsδ1a during a first run. In a
subsequent run with an augmented H1={rsδ1a}, we have:

H1 ▷ (ε,m2)◁ p2

rsδ1===⇒ H1 ▷ (rsδ1,r.s.m2 ⊗a.m2 ⊗ (a.no⊕ c.no))◁ a.p2

a−→ H1 ▷ (rsδ1a,m2 ⊗no)◁ p2
τ−→ H1 ▷ (rsδ1a,m2)◁ p2 (∗)

rsδ1a
====⇒ H1 ▷ (rsδ1arsδ1a,m2 ⊗no)◁ p2

τ−→ H1 ▷ (rsδ1arsδ1a,no)◁ p2
τ−→ H1 ∪{rsδ1arsδ1a}▷ (rsδ1arsδ1a,end)◁ p2 (†)

Transition (∗) follows rule MVRP1R with (rsδ1a,m2 ⊗
no)

τ−→H1 (rsδ1a,m2) since rsδ1a ∈ H1: the executing-monitor
does not stop accruing at rsδ1a but continues monitoring
until it encounters a new rejecting trace, rsδ1arsδ1a, which
is aggregated to H1 in transition (†) using rule INO. ■

Remark 2. Rule INO encodes the design decision to stop
monitoring (by transitioning to end) as soon as a new trace is
aggregated to the history, providing a clear cut-off point for
when to pass the aggregated history to the subsequent run. ■

B. History Analysis

We formalise how a history is rejected by a monitor through
a proof system. Its main judgement is rejDET(H, f ,m), i.e.,
monitor m rejects history H using DET with the boolean flag f .
It can be seen as an attempt to reconstruct a partial model of
the SUS from the traces aggregated, large enough to infer the

NO

H ̸= /0
rejDET(H, f ,no)

ACT

H ′=sub(H,α) rejDET(H
′,
(
f∧DET(α)

)
,m)

rejDET(H, f ,α.m)

ACTI
H ′ = sub(H,γ) rejDET(H

′,
(
f∧DET(γ)

)
,α.m)

rejDET(H, f ,α.m)

PARAL
rejDET(H, f ,m)

rejDET(H, f ,m⊗n)

PARO
rejDET(H,true,m) rejDET(H,true,n)

rejDET(H,true,m⊕n)

REC

rejDET(H, f ,m[recX.m/X])
rejDET(H, f , recX.m)

Fig. 3. Proof System

violation. This judgement uses internal actions and DET to cal-
culate whether the traces are produced by the same states (up
to ≡); the flag value true encodes that all the actions analysed
up to this point were deterministic actions. This analysis is the
least relation defined by the rules in Fig. 3, relying on a helper
function sub(H,µ) = {t | µt∈H}; it returns the continuation
of any trace in H that is prefixed by a µ action; e.g. when
H = {rsa,rsc,ars}, we get sub(H,r)= {sa,sc}. The axiom NO
states that a no monitor rejects all non-empty histories, i.e., a
monitor cannot reject a SUS outright, without any observation.
In rule ACT, a sequenced monitor α.m rejects H with flag f if
the (sub-)monitor m rejects the history returned by sub(H,α)
with updated flag

(
f∧DET(α)

)
. Alternatively, α.m can reject

H with f following rule ACTI, by considering the suffixes of
traces prefixed by an internal action γ , again updating the flag
to

(
f∧DET(γ)

)
. Parallel conjunctions m⊗n reject H with f if

either one of the constituent monitors m and n rejects H with f
(rules PARAL and PARAR). Importantly, parallel disjunctions
m ⊕ n reject H with only when the flag is true and both
monitors reject it (rule PARO), ensuring that the trace prefix
analysed consisted of deterministic actions. Rule REC states
that a recursive monitor rejects a history with some flag if its
unfolding does. As a shorthand, we say that monitor m rejects
history H, denoted rejDET(H,m), whenever rejDET(H, true,m).

Example III.3. Recall p2 and m1 from Ex. III.1 and suppose
that DET(r) = DET(s) = true. Instrumentation can record
t1 = rsδ1a during a first execution, but m1 fails to reject
the recorded history, ¬rejDET({t1},m1). When p2 is monitored
again, the additional trace t2 = rsδ2c can be aggregated, which
m1 now rejects, rejDET({t1, t2},m1) (see [34, Figs. 4 and 5]). ■

Ex. III.4 shows that rejections are always evidence-based.

Example III.4. Although monitor no trivially rejects any
p, it does so after observing one execution: for H0 = /0,
the semantics in Fig. 2 immediately triggers rule INO, i.e.,
/0 ▷ (ε,no) ◁ p τ−→ {ε} ▷ (ε,end) ◁ p. When ε is added to the
history, one can conclude rejDET({ε},no) by rule NO. ■

IV. MONITOR CORRECTNESS

RV establishes a correspondence between the operational
behaviour of a monitor and the semantic meaning of the
property being monitored for [39], [23] which transpires the
meaning of the statement “monitor m correctly monitors for a

property ϕ .” Our first correctness result concerns the history
aggregation mechanism of Sec. III. Prop. IV.1 states that traces
collected are indeed generated by the instrumented SUS. Thus,
whenever a history H is accumulated over a sequence of
executions of some p, i.e., /0 ⊆ H1 ⊆ ·· · ⊆ H, then H ⊆ Tp.

Proposition IV.1 (Veracity). For any H, m, p, and η1, . . . ,ηn,
if H ▷ (ε,m)◁ p

η1−−→ . . .
ηn−−→ H ′ ▷ (t,m′)◁ p′ then p t

=⇒
T

p′. ■

Another criteria for our multi-run monitoring setup is that
executing-monitors behave deterministically [38], [40]. Our
monitors are confluent w.r.t. τ-moves [34, Prop. C.6], thus
monitors are equated up to τ-transitions. Importantly, for a
given history, the executing-monitors of Sec. III deterministi-
cally reach equivalent states when analysing a (partial) trace
exhibited by the SUS, Prop. IV.2.

Proposition IV.2 (Determinism). If (t,m)
u
=⇒

H
(t ′,m′) and

(t,m)
u
=⇒

H
(t ′′,m′′), then t ′ = t ′′ and there is n ∈ MON such

that (t ′,m′)(
τ−→H)

∗(t ′,n) and (t ′′,m′′)(
τ−→H)

∗(t ′′,n). ■

Example IV.1. Recall m2 from Ex. III.2. Given u = rsa, the
executing-monitor (ε,m2) can reach either (u,no) or (u,m⊗
no) which τ-converges to (u,no) via rule MVRP2R. ■

A characteristic sanity check is verdict irrevocability [20],
[38], [23]. This translates to Prop. IV.3 stating that, once a
SUS is rejected for exhibiting history H (using the history
analysis of Fig. 3), further observations (in terms of longer
traces, length, or additional traces, width) do not alter this
conclusion.

Proposition IV.3 (Irrevocability).
Length: If rejDET((H, t),m) then rejDET((H, tu),m).
Width: If rejDET(H,m) then rejDET(H∪H ′,m). ■

The least correctness requirement expected of our (irrevo-
cable) history analysis is that any rejections imply property
violations. Concretely, m monitors soundly for ϕ if, for any
system p, whenever m rejects a history H produced by p, i.e.,
rejDET(H,m) for H⊆Tp, then p also violates the property, i.e.,
p/∈JϕK. The universal quantification over systems required by
Def. IV.1 manifests a black-box treatment of the SUS.

Definition IV.1 (Soundness). m monitors soundly for ϕ when
∀p ∈ PRC, if ∃H ⊆ Tp such that rejDET(H,m) then p /∈ JϕK. ■

Example IV.2. m1 from Ex. III.1 monitors soundly for ϕ4
from Ex. II.1. Specifically, Ex. III.1 illustrates how trace
prefixes rsδ1a and rsδ2c of p2 can be veraciously accumulated
as a history and Ex. III.3 shows that such a history is
rejected. Accordingly, p2 violates ϕ4. By comparison, monitor
m3

def
= r.s.a.no is not sound for ϕ4; it can collect and reject

histories that contain the trace rsδ1a, but systems such as
recX.r.s.δ1.a.X and r.s.δ1.a.0 (which can exhibit such a trace)
satisfy ϕ4, i.e., they do not violate it. ■

The dual requirement to soundness is (rejection) complete-
ness: m monitors completely for ϕ if any p /∈ JϕK can be
rejected based on some history it produces.

Definition IV.2 (Completeness). m monitors completely for
ϕ when ∀p ∈ PRC, if p /∈ JϕK then ∃H ⊆ Tp such that
rejDET(H,m). ■

Example IV.3. It can be shown that m4
def
= s.no⊗a.no⊗ c.no

monitors completely for ϕ0 from Ex. I.1. Concretely, any
violating system can exhibit a trace of the form ts, ta or tc
for some t ∈ IACT∗. Once exhibited (and aggregated), one can
show that m4 rejects such a history. ■

For monitors that are veracious and produce irrevocable
verdicts (Sec. III), (rejection) soundness and completeness
constitute the basis for our definition of monitor correctness.

Definition IV.3 (Correct Monitoring). A monitor m monitors
correctly for the (closed) formula ϕ if it can do so soundly
and completely. ■

V. MONITORABILITY

Monitorability [41], [8], [21], [23] delineates the proper-
ties that can be correctly monitored from those that cannot,
formalised as a correspondence between the declarative logic
semantic of Sec. II and the operational monitor semantics
of Sec. III. The chosen approach [39] applies to a variety
of settings [4], [11], [42], [43], [44], [45], [46]. It fosters
a separation of concerns between the specification semantics
and the verification method employed, which is relevant to
our investigation on the increase in expressive power when
moving from single-run monitoring to multi-runs; see [23]
for a comparison between distinct notions of monitorability.
Specifically, Def. V.1 (below) is parametric w.r.t. the definition
of “m monitors correctly for ϕ”; prior work [8] formalised
this as single-run monitoring whereas Def. IV.3 redefines it as
multi-run monitoring.

Definition V.1 (Monitorability [8]). Formula ϕ∈RECHML is
monitorable iff ∃m∈MON monitoring correctly for it. Sublogic
L⊆RECHML is monitorable iff ∀ϕ∈L are monitorable. ■

Several formulae are unmonitorable (for violations) accord-
ing to Def. V.1, particularly when they include existential
modalities and least fixed points.

Example V.1. Assume, towards a contradiction, that there
exists a sound and complete monitor m for the formula ⟨α⟩tt.
Pick some p /∈ J⟨α⟩ttK, i.e., p ̸α−→. By the completeness re-
quirement of Def. IV.2, there exists a history H ⊆ Tp such that
rejDET(H,m). Irrespective of the value of DET(α), we can use
p to build another system p+α.0 where p+α.0∈ J⟨α⟩ttK. We
also know that H is a history of p+α.0 since H⊆Tp⊆T(p+α.0).
This fact and rejDET(H,m) makes m unsound, contradicting our
initial assumption.

Similarly, assume, towards a contradiction, that there exists
a monitor m that can monitor soundly and completely for
minX.([α]X∧ [β]ff). The single-state system p with the sole
transition p α−→ p violates the formula. Due to completeness
of Def. IV.2, we must have rejDET(H,m) for some H ⊆ Tp.
From the structure of p, we also know H is a finite set of the
form {αn | n ∈N}. Fix k to be the length of the longest trace

in H and then consider the system q consisting of k+1 states
that exclusively has the transitions q = q0

α−→ . . .
α−→ qk (and

nothing else). Clearly, q satisfies minX.([α]X∧ [β]ff). Since
H ⊆ Tq as well, rejDET(H,m) contradicts the initial assumption
that m is sound (and complete). ■

Disjunctions are the only other RECHML logical constructs
excluded from SHML, as restated in Thm. II.2. Formulae
containing disjunctions can be monitorable with a few caveats.

Example V.2. Recall ϕ2
def
= [r]([s]ff∨ [a]ff) from Ex. I.3. When

DET(r) = false, ϕ2 is not monitorable. By contradiction, as-
sume a correct m exists. Since p3

def
= r.(s.0+a.0)+r.s.0 /∈ Jϕ2K,

then we should have rejDET(H,m) for some H⊆Tp3 . But
H ⊆ Tp4=Tp3 for p4

def
= r.s.0+ r.a.0 ∈ Jϕ2K, and rejDET(H,m)

would make m unsound, contradicting our initial assumption.
However, when DET(r)=true, ϕ2 is monitorable: an obvi-

ous correct monitor is m5
def
= r.(s.no⊕a.no). Although systems

p3 and p4 would be ruled out by DET(r)=true, an ILTS
would still allow systems such as p5

def
= r.(s.0+a.0)+ r.(s.0+

a.0 + a.0) that reaches the equivalent states s.0 + a.0 and
s.0+ a.0+ a.0 after an r-transition. Even if H = {ra,rs} is
aggregated by passing through different intermediary states,
i.e., s.0+a.0 and s.0+a.0+a.0, the monitor analysis would
still be sound in rejecting p5 via H; see Prop. II.1.

A trickier formula is ϕ4
def
=maxX.

(
[r][s]X∧ ([a]ff ∨ [c]ff)

)
from Ex. II.1. Although the disjunction is syntactically not
prefixed by any universal modality, it can be reached after a re-
cursive unfolding, i.e., ϕ4 ≡ [r][s]ϕ4∧([a]ff∨ [c]ff). By similar
reasoning to that for ϕ2, formula ϕ4 is monitorable whenever
DET(r)=DET(s)=true but unmonitorable otherwise. ■

Def. V.2 characterises the extended class of RECHML
monitorable formulae for multi-run monitoring, parametrised
by EACT and the associated action determinacy delineation
defined by DET. It employs a flag to calculate deterministic
prefixes via rule CUM along the lines of Fig. 3. This is then
used by rule COR, which is only defined when the flag is true.

Definition V.2. f ⊢DET ϕ is defined coinductively as the largest
relation of the form (BOOL× RECHML) satisfying the rules

CA
ϕ ∈ {ff,tt,X}

f ⊢DET ϕ

CUM

f ∧DET(α) ⊢DET ϕ

f ⊢DET [α]ϕ

CAND

f ⊢DET ϕ f ⊢DET ψ

f ⊢DET ϕ ∧ψ

COR

true ⊢DET ϕ true ⊢DET ψ

true ⊢DET ϕ ∨ψ

CMAX

f ⊢DET ϕ[maxX.ϕ/X]

f ⊢DET maxX.ϕ

SHML∨
DET

def
= {ϕ | true ⊢DET ϕ } defines the set of extended

monitorable formulae. It extends SHML with disjunctions as
long as these are prefixed by universal modalities of determin-
istic external actions (up to largest fixed point unfolding). ■

Example V.3. Assuming that DET(r) = DET(s) = true
and that DET(a) = false, we can symbolically show
that both formulae ϕ2 and ϕ4 are in SHML∨

DET. For
instance, recall that ϕ2 = [r]([s]ff ∨ [a]ff). According
to Def. V.2, to justify the inclusion ϕ2 ∈ SHML∨

DET

it suffices to prove the judgement true ⊢DET ϕ2. Now,
the relation R = {(true, [r]([s]ff ∨ [a]ff)),(true, [s]ff ∨
[a]ff),(true, [s]ff),(true, [a]ff),(true,ff),(false,ff)} satisfies the
coinductive rules of Def. V.2 and includes the pair (true,ϕ2),
thereby proving the judgement true ⊢DET ϕ2. ■

Although the tracing of internal actions as part of the history
helps with correct monitoring, multi-run RV requires us to
limit systems to deterministic internal actions in order to attain
violation completeness for monitors MON of Fig. 2.

Example V.4. The two systems p6
def
= δ1.r.s.0+ δ2.r.a.0 and

p7
def
= γ.r.s.0 + γ.r.a.0 both satisfy ϕ2 from Ex. V.2 when

DET(r) = true. In the case of p6, the correct monitor m5
from Ex. V.2 does not reject the history {δ1rs,δ2ra} because
the application of rule ACTI of Fig. 3 (for either δ1 or δ2)
necessarily reduces the history size of the premise to one
trace. For system p7, we must also have DET(γ) = false;
when m5 analyses the history {γrs,γra} using rule ACTI, the
premise flag can only be false which prohibits the analysis
from using PARO. Both systems p8

def
= r.(δ1.s.0+ δ2.a.0) and

p9
def
= r.(γ.s.0+γ.a.0) violate ϕ2. Accordingly, both are rejected

by m5 via the respective histories {rδ1s,rδ2a} and {rγs,rγa}.
Non-deterministic internal actions hinder completeness.

System p10
def
= γ.p8 + γ.0 violates ϕ2 but m5 cannot reject the

history {γrδ1s,γrδ2a}: again, DET(γ) = false limits the flag
premises for ACTI to false, prohibiting the use of PARO. ■

Showing that a logical fragment, L⊆RECHML, is moni-
torable, Def. V.1, can be onerous due to the various universal
quantifications that need to be considered, e.g. all formulae
ϕ∈L , all systems p∈PRC and all histories H∈HST from
Defs. IV.1 and IV.2. We prove the monitorability of SHML∨

DET

systematically, by concretising the existential quantification of
a correct monitor for every ϕ ∈ SHML∨

DET via the monitor
synthesis L−M. We then prove that for any ϕ∈SHML∨

DET,
the synthesised monitor LϕM does monitor correctly for it
(Def. V.1). A by-product of this proof strategy is that the
synthesis function in Def. V.3 can be used directly for tool
construction to automatically generate (correct) witness mon-
itors from specifications; see [12], [47].

Definition V.3. L−M : SHML∨
DET → MON is defined as follows:

LffM def
= no Lϕ ∧ϕM def

= LϕM⊗ LϕM L[α]ϕM def
= α.LϕM LXM def

= X

LttM def
= end Lϕ ∨ϕM def

= LϕM⊕ LϕM LmaxX.ϕM def
= recX.LϕM ■

If we limit ILTSs to deterministic internal actions, i.e.,
DET(γ) = true for all γ ∈ IACT, we can show monitorability
for arbitrary ILTSs and the fragment SHML∨

DET.

Proposition V.1. LϕM is sound for ϕ ∈ SHML∨
DET. ■

Proposition V.2. If DET(γ) = true for all γ ∈ IACT, then LϕM
is complete for all ϕ ∈ SHML∨

DET. ■

Theorem V.3 (Monitorability). When DET(γ) = true for all
γ ∈ IACT, all ϕ ∈ SHML∨

DET are monitorable. ■

We can show an even stronger result called maximality
which ensures that restricting specifications to SHML∨

DET does
not exclude any monitorable properties, Thm. V.4. Maximality
typically relies on a reverse synthesis ⟨⟨−⟩⟩ that maps any mon-
itor m ∈ MON to a characteristic formula ⟨⟨m⟩⟩ ∈ SHML∨

DET

that it monitors correctly for. This method is however com-
plicated by the occurrence of non-deterministic actions. For
instance, if DET(r) = false, the monitor r.(s.no⊕ a.no) does
not correctly monitor for [r]([s]ff ∨ [a]ff) but instead never
rejects. In order to overcome these anomalies and obtain our
results, we first normalise the aforementioned monitor to r.end;
see [34, Sec. E].

Maximality permits a verification framework to determine if
a property is monitorable via a simple syntactic check, or else
employ alternative verification techniques. The development
of an RV tool can also exclusively target SHML∨

DET, knowing
that all monitorable properties are covered.

Theorem V.4 (Maximality). If DET(γ)=true for all γ ∈ IACT
and L ⊆ RECHML is monitorable w.r.t. MON, then for all
ϕ ∈ L , there exists ψ ∈ SHML∨

DET such that JϕK = JψK. ■

VI. ACTOR SYSTEMS

We validate the utility and applicability of monitoring ILTSs
from Sec. II via an instantiation to actor systems [48], [49],
[50], [51], [52], [53] where a set of concurrent processes called
actors interact via asynchronous message-passing. Each actor,
i[e ◁ q], is identified by its unique ID, i, j,h,k ∈ PID, used by
other actors (possibly more than one) to address messages to
it i.e., the single-receiver property. Internally, actors consist of
a running expression e and a mailbox q, i.e., a list of values
denoting a message queue.

A,B ∈ ACTR ::= i[e ◁ q] | 0 | A ∥ B | (ν i)A | i⟨v⟩

Parallel actors, A ∥ B, can also be inactive, 0, or have IDs that
are locally scoped to a subset of actors, (ν i)A. There may
also be asynchronous messages in transit, i⟨v⟩, where value v
is addressed to i. The set of all free IDs i identifying actors
i[e ◁ q] in A is denoted by fId(A).

Values, v∈ VAL, range over PID∪ATOM where a,b∈ ATOM
are uninterpreted tags. Actor expressions e,d ∈ EXP can be
outputs, i!v.e, or reading inputs from the mailbox through
pattern-matching, rcv{pn → en}n∈I , where each expression
en is guarded by a disjoint pattern pn. Actors may also
refer to themselves, self x.e, spawn other actors, spwd asx.e,
or recurse, recX.e. Receive patterns, spawn and recursion
bind expression variables x,y ∈ VARS, and term variables
X,Y ∈ TVAR. Similarly, (ν i)A binds the name ID i in A. We
work up to α-conversion of bound entities. The list notation
v :q denotes the mailbox with v as the head and q as the tail of
the queue, whereas q :v denotes the mailbox with v at the end
of the queue preceded by q; queue concatenation is denoted as
q :r. We elide empty mailboxes, ε , and write i[e] for i[e ◁ ε].

The ILTS semantics for our language is defined over system
states of the form K | O▷A ∈ PRC. The implicit observers that
A interacts with when running is represented by the set of

IDs O ⊆ PID; to model the single receiver property we have
fId(A)∩O = /0. Knowledge, K ⊆ PID, denotes the set of IDs
known to all actors in A and O; it keeps track of bound/free
names without the need for name bindings in actions [54]
where (fId(A)∪O)⊆ K; see [55]. Transitions are of the form

K | O▷A
η−→ K′ | O′ ▷B (1)

where η ranges over EACT ∪ IACT ∪ {τ}. External actions
EACT = { i?v, i!v, i↑ j | i, j ∈ PID,v ∈ VAL} include input,
i?v, output, i!v, and scope-extruding output, i↑ j. Internal
actions IACT = {com(i,v), ncom | i ∈ PID,v ∈ VAL} include
internal communication involving either free names, com(i,v)
or scoped names, ncom. Eq. (1) is governed by the judgement
K | O ▷A

η−→ B with K′|O′ = aft(K |O,η); the latter function
determines K and O where aft(K |O, i↑ j) def

=
(
K∪{ j}

)
|O and

aft(K |O, i? j) def
= (K∪{ j})|

(
O∪({ j}\K)

)
(all other cases of η

leave K|O unchanged). The generation of external actions is
defined by the following rules where asynchronous output is
conducted in two steps, rules SND1 and SND2, where the latter
rule requires the recipient address j to be in O. Scope-extruded
outputs with its name management is described by OPN.

SND1

K | O▷ i[j!v.e ◁ q] τ−→ i[e ◁ q] ∥ j⟨v⟩

SND2

K | O▷ j⟨v⟩ j!v−−→ 0
j∈O

RCV

K | O▷ i[e ◁ q] i?v−−→ i[e ◁ q :v]
OPN

(K, j) | O▷A
i! j−−→ B

K | O▷ (ν j)A
i↑ j−−→ B

RD

∀n ∈ I · absent(pn,q) ∃m ∈ I ·¬absent(pm,v)∧match(pm,v) = σ

K | O▷ i[rcv{pn → en}n∈I ◁ q :v :r] τ−→ i[emσ ◁ q :r]

Rule RCV details how input actions append to the recipi-
ent mailbox, which are then selectively read following rule
RD. Selection relies on the helper functions absent(−) and
match(−) in [34, Def. H.1] to find the first message v in the
mailbox that matches one of the patterns pm in {pn−→en}n∈I .
If a match is found, the actor branches to emσ , where em
is the expression guarded by the matching pattern pm and
σ ∈ SUB : VARS ⇀ VAL substitutes the free variables in em
for the values resulting from the pattern-match.

COMML

K | fId(B)▷A i!v−−→ A′

K | fId(A)▷B i?v−−→ B′

K | O▷A ∥ B
com(i,v)−−−−−→ A′ ∥ B′

NCOMML

K | fId(B)▷A
i↑ j−−→ A′

K | fId(A)▷B
i? j−−→ B′

K | O▷A ∥ B ncom−−−−→ (ν j)(A′ ∥ B′)

SCP2

K, j | O▷A
com(i,v)−−−−−→ B

K | O▷ (ν j)A ncom−−−−→ (ν j)B
j ∈ {i,v}

STR

A ≡ A′ B′ ≡ B
K | O▷A′ η−→ B′

K | O▷A
η−→ B

Internal actor interaction is described via internal actions to
permit monitors to differentiate these steps from the silent
transitions. Transitions with com(i,v) labels are deduced via
COMML (above) or the symmetric rule COMMR, whereas ncom-
transitions are generated by the NCOMML, NCOMMR and SCP2

rules. Our semantics assumes standard structural equivalence
as the ILTS equivalence relation, with axioms such as A≡A ∥ 0
and A ∥ B ≡ B ∥ A; transitions abstract over such states via rule
STR. The remaining transitions are fairly standard.

A. Actor Structural Equivalence and Silent Actions

To show that our semantics is indeed an ILTS, we need to
prove a few additional properties. Prop. VI.1 below shows that
transitions abstract over structurally-equivalent states.

Proposition VI.1. For any A ≡ B, whenever K | O▷A
η−→ A′

then there exists B′ such that K | O▷B
η−→ B′ and A′ ≡ B′. ■

As a result of Prop. VI.2 below, we are guaranteed that
any actor SUS instrumented via a mechanism that implements
the semantics in Fig. 2 can safely abstract over (non-traceable)
silent transitions because they are confluent w.r.t. other actions.

Proposition VI.2. If K | O▷A τ−→ A′ and K | O▷A
η−→ A′′, then

either η = τ and A′ ≡ A′′ or there exists an actor system B
and moves K | O▷A′ η−→ B and aft(K |O,η)▷A′′ τ−→ B. ■

B. Deterministic and Non-deterministic Traceable Actions

Our ILTS interpretation treats input, output and internal
communication as deterministic, justified by Prop. VI.3.

Proposition VI.3 (Determinacy). For all i,v, we have

• K | O▷A i!v−−→ A′ and K | O▷A i!v−−→ A′′ implies A′ ≡ A′′

• K | O▷A i?v−−→ A′ and K | O▷A i?v−−→ A′′ implies A′ ≡ A′′

• K |O▷A
com(i,v)−−−−→ A′ and K |O▷A

com(i,v)−−−−→ A′′ implies A′≡A′′ ■

In contrast, scope-extruding outputs and internal commu-
nication involving scoped names are not considered to be
deterministic, i.e., for all i, j ∈ PID, we have DET(i↑ j) =
DET(ncom) = false. Exs. VI.1 and VI.2 illustrate why they
are treated differently from other traceable actions.

Example VI.1. Consider the actor state K |O▷A1 where j ∈O
and the running actor is defined as A1

def
= (ν i)(i[rcvx→ j!x.0] ∥

i⟨v1⟩ ∥ i⟨v2⟩) with v1 ̸= v2; the actor identified by i is scoped by
the outer construct (ν i). The actor at i can internally receive
either value v1 or v1 via rules SCP2 and COMMR as follows:

K | O▷A1
ncom−−−→ K | O▷ (ν i)(i[rcvx → j!x.0 ◁ v1] ∥ 0 ∥ i⟨v2⟩)

K | O▷A1
ncom−−−→ K | O▷ (ν i)(i[rcvx → j!x.0 ◁ v2] ∥ i⟨v1⟩ ∥ 0)

Since v1 ̸= v2, the systems reached are not structurally equiv-
alent: they exhibit a different observational behaviour by
sending different payloads to the observer actor at j. ■

Example VI.2. Consider the actor system K |O▷A2 where h∈
O and the running actor is defined as A2

def
= (ν i)

(
i[e1] ∥ h⟨i⟩

)
∥

(ν i)
(

i[e2] ∥ h⟨i⟩
)
; name i is locally scoped twice and e1 and

e2 exhibit different behaviour. The actor system K | O▷A2 can
scope extrude name i by delivering the message h⟨i⟩ in two
possible ways using rules PARL, PARR and OPN as follows:

K | O▷A2
h↑i−−→ K ∪{i} | O▷

(
i[e1] ∥ 0

)
∥ (ν i)

(
i[e2] ∥ h⟨i⟩

)
K | O▷A2

h↑i−−→ K ∪{i} | O▷ (ν i)
(

i[e1] ∥ h⟨i⟩
)
∥ (i[e2] ∥ 0)

Since the systems reached above are not structurally equiv-
alent, they are possibly not behaviourally equivalent either.
Particularly, once an observer learns of the new actor address i,
it could interact with it by sending messages and subsequently
observe different behaviour through the different e1 and e2. ■

Ex. VI.3 below showcases how the properties in Exs. I.1,
I.3, I.4 and II.1 can be adapted to monitor for actor systems.

Example VI.3. With the values req,ans,all,cls, init ∈ ATOM,
a server, expressed as actor i, can receive queries, i?req, reply
to an observer client located at j, j!ans, and send messages to
a resource manager, abstracted as an observer actor at address
h, to either allocate more memory, h!all, or close a connection,
h!cls. We can reformulate ϕ4 from Ex. II.1 as

ϕ6
def
= maxX.

(
[i?req][j!ans]X∧ ([h!cls]ff ∨ [h!all]ff)

)
Assuming {i, j,h,k1,k2} ⊆ K and { j,h} ⊆ O, consider the
server implementation K | O▷Asrv that violates ϕ6.

Asrv
def
= i[rcv req→ (k1!init.k2!init. j!ans)]

∥ k1[rcv init→ h!all] ∥ k2[rcv init→ h!cls.0]

This implementation can produce the history {t1, t2} where
we have t1=(i?req).com(k1, init).com(k2, init).(j!ans).(h!all)
and t2=(i?req).com(k1, init).com(k2, init).(j!ans).(h!cls).
Since, by Prop. VI.3, DET(i?req) = DET(i!ans) = true,
the visibility of the internal actions com(k1, init) and
com(k2, init) suffices for the representative monitor m6

def
= Lϕ6M

to reject Asrv. This changes for K′|O ▷ (ν k1,k2)(Asrv)
where K′ = K \ {k1,k2}. The aforementioned traces
would change to t3=(i?req).ncom.ncom.(j!ans).(h!all)
and t4=(i?req).ncom.ncom.(j!ans).(h!cls). The obscured
ncom events prohibit monitoring from determining whether
behaviourally equivalent SUS states are reached after these
transitions, thus soundly relate t3 with t4 in history {t3, t4}. ■

VII. ESTABLISHING BOUNDS

Despite the guarantees provided by Def. IV.3, Thms. V.3
and V.4 do not calculate the number of monitored runs needed
to reject a violating system. This measure is crucial for an
efficient implementation of the operational semantics of the
monitor (Figs. 2 and 3) where history analysis is not invoked
unnecessarily whenever a new trace is aggregated to the
history. We therefore investigate whether there is a correlation
between the syntactic structure of properties expressed in
SHML∨

DET and the number of partial traces required to conduct
the verification. In particular, we study how this measure can
be obtained through a syntactic analysis of the disjunction
operators in the formula; for the purpose of tool construction,
it is necessary for the analysis to be symbolic. Since we can
only monitor for SHML∨

DET formulae when the relevant internal
actions are deterministic (see Ex. V.4), internal actions are
elided in the subsequent discussion (they only make examples
more cumbersome).

Example VII.1. Assume DET(r) = true and recall the spec-
ification ϕ2

def
= [r]

(
[s]ff ∨ [a]ff

)
from Ex. I.3 and its monitor

m5
def
= r.

(
s.no⊕a.no

)
= Lϕ2M from Ex. V.2. Violating systems

can produce the history H={rs,ra}, which is enough for m5
to reject. At the same time, no violating system for ϕ2 can be
rejected with fewer traces. Similarly, all violating systems for
the formula ϕ5

def
= [r]

(
[s]ff∨ [a]ff

)
∨ [a]ff can be rejected via the

3-size history {rs,ra,a} (modulo internal actions). ■

Although the evidence in Ex. VII.1 suggests that monitoring
for a formula with n disjunctions requires n+1 executions to
detect violations, this measure could be imprecise in general,
due to a number of reasons. First, as a consequence of monitor
passivity, there is no guarantee that the SUS will only produce
the trace prefixes required to reject as it might also exhibit
other behaviour. History bounds thus assume the best case
scenario where every monitored run produces a relevant trace
prefix. Second, not all SUS violations are justified by the same
number of (relevant) trace prefixes. For instance, formulae
such as ϕ1 ∧ ϕ2 are violated by systems that either violate
ϕ1 or ϕ2 (but not necessarily both), and thus the number of
relevant trace prefixes required to violate each subformula ϕi
for i ∈ 1..2 might differ. This means that lower and upper
bounds may not necessarily coincide.

Example VII.2. Consider ϕ7
def
= [r]

(
[s]ff∨ [a]ff

)
∧ [s]ff, a slight

modification on ϕ2. A representative monitor for ϕ7 can reject
violating systems that exhibit both trace prefixes ra and rs, but
it can also reject others exhibiting the single prefix s via the
subformula [s]ff. This is problematic since our violating trace
estimation needs to universally quantify over all systems, in
order to adhere to a black-box treatment. ■

Recursive formulae complicate further the calculation of the
executions required from the disjunctions present in a formula.

Example VII.3. ϕ8 is a variation on ϕ4, stating that “if the
system can allocate memory, then (i) it cannot also perform a
close action and (ii) this property is invariant for all the states
reached after servicing received queries.”

ϕ8
def
= maxX.

(
⟨a⟩tt=⇒ ([c]ff ∧ [r][s]X)

)
≡ maxX.

(
[a]ff ∨ ([c]ff ∧ [r][s]X)

)
It contains one disjunction and m7

def
= recX.

(
a.no⊕ (r.s.X⊗

c.no)
)
=Lϕ8M can correctly monitor for it with no fewer than

two trace prefixes. E.g. p1
def
= recX.

(
r.s.X+(a.X+ c.0)

)
from

Ex. II.1 violates ϕ8 and m7 can detect this via the size-2 history
{a,c} ⊆ Tp1 . But the same cannot be said for the violating
system p11

def
= a.0+r.s.(a.0+c.0). Since p11 ̸c=⇒, monitor m7

cannot use the previous size-2 history and instead requires
the size-3 history, {a,rsa,rsc} ⊆ Tp11 . Similarly, the violating
system p14

def
= a.0+r.s.(a.0+r.s.(a.0+c.0)) can only be detected

via a history containing the traces {a,rsa,rsrsa,rsrsc}. ■

Ex. VII.3 illustrates how, when universally quantifying
over all systems, execution upper bounds cannot be easily
determined from the structure of a formula. However, we
show that the calculation of execution lower bounds from the
formula structure is attainable. For instance, the lower bound

for a conjunction ϕ1 ∧ϕ2 would be the least bound between
the lower bounds of ϕ1 and ϕ2 respectively. Crucially, history
lower bounds are invariant w.r.t. recursive formula unfolding.

Example VII.4. Recall ϕ8 from Ex. VII.3 with a history lower
bound of size 2, which is equal to the number of disjunctions
in ϕ8 plus 1 (as argued in Ex. VII.1). By the semantics in
Fig. 1, the same systems also violate the unfolding of ϕ8, i.e.,

ϕ
′
8

def
= [a]ff ∨

(
[c]ff ∧ [r][s](maxX.([a]ff ∨ ([c]ff ∧ [r][s]X)))

)
= [a]ff ∨ ([c]ff ∧ [r][s]ϕ8)

since ϕ8 ≡ ϕ ′
8. A naive analysis would conclude that ϕ ′

8
contains 2 disjunctions, thereby requiring histories of size 3.
But a compositional approach for such calculation, based on
Ex. VII.2, would increase precision and allow us to conclude
that lower bounds of size 2 suffice. Concretely, to reject a
violating SUS for ϕ ′

8 = [a]ff ∨ ([c]ff ∧ [r][s]ϕ8, trace evidence
is needed to determine violations for both sub-formulae [a]ff
and [c]ff ∧ [r][s]ϕ8. Whereas 1 trace suffices to reject [a]ff,
determining the lower bounds for rejecting [c]ff ∧ [r][s]ϕ8
amounts to calculating the least lower bound required to reject
either [c]ff or [r][s]ϕ8. Since rejecting [c]ff requires only 1
trace, the total lower bound is that of 1+1 = 2 traces, which
is equal to that of ϕ8. ■

The function lb(−) formalises the calculation of history
lower bounds based on the (compositional) syntactical analysis
of formulae.

Definition VII.1. lb(−) : SHML∨
DET →N is defined as follows:

lb(ff) def
= 0 lb(maxX.ϕ)

def
= lb(ϕ) lb([α]ϕ)

def
= lb(ϕ)

lb(tt) def
= ∞ lb(ϕ ∧ψ)

def
= min{lb(ϕ), lb(ψ)}

lb(X) def
= ∞ lb(ϕ ∨ψ)

def
= lb(ϕ)+ lb(ψ)+1 ■

There is one further complication when calculating the
number of trace prefixes required from the syntactic structure
of formulae. Our implicit assumption has been that, for dis-
junctions ϕ1∨ϕ2, the incorrect system behaviour described by
ϕ1 and ϕ2 is distinct. Whenever this is not the case, formulae
do not observe the lower bound proposed above since ϕ1 and
ϕ2 might be violated by common trace prefixes.

Example VII.5. Although analysing ϕ9
def
= [r]ff ∨ [r][s]ff syn-

tactically gives the lower bound 2, m8
def
= r.no⊕r.s.no= Lϕ9M

rejects all violating systems with the single prefix rs. ■

We limit our calculations to a subset of RECHML ruling out
overlapping violating behaviour across disjunctions. SHML∨

NF

(below) combines universal modalities and disjunctions into
one construct,

∨
i∈I [αi]ϕi, to represent the formula [α1]ϕ1 ∨

·· ·∨ [αn]ϕn for the finite set index I={1, . . . ,n}.

Definition VII.2. SHML∨
NF ⊆ RECHML is defined as:

ϕ,ψ∈SHML∨
NF ::= tt | ff | ϕ ∧ψ |

∨
i∈I

[αi]ϕi | maxX.ϕ | X

where ∀i, j ∈ I, we have i ̸= j implies αi ̸= α j. ■

To faciliate the statement and establishment of results on
history lowerbounds, we define an explicit witness-based vi-
olation relation H|=DETϕ that avoids the existential quantifi-
cations over SUS histories of Defs. IV.1 and IV.2. The new
judgement H|=DETϕ corresponds to p/∈JϕK whenever H⊆Tp.

Definition VII.3. Given a predicate on TACT denoted as DET,
the violation relation, denoted as |=DET, is the least relation of
the form (HST×BOOL× SHML∨

DET) satisfying the rules

VF
H ̸= /0

(H, f) |=DET ff

VMAX

(H, f) |=DET ϕ[maxX.ϕ/X]

(H, f) |=DET maxX.ϕ

VANDL
(H, f) |=DET ϕ

(H, f) |=DET ϕ ∧ψ

VOR

(H,true) |=DET ϕ (H,true) |=DET ψ

(H,true) |=DET ϕ ∨ψ

VANDR
(H, f) |=DET ψ

(H, f) |=DET ϕ ∧ψ

VUMPRE

H ′=sub(H,γ) f ′=f∧DET(α) (H ′, f ′) |=DET [α]ϕ

(H, f) |=DET [α]ϕ

VUM

H ′=sub(H,α) f ′=f∧DET(α) (H ′, f ′) |=DET ϕ

(H, f) |=DET [α]ϕ

We read “H violates ϕ”, H|=DETϕ , when (H, true) |=DET ϕ . ■

Thm. VII.1 shows that whenever a system p produces a
history H that violates a formula ϕ , i.e., H |=DET ϕ , then p must
also violate it, i.e., p /∈ JϕK (for arbitrary ILTSs). To show
correspondence in the other direction, Thm. VII.2, we need
to limit ILTSs to deterministic internal actions. The reason for
this is, once again, the set of systems such as p10 from Ex. V.4
for which there is no history H ⊆ Tp10 such that H |=DET ϕ2,
even though p10 /∈ Jϕ2K.

Theorem VII.1. For all formulae ϕ ∈ SHML∨
DET, if

(
∃H ⊆ Tp

such that H |=DET ϕ
)

then p /∈ JϕK. ■

Theorem VII.2. Suppose DET(γ)=true for all γ∈IACT. For
all ϕ∈SHML∨

DET, if p/∈JϕK then
(
∃H⊆Tp s.t. H |=DET ϕ

)
. ■

The new judgment allows us to state and verify that dis-
junction sub-formulae must be violated by disjoint histories.

Proposition VII.3. For all ϕ ∨ψ ∈ SHML∨
NF, if H |=DET ϕ ∨ψ

then H = H ′⊎H ′′ such that H ′ |=DET ϕ and H ′′ |=DET ψ . ■

Thm. VII.4 establishes a lower bound on the trace prefixes
required to detect violations for SHML∨

NF formulae.

Theorem VII.4 (Lower Bounds). For all ϕ ∈ SHML∨
NF and

H ∈ HST, if H |=DET ϕ then |H| ≥ lb(ϕ)+1. ■

Example VII.6. Following Thm. VII.4, we can syntactically
determine that ϕ2,ϕ4,ϕ8 ∈ SHML∨

NF cannot be violated (by
any system) with fewer than 2 trace prefixes since lb(ϕ2)=
lb(ϕ4)= lb(ϕ8)=1. ■

Thm. VII.4 also provides us with a simple syntactic check
to determine whether SHML∨

NF formulae are worth monitoring
for, according to Def. V.1. Specifically, Cor. 1 shows that
whenever lb(ϕ)=∞, the formula ϕ is always satisfied, i.e.,

violations for it can never be detected, regardless of the system
being runtime verified.

Corollary 1. lb(ϕ ∈ SHML∨
NF)=∞ implies ∀H ·H ̸ |=Detϕ . ■

Example VII.7. The formula ϕ∞

def
=

(
maxX.[r][s]X

)
∨ [a][c]ff

turns out to be a tautology and, accordingly, lb(ϕ∞) = ∞. ■

Finally, we note that although a minimum of n trace prefixes
might be required by Def. VII.1 for analysis, the SUS might
need to be executed more than n times to obtain these prefixes.
Intuitively, this is caused by redundancies in the monitors
(caused by the compositional method of monitor synthesis)
and the incremental manner in which monitor instrumentation
record trace prefixes, as illustrated in Ex. VII.8.

Example VII.8. Assuming DET(a)=true, consider ϕ10, de-
scribing the property “after any number of serviced queries
interspersed by sequences of memory allocations, a system that
can allocate memory cannot also perform a close action.”

ϕ10
def
= maxX.

(
[r][s]X∧ [a]X∧ ([a]ff ∨ [c]ff)

)
When synthesising ϕ10, we get the monitor Lϕ10M = m2

def
=

recX.
(
r.s.X⊗ a.X ⊗ (a.no⊕ c.no)

)
from Ex. III.2. The sys-

tem p13
def
= recX.r.s.X+a.X+a.c.0 violates ϕ10, and m2 can

reject it via the history H = {rsaa,rsac} ⊆ Tp13 , in line with
Thm. VII.4 since lb(ϕ10)+1 = 2 trace prefixes. However, the
incremental manner with which traces are aggregated (Sec. III)
requires that, whenever rsaa ∈ H, then rsa ∈ H as well.
This is due to the fact that for the trace rsa · · · , we always
have /0 ▷ (ε,m2) ◁ p14

rsa
==⇒ /0 ▷ (rsa,no) ◁ p′14 during the first

monitored execution. Thus, although 2 prefixes are sufficient to
detect a violation, the operational mechanism for aggregating
the traces for analysis forces us to observe at least 3 SUS
executions to gather the necessary traces for analysis. ■

VIII. RELATED WORK

Various bodies of work employ monitors over multiple runs
for RV purposes. The most prominent target Hyperproper-
ties, i.e., properties describing sets of traces called hyper-
traces, used to describe safety and privacy requirements [56].
Finkbeiner et al. [57] investigate the monitorability of hy-
perproperties expressed in HyperLTL [58] and identify three
classes for monitoring hypertraces: the bounded sequential, the
unbounded sequential and the parallel classes. They also de-
velop a monitoring tool [59] that analyses hypertraces sequen-
tially by converting an alternation-free HyperLTL formula into
an alternating automaton that is executed over permutations of
the observed traces. They show that deciding monitorability for
alternation-free HyperLTL formulae in this class is PSPACE-
complete but undecidable in general. Our setup fits their
unbounded sequential class because monitors receive each
trace in sequence, and a SUS may exhibit an unbounded
number of traces. Agrawal et al. [60] give a semantic char-
acterisation for monitorable HyperLTL hyperproperties called
k-safety. They also identify syntactic HyperLTL fragments and
show they are k-safety properties, backed up by a monitor

synthesis algorithm that generates a combination of petri-
nets and LT L3 monitors [61]. Stucki et al. [62] show that
many properties in HyperLTL involving quantifier alternation
cannot be monitored for. They also present a methodology for
properties with one alternation by combining static verification
and RV: the static part extracts information about the set of
traces that the SUS can produce (i.e., branching information
about the number of traces in the SUS, expressed as a
symbolic execution tree) that is used by monitors to convert
quantifications into k-(trace)-quantifications. More recently,
in [44] Aceto et al. study the adaptation of the linear-time
RECHML [11] to hypertraces. Their definition of monitorabil-
ity follows the same template to that of defs. IV.1, IV.2 and V.1.
They study a syntax-directed monitor synthesis similar to ours,
exploring both centralised and decentralised alternatives where
choreographed monitors interact with one another.

Despite the similarities of using multi-run monitoring, these
works differ from ours in a number of ways. For instance,
the methods used are very different. Our monitor synthesis
algorithm is directly based on the formula syntax and does
not rely on auxiliary models such as alternating automata or
petri-nets, which facilitates syntactic-based proofs. The results
presented are also substantially different. Although [60], [62]
prove that their monitor synthesis algorithm is sound, neither
work considers completeness results, maximality or execution
lower bound estimation. More importantly, our target logic,
RECHML, is intrinsically different from (linear-time) hyper-
logics since it (and other branching-time logics) is interpreted
over LTSs, whereas hyperlogics are defined over sets of
traces. which inherently coarser than an LTSs. For instance,
the systems a.b.0+ a.c.0 and a.(b.0+ c.0) are described by
different LTSs but have an identical trace-based model, i.e.,
{ab,ac}; this was a major source of complication for our
technical development. Even for deterministic LTSs where the
system a.b.0+a.c.0 is disallowed, it remains unclear how the
two types of logics correspond. For one, hyperlogics employ
existential and universal quantifications over traces, which are
absent from our logic. If we had to normalise these differences
(i.e., rule out trace quantifications), a reasonable mapping
would be to take a a linear-time interpretation, JϕKLT [11], [23]
for every RECHML branching-time property ϕ , and require
it to hold for all of its traces: For all ϕ and deterministic
systems p, we would then expect p∈JϕK iff Tp∈JϕKLT. But
even this correspondence fails. For instance, the branching-
time [a]ff∨ [b]ff, describes systems that cannot perform both a
and b actions and a.0+b.0 clearly violates it. However, with
a linear-time interpretation, this formula denotes a tautology:
it is satisfied by all traces since they are necessarily either
not prefixed with an a action or with a b action. There are,
however, notable similarities between our history evaluation
(Fig. 3) and team semantics for temporal logics [63], [64],
and this relationship is worth further investigation.

The closest work to ours is [25], where Aceto et al. give a
framework to extend the capabilities of monitors. They study
monitorability under a grey-box assumption where, at runtime,
a monitor has access to additional SUS information, linked

to the system’s states, in the form of decorated states. The
additional state information is parameterised by a class of
conditions that represent different situations, such as access
to information about that state gathered from previous system
executions. Other works have also examined how to use prior
knowledge about the SUS to extend monitorability in the
linear-time and branching-time settings, e.g. [24], [65]. In
contrast, we treat the SUS as a black-box.

Multiple traces are also used to runtime verify traces with
imprecise event ordering [66], [67], [68], [69] due to inter-
leaved executions of components. Parametric trace slicing [67],
[68] infers additional traces from a trace with interleaved
events by traversing the original trace and dispatching events
to the corresponding slice. Attard et al. [69] partition the
observed trace at the instrumentation level by synthesising
monitors attached to specific system components; they hint at
how this could enhance the monitoring expressive power for
certain properties but do not prove any monitorability results.
Despite their relevance, all traces in [66], [67], [68], [69] are
extracted from a single execution.

In [70], Abramsky studies testing on multiple, yet finite,
copies of the same system, combining the information from
multiple runs. Our approach differs in three key aspects.
Firstly, our multiple executions correspond to creating multiple
copies of the system from its initial state; Abramsky allows
copies to be created at any point of the execution. Secondly,
tests are composed using parallel composition, can steer the
execution of the SUS and can detect refusals. In contrast,
our monitors are composed using an instrumentation relation:
they are passive and their verdicts are evidence-based (i.e.,
what happened, not what could not have happened). Third, the
visibility afforded by monitor instrumentation considered in
this work is larger than that obtained via parallel composition.
Consult [71] and [20, Sec. 9.1] for a detailed comparison
between tests and monitors.

Akin to our history analysis in Sec. III-B, Silva et al. [5]
investigate combining traces produced by the same system
over a number of runs to create temporal models that ap-
proximates the SUS’s behaviour which can then be used to
model check for branching-time properties. Their approach is
not sound as the generated model may violate properties that
are not violated by the actual system. The authors advise using
their approach as a complement to software testing to suggest
possible problems.

IX. CONCLUSION

We propose a framework to systematically extend RV to
verify branching-time properties. This is in sharp contrast to
most research on RV, which centers around monitoring linear-
time properties [21], [22]. As shown in [11], the class of
monitorable linear-time (regular) properties is syntactically
larger than that of monitorable branching-time properties,
explaining, in part, why the linear-time setting appears less
restrictive when runtime verified. For instance, linear-time
properties that are monitorable for violations are closed under
disjunctions, ϕ∨φ , and existential modalities, ⟨α⟩ϕ , as these

can be encoded in an effective, if not efficient, manner [11],
[72], albeit in a setting with finite sets of actions. In contrast,
disjunctions and existential modalities in a branching-time set-
ting cannot be encoded in terms of other RECHML constructs.

Our work shows that the limitations of runtime verifying
branching-time properties can be mitigated by observing mul-
tiple system executions. Our results demonstrate that moni-
tors can extract sufficient information over multiple runs to
correctly detect the violation of a class of branching-time
properties that may contain disjunctions (Thm. V.3). We also
prove that the monitorable fragment SHML∨

DET (Def. V.2)
is maximally expressive. In particular, every property that
can be monitored correctly using our monitoring framework
can always be expressed as a formula in SHML∨

DET. Such
a syntactic characterisation of monitorable properties is use-
ful for tool construction. It is worth pointing out that an
implementation based on our theoretical framework could
relax the assumptions used only to attain completeness and
maximality results; e.g. instead of assuming that all internal
actions are deterministic, a tool could adopt a pragmatic stance
and simply stop monitoring as soon as a non-deterministic
internal action is encountered, which would still yield a sound
(but incomplete) monitor. To validate the realisability of our
multi-run monitoring RV framework over the ILTS model
of Sec. II, we outline a possible instantiation to actor-based
systems in Sec. VI. We also show that the number of expected
runs required to effect the runtime analysis can be calculated
from the structure of the formula being verified (as opposed to
other means [62]); see Thm. VII.4. We are unaware of similar
results in the RV literature.

Future Work: We plan to investigate how our results can
be extended by considering more of a grey-box view of the
system, in order to combine our machinery with techniques
from existing work, such as that of Aceto et al. [25]. We will
also study strategies to optimise the collection of relevant SUS
traces. Depending on the application, one might seek to either
maximize the information collected from every execution (e.g.
by continuing to monitor the same execution after a trace
prefix is added to the history) or minimize the runtime during
which the monitor is active. This investigation will be used
for tool construction, possibly by extending existing (single-
run) open-source monitoring tools for RECHML such as
detectEr [12], [47] that already target actor systems. We also
plan to extend our techniques to other graph-based formalisms
such as Attack/Fault Trees [73], [74], [75], [76] used in
cybersecurity, which often necessitate verification at runtime.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT press,
1999.

[2] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of model checking.
MIT press, 2008.

[3] Y. Kesten and A. Pnueli, “A compositional approach to ctl* verification,”
TCS, vol. 331, no. 2-3, pp. 397–428, 2005.

[4] A. Pnueli and A. Zaks, “Psl model checking and run-time verification
via testers,” in FM 2006: Formal Methods, J. Misra, T. Nipkow, and
E. Sekerinski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 573–586.

[5] P. S. da Silva and A. C. de Melo, “Model checking merged program
traces,” Electronic Notes in Theoretical Computer Science, vol. 240, pp.
97–112, 2009, SBMF.

[6] T. L. Hinrichs, A. P. Sistla, and L. D. Zuck, “Model check what you can,
runtime verify the rest,” in HOWARD-60, ser. EPiC Series in Computing.
EasyChair, 2014, vol. 42, pp. 234–244.

[7] W. Ahrendt, J. M. Chimento, G. J. Pace, and G. Schneider, “A speci-
fication language for static and runtime verification of data and control
properties,” in FM, ser. LNCS, vol. 9109. Springer, 2015, pp. 108–125.

[8] A. Francalanza, L. Aceto, and A. Ingólfsdóttir, “Monitorability for the
Hennessy-Milner logic with recursion,” FMSD, vol. 51, no. 1, pp. 87–
116, 2017.

[9] A. Desai, T. Dreossi, and S. A. Seshia, “Combining model checking and
runtime verification for safe robotics,” in RV, ser. LNCS, vol. 10548.
Springer, 2017, pp. 172–189.

[10] K. Kejstová, P. Rockai, and J. Barnat, “From model checking to runtime
verification and back,” in RV, ser. LNCS, vol. 10548. Springer, 2017,
pp. 225–240.

[11] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehti-
nen, “Adventures in Monitorability: From Branching to Linear Time and
Back Again,” PACMPL, vol. 3, no. POPL, pp. 52:1–52:29, 2019.

[12] D. P. Attard, L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir,
and K. Lehtinen, “Better Late Than Never or: Verifying Asynchronous
Components at Runtime,” in IFIP, ser. LNCS, vol. 12719. Springer,
2021, pp. 207–225.

[13] S. Stucki, C. Sánchez, G. Schneider, and B. Bonakdarpour, “Gray-box
monitoring of hyperproperties with an application to privacy,” Formal
Methods Syst. Des., vol. 58, no. 1-2, pp. 126–159, 2021.

[14] G. Audrito, F. Damiani, V. Stolz, G. Torta, and M. Viroli, “Distributed
runtime verification by past-ctl and the field calculus,” Journal of
Systems and Software, vol. 187, p. 111251, 2022.

[15] A. Ferrando and V. Malvone, “Towards the combination of model
checking and runtime verification on multi-agent systems,” in PAAMS,
ser. LNCS, vol. 13616. Springer, 2022, pp. 140–152.

[16] L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir, “Bidirectional
runtime enforcement of first-order branching-time properties,” Log.
Methods Comput. Sci., vol. 19, no. 1, 2023.

[17] F. B. Schneider, “Enforceable Security Policies,” ACM Trans. Inf. Syst.
Secur., vol. 3, no. 1, 2000.

[18] J. Ligatti, L. Bauer, and D. Walker, “Edit automata: enforcement
mechanisms for run-time security policies,” IJIS, vol. 4, no. 1-2, 2005.

[19] N. Bielova and F. Massacci, “Do you really mean what you actually
enforced? edited automata revisited,” IJIS, vol. 10, no. 4, p. 239–254,
2011.

[20] A. Francalanza, “A Theory of Monitors,” Inf. Comput., vol. 281, p.
104704, 2021.

[21] E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger, “Introduction to
Runtime Verification,” in Lectures on Runtime Verification - Introductory
and Advanced Topics, ser. LNCS. Springer, 2018, vol. 10457, pp. 1–33.

[22] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
JLAMP, vol. 78, no. 5, pp. 293–303, 2009.

[23] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehti-
nen, “An operational guide to monitorability with applications to regular
properties,” Softw. Syst. Model., vol. 20, no. 2, pp. 335–361, 2021.

[24] ——, “The Best a Monitor Can Do,” in CSL, ser. LIPIcs, vol. 183.
Schloss Dagstuhl, 2021, pp. 7:1–7:23.

[25] L. Aceto, A. Achilleos, A. Francalanza, and A. Ingólfsdóttir, “A Frame-
work for Parameterized Monitorability,” in FOSSACS, ser. LNCS, vol.
10803. Springer, 2018, pp. 203–220.

[26] X. Zhang, M. Leucker, and W. Dong, “Runtime verification with
predictive semantics,” in NASA Formal Methods, ser. LNCS, vol. 7226,
2012, pp. 418–432.

[27] P. Selinger, “First-order axioms for asynchrony,” in CONCUR, ser.
LNCS, 1997, vol. 1243, pp. 376–390.

[28] K. Honda and M. Tokoro, “An object calculus for asynchronous com-
munication,” in ECOOP, vol. 512, 2006, pp. 133–147.

[29] D. Kozen, “Results on the Propositional mu-Calculus,” TCS, vol. 27, pp.
333–354, 1983.

[30] K. G. Larsen, “Proof systems for satisfiability in hennessy-milner logic
with recursion,” TCS, vol. 72, no. 2, pp. 265 – 288, 1990.

[31] S. Cranen, J. F. Groote, J. J. A. Keiren, F. P. M. Stappers, E. P. de Vink,
W. Wesselink, and T. A. C. Willemse, “An Overview of the mCRL2
Toolset and Its Recent Advances,” in TACAS, ser. LNCS, vol. 7795.
Springer, 2013, pp. 199–213.

[32] G. Behrmann, A. David, and K. G. Larsen, A Tutorial on Uppaal.
Springer, 2004, pp. 200–236.

[33] L. Aceto, A. Achilleos, D. P. Attard, L. Exibard, A. Francalanza, and
A. Ingólfsdóttir, “A monitoring tool for linear-time µhml,” Sci. Comput.
Program., vol. 232, p. 103031, 2024.

[34] A. Achilleos, A. Francalanza, and J. Xuereb, “If At First You Don’t
Succeed: Extended Monitorability through Multiple Executions,” 2025.
[Online]. Available: https://arxiv.org/abs/2306.05229v3

[35] N. Yoshida, K. Honda, and M. Berger, “Linearity and bisimulation,”
JLAMP, vol. 72, no. 2, pp. 207–238, 2007.

[36] M. Hennessy, A distributed Pi-calculus. Cambridge University Press,
2007.

[37] B. Alpern and F. B. Schneider, “Recognizing Safety and Liveness,”
Distributed Comput., vol. 2, no. 3, pp. 117–126, 1987.

[38] A. Francalanza, “Consistently-Detecting Monitors,” in CONCUR, ser.
LIPIcs, vol. 85. Schloss Dagstuhl, 2017, pp. 8:1–8:19.

[39] A. Francalanza, L. Aceto, A. Achilleos, D. P. Attard, I. Cassar, D. D.
Monica, and A. Ingólfsdóttir, “A foundation for runtime monitoring,” in
RV, ser. LNCS, vol. 10548. Springer, 2017, pp. 8–29.

[40] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and S. Ö. Kjar-
tansson, “Determinizing monitors for HML with recursion,” JLAMP, vol.
111, p. 100515, 2020.

[41] Y. Falcone, J. Fernandez, and L. Mounier, “What can you verify and
enforce at runtime?” Int. J. Softw. Tools Technol. Transf., vol. 14, no. 3,
pp. 349–382, 2012.

[42] T. A. Henzinger and N. E. Saraç, “Quantitative and approximate
monitoring,” in LICS. IEEE, 2021, pp. 1–14.

[43] A. Castañeda and G. V. Rodrı́guez, “Asynchronous wait-free runtime
verification and enforcement of linearizability,” in PODC. ACM, 2023,
pp. 90–101.

[44] L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and
J. Wagemaker, “Centralized vs Decentralized Monitors for Hyperprop-
erties,” in CONCUR, ser. LIPIcs, vol. 311, 2024, pp. 4:1–4:19.

[45] A. Ferrando and R. C. Cardoso, “Towards partial monitoring: Never
too early to give in,” Science of Computer Programming, vol. 240, p.
103220, 2025.

[46] M. Amara, G. Bernardi, M. Foughali, and A. Francalanza, “A Theory
of (Linear-Time) Timed Monitors,” in 39th European Conference on
Object-Oriented Programming (ECOOP 2025), ser. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, 2025,
(to appear).

[47] L. Aceto, A. Achilleos, D. P. Attard, L. Exibard, A. Francalanza,
and A. Ingólfsdóttir, “A Monitoring Tool for Linear-Time µHML,” in
COORDINATION, ser. LNCS, vol. 13271. Springer, 2022, pp. 200–219.

[48] C. Hewitt, P. B. Bishop, and R. Steiger, “A universal modular ACTOR
formalism for artificial intelligence,” in IJCAI, 1973, pp. 235–245.

[49] G. A. Agha, ACTORS - A Model of Concurrent Computation in
Distributed Systems. MIT Press, 1990.

[50] F. Cesarini and S. Thompson, Erlang Programming - A Concurrent
Approach to Software Development. O’Reilly, 2009.

[51] J. Goodwin, Learning Akka: Build Fault-tolerant, Concurrent, and
Distributed Applications with Akka, ser. Community experience distilled.
Packt Publishing, 2015.

[52] S. Juric, Elixir in Action, Third Edition. Manning, 2024.
[53] Apple Inc. and the Swift project authors, The Swift Programming

Language (6.0 beta), 2024.
[54] D. Sangiorgi and D. Walker, The Pi-Calculus - a theory of mobile

processes. Cambridge University Press, 2001.
[55] J. Bengtson and J. Parrow, “Formalising the pi-calculus using nominal

logic,” Log. Methods Comput. Sci., vol. 5, no. 2, 2009.
[56] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” JCS, vol. 18,

no. 6, pp. 1157–1210, 2010.
[57] B. Finkbeiner, C. Hahn, M. Stenger, and L. Tentrup, “Monitoring

hyperproperties,” FMSD, vol. 54, no. 3, pp. 336–363, 2019.
[58] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,

and C. Sánchez, “Temporal logics for hyperproperties,” in POST, ser.
LNCS, vol. 8414. Springer, 2014, pp. 265–284.

[59] B. Finkbeiner, C. Hahn, M. Stenger, and L. Tentrup, “Rvhyper: A
runtime verification tool for temporal hyperproperties,” in TACAS (2),
ser. LNCS, vol. 10806. Springer, 2018, pp. 194–200.

[60] S. Agrawal and B. Bonakdarpour, “Runtime Verification of k-Safety
Hyperproperties in HyperLTL,” in IEEE, 2016, pp. 239–252.

[61] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for LTL
and TLTL,” ACM, vol. 20, no. 4, pp. 14:1–14:64, 2011.

[62] S. Stucki, C. Sánchez, G. Schneider, and B. Bonakdarpour, “Gray-box
monitoring of hyperproperties with an application to privacy,” FMSD,
pp. 1–34, 2021.

[63] A. Krebs, A. Meier, J. Virtema, and M. Zimmermann, “Team Semantics
for the Specification and Verification of Hyperproperties,” in MFCS, ser.
LIPIcs, vol. 117. Schloss Dagstuhl, 2018, pp. 10:1–10:16.

[64] J. Virtema, J. Hofmann, B. Finkbeiner, J. Kontinen, and F. Yang,
“Linear-Time Temporal Logic with Team Semantics: Expressivity and
Complexity,” in IARCS, ser. LIPIcs, vol. 213. Schloss Dagstuhl, 2021,
pp. 52:1–52:17.

[65] T. A. Henzinger and N. E. Saraç, “Monitorability Under Assumptions,”
in RV, ser. LNCS, vol. 12399. Springer, 2020, pp. 3–18.

[66] S. Wang, A. Ayoub, O. Sokolsky, and I. Lee, “Runtime Verification
of Traces under Recording Uncertainty,” in RV, ser. LNCS, vol. 7186.
Springer, 2011, pp. 442–456.

[67] F. Chen and G. Rosu, “Parametric Trace Slicing and Monitoring,” in
TACAS, ser. LNCS, vol. 5505. Springer, 2009, pp. 246–261.

[68] H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. E. Rydeheard,
“Quantified Event Automata: Towards Expressive and Efficient Runtime
Monitors,” in FM, ser. LNCS, vol. 7436. Springer, 2012, pp. 68–84.

[69] D. P. Attard and A. Francalanza, “Trace Partitioning and Local Monitor-
ing for Asynchronous Components,” in SEFM, ser. LNCS, vol. 10469.
Springer, 2017, pp. 219–235.

[70] S. Abramsky, “Observation equivalence as a testing equivalence,” TCS,
vol. 53, no. 2, pp. 225–241, 1987.

[71] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehti-
nen, “Testing equivalence vs. runtime monitoring,” in Models, Lan-
guages, and Tools for Concurrent and Distributed Programming, ser.
Lecture Notes in Computer Science, vol. 11665. Springer, 2019, pp.
28–44.

[72] ——, “The Cost of Monitoring Alone,” in From Reactive Systems to
Cyber-Physical Systems, ser. LNCS, vol. 11500, 2019, pp. 259–275.

[73] B. Schneier, “Attack Trees,” Dr. Dobb’s Journal, 1999.
[74] E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey of the state-

of-the-art in modeling, analysis and tools,” Comput. Sci. Rev., vol. 15,
pp. 29–62, 2015.

[75] M. Audinot, S. Pinchinat, and B. Kordy, “Is My Attack Tree Correct?”
in ESORICS, ser. LNCS, vol. 10492, 2017, pp. 83–102.

[76] F. Kammüller, “Attack Trees in Isabelle,” in ICICS, ser. LNCS, vol.
11149, 2018, pp. 611–628.

