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1 INTRODUCTION

The ubiquitous proliferation of software—from high-frequency stock market trading and au-
tonomous vehicles, down to mundane objects such as mobile phones and household appliances—
makes a strong case for stringent software correctness requirements. This proliferation has also
substantially altered the manner in which software is developed and deployed. Today’s software
often consists of multiple components (e.g., third-party libraries, mobile apps, microservices, cloud
services etc.) that are developed and maintained by independent software organisations. In this set-
ting, access to the components’ internal workings varies (e.g., open-source versus proprietary code)
and different components may be subject to diverse quality controls. Moreover, time-to-market
constraints often impose multiple deployment phases where software is rolled out in stages and
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third-party components change without notice from one deployment phase to the next. Require-
ments from various stakeholders may also evolve between deployment phases and occasionally
become conflicting. These realities suggest that there is no silver bullet for ensuring software
correctness. Any adequate solution will most likely need to employ multiple verification techniques

(e.g., testing, model checking, theorem proving, log analysis, type checking, monitoring etc.) in a
coherent manner, spanning the various stages of the software development lifecyle.

Runtime Verification (RV) [Bartocci et al. 2018] is a lightweight verification technique that checks
for the correctness of the system under scrutiny by analysing the current execution exhibited by the
system. RV generally assumes a logic (or some other formal language) for describing the correctness
specifications of the system. From these specifications, (online) RV generates computational entities
called monitors that are then instrumented to run with the system so as to incrementally analyse its
execution (expressed as a trace of captured events) and reach (irrevocable) judgements relating to
system violations or satisfactions for these specifications. These characteristics make RV an ideal
candidate to be used in a multi-pronged approach towards ensuring software correctness: it can
verify the correctness of components that are either not available for inspection prior to deployment,
or are too expensive to check via more exhaustive and less scalable verification techniques such
as model checking [Baier et al. 2008; Clarke et al. 1999]. Importantly, in settings where multiple
verification techniques are used, one cannot necessarily expect specifications to be expressed in
a language tailored specifically to RV. Indeed, the use of disparate specification logics specific to
every verification technique that is used for validating system correctness is expensive. Moreover,
an RV-specific property language leads to a poor separation of concerns between the effort required
to formulate the specifications and the engineering endeavour needed to determine how to best
verify them. Therefore it is natural and important to develop RV foundations that are based on
general-purpose specification languages, which subsume application-specific verification concerns.
In order for RV to be used effectively in this way, a few foundational questions need to be

addressed. Principal among them is the question of monitorability: for sufficiently expressive
specification logics, it is often the case that some specifications cannot be monitored at runtime.
For example, the observation of finite executions does not give sufficient information to decide
whether the specification “every request is eventually followed by an answer” is satisfied. It is thus
important to identify which specifiable properties are monitorable and which are not, since this
directly impinges on whether to use RV or some other verification technique instead. Another
fundamental question is that of monitor correctness. Monitors are often considered part of the
trusted computing base and any errors in their code could either invalidate the runtime analysis
they perform or, even worse, compromise the execution of the system itself. In order to ensure
monitor correctness, one must first establish what it means for a monitor to adequately verify a
specification at runtime. In fact, there may be a number of plausible definitions for this notion, each
contributing to different monitor implementations. The question of what it means to adequately
verify a specification at runtime directly impacts the question of monitorability as well, and guides
the design of algorithms for the synthesis of correct monitors from monitorable properties. A third
fundamental question concerns the limits of monitor expressiveness. After one has established the
monitorability of a set of properties from a reasonably general specification logic, it is important to
know whether this set contains all properties that can be expressed in the logic and can, at the same
time, be monitored at runtime. This is the question of maximality of the monitorable fragment of
the specification language, and its importance lies in the knowledge that one can identify a logical
sub-language that syntactically characterises all monitorable properties: syntactic characterisations
of monitorable properties provide a core calculus for conducting further studies and facilitate tool
construction.
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In prior work [Aceto et al. 2017a, 2018a; Francalanza et al. 2017a, 2015, 2017b], these foundational
questions have been investigated for a highly expressive logic called Hennessy-Milner Logic with
recursion (recHML) [Larsen 1990], a variant of the modal µ-calculus [Kozen 1983], that can embed a
variety of widely used logics such as LTL and CTL, thus guaranteeing a good level of generality for
the obtained results. A distinctive aspect of this programme of study is the differentiation between
the semantics of the logic on the one hand, and the operational semantics of monitors on the other,
which mirrors the separation of concerns required for the multi-pronged verification approach
advocated earlier. Within the proposed framework, the definitions of monitorability and correctness
emerge naturally as relationships between the two semantics. That is, the relationship between
the verdicts reached by a monitor and the satisfaction of a specification by the observed system
naturally characterises both the monitor’s correctness and the specification’s monitorability.
Despite its merits, that body of work remains rather disconnected from the more established

classical results on monitorability [Bauer et al. 2010; Chang et al. 1992; Falcone et al. 2012a; Manna
and Pnueli 1991; Pnueli and Zaks 2006]. Onemajor complication obstructing a unified understanding
of all these monitoring theories is the fact that the former work on recHML is carried out for
a branching-time semantics, whereas the classical theories target specifications for a linear-time

semantics. Propitiously, however, the modal µ-calculus also has a well-established linear-time
semantics, which can be easily adapted to recHML. This provides us with an opportunity to
extend the principled framework developed in Aceto et al. [2017a] and Francalanza et al. [2015,
2017b] to a linear-time setting, offering an ideal basis to better understand the connections between
monitorability for branching-time and linear-time specifications. We contend that this framework
is general enough to lay the foundations for a potential unified theory of monitorability.

Contributions and Synopsis. This paper sets out to establish a comprehensive theory of monitora-
bility for recHML, by investigating the monitorability of that logic with a linear-time semantics
and then comparing the obtained results with those presented in the literature in a branching-time
setting. We identify the trade-offs between monitoring guarantees and expressiveness: In general,
the more we expect from monitors, the fewer specifications can be monitored. Here we establish an
expressiveness hierarchy within linear-time recHML and identify exactly what kind of guarantees
can be given for each type of specification.
• We show that, compared to branching time, linear time allows for a much stronger notion of
monitorability requiring that a monitor correctly report both the satisfaction and the violation
of the property it checks on all system executions. We identify a fragment of recHML that
captures exactly linear-time properties with such monitors (Prop. 4.7), and show how to
synthesise monitors from them (Def. 4.4).
• For any collection of monitors with irrevocable acceptance and rejection verdicts, which
are reported after examining a finite prefix of the observed execution, we show a strong
maximality result for the above-mentioned logical fragment (Thm. 4.8), which guarantees
that all monitorable properties of traces can be expressed in that fragment of recHML.
• We apply the weaker notion of monitorability called partial monitorability from Francalanza
et al. [2017b], which guarantees that a monitor does not reach an incorrect verdict and reaches
a verdict for either all violations or all satisfactions. Again, we give a syntactic characterisation
of linear-time properties that can be monitored with such monitors (Prop. 4.18), we show
how to synthesise correct monitors from them (Def. 4.12), and prove maximality results.
• We establish a relationship between specifications that are partially monitorable in branching-
time and in linear-time semantics (Sec. 5). To establish this result, we study how considering
specifications over both finite and infinite executions affects monitorability. Our main obser-
vation here is that the syntactic fragment identified as partially monitorable with respect
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to branching-time semantics and the one identified as partially monitorable with respect
to linear-time semantics are equally expressive under linear-time semantics over a finite
set of actions. This bridges the gap in the treatment of monitorability on linear- versus
branching-time domains.

Our results establish a unified foundation for an increasingly important verification technique,
covering both branching-time and linear-time specifications. We establish simple syntactic charac-
terisations for specifications that can be monitored at runtime for various monitor requirements.
For each characterisation, we provide a synthesis function that automates the generation of the
corresponding monitors, whose correctness proofs depend on delicate arguments about the monitor
semantics. This approach facilitates the design and implementation of correct monitors, along
the lines of previous work on tool construction [Attard et al. 2017; Attard and Francalanza 2016;
Francalanza and Seychell 2015]. Throughout our technical development, we also highlight the
subtle aspects of moving between semantics of branching processes, infinite traces, and potentially
finite traces, and provide ample discussion on how they affect monitorability. Crucially, our results
are not just limited to our line of work. For instance, the syntactic characterisations of monitorable
properties set maximality limits to a number of existing RV tools using popular logics such as LTL
since these logics can be embedded in our general language recHML.
The proofs of all the results in the paper may be found in the extended version available at

http://icetcs.ru.is/theofomon/POPL2019.pdf.

2 PRELIMINARIES

We provide a brief overview of our touchstone logic, recHML [Aceto et al. 2007; Larsen 1990], a
reformulation of the highly expressive and extensively studied modal µ-calculus [Kozen 1983].

2.1 The Syntax

The logic described in Fig. 1 is a mild generalisation of recHML [Aceto et al. 2007; Larsen 1990].
It assumes a set of actions, α , β, . . . ∈ Act, together with a distinguished internal action τ , where
τ < Act. We refer to the actions in Act as external actions, as opposed to the action τ , and use
µ ∈ Act ∪ {τ } to refer to either. The metavariables A,B, . . . ⊆ Act range over sets of (external)
actions, where the convenient notation A is occasionally used to denote Act \ A; whenever the
context allows us to do so unambiguously, singleton sets {α } are also occasionally denoted as α ,
and {α } is occasionally denoted as α .

The grammar in Fig. 1 also assumes a countable set of logical variables X ,Y ∈ LVar. Apart from
the standard constructs for truth, falsehood, conjunction and disjunction, the logic is equipped
with existential and universal modal operators that use sets of actions, A. A hallmark of the logic is
the use of two recursion operators that express least or greatest fixpoints: formulae minX .φ and
maxX .φ bind free instances of the logical variableX in φ, inducing the usual notions of open/closed
formulae and formula equality up to alpha-conversion. A formula is said to be guarded if every
fixpoint variable appears within the scope of a modality within its fixpoint binding. All formulae
are assumed to be guarded (without loss of expressiveness [Kupferman et al. 2000]). For a formula
φ, we use l (φ) to denote the length of φ as a string of symbols.

2.2 The models

We provide linear- and branching-time interpretations for the logic. The metavariables t ,u∈Trc =
Actω range over infinite sequences of external actions, abstractly representing complete system
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Syntax

φ,ψ ∈ recHML ::= tt (truth) | ff (falsehood)
| φ ∨ψ (disjunction) | φ ∧ψ (conjunction)
| ⟨A⟩φ (possibility) | [A]φ (necessity)
| minX .φ (min. fixpoint) | maxX .φ (max. fixpoint)
| X (rec. variable)

Linear-Time Semantics
Jtt,σKL

def

= Trc Jff,σKL
def

= ∅

Jφ1∨φ2,σKL
def

= Jφ1,σKL ∪ Jφ2,σKL Jφ1∧φ2,σKL
def

= Jφ1,σKL ∩ Jφ2,σKL
J⟨A⟩φ,σKL

def

=
{
t | ∃u · ∃α ∈ A · t = αu and u ∈ Jφ,σKL

}
J[A]φ,σKL

def

=
{
t | ∀u · ∀α ∈ A · t = αu implies u ∈ Jφ,σKL

}
JminX .φ,σKL

def

=
⋂ {

T | Jφ,σ [X 7→ T]KL ⊆ T

}
JmaxX .φ,σKL

def

=
⋃ {

T | T ⊆ Jφ,σ [X 7→ T]KL
}

JX ,σKL
def

= σ (X )

Branching-Time Semantics

Jtt, ρKB
def

= Prc Jff, ρKB
def

= ∅

Jφ1∨φ2, ρKB
def

= Jφ1, ρKB ∪ Jφ2, ρKB Jφ1∧φ2, ρKB
def

= Jφ1, ρKB ∩ Jφ2, ρKB
J⟨A⟩φ, ρKB

def

=

{
p | ∃q · ∃α ∈ A · p

α
==⇒ q and q ∈ Jφ, ρKB

}
J[A]φ, ρKB

def

=

{
p | ∀q · ∀α ∈ A · p

α
==⇒ q implies q ∈ Jφ, ρKB

}
JminX .φ, ρKB

def

=
⋂ {

P | Jφ, ρ[X 7→ P]KB ⊆ P

}
JmaxX .φ, ρKB

def

=
⋃ {

P | P ⊆ Jφ, ρ[X 7→ P]KB
}

JX , ρKB
def

= ρ (X )

Fig. 1. recHML Syntax, Linear-Time and Branching-Time Semantics

runs; the metavariable T ⊆ Trc ranges over sets of traces. Finite traces, denoted as s, r ∈ Act∗, repre-
sent finite prefixes of a system run or finite executions. Explicit traces, denoted as e, f ∈ (Act ∪ {τ })∗,
represent detailed finite prefixes of a system run that also include its internal transitions; the func-
tion ⌈e⌉ returns the finite trace s that is left after dropping all the τ -actions from e . We say that two
explicit traces agree on the external actions, denoted as e1 ≡Act e2, whenever ⌈e1⌉ = ⌈e2⌉. A trace
(resp., finite trace) with action α at its head is denoted as αt (resp., αs). An explicit trace with action
µ at its head is denoted as µe . Similarly, a trace with a prefix s and continuation t is denoted as st .

The denotational semantic function J−KL in Fig. 1 maps a formula to a set of traces, and is referred
to as the linear-time semantics of recHML. It uses valuations that map logical variables to sets of
traces, σ : LVar→ P (Trc), to define the semantics by induction on the structure of the formulae.
Intuitively, σ (X ) is the set of traces assumed to satisfy X . The cases for truth, falsehood, disjunction
and conjunction are straightforward. An existential modal formula ⟨A⟩φ denotes all traces with a
prefix action α from the action set A and a continuation that satisfies φ. A universal modal formula
[A]φ denotes all traces that are either not prefixed by any α inA, or have a continuationu satisfying
φ. The sets of traces satisfying the least and greatest fixpoint formulae, minX .φ and maxX .φ, are
defined as intersection (resp., union) of all the pre-fixpoints (resp., post-fixpoints) of the function
induced by the formula φ.
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The second interpretation of recHML, denoted by J−KB, is defined in terms of processes, Prc, and is
referred to as the branching-time semantics. It assumes a set of process states, p,q, . . . ∈ Prc where
P ⊆ Prc, and a transition relation, −→⊆ (Prc× (Act∪{τ })×Prc). The triple ⟨Prc, (Act∪{τ }),−→⟩
forms a Labelled Transition System (LTS) [Keller 1976]. The suggestive notation p

µ
−−→ p ′ denotes

(p, µ,p ′) ∈ −→; we also write p ̸
µ
−−→ to denote ¬(∃p ′ · p

µ
−−→ p ′). We employ the usual notation

for weak transitions and write p ==⇒ p ′ in lieu of p (
τ
−−→)∗p ′ and p

µ
==⇒ p ′ for p ==⇒ ·

µ
−−→ · ==⇒ p ′,

referring to p ′ as a µ-derivative of p. As we have done for strong transitions, for weak transitions
we use p

µ
==⇒ to denote ∃p ′ · p

µ
==⇒ p ′ and p ̸

µ
==⇒ to denote ¬(∃p ′ · p

µ
==⇒ p ′). Sequences of weak

transitions p
α1
=⇒ · · ·

αn
==⇒ p ′ are written as p

s
=⇒ p ′, where s = α1 · · ·αn . Similarly, for strong

transitions, p
µ1
−−→ · · ·

µn
−−→ p ′ is written as p

e
−−→→ p ′, where e = µ1 · · · µn . We say that p produces

a trace t = α1α2 · · · if there are processes p0,p1,p2, . . . such that p = p0 and p0
α1
==⇒ p1

α2
==⇒ p2 · · · .

While an LTS can be used to model a single system, it can also model all possible system behaviours.
The branching-time semantics in Fig. 1 follows the linear-time semantics for most cases, using a

valuation from variables to sets of processes, ρ : LVar→ P (Prc), instead. The main differences are
with respect to the modal formulae. A universal modal formula [A]φ requires all α-derivatives of
a process, where α ∈ A, to satisfy φ. By contrast, an existential modal formula ⟨A⟩φ requires the
existence of at least one α-derivative, for some α ∈ A, that satisfies φ.

For closed formulae, we use JφKL and JφKB in lieu of Jφ,σKL and Jφ, ρKL (for some σ and ρ) resp.,
since the semantics is independent of the valuation. We also write JφK instead of JφKL or JφKB,
whenever the correct interpretation can be discerned from the context or the specific interpretation
is unimportant. Unless otherwise stated, we assume that the formulae we consider are all closed.

Example 2.1 (Expressiveness). For arbitrary formulae φ,ψ ∈ recHML, we can encode the follow-
ing characteristic LTL operators [Clarke et al. 1999] as:

Xφ
def

= ⟨Act⟩φ φ Uψ
def

=minY .
(
ψ∨(φ∧⟨Act⟩Y )

)
φ Rψ

def

=maxY .
(
(ψ∧φ)∨(ψ∧⟨Act⟩Y )

)
□

Example 2.2 (Comparison). Assume Act = {a,b, c}. Consider the two formulae
φ1 = [a][a]ff φ2 = [a](⟨a⟩tt∨⟨ {b, c} ⟩tt)

together with the trace (denoted by theω-regular expression) t = (a.b)ω , and the (non-deterministic)
process (described by the regular CCS syntax [Milner 1989]) p = recx .(a.b .x + a.a.x + a.nil). In
particular, we note that p can produce the infinite trace t .
Whereas t ∈ Jφ1KL, we have p < Jφ1KB because along one branch we have p

a
==⇒ a.p and

a.p < J[a]ffKB. In linear-time semantics, the equality J⟨A⟩tt∨⟨A⟩ttKL = JttKL holds for each A. One
can also easily deduce that J[A]ttK = JttK for both linear- and branching-time semantics from the
semantics of Fig. 1. Hence, in our case (where Act = {a,b, c}), we obtain J⟨a⟩tt∨⟨ {b, c} ⟩ttKL = JttKL
by instantiating J⟨A⟩tt∨⟨A⟩ttKL = JttKL with A = {a}. As a result, φ2 is equivalent to tt under
linear-time semantics and we have t∈Jφ2KL for every trace t . However, under branching-time
semantics J⟨a⟩tt∨⟨ {b, c} ⟩ttKB , JttKB (one witness for the inequality is the deadlocked process nil,
JttKB ∋ nil < J⟨a⟩tt∨⟨ {b, c} ⟩ttKB). In fact, p

a
−−→ nil and thus p < Jφ2KB. □

Remark. Action sets A in [A]φ and ⟨A⟩φ are typically expressed using predicates in tools such as
those described in Attard and Francalanza [2016], Attard et al. [2017] and Aceto et al. [2018b]. For
example, modalities can be labelled by an output action on port x carrying payload ⟨8,y⟩ where
the data variables x and y are constrained by conditions, as in [out(x , ⟨8,y⟩), (192.188.34.42 ≥ x ≥
192.188.34.1) ∧mod(y) = 1]φ. In the sequel, we shall assume that Act (and thus any action set A)
is a finite set of actions. This helps to simplify our technical development and enables us to focus on
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Syntax

m,n ∈ REMon ::= v | α .m | m + n | recx .m | x

v,u ∈ Verd ::= end | no | yes

Dynamics
mAct

α .m
α
−−→ m

mRec
recx .m

τ
−−→ m[recx .m/x]

mSelL
m

µ
−−→ m′

m + n
µ
−−→ m′

mSelR
n

µ
−−→ n′

m + n
µ
−−→ n′

mVer
v

α
−−→ v

Instrumentation

iMon
p

α
−−→ p ′ m

α
−−→ m′

m ◁ p
α
−−→ m′ ◁ p ′

iTer
p

α
−−→ p ′ m ̸

α
−−→ m ̸

τ
−−→

m ◁ p
α
−−→ end ◁ p ′

iAsyP
p

τ
−−→ p ′

m ◁ p
τ
−−→ m ◁ p ′

iAsyM
m

τ
−−→ m′

m ◁ p
τ
−−→ m′ ◁ p

Fig. 2. Monitors and Instrumentation

the core issues being studied. However, finite action sets are not necessarily a limitation since, in
most cases, infinite data sets can be treated in a finite manner using standard symbolic techniques
(e.g., see Francalanza [2017] for a recent treatment of the subject in the context of monitors). □

Remark. For a finite set I of indices, the (standard) notation
∧

i ∈I φi denotes tt when I = ∅, and a
conjunction of the formulae in {φi | i ∈ I } when I , ∅. Similarly

∨
i ∈I φi denotes ff when I = ∅,

and a disjunction of the formulae in {φi | i ∈ I } when I , ∅. These notations are justified by the
fact that ∨ and ∧ are commutative and associative with respect to all the semantics considered in
the paper. We also observe that, for both semantics, [A]φ is equivalent to

∧
α ∈A [α]φ, and ⟨A⟩φ is

equivalent to
∨

α ∈A ⟨α⟩φ for finite A, so we use these equivalent notations interchangeably. □

3 A MONITORING FRAMEWORK

A distinctive feature of the work in Aceto et al. [2017a, 2018a] and Francalanza et al. [2017b] is the
full description of the monitoring setup used, which incorporates the monitor definition together
with the system instrumentation mechanism—monitor compositionality results have shown that the
semantics of monitors in an instrumented setup differs substantially from that given for monitors
in isolation [Francalanza 2016, 2017]. Here we follow this comprehensive approach.

3.1 Regular Monitors

Regular monitors are LTSs defined by the grammar and transition rules in Fig. 2, used already in
Aceto et al. [2017a] and Francalanza et al. [2017b]. A transitionm

α
−−→ n denotes that the monitor

in statem can analyse the (external) action α and transition to state n. Monitors may reach any one
of three verdicts after analysing a finite trace: acceptance, yes, rejection, no, and the inconclusive
verdict end. We highlight the transition rule for verdicts in Fig. 2, describing the fact that from
a verdict state any action can be analysed by transitioning to the same state; verdicts are thus
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irrevocable. The remaining constructs and transitions are standard. If at most one of the verdicts
yes, no appears inm, thenm is called a single-verdict monitor. Otherwise,m is called a dual-verdict
monitor. Just like for formulae, we use l (m) to denote the length ofm as a string of symbols. In the
sequel, for a finite nonempty set of indices I , we use notation

∑
i ∈I mi to denote a combination of the

monitors in {mi | i ∈ I } using the operator +. The notation is justified, because + is commutative
and associative with respect to the transitions that a resulting monitor can exhibit. We also use
the shorthand notation A.m to denote

∑
α ∈A α .m (for finite non-empty A). The regular monitors in

Fig. 2 have an important property, namely that their state space, i.e., the set of reachable states,
is finite. This is a valuable property for ensuring reasonable overheads in terms of the amount of
memory the monitor will use at runtime (see Prop. 3.2).

Lemma 3.1 (Verdict Persistence). v
e
−−→→m impliesm = v .

Definition 3.1 (Monitor Reachable States). reach(m)
def

= {n | ∃e ·m
e
−−→→ n }. □

Proposition 3.2. Regular monitors are finite state i.e., for allm ∈ REMon, reach(m) is finite. □

We define the following behavioural predicate on monitors, which relates to their correctness.

Definition 3.2 (Monitor Consistency). A monitorm is consistent when there is no finite trace s
such thatm

s
=⇒ yes andm

s
=⇒ no. □

Monitors are intended to run in conjunction with the system (i.e., process) they are analysing.
Following Francalanza [2016, 2017] and Francalanza et al. [2017b], Fig. 2 defines a transition relation
for a process p instrumented with a monitorm, denoted asm ◁ p. The relation is parametric with
respect to the transition semantics of the process p and the monitor, as long as the latter includes the
inconclusive verdict end (e.g., the monitor transition semantics given in Fig. 2 does). The semantics
relegates the monitorm to a passive role in an instrumented systemm ◁ p, meaning thatm ◁ p
transitions with an external action α only when p transitions with that action. For instance, when
p transitions with action α to some p ′, andm can analyse this action and transition to statem′,
the instrumented pair transitions in lockstep tom′ ◁ p ′; see rule iMon. Conversely, if p wants to
transition with an action α that the instrumented monitor is not able to analyse (perhaps due to
underspecification), the instrumented system is still allowed to transition with α , but the monitor
analysis is prematurely aborted to the inconclusive state; see rule iTer. The other rules allow
monitors and processes to execute independently of one another with respect to internal (τ -)moves.

Example 3.1. When the monitor recx .(a.x + b .yes) is instrumented with the process a.recx .b .x ,
it can reach an acceptance verdict thus:

recx .(a.x + b .yes) ◁ a.recx .b .x
τ
−−→ (a.(recx .(a.x + b .yes)) + b .yes) ◁ a.recx .b .x

a
−−→

recx .(a.x + b .yes) ◁ recx .b .x
τ τ
−−−→→ a.recx .(a.x + b .yes) + b .yes ◁ b .recx .b .x

b
−−→ yes ◁ recx .b .x .

However, if the same process is instrumented with a slightly different monitor recx .(a.a.x +b .yes)
we obtain a different verdict.

recx .(a.a.x + b .yes) ◁ a.recx .b .x
τ
−−→ (a.a.(recx .(a.a.x + b .yes)) + b .yes) ◁ a.recx .b .x

a
−−→

a.recx .(a.x + b .yes) ◁ recx .b .x
τ
−−→ a.recx .(a.x + b .yes) ◁ b .recx .b .x

b
−−→ end ◁ recx .b .x

The last transition is obtained via rule iTer, whereby the process exhibited an action that the
current monitor state was unable to analyse (i.e., it could only analyse action a, not b). □

The following lemmata describe how the respective monitor and system LTSs can be composed
and decomposed according to instrumentation [Francalanza 2016; Francalanza et al. 2017b].
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Syntax

m,n ∈ Mon ::= v | α .m | m + n | recx .m | x

| m⊗n (conj. para.) | m⊕n (disj. para.)
Dynamics

mPar
m

α
−−→ m′ n

α
−−→ n′

m⊙n
α
−−→ m′⊙n′

mTauL
m

τ
−−→ m′

m⊙n
τ
−−→ m′⊙n

mVrE
end⊙end

τ
−−→ end

mVrC1
yes⊗m

τ
−−→m

mVrC2
no⊗m

τ
−−→ no

mVrD1
no⊕m

τ
−−→m

mVrD2
yes⊕m

τ
−−→ yes

Fig. 3. Parallel Monitors. The syntax and dynamics of parallel monitors are extensions of the ones for regular

monitors, as presented in Fig. 2. Parallel monitors use the same instrumentation as regular monitors.

Lemma 3.3 (General Unzipping ). m ◁ p
s
=⇒ n ◁ q implies

• p
s
=⇒ q and

• m
s
=⇒ n or (∃s1, s2,α ,m

′ · s = s1αs2 andm
s1
==⇒m′ ̸

τ
−−→ andm′ ̸

α
−−→ and n = end). □

Lemma 3.4 (Zipping ). (p
s
=⇒ q andm

s
=⇒ n) impliesm ◁ p

s
=⇒ n ◁ q. □

Within this framework, we can formalise our understanding of process and trace acceptance and
rejection by a monitor. Acceptances and rejections will constitute the monitoring counterpart to
formula satisfactions and violations from Sec. 2 when we consider our definitions of monitorability.

Definition 3.3 (Process and Trace Acceptance and Rejection). A monitor m rejects p along s ,
denoted as rej(m,p, s ), ifm ◁ p

s
=⇒ no ◁ p ′ for some p ′. Similarly,m accepts p along s , denoted as

acc(m,p, s ), ifm ◁ p
s
=⇒ yes ◁ p ′ for some p ′.

• A monitorm rejects (resp., accepts) t , using the abuse of notation rej(m, t ) (resp., acc(m, t )),
if ∃p, s,u such that t = su and rej(m,p, s ) (resp., acc(m,p, s )).
• A monitorm rejects (resp., accepts) p, using the abuse of notation rej(m,p) (resp., acc(m,p)),
if ∃s such that rej(m,p, s ) (resp., acc(m,p, s )).

We also say that m rejects s as a shorthand for ∃p · rej(m,p, s ), and similarly, m accepts s is a
shorthand for ∃p · acc(m,p, s ). □

As Def. 3.3 and Lems. 3.3 and 3.4 make clear, a monitor accepts or rejects a finite trace s iff it can
transition to the appropriate verdict by reading s . This hints at the fact that each monitor might be
“equivalent to a deterministic one”. As we will see in Prop. 3.11, this is indeed the case.

3.2 Parallel Composition of Monitors

When relating monitors to formulae, it may be convenient not to view monitors as one monolithic
entity but rather as a system of sub-monitors where the constituent submonitors are concerned
with checking specific subformulae. For instance, the use of sub-monitors executing in parallel
facilitates the synthesis of monitors from formulae in a compositional fashion. Monitors with
parallel composition,m,n ∈ Mon, are defined by the grammar and transition rules in Fig. 3. In
particular, we endow monitors with conjunctive parallelism, ⊗, and disjunctive parallelism, ⊕. We
use the notation ⊙ to range over either ⊗ or ⊕ (i.e., ⊙ ∈ {⊗, ⊕}).
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Fig. 3 also outlines the behaviour of parallel monitors. Rule mPar states that both submonitors
need to be able to analyse an external action α for their parallel composition to transition with that
action. The rules in Fig. 3 also allow τ -transitions for the reconfiguration of parallel compositions
of monitors. For instance, rules mVrC1 and mVrC2 describe the fact that, whereas yes verdicts
are uninfluential in conjunctive parallel compositions, no verdicts supersede the verdicts of other
monitors in a conjunctive parallel compositions (Fig. 3 omits obvious the symmetric rules). The
dual applies for yes and no verdicts in a disjunctive parallel composition, as described by rules
mVrD1 and mVrD2. Rule mVrE applies to both forms of parallel composition and consolidates
multiple inconclusive verdicts. Finally, rules mTauL and its dual mTauR (omitted) are contextual
rules for these monitor reconfiguration steps.
We identify a useful monitor predicate that obviates the need for the rule iTer of Fig. 2 that

prematurely terminates monitors; see Example 3.1. In the case of parallel monitors, it also allows
us to neatly decompose the monitor behaviour in terms of the respective sub-monitors.

Definition 3.4 (Monitor Reactivity). We call a monitorm reactive when for every n ∈ reach(m)

and α ∈ Act, there is some n′ such that n
α
==⇒ n′. □

Example 3.2 below indicates why the assumption that m1 and m2 are reactive is needed in
Lem. 3.5, which states that parallel monitors behave as expected with respect to the acceptance
and rejection of traces as long as the consitituent submonitors are reactive.

Example 3.2. Assume that Act = {a,b}. The monitors a.yes + b .no and recx .(a.x + b .yes) are
both reactive. The monitorm = a.yes⊗b .no, however, is not reactive. Since the submonitor a.yes
can only transition with a, according to the rules of Fig. 3,m cannot transition with any action
that is not a. Similarly, as the submonitor b .no can only transition with b,m cannot transition with
any action that is not b. Thus,m cannot transition to any monitor, and therefore it cannot reject or
accept any trace. By contrast, the monitor n = (a.yes + b .end)⊗(b .yes + a.end) is reactive, because
its constituent submonitors are reactive as well. □

Lemma 3.5 (Monitor Composition and Decomposition). For reactivem1 andm2:

• m1⊗m2 rejects t if and only if eitherm1 orm2 rejects t .
• m1⊗m2 accepts t if and only if bothm1 andm2 accept t .
• m1⊕m2 rejects t if and only if bothm1 andm2 reject t .
• m1⊕m2 accepts t if and only if eitherm1 orm2 accepts t . □

Parallel monitors are a convenient formalism for constructing monitors in a compositional
fashion and facilitate the definition of monitor synthesis functions from a specification logic.
However, these monitors are only as expressive as regular monitors, as Prop. 3.8 demonstrates.
Sec. 3.3 is devoted to the proof of this result.

3.3 Monitor Transformations: Parallel to Regular

We describe how one can transform a parallel monitor to a verdict-equivalent regular one. For this,
we use known results about alternating finite automata, restated here for completeness.

Definition 3.5 (Alternating Automata). An alternating finite automaton is a quintuple A =
(Q, Σ,q0,δ , F ), where Q is a finite set of states, Σ is a finite alphabet, q0 is the starting state,
F ⊆ Q is the set of accepting/final states, and δ : (Q × Σ) → (2Q → {0, 1}) is the transition function.
An alternating finite automaton is non-deterministic (NFA) if for each α ∈ Σ and q ∈ Q , there is
some Sq,α ⊆ Q , such that for all S ⊆ Q , δ (q,α ) (S ) = 1 if and only if S ∩ Sq,a , ∅. □

Intuitively, given a state q ∈ Q and a symbol α ∈ Σ, δ returns a boolean function on 2Q that
evaluates, given a truth-assignment on the states of Q (represented by a subset of Q), an assigned
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truth-value for q. We can extend the transition function to δ ∗ : (Q × Σ∗) → (2Q → {0, 1}), so that
δ ∗ (q, ε ) (R) = 1 iff q ∈ R, and δ ∗ (q,αw ) (R) = δ (q,α ) ({q′ ∈ Q | δ ∗ (q′,w ) (R) = 1}). We say that the
automaton accepts w ∈ Σ∗ when δ ∗ (q0,w ) (F ) = 1, and that it recognizes L ⊆ Σ∗ when L is the set
of strings accepted by the automaton.

Definition 3.6 (Monitor Language Acceptance and Rejection). A monitorm accepts (resp., rejects)
a set of finite traces (i.e., a language) L ⊆ Act∗ when for every s ∈ Act∗, s ∈ L if and only ifm
accepts (resp., rejects) s . We call the set thatm accepts (resp., rejects) La (m) (resp., Lr (m)). □

Proposition 3.6. For every reactive parallel monitorm, there is an alternating automaton that accepts

La (m) and one that accepts Lr (m).

Proof. We describe the process of constructing an alternating automaton that accepts La (m)
— the case for Lr (m) is similar. We assume that for every variable x that appears inm, there is
a unique submonitor ofm of the form recx .n, such that x appears in n. The automaton form is
Am = (Q,Act,m,δ , F ), where
• Q is the set of submonitors ofm;
• F = {n ∈ Q | n accepts ε };
• Let for every S ⊆ Q , δ0 (q,α ) (S ) = 1 iff q ∈ F ; δ is the closure of δ0 under the following
conditions. For every S ⊆ Q :
– if n ∈ S , then δ (α .n,α ) (S ) = 1;
– if δ (n,α ) (S ) = 1 or δ (n′,α ) (S ) = 1, then δ (n + n′,α ) (S ) = 1;
– if δ (n,α ) (S ) = 1 or δ (n′,α ) (S ) = 1, and n

α
==⇒ and n′

α
==⇒, then δ (n⊕n′,α ) (S ) = 1;

– if δ (n,α ) (S ) = 1 and δ (n′,α ) (S ) = 1, then δ (n⊗n′,α ) (S ) = 1;
– if δ (n,α ) (S ) = 1 and recx .n ∈ Q , then δ (recx .n,α ) (S ) = δ (x ,α ) (S ) = 1.

To complete the proof, we show thatm accepts s if and only if δ ∗ (m, s ) (F ) = 1. □

Remark. The assumption that the monitor is reactive is necessary for the construction in the proof
of Prop. 3.6 to be correct. Consider, for example, the monitor m1 = a.a.yes⊕a.b .yes. Although
a.a.yes

a
−−→ a.yes

a
−−→ yes, the monitor does not accept any trace since b .yes ̸

a
−−→. By the construc-

tion, in the resulting alternating automaton, F = {yes}, and therefore δ (yes,a) (F ) = 1, implying
that δ (a.yes,a) (F ) = 1, in turn implying that δ ∗ (m1,aa) (F ) = 1, according to the closure conditions
for δ . Therefore, aa is a finite trace that the automaton accepts and the monitor does not.

In light of our assumption that monitorm in Prop. 3.6 is reactive, the third condition for δ in the
construction in the proof of the proposition may seem superfluous. However, reactivity does not
transfer to submonitors. For example, letm2 = (a.yes⊕b .yes) + a.end + b .end. Reasoning similarly
to the above argument form1,m2 is a reactive parallel monitor, which accepts no traces. On the
other hand, a more naive construction that ensures that δ (n⊕n′,α ) (S ) = 1 whenever δ (n,α ) (S ) = 1
or δ (n′,α ) (S ) = 1, would result in an automaton that accepts the finite trace a.

As we see in the remainder of this section, Prop. 3.6 implies that potentially infinite-state parallel
monitors are equivalent to finite-state regular monitors. The subtleties that we pointed out are the
trade-off for keeping the construction of the alternating automaton straightforward. □

Corollary 3.7. For every reactive parallel monitorm, there is an NFA that accepts La (m) and an NFA

that accepts Lr (m), and each has at most 2l (m)
states.

Proof. The alternating automaton that is constructed in the proof of Prop. 3.6 has at most as
many states as there are submonitors inm which, in turn, are not more than l (m). Furthermore, it
is a known result that every alternating automaton with k states can be converted into an NFA
with at most 2k states that accepts the same language [Chandra et al. 1981; Fellah et al. 1990]. □
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We now have all the ingredients to complete the proof of Prop. 3.8. This relies on a notion of
monitor equivalence from Aceto et al. [2017b] that focusses on how monitors can reach verdicts.

Definition 3.7 (Verdict Equivalence). Monitorsm and n are acceptance equivalent (resp., rejection
equivalent), denoted asm ≃acc n (resp.,m ≃rej n), if for every finite trace s ,m

s
=⇒ yes iff n

s
=⇒ yes (resp.,

m
s
=⇒ no iff n

s
=⇒ no). They are verdict equivalent, denoted asm ≃ver n, if they are both acceptance-

and rejection-equivalent. □

Proposition 3.8. For all reactive parallel monitorsm, there exist regular monitors n1,n2, and n such

that n1 and n2 are single-verdict monitors that are respectively acceptance-equivalent and rejection-

equivalent tom, andm and n are verdict equivalent, and l (n1), l (n2), l (n) = 2O (l (m) ·2l (m ) )
.

Proof. LetAa
m be anNFA forLa (m)with atmost 2l (m) states, and letAr

m be anNFA forLr (m)with
at most 2l (m) states, which exist by Cor. 3.7. From these NFAs, we can construct regular monitorsma

R

andmr
R , such thatma

R accepts La (m) andmr
R rejects Lr (m), and l (ma

R ), l (m
r
R ) = 2O (l (m) ·2l (m ) ) [Aceto

et al. 2016]. Therefore,ma
R ≃acc m andmr

R ≃rej m, andma
R +m

r
R is regular and verdict-equivalent to

m, and l (ma
R +m

r
R ) = 2O (l (m) ·2l (m ) ) . □

The techniques of Aceto et al. [2016] can also be used to produce deterministic monitors.

Definition 3.8 ([Aceto et al. 2016]). A regular monitorm is syntactically deterministic iff every
sum of at least two summands which appears inm is of the form

∑
α ∈A α .mα , where A ⊆ Act. □

Example 3.3. The monitor a.b .yes + a.a.no is not syntactically deterministic while the verdict-
equivalent monitor a.(b .yes + a.no) is syntactically deterministic. □

One can also consider non-syntactic notions of determinism, such as ifm
s
=⇒ n andm

s
=⇒ n′,

then n ≃ver n′. Lem. 3.9 shows that syntactic determinism implies this semantic notion. Henceforth
we will simply say deterministic to mean syntactically deterministic.

Lemma 3.9 ([Aceto et al. 2016]). Ifm is deterministic,m
s
=⇒ n, andm

s
=⇒ n′, then n ≃ver n

′
. □

Theorem 3.10 ([Aceto et al. 2016]). For every consistent regular monitor m, there is a verdict-

equivalent deterministic regular monitor n such that l (n) = 22O (l (m ))
. □

Proposition 3.11. For every consistent reactive parallel monitor m, there is a verdict-equivalent

deterministic regular monitor n such that l (n) = 222
O (l (m )·2l (m ) )

.

Proof. Using Prop. 3.8,m can be translated into a (possibly nondeterministic) verdict-equivalent
(hence consistent) regular monitor nr , such that l (nr ) = 2O (l (m) ·2l (m ) ) . Thm. 3.10 can then be used
to convert nr into a verdict-equivalent deterministic regular monitor n, such that l (n) = 22O (l (nr )) .

Therefore, l (n) = 222
O (l (m )·2l (m ) )

. □

4 MONITORABILITY FOR recHML

Monitorability is the study of the relationship between the semantics of a logic on the one hand
(i.e., satisfactions and violations), and the verdicts that can be discerned by the monitoring setup
on the other (i.e., acceptances and rejections). The concept relies on what a correct monitor for a
particular formula is, which, in turn, defines what it means for a formula to be monitorable. In this
section we focus on the monitorability of recHML. Based on the definition of trace acceptance and
rejection of Def. 3.3, we adapt the concepts of monitor soundness and completeness (with respect
to a formula) from Francalanza et al. [2017b] to the linear-time setting.
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Definition 4.1 (Linear-time Monitor Soundness and Completeness).
• A monitorm is sound for a (closed) formula φ of recHML over traces if, for all t ∈ Trc:
– rej(m, t ) implies t < JφKL;
– acc(m, t ) implies t ∈ JφKL.
• A monitorm is violation-complete for a (closed) formula φ of recHML over traces if for all
t ∈ Trc, t < JφKL implies rej(m, t ). It is satisfaction-complete if t ∈ JφKL implies acc(m, t ).
• A monitor m is complete for a (closed) formula φ of recHML if it is both violation- and
satisfaction-complete for it. □

The definition of soundness and completeness for monitors depends on the semantics given
to the formulae. Since we focus on linear-time semantics in this section, instead of saying that a
monitor is sound or violation- or satisfaction-complete, or complete for a formula over traces, we
respectively simply say that it is sound or violation- or satisfaction-complete, or complete for the
formula. In Sec. 5, we will introduce variations of Def. 4.1 that depend on different semantics for
recHML. Observe that a monitor that is sound for some formula must be consistent.
Following Francalanza et al. [2017b], we assume that the minimum requirement for a monitor

to correctly correlate to a formula is for it to be sound. It can be however argued that, depending
on the circumstance of the application requirements, different notions of completeness may be
deemed adequate enough. It turns out that not all formulae can be monitored adequately at runtime.
Moreover, the more stringent the requirement for adequate monitoring, the more are the formulae
that cannot be monitored. In the remainder of the section, we consider different definitions for
adequate monitoring and establish recHML monitorability results in each case.

In Sec. 4.1, we present monitorability results with respect to complete monitors. In Sec. 4.2, we
introduce the additional requirement of tightness for a monitor, under which the monitor reaches a
verdict as soon as it has read sufficient information from the input trace and not later. We explain
what one needs to do to construct a tight monitor. In Sec. 4.3, we establish monitorability results
for partially complete monitors, which are satisfaction-complete or violation-complete for their
respective formulae, but are not required to be both. This relaxation allows us to monitor for more
formulae. Finally, in Sec. 4.4, we examine what one must do to construct tight partially complete
monitors, and we explain why the methods of Sec. 4.2 are not likely to apply for this case.

4.1 Complete Monitorability

Wefirst consider (sound and) completemonitors as our notion of adequate monitoring for a particular
formula. This induces the following definition of monitorable formula and (sub)logic.

Definition 4.2 (Complete Monitorability). A formula φ ∈ recHML is complete-monitorable over
traces iff there exists a monitorm that is sound and complete for it. A (sub)logic L ⊆ recHML is
complete-monitorable over traces iff each formula φ ∈ L is complete-monitorable. □

Remark. In this section we only use Def. 4.2 for the linear-time interpretation of recHML. However,
its general form allows it to be used for other interpretations of the logic, with the appropriate
adaptation of complete monitors (e.g., along the lines of Francalanza et al. [2017b]). □

As the following results highlight, soundness and completeness for monitors are invariant under
verdict equivalence.

Proposition 4.1. Ifm is sound and complete for φ then

(1) m ≃ver n implies n is sound and complete for φ;
(2) m is a sound and complete monitor for φ ′ implies JφKL = Jφ ′KL. □
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In line with other works on monitorability [Bauer et al. 2010; Chang et al. 1992; Cini and
Francalanza 2015; Falcone et al. 2012a; Francalanza et al. 2017b; Manna and Pnueli 1991; Pnueli and
Zaks 2006], not all properties in recHML are complete monitorable.

Example 4.1. The formula φ1 = ⟨a⟩ttU ⟨b⟩tt is not complete-monitorable. For if, by contradiction,
we assume that it was then there must exist some sound and complete monitorm for φ1. Since the
trace aω < Jφ1KL, this monitorm rejects aω which, by Def. 3.3, means that it must reach a violation
after observing a finite prefix ak (for k ≥ 0). But this would also mean thatm rejects all traces
of the form akbt , which clearly satisfy φ1, thereby contradicting the assumption thatm is sound.
Similarly, it can be argued that the formula φ2 = ⟨a⟩⟨b⟩⟨b⟩ttR ⟨a⟩tt is not complete-monitorable
either. For if it was, a sound and complete monitorm2 would accept the trace aω after analysing
some prefix an of it; this would also mean that this monitor would also accept any trace of the form
anbat , which clearly violates the property. Thus, no such monitor exists. □

Example 4.1 raises the question as to which recHML properties can be monitored according to
Def. 4.2. To answer this question, we first identify a fragment of recHML that is guaranteed to be
complete-monitorable and then show its maximality.

Definition 4.3 (The complete-monitorable fragment of recHML). The recursion-free syntactic
fragment of recHML (a syntactic variant of HML [Hennessy and Milner 1985]) is defined as:

φ,ψ ∈ HML ::= tt | ff | φ ∨ψ | φ ∧ψ | ⟨A⟩φ | [A]φ. □

For every formula φ ∈ HML, we can define a monitor synthesis function as follows.

Definition 4.4 (Complete Monitor Synthesis). The function m(−) : HML → Mon is defined
inductively as follows:

m(ff)
def

= no m(φ1∧φ2)
def

= m(φ1)⊗m(φ2) m([A]φ) def

= A.m(φ) +A.yes

m(tt)
def

= yes m(φ1∨φ2)
def

= m(φ1)⊕m(φ2) m(⟨A⟩φ)
def

= A.m(φ) +A.no. □

Lemma 4.2. For all φ ∈ HML, m(φ) is reactive. □

Example 4.2. Assuming Act = {a,b, c}, the synthesised monitor for φ = [a]⟨b⟩tt∧⟨a⟩[c]ff, where
JφKL = { abt | t ∈ Actω }, is

m(φ) =m =
(
a.(b .yes + {a, c} .no) + {b, c} .yes

)
⊗
(
a.(c .no + {a,b} .yes) + {b, c} .no

)
.

When we composem with p = recx .a.b .x , we observe the following monitored behaviour:

m ◁ p
τa
−−−→→

(
(b .yes + {a, c} .no)⊗(c .no + {a,b} .yes)

)
◁ b .p

b
−−→ yes⊗yes ◁ p

τ
−−→ yes ◁ p. □

We show that, for each formula φ ∈ HML, the monitor m(φ) is the witness sound and complete
monitor for it. This, in turn, shows that HML is complete-monitorable, in the sense of Def. 4.2.

Proposition 4.3. For all φ ∈ HML, m(φ) is a sound and complete monitor for φ. □

Corollary 4.4. HML is complete monitorable. □

Following Francalanza et al. [2017b], we go one step further and show that the fragment HML of
Def. 4.3 ismaximally expressive with respect to sound and complete monitors. By this we mean that
every formula φ ∈ recHML that is complete-monitorable, in the sense of Def. 4.2, is semantically
equivalent to a formula from HML. Thus, we can limit ourselves to the syntactic fragment HML
without sacrificing any expressiveness in terms of complete-monitorable properties.

We show this claim in two steps. First, we tighten expressiveness results from Sec. 3 for the
specific case of completemonitoring. Concretely, we argue that every complete-monitorable formula
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(Def. 4.2) can be monitored adequately by a recursion-free syntactically deterministic monitor (see
Def. 3.8). This is shown via Lem. 4.5, which relies on Def. 4.5. In the second step, we devise an inverse
synthesis function to obtain complete-monitorable HML formulae from recursion-free deterministic
monitors, Lem. 4.6. This formula synthesis function is then used for Prop. 4.7, the last main result
of Sec. 4.1.

Definition 4.5 (Removing Monitor Recursion). For each monitorm, we define noR(m) thus:

noR(x )
def

= end noR(v )
def

= v noR(recx .n)
def

= noR(n)

noR(n1 + n2)
def

= noR(n1) + noR(n2) noR(α .n)
def

= α .noR(n). □

Lemma 4.5. If m is a syntactically deterministic monitor that is sound and complete for φ, then
noR(m) is also a sound and complete monitor for φ. □

The next step towards proving Prop. 4.7 is that of synthesising formulae from any recursion-free
syntactically deterministic monitor, which can be described by the following grammar.

Definition 4.6 (Recursion-free Deterministic Monitors).

m,n ∈ FMon ::= no | yes |
∑

α ∈A α .mα . □

We now show how to convert any recursion-free monitorm into an HML formula f(m). We then
argue that a reactivem monitors soundly and completely for f(m).

Definition 4.7. The synthesis function f(−) : FMon→ HML is defined as follows:

f(yes) = tt f(no) = ff f(
∑

α ∈A α .mα ) =
∧

α ∈A [α]f(mα ) □

Lemma 4.6. Every reactive monitorm ∈ FMon is a sound and complete monitor for f(m). □

We are now in a position to prove the expressive maximality of HML from Def. 4.3.

Proposition 4.7 (Maximality for HML). For each φ ∈ recHML, if φ is complete-monitorable, then

there exists someψ ∈ HML such that JφKL = Jψ KL.

Proof. From the results in Sec. 3 and Lem. 4.5, each complete-monitorable φ ∈ recHML has a
recursion-free deterministic monitorm that is sound and complete for it. By Lem. 4.6,m is sound
and complete for f(m) as well which is inHML. Prop. 4.1 thus yields JφKL = Jf(m)KL as required. □

The proof of Prop. 4.7 is constructive. We are also able to prove (albeit in a non-constructive
manner) an even stronger result (Thm. 4.8) with respect to complete monitoring for any arbitrary

logic defined over traces. This increases the importance of the fragment identified in Def. 4.3 for
the linear-time interpretation.

Theorem 4.8. Letm be a monitor from a monitoring system with the following two properties:

(1) verdicts are irrevocable, that is, ifm accepts (respectively, rejects) a finite trace s , then it accepts

(respectively, rejects) all its extensions, and

(2) m accepts (respectively, rejects) a trace t if, and only if, it accepts (respectively, rejects) some

finite prefix s of t .

For any property φ with a trace interpretation (not necessarily syntactically represented using recHML),

ifm is sound and complete for φ then φ can be expressed via the syntactic fragment HML of Def. 4.3. □
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4.2 Tightly-Complete Monitors

The sound and complete monitoring studied in Sec. 4.1 does not specify when a monitor should
reach a verdict while it analyses a trace, as illustrated by the following example.

Example 4.3. Assume Act = {a,b} and consider the formula φ = ⟨a⟩⟨a⟩ff, which is equivalent
to ff. Following Def. 4.4, the synthesised monitor for φ is m = a.(a.no + b .no) + b .no. After at
most two consecutive actions,m will definitely reject, and therefore it correctly rejects all traces.
However, a more “efficient” correct monitor for φ is no, which rejects immediately. □

A finite trace for which every extension violates (resp., satisfies) a property φ is often called a
bad prefix (resp., a good prefix) for φ [Alpern and Schneider 1985; Bauer et al. 2010; Pnueli and Zaks
2006]; good/bad prefixes provide sufficient finite information for acceptance/rejection.

Example 4.4. [A]tt is equivalent to tt, and thus ε is a good prefix for it. But m([A]tt) from Def. 4.4
would first need to observe one action before accepting. Similarly, [Act]ff is equivalent to ff and ε
is a valid bad prefix. Yet the synthesised monitor only rejects after observing one action. □

Although the monitors synthesised in Sec. 4.1 are complete, there may be a delay from the
moment a good/bad prefix is seen to the point when a verdict is reached. This observation does
not affect monitor completeness: the assurance that the stream of events is infinite guarantees that
any delay in reporting a verdict will not affect the formula’s monitorability. However, it may be
important for a monitor to report a verdict as soon as it gathers sufficient information to do so.

Definition 4.8. A monitorm is tight when, for every s ∈ Act∗, ifm rejects (resp., accepts) st for
every t ∈ Trc, thenm

s
=⇒ no (resp.,m

s
=⇒ yes). □

Although, as Example 4.3 demonstrates, Def. 4.4 does not always yield tight monitors we can
identify a fragment of HML for which it does.

Definition 4.9. A slim formula is defined by the following grammar:
φ ::= tt | ff |

∧
α ∈B [α]φα |

∨
α ∈D ⟨α⟩φα ,

where B,D , ∅, ∀α ∈ B.φα , tt, ∀α ∈ D.φα , ff, either B , Act or ∃α ∈ B.φα , ff, and either
D , Act or ∃α ∈ D.φα , tt. □

All slim formulae are HML formulae. However, the conditions imposed on their syntax exclude
redundancies that yield non-tight monitors. We proceed to show that if φ is slim, thenm(φ) is tight.
To this end, we prove a lemma showing the absence of redundancy in slim formulae.

Lemma 4.9. If φ ∈ HML is slim and JφKL = ∅ (resp., JφKL = Trc), then φ = ff (resp., φ = tt). □

Lemma 4.10. If φ is a slim HML formula, thenm(φ) is tight.

Proof. By Prop. 4.3, t<JφKL implies that there is a finite prefix s of t such thatm(φ)
s
=⇒ no. We

prove by induction on sthat if∀t . rej(m, st ), thenm
s
=⇒ no (the case for acceptance is symmetric). □

We can transform every HML formula into an equivalent slim formula. This transformation is
based on a set of rewrite rules of the form φ ⇛L ψ , given in Fig. 4, that allows us to iteratively
replace the formula on the left-hand side with that on the right-hand side.

Lemma 4.11. φ ⇛L ψ implies JφKL = Jψ KL and l (φ) > l (ψ ) □

Proposition 4.12 (HML normalisation). For every formula φ ∈ HML, there exists k ≤ l (φ) such
that φ = φ0 ⇛L φ1 ⇛L . . .⇛L φk = ψ whereψ is slim and JφKL = Jψ KL. □

Proceedings of the ACM on Programming Languages, Vol. 1, No. POPL, Article 1. Publication date: January 2019.



Adventures in Monitorability 1:17

[Act]ff ⇛L ff ⟨Act⟩tt ⇛L tt ⟨α⟩ff ⇛L ff [α]tt ⇛L tt (1)
tt ∧ φ ⇛L φ ff ∧ φ ⇛L ff ff ∨ φ ⇛L φ tt ∨ φ ⇛L tt (2)∧
α ∈A

[α]φα ∧
∧
α ∈B

[α]ψα ⇛L

∧
α ∈A∩B

[α](φα ∧ψα ) ∧
∧

α ∈A\B

[α]φα ∧
∧

α ∈B\A

[α]ψα (3)

∧
α ∈A

[α]φα ∨
∧
α ∈B

[α]ψα ⇛L




∧
α ∈A∩B [α](φα ∨ψα ) if A ∩ B , ∅

tt otherwise
(4)∨

α ∈A

⟨α⟩φα ∨
∨
α ∈B

⟨α⟩ψα ⇛L

∨
α ∈A∩B

⟨α⟩(φα ∨ψα ) ∨
∨

α ∈A\B

⟨α⟩φα ∨
∨

α ∈B\A

⟨α⟩ψα (5)

∨
α ∈A

⟨α⟩φα ∧
∨
α ∈B

⟨α⟩ψα ⇛L




∨
α ∈A∩B ⟨α⟩(φα ∧ψα ) if A ∩ B , ∅

ff otherwise
(6)∧

α ∈A

[α]φα ∧
∨
α ∈B

⟨α⟩ψα ⇛L

∨
α ∈A∩B

⟨α⟩(φα ∧ψα ) ∨
∨

α ∈B\A

⟨α⟩ψα (7)∧
α ∈A

[α]φα ∨
∨
α ∈B

⟨α⟩ψα ⇛L

∧
α ∈A∩B

[α](φα ∧ψα ) ∧
∧

α ∈A\B

[α]φα (8)

Fig. 4. HML rewrite rules where A,B ⊆ Act. ⇛L is the smallest binary relation on HML that satisfies the

rules above and is closed with respect to HML contexts.

Example 4.5. Assume Act = {a,b} and consider the non-slim HML formula φ = ⟨a⟩⟨a⟩ff∧[b]ff.
The synthesised monitor m(φ) = (a.(a.no + b .no) + b .no)⊗(b .no + a.no) is not tight. However,
we can apply the transformations based on the given equivalences to obtain an equivalent slim
formula thus: ⟨a⟩⟨a⟩ff ∧ [b]ff ⇛L ⟨a⟩⟨a⟩ff ⇛L ⟨a⟩ff ⇛L ff. □

4.3 Partially-Complete Monitors

As opposed to the branching-time semantics of recHML, where only properties that are semantically
equivalent to tt and ff have sound and complete monitors [Francalanza et al. 2017b], the linear-
time semantics permits a far richer class of complete-monitorable properties, namely HML. By
some measures, however, this monitorable fragment is still quite restrictive. For example, whereas
the property “initialise occurs within the first ten actions” can be expressed in terms of HML,
the property “initialise eventually occurs”—which can be expressed using least fixpoints—cannot.
In fact, although the latter property cannot be monitored for in a complete manner, it can be
monitored completely for satisfaction. In this section, we relax the notion of monitorability to
partial-completeness, which only requires a monitor to be either violation- or satisfaction-complete.

Definition 4.10. A formula φ ∈ recHML is monitorable for satisfaction (resp., for violation) iff
there exists a monitorm that is a sound and satisfaction-complete (resp., and violation-complete)
monitor for φ. It is partially-monitorable when it is monitorable for satisfaction or for violation. □

We can extend these definitions to fragments of recHML in a similar way to that in Def. 4.2. Here,
the trade-off between the guarantees we expect from monitors and the monitorable specifications
is clear: for the linear-time interpretation, recursion can be traded for partial-completeness, while
no such option exists for branching-time. We can extend the observations of Sec. 4.1 to the context
of partial monitorability.

Proposition 4.13. Ifm is sound and satisfaction-complete (resp., violation-complete) for φ, then
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(1) m ≃ver n implies n is sound and satisfaction-complete (resp., violation-complete) for φ.

(2) If for all v ∈ {yes, no}, n
s
=⇒ v impliesm

s
=⇒ v , then n is sound for φ.

(3) m ≃acc n (resp.,m ≃rej n) implies n is satisfaction-complete (resp., violation-complete) for φ.
(4) m is sound and satisfaction-complete (resp., violation-complete) for φ ′ implies JφKL = Jφ ′KL. □

Example 4.6. Let Act = {a,b, c} and φ = maxX .([b]ff ∧ [{a, c}]X ) ∨ minY .(⟨c⟩tt ∨ [{a,b}]Y ),
which is satisfied by traces of the form (a + c )ω +

(
(a +b)∗c (a +b + c )ω

)
, i.e., traces where either b

does not appear, or c does appear. We show that φ is not partially-monitorable. For if there was
somem that is sound and satisfaction-complete for φ, it should accept aω ; this means thatm must
reach yes after analysing ak for some k ≥ 0. In this case, the trace akbω , which does not satisfy φ,
must also be accepted bym, resulting in a contradiction. If, on the other hand, there was somem
that is sound and violation-complete for φ, then it should reject bω . Again,m must reach no after
bk for some k ≥ 0, but bkcω satisfies φ. Therefore, φ cannot be partially monitorable. □

For partial monitorability, we can identify two fragments of recHML, namely minHML, which
is monitorable for satisfaction, and maxHML, which is monitorable for violation.

Definition 4.11 (MAX and MIN Fragments of recHML). The greatest-fixed-point and least-fixed
point fragments of recHML are, respectively, defined as:
φ,ψ ∈ maxHML ::= tt | ff | φ ∨ψ | φ ∧ψ | ⟨A⟩φ | [A]φ | maxX .φ

φ,ψ ∈ minHML ::= tt | ff | φ ∨ψ | φ ∧ψ | ⟨A⟩φ | [A]φ | minX .φ □

Both maxHML and minHML are extensions of HML. We can extend the monitor synthesis from
Def. 4.4 to these fragments by using the recursion that is available for monitors.

Definition 4.12 (Monitor Synthesis). The monitor synthesis for maxHML and minHML results by
simply extending the definition of m(−) from Def. 4.4 with the cases for the respective fixed-point
of each fragment: m(maxX .φ) = m(minX .φ) = recx .m(φ) and m(X ) = x . □

We observe that the extended monitor synthesis function still produces reactive monitors. We
also show the first important result of this subsection, namely that Def. 4.12 yields the required
witness monitors to prove that the syntactic fragment maxHML∪minHML is partially-monitorable.

Proposition 4.14. For every φ ∈ maxHML ∪ minHML, m(φ) is reactive. □

Proposition 4.15. For every φ ∈ maxHML, m(φ) is a sound and violation-complete monitor for φ.
For every φ ∈ minHML, m(φ) is a sound and satisfaction-complete monitor for φ. □

As in the case of Sec. 4.1, we now turn our attention to the maximality of the syntactic fragment
maxHML ∪ minHML for partial-monitorability. Particularly, we can define two formula synthesis
functions that produce partially monitorable formulae from monitors: one maps monitors to
formulae in maxHML, and the other one to formulae in minHML. Depending on the fragment, we
then show that ifm is mapped toφ, thenm is sound and violation-complete, or satisfaction-complete
resp., for φ. Here we only present the synthesis function for maxHML; the case for minHML is dual.

Definition 4.13 (maxHML Formula Synthesis).
f(no) = ff f(end) = f(yes) = tt f(x ) = X f(recX .m) = maxX .f(m)

f(m + n) = f (m)∧f(n) f(m⊗n) = f(m)∧f(n) f(m⊕n) = f(m)∨f(n) f(α .m) = [α]f(m) □

Example 4.7. Letm = a.b .no + a.a.yes. Then, f(m) = [a][b]ff∧[a][a]tt (which is equivalent to
just [a][b]ff). The monitorm rejects traces of the form abt which are exactly all the traces violating
f(m). Thusm is sound and violation-complete for f(m). □
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Note that f(m) ∈ maxHML, for anym. However, when we apply the formula synthesis function
from Def. 4.13 to a consistent monitor m to generate a formula φ, and then apply the monitor
synthesis from Def. 4.12 to φ, we will generate a monitor that has similar parts tom, but it will be
somewhat different due to the asymmetry of the resp., syntheses. For example, for Act = {a,b},
f(a.no + b .yes) = [a]ff∧[b]tt, and m([a]ff∧[b]tt) = (a.no + b .yes)⊗(b .yes + a.yes). The following
lemma allows us to abstract from these discrepancies, thereby enabling the proof of Prop. 4.17.

Lemma 4.16. m(f(m)) rejects the same traces asm. □

Proposition 4.17. Ifm is consistent, thenm is a sound and violation-complete monitor for f(m).

Proof. From Lem. 4.16, m(f(m)) rejects the same traces as m, and therefore, by Props. 4.13
and 4.15,m is violation-complete for f(m). Sincem rejects the same traces as m(f(m)), ifm rejects
a trace t , then t < JφKL. Sincem is consistent, ifm accepts a trace t , then it does not reject t , and
becausem rejects the same traces as m(f(m)), m(f(m)) does not reject t either. Since m(f(m)) is
also violation-complete by Prop. 4.15, this yields that t ∈ JφKL. Therefore,m is also sound for φ. □

The following proposition tells us that, up to logical equivalence,maxHML is the largest fragment
of recHML that is monitorable for violation. Dually, minHML is the largest fragment of recHML
that is monitorable for satisfaction.

Proposition 4.18. If a formulaφ ∈ recHML has a sound and violation-complete monitor over infinite

traces, then it is equivalent to a formulaψ ∈ maxHML over infinite traces.

Proof. Letm be a sound and violation-complete monitor for φ and letψ = f(m) ∈ maxHML be
the witness formula. Sincem is sound for φ, it must be consistent, and by Prop. 4.17,m is a sound
and violation-complete monitor for f(m). Therefore, by Prop. 4.13, JφKL = Jf(m)KL. □

Remark. Thm. 4.8 demonstrates that HML can express any property of infinite traces that has a
complete monitor in any monitoring system, assuming that verdicts remain irrevocable. Unfortu-
nately, this result cannot be replicated for partial completeness. For instance, let L ⊆ (Act \ {c})∗ be
a non-regular language, where c ∈ Act is some distinguished action, and Lc = { sct | s ∈ L and t ∈
Actω }. If Lc could be expressed in minHML, then there would be a sound and satisfaction-complete
monitor for Lc , and by a straightforward use of Prop. 3.6, we could construct a finite automaton
that recognizes L, which contradicts the assumption that L is non-regular. Yet, we could imagine
appropriate choices for L and monitoring systems in which Lc is monitorable. For instance, suppose
that monitors are described using pushdown automata and let L contain exactly the finite words
on {0, 1} that have the same number of occurrences of 0 and of 1. □

4.4 Tightly-Complete Monitors for Recursion

To synthesise a tight monitor for a formula φ of maxHML (or minHML), one can synthesise a
parallel monitorm(φ), then, using the methods of Subsection 3.3, turnm(φ) into a verdict-equivalent
deterministic regular monitor, and, finally, consecutively replace instances of

∑
α ∈Act α .no and

recx .no by no and instances of
∑

α ∈Act α .yes and recx .yes by yes. The resulting monitor is tight.

Lemma 4.19. Letm be a deterministic regular monitor, where

∑
α ∈Act α .no, recx .no,

∑
α ∈Act α .yes,

and recx .yes do not occur as submonitors. Then,m is tight. □

We would like to be able to apply a convenient method to process the formula or the monitor, so
that right after the monitor synthesis we could produce a tight monitor. However, as we will see, a
more reasonable monitor synthesis function that produces tight monitors is unlikely, as one could
use it to solve the satisfiability problem for maxHML— by checking whether a produced monitor for
the formula immediately evaluates to no (or to yes, for its negation), — which is PSPACE-complete.
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Proposition 4.20. For |Act| ≥ 2, the satisfiability problem for maxHML is PSPACE-complete.

Proof. Satisfiability for recHML (and therefore for maxHML as well) is known to be in PSPACE
[Vardi 1988a]. That satisfiability for maxHML is PSPACE-hard results from the observation that
maxHML with at least two actions can encode the 1-variable, diamond-free fragment of D ⊕⊆ D4,
which is PSPACE-complete [Achilleos 2016]. □

Remark. For singleton Act = {a}, recHML-satisfiability is a lot simpler, as there is only one trace,
aω . Therefore, satisfiability for maxHML can be reduced to model-checking on aω . A more direct
way to solve satisfiability is to reduce the given formula by using the following straightforward
rewrite rules: ff ∧ φ ⇛L ff, ff ∨ φ ⇛L φ, ⟨α⟩ff ⇛L ff, [α]ff ⇛L ff, and maxX .ff ⇛L ff; the cases
for tt are symmetric. After applying these formula simplifications, we will either reach one of tt,ff,
in which case the answer to satisfiability is obvious, or we will reach a formula φ without these
constants. In the latter case, we can easily see that m(φ) can never reach a verdict, and therefore it
will never reject a trace, which, from Prop. 4.15, implies that JφKL = Trc = {αω }. □

5 BRANCHING-TIME MONITORABILITY

Monitorability over branching-time semantics has been examined in Aceto et al. [2017a, 2018a]
and Francalanza et al. [2017b] for various frameworks. In this section we compare the results of
Francalanza et al. [2017b], the closest to our setting, with those of Sec. 4. We begin by revisiting
the basic definitions and results for branching-time monitorability. Then, in Sec. 5.1 and Sec. 5.2,
we extend the study of monitorability to a domain that allows both finite and infinite traces, and
conclude, in Sec. 5.3, by comparing the monitorable fragments in this domain to those in the
branching-time setting.

Definition 5.1 (Branching-time Monitor Soundness and Completeness).
• A monitorm is sound for a (closed) formula φ over processes if, for all p ∈ Prc of every LTS,
i.e., a triple ⟨Prc, (Act ∪ {τ }),−→⟩:
– rej(m,p) implies p < JφKB;
– acc(m,p) implies p ∈ JφKB.
• A monitorm is violation-complete for a formula φ over processes if for all p ∈ Prc of every
LTS, p < JφKB implies rej(m,p). It is satisfaction-complete if p ∈ JφKB implies acc(m,p). □

Remark. The LTS is often omitted when it is clear from the context. As before, a monitorm is
complete for φ if it is violation- and satisfaction-complete for it. A rejection monitor is a monitor
without the verdict yes; an acceptance monitor is one without the verdict no. □

In the branching-time setting, monitors with both yes and no verdicts are unsound for any
formula, as whenever one trace leads to an acceptance and another to a rejection, one can easily
construct a process that can emit both traces. As a single-verdict (uni-verdict [Francalanza et al.
2017b]) monitor can only be either satisfaction- or violation-complete for a formula (except monitors
for tt and ff which can be both), one cannot hope for complete monitors for recHML, and therefore
the best one can do is to identify its fragments for which partially complete monitors exist. These
are sHML and cHML, defined by the following grammars:

Definition 5.2 (Safety and Cosafety Fragments for Branching-time recHML).

φ,ψ ∈ sHML ::= tt | ff | [A]φ | φ ∧ψ | maxX .φ | X
φ,ψ ∈ cHML ::= tt | ff | ⟨A⟩φ | φ ∨ψ | minX .φ | X . □
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Theorem 5.1 (Branching-time Monitorability [Francalanza et al. 2017b]). For every φ ∈ sHML,

there is a regular rejection monitorm that is sound and violation-complete for φ. For every φ ∈ cHML,

there is a regular acceptance monitorm that is sound and satisfaction-complete for φ. □

Theorem 5.2 (Maximality of sHML and cHML [Francalanza et al. 2017b]). For every regular

rejection monitorm, there is a formula φ ∈ sHML, such thatm is sound and violation-complete for

φ. For every regular acceptance monitorm, there is a formula φ ∈ cHML, such thatm is sound and

satisfaction-complete for φ. □

One can identify two key differences between the linear-time and the branching-time semantics
introduced in Sec. 2. The first and most characteristic difference is that for branching-time semantics,
where formulae are interpreted over processes, a process is allowed to emit more than one trace. In
other words, a process may exhibit different behaviour each time it runs, and therefore, a trace does
not give the whole picture of its possible executions. By contrast, for linear-time semantics, if one
observes an action or a finite trace, then there is no possibility that another one could have been
exhibited instead. This allows for constructs such as parallel monitors to monitor for conjunctions
and disjunctions at the same time: simply decompose the formula as the monitor synthesis function
directs in Defs. 4.4 and 4.12, and let each monitor component examine the trace until a conclusion
is reached. For branching-time semantics, this method does not help to monitor a conjunction for
satisfaction or a disjunction for rejection, as Francalanza et al. [2017b] demonstrates.

Example 5.1. Consider φ = [a]ff ∨ [b]ff < sHML. In contrast to the linear-time setting, φ is not
monitorable for violation under a branching-time interpretation. For assume, towards a contradic-
tion, that there is a rejection monitor for φ. Assume an LTS with a process p that has two transitions,
p

a
−−→ nil and p

b
−−→ nil. Then, p < JφKB and p can produce three possible traces: ε,a,b. If a monitor

rejected one of these, say a, then it would reject p, but also process qa that has exactly one transition,
qa

a
−−→ nil. But we observe that qa ∈ JφKB, meaning that the monitor would not be sound for φ. The

formula [a]ff∨[b]ff is however monitorable in a linear-time setting (Defs. 4.3 and 4.11). □

The second difference is that, in the linear-time semantics, formulae are only interpreted over
infinite traces while, in branching-time semantics, a trace is allowed to end. Unlike the first difference,
this one is not inherent to the linear- versus branching-time distinction, but it is one we have lifted
from standard LTL-style semantics [Bradfield and Stirling 2001; Vardi 1988b]. Therefore, as a first
step to reconcile the two semantics, we focus on this less essential difference for our logic.

5.1 The Finfinite Domain

We introduce an alternative linear-time semantics for our logic, where formulae are interpreted
over traces that are allowed to be either finite or infinite. For convenience, we call these kinds of
traces finfinite and the resulting semantics finfinite linear-time semantics, or just finfinite semantics.
(A semantics akin to ours for a linear-time temporal logic may be found in, for instance, Schneider
[1997]. Falcone et al. [2012b] define linear-time properties over finite and infinite traces, but do not
consider a specific logic.) The finfinite semantics, J−KF, is presented in Fig. 5. The set of finfinite
traces is fTrc = Trc ∪ Act∗ and we use д,h ∈ fTrc (resp., F ⊆ fTrc) to range over (resp., sets of)
finfinite traces.

Remark. For recHML, ⟨Act⟩φ and [Act]φ can be seen as the strong and weak next operators, Xφ
and Xφ from LTL [Clarke et al. 1999]. In this same setting, [A]φ may be seen as shorthand for
⟨A⟩tt∨⟨A⟩φ. However the encoding does not work for the finfinite interpretation of Fig. 5. □

Proceedings of the ACM on Programming Languages, Vol. 1, No. POPL, Article 1. Publication date: January 2019.



1:22 L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and A. Lehtinen

Jtt,σKF
def

= fTrc Jff,σKF
def

= ∅

Jφ1∨φ2,σKF
def

= Jφ1,σKF ∪ Jφ2,σKF Jφ1∧φ2,σKF
def

= Jφ1,σKF ∩ Jφ2,σKF
J⟨A⟩φ,σKF

def

=
{
д | ∃h · ∃α ∈ A · д = αh and h ∈ Jφ,σKF

}
J[A]φ,σKF

def

=
{
д | ∀h · ∀α ∈ A · t = αh implies h ∈ Jφ,σKF

}
JminX .φ,σKF

def

=
⋂ {

F | Jφ,σ [X 7→ F]KF ⊆ F

}
JmaxX .φ,σKF

def

=
⋃ {

F | F ⊆ Jφ,σ [X 7→ F]KF
}

JX ,σKF
def

= σ (X )

Fig. 5. Finfinite Linear-Time Semantics

The two linear-time semantics for recHML still correspond in some sense; see Lem. 5.3. In
particular, formula equivalence over finfinite traces implies equivalence over infinite traces.

Lemma 5.3. For all φ ∈ recHML, JφKF ∩ Trc = JφKL. □

We consider the same monitoring systems of regular and parallel monitors that were introduced
in Sec. 3. However, what it means form to monitor for φ depends on the semantics that we use for
the formulae: the definition used in Sec. 4 is therefore not sufficient for the finfinite domain.

Definition 5.3 (Finfinite Linear-time Monitor Soundness and Completeness).
• A monitorm is sound for a (closed) formula φ over finfinite traces if, for all д ∈ fTrc:
– rej(m,д) implies д < JφKF;
– acc(m,д) implies д ∈ JφKF.
• A monitorm is violation-complete for a formula φ over finfinite traces if for all д ∈ fTrc,
д < JφKF implies rej(m,д). It is satisfaction-complete ifд ∈ JφKF implies acc(m,д). It is complete

for a formula φ over finfinite traces if it is both violation- and satisfaction complete for it. □

Monitorability of formulae and logics can be adjusted to finfinite traces analogously.

5.2 Monitorability over Finfinite Traces

We now identify the complete- and partial-monitorable fragments of recHML over finfinite traces.
Our first observation is that under finfinite semantics, there are no complete-monitorable formulae,
except the ones equivalent to tt or ff.

Lemma 5.4. Ifm is sound and complete for φ over finfinite traces, then JφKF = fTrc or JφKF = ∅. □

Remark. Lem. 5.4 holds regardless of the considered logic: due to verdict-persistence (Lem. 3.1),
a logical fragment that is complete-monitorable over finfinite traces must be trivial for any logic
interpreted over finfinite traces. □

The concept of tightness, as defined in Def. 4.8, does not apply for the finfinite interpretation
since there is no guarantee that a finfinite trace will have a continuation. A definition of tightness
might stipulate that a rejection-monitor is tight for a formula when it is guaranteed to reject any
finite trace as long as the trace and all of its (finfinite) continuations violate the formula (i.e., bad
prefixes). However, this notion of tightness is implied by partial completeness.

Example 5.2. In contrast to the infinite trace semantics, ⟨a⟩tt is not monitorable for violation
under finfinite semantics. For assume towards a contradiction thatm is a monitor that is sound and
violation-complete for ⟨a⟩tt. Then,m must reject the empty trace, ε , and thus all of its extensions,
including a ∈ J⟨a⟩ttKF, makingm unsound. Similarly, [α]ff is not monitorable for satisfaction. □
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Our next goal is to characterize the expressive power of monitors in finfinite semantics. To this
end, we identify the following fragments of recHML. Only one type of modality is kept in each of
these fragments. This is because, as observed in Example 5.2, the two modalities are not mutually
expressive and even simple formulae using them are not monitorable for violation or satisfaction.

Definition 5.4.

φ,ψ ∈ unHML ::= tt | ff | [A]φ | φ ∨ψ | φ ∧ψ | maxX .φ | X , and
φ,ψ ∈ exHML ::= tt | ff | ⟨A⟩φ | φ ∨ψ | φ ∧ψ | minX .φ | X . □

The next lemma formalises the property that formulae in unHML denote prefix-closed sets of
(finfinite) traces whereas formulae in exHML denote suffix-closed sets of traces.

Lemma 5.5. For all s ∈ Act∗ and д ∈ fTrc, (i ) if φ ∈ unHML and sд ∈ JφKF, then s ∈ JφKF; (ii ) if
φ ∈ exHML and s ∈ JφKF, then sд ∈ JφKF. □

Interestingly, for unHML and exHML over finfinite traces, we can use the samemonitor synthesis
function that we used to generate monitors for maxHML and minHML over infinite traces.

Proposition 5.6. For every φ ∈ unHML, m(φ) is sound and violation-complete for φ over finfinite

traces. For every φ ∈ exHML, m(φ) is sound and satisfaction-complete for φ over finfinite traces. □

To facilitate our comparisons between the finfinite and the branching-time interpretations of
recHML, we define the notion of trace-processes.

Definition 5.5. Process p is a trace-process when p
µ
−−→ q and p

µ′
−−→ q′ implies µ = µ ′, q = q′ and

q is a trace-process. A (trace) process p represents a finfinite д when p
s
=⇒ iff s is a prefix of д. □

For a trace д, we can assume the existence of a trace-process pд that represents д: one can
construct such a trace-process pд whereby its states are all the prefixes of д and its transitions are
those of the form s

α
−−→ sα , where s and sα are prefixes of д.

Remark. We note that, unlike for monitors, we have not assumed any specific syntax for processes,
which can come from an arbitrary LTS. This makes it possible to represent every finfinite trace,
even one without a finite representation, by a process. □

Example 5.3. A process representing ab is the three-state process p, with just the transitions
p

a
−−→ p ′ and p ′

b
−−→ nil. A process representing aω is q that has exactly one transition, q

a
−−→ q. □

Lem. 5.7 shows that, for recHML, (finfinite) traces and trace-processes are different descriptions
of the same model.

Lemma 5.7. If p represents д, then д ∈ JφKF iff p ∈ JφKB. □

Coincidentally, all formulae that are monitorable for violation or satisfaction over a finfinite
semantics are equivalent to sHML or cHML formulae resp., from Def. 5.2. Since unHML and
exHML syntactically subsume sHML and cHML resp., they are maximally monitorable fragments
of recHML when interpreted over finfinite traces.

Proposition 5.8. If φ ∈ recHML has a sound and violation-complete (resp., satisfaction-complete)

reactive parallel monitor over finfinite traces, then there is someψ ∈ sHML (resp.,ψ ∈ cHML) that is

equivalent to φ over finfinite traces.
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Proof. Letm be a sound and violation-complete reactive parallel monitor for φ over finfinite
traces. By Prop. 3.8, there is a regular monitor n that is verdict-equivalent tom, so it is also sound
and violation-complete for φ over finfinite traces. We can then obtain a single-verdict monitor n′
from n that is rejection equivalent to it by swapping any yes with end. n′ is thus still sound and
violation-complete for φ over finfinite traces. From Thm. 5.2 there is a formulaψ ∈ sHML, such that
n is sound and violation-complete forψ over all LTSs, including the LTS of trace-processes. Since n
is sound and violation-complete forψ on trace processes, pд ∈ Jψ KB is equivalent to claiming that
n does not reject any trace that pд can produce. However, this is equivalent to saying that n does
not reject д which, by violation-completeness, is equivalent to д ∈ JφKF. By Lem. 5.7, д ∈ Jψ KF iff
pд ∈ Jψ KB, and the proof is complete. The case for a satisfaction-complete monitor is similar. □

5.3 Monitorable Formulae Across Semantics

So far, we have identified a different pair of partial-monitorable syntactic fragments for each of the
three semantics that we have presented in this paper. However, as the reader may suspect from
Prop. 5.8, we may be able to further restrict the syntax that we allow for our formulae, and still
be able to express all monitorable formulae, and therefore, an identified maximally monitorable
fragment of recHML may be equally expressive as a syntactic fragment of its own.

Here we show that for each of the semantics that we have presented, i.e., over infinite traces, finfinite
traces, and processes, sHML and cHML are equally expressive as the corresponding identified
partially monitorable fragment. That is to say, sHML is as expressive as unHML over finfinite
traces and as expressive as maxHML over infinite traces — and dually, cHML is as expressive as
exHML over finfinite traces and as expressive as minHML over infinite traces.

Proposition 5.9. For finite Act, if φ ∈ unHML (resp., φ ∈ exHML), then there is some ψ ∈ sHML

(resp.,ψ ∈ cHML) that is equivalent to φ over finfinite traces. □

Proposition 5.10. For finite Act, if φ ∈ maxHML (resp., φ ∈ minHML), then there is someψ ∈ sHML

(resp.,ψ ∈ cHML) that is equivalent to φ over infinite traces. □

The proofs of both of these propositions proceed by considering a sound and partially complete
monitor for a formula in unHML, maxHML or their duals, and using the formula synthesis to
find an sHML formula that is equivalent to the original formula on finfinite and infinite traces
respectively.
The import of Props. 5.9 and 5.10 is that, in settings where Act is finite, logical fragment

sHML∪cHML can be used to syntactically characterise the class ofmonitorable properties (for sound
and partial-completeness) for all three interpretations (i.e., traces, finfinite traces and processes).
In spite of this felicitous (and somewhat surprising) result, one should nevertheless stress that
their interpretation is still semantically different. In fact, the synthesised monitors presented here
in Defs. 4.4 and 4.12 yield behaviourally different monitors to those obtained by the synthesis in
Francalanza et al. [2017b]. Moreover, they can not be used interchangeably: Defs. 4.4 and 4.12
produce multi-verdict monitors, even when applied to the syntactic fragment sHML ∪ cHML,
which makes them immediately unsound for a branching-time interpretation. In Prop. 5.11, we can
however show that the monitors synthesised by the procedure of Francalanza et al. [2017b] for the
sHML fragment qualify also as correct monitors for the finfinite interpretation of the logic. This
means that the tools developed in Attard et al. [2017] and Attard and Francalanza [2016], which
are based on the branching-time synthesis of Francalanza et al. [2017b], can be used out of the box
to monitor for finfinite properties.

Proposition 5.11. For a processp and a formulaφ ∈ sHML, the following are equivalent: (i ) p ∈ JφKB
and (ii ) If p produces a finfinite trace д, then д ∈ JφKF . □
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6 CONCLUSION

We have presented a systematic study of the monitorability of recHML, a highly expressive speci-
fication logic: we have developed results relating to its linear-time interpretation and established
correspondences with previous monitorability results for the branching-time interpretation of the
logic. This allows us to use existing RV tools (developed for branching-time) to monitor linear-time
recHML properties. To our knowledge, this is the first study of monitorability that spans across
the linear-time/branching-time spectrum. Moreover, although monitorability has been studied
extensively for linear-time specifications, we are unaware of any maximality results such as those
presented in Props. 4.7, 4.18 and 5.8 to 5.10 and Thm. 4.8.

Concretely, in Sec. 3, we introduce parallel monitors and we gave a way to construct a determinis-
tic regular monitor (introduced in Aceto et al. [2017b] and Francalanza et al. [2017b]) from a parallel
one, establishing that the two monitoring frameworks are equivalent with respect to the properties
they can monitor. In Sec. 4, we give a natural monitor synthesis from three fragments of recHML to
parallel monitors, and establish that the resulting monitors satisfy the requirement of soundness and
a version of the requirement for completeness. For complete monitors, we identify the requirement
of tightness and show how one can satisfy it. In Sec. 5, we see how these findings apply in the
intermediate finfinite setting, and we establish that sHML has the same expressive power as the
respective maximal monitorable fragments of recHML in the finfinite and infinite-trace settings.

Multiple Ways to Monitor. These results show that there is more than one way to monitor for a
property φ that is monitorable for violation. If φ is already in sHML, or if we want to make the
effort to write the property as an sHML formula, we can use the monitor synthesis in Francalanza
et al. [2017b] to synthesise a single-verdict, sound and violation-complete regular monitor for φ
that will work in all (infinite-trace, finfinite, and branching-time) semantics. Alternatively, if we
are interested in the linear-time domain (for either infinite or finfinite traces), we can synthesise a
parallel monitor with the synthesis function from Def. 4.12, hoping that the possibly dual-verdict
monitor may occasionally report the satisfaction of the formula, providing us with more information.
In the latter case, we may choose to deploy the parallel monitor as is, or use the construction from
Prop. 3.8 to obtain a verdict-equivalent regular monitor. An advantage of using the parallel monitor
is that it can be significantly more concise than a regular monitor, at least at the early stages of
the computation. An advantage of using a regular monitor is that it is guaranteed to be finite state
(Prop. 3.2). Furthermore, regular monitors can be determinized and then minimized (see Prop. 3.11
and Aceto et al. [2016]), making their implementation more straightforward. Therefore, one can
think of maxHML as a high-level specification language for properties that are monitorable for
violation in the linear-time setting. From maxHML, we can generate parallel monitors that can
then be compiled into (deterministic, minimized) regular monitors that can be implemented and
deployed to monitor the system. On the other hand, sHML can be thought of as a lower-level
language that is closer to regular monitors and can allow for better fine-tuning of the monitor’s
behaviour, and avoids the cost of constructing a regular monitor.

Future Work. We are interested in a detailed taxonomy and comparison of different notions of
monitorability, and this work is a first step in that direction. Additionally, in Aceto et al. [2018a],
the authors examine how the set of monitorable properties can be extended by encoding additional
information into the trace that describes a system execution. Noticeably, their framework allows for
the interaction of multiple verification methods, and this is an approach we would like to explore
for our own framework.

Related Work on Runtime Verification. RV has been applied in the computer-aided verification of
complex programs and models written in a variety of high-level languages. For example, RV has
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been used in the verification of properties written in an extension of PSL and SVA over SystemC
models in Tabakov et al. [2012] (but see Pnueli and Zaks [2006] and references in Tabakov et al.
[2012] for earlier work on monitor synthesis for PSL). Like we do in this paper, Tabakov et al.

argue for the algorithmic generation of “correct” monitors from properties. However, their focus
is on an experimental study of monitor-generation procedures that offer the best performance
in terms of runtime overhead at simulation time. In order to do so, they employ the CHIMP
tool [Dutta et al. 2014] to generate monitors (represented as DFAs) from LTL properties using a
number of workflows that take into account various options regarding state minimization, alphabet
representation, alphabet minimization and the representation of the transition function of the
monitor.

Diagnosability. It is worth mentioning here work on diagnosability, e.g., Bertrand et al. [2014];
Sampath et al. [1995]. Diagnosability is a similar notion to the one of monitorability. What is
different is that, for diagnosability one knows a model of the system, and then, by observing the
visible events of a system run, infers whether an unobservable fault event has occurred during this
run. A further goal is to diagnose the kind of fault event that has occurred. Typically, the detection
and diagnosis of fault events is performed by a diagnoser, which is synthesised from the model
of the system. Although RV and diagnosability appear, at first glance, to work in different ways,
one can view diagnosability as the runtime monitoring of a set of trace-properties (the occurrence
of different types of fault events), using information about the system’s branching structure, in
a framework that considers unobservable events — as in Aceto et al. [2017a]; Francalanza et al.
[2017b]. We feel that there is significant potential in addressing the two areas in a more unified
manner. This is an interesting avenue for future research.

Related Work on Specification logics. recHML is a multi-modal variant of the µ-calculus that is
interpreted over edge-labelled LTSs rather than node-labelled ones. The distinction is mainly a
question of presentation; how to go between the two types of models is discussed by De Nicola
and Vaandrager [1990]. The µ-calculus itself is a logic which subsumes CTL, CTL*, LTL, as well
as more exotic variations thereof. Its links to automata theory are well established [Wilke 2001]
and can be used in the implementation of verification tools. This makes the µ-calculus well suited
for foundational research on verification, even though logics with more intuitive syntax may
appeal to practitioners. recHML over traces is similar to the linear-time µ-calculus. The main
difference is that in the linear-time µ-calculus, which is usually interpreted over infinite traces, it is
common to have only one successor-modality: the difference between [α] and ⟨α⟩ only manifests
itself over finite traces. Here we have chosen to keep the two modalities, to enable the syntactic
comparison between branching-time and linear-time monitorability. From an implementation point
of view, recHML formulae, like those in the linear time µ-calculus, can be represented by weak
automata [Lange 2005], which benefit from lower-complexity decision procedures than the more
general parity automata, which are necessary to capture the expressiveness of the µ-calculus in
a branching-time setting. Note, however, that, as shown in Markey and Schnoebelen [2006], the
µ-calculus model-checking problem over paths of the form sω is, surprisingly, as hard as the general
model-checking problem for that logic.

In the context of RV, many-valued logics [Barringer et al. 2004; Bauer et al. 2010; d’Angelo et al.
2005; Drusinsky 2003] have also emerged as a way to reconcile the infinitary semantics of, for
example, LTL specifications with the finite observations of a monitor. Our concept of monitor
can itself also be understood as a logic with three-valued semantics, consisting of accepted traces,
rejected traces and traces on which the monitor remains indecisive. Conversely, these many-valued
logics can also be seen as describing monitor behaviour, albeit without an operational semantics as
in our case. Our parallel monitors are reminiscent of alternating automata. The use of alternating
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automata for RV is not new: Finkbeiner and Sipma [2004] propose this for the verification of their
finite-trace semantics for LTL. The main difference in their approach is that their semantics is not
suffix closed: for whether “infinitely often a” holds in a finite trace according to their semantics
will depend on whether a holds in the last position. In contrast, our verdicts are irrevocable, so a
sound monitor for “infinitely often a” in our setting will never reach a verdict.

Related Work on Monitorability. The question of exactly which specifications can be verified at
runtime is very natural in the RV context. It is perhaps surprising that there is no consensus on
what exactly it means for a specification to be monitorable.

The classΠ0
1 of the arithmetic hierarchy— the class of co-recursively enumerable safety properties

— was proposed as the set of monitorable properties by Viswanathan and Kim [2004]. It seems that
our notion of partial monitorability matches well with this classical definition. In this sense, partial
monitorability could be seen as an operational account of Viswanathan and Kim’s monitorability. On
the other hand, Pnueli and Zaks [2006] and Bauer et al. [2011] propose a definition of monitorability
that includes more properties: roughly, they call a property monitorable if every prefix has a
finite continuation of which either all infinite continuations are in the property, or none is. This
means that a monitor, although it does not necessarily ever reach a verdict, can never give up
hope of reaching a verdict. Our definitions of monitorability appear to be stronger. For example,
specifications such as “never error and eventually success” is monitorable according to Pnueli
and Zaks [2006] and Bauer et al. [2011] but not according to our notions of monitorability and
partial monitorability.

Diekert and Leucker have studied monitorability in a topological setting in Diekert and Leucker
[2014], where they show that all ω-regular languages that are deterministic and co-deterministic
are monitorable. Using their topological framework, they also establish that some deterministic
liveness properties, such as “infinitely many a’s”, cannot be written as a countable union of
monitorable languages. Diekert et al. [2015] discuss monitor constructions for deterministic ω-
regular languages. They isolate a collection of deterministic ω-regular languages that properly
includes all the languages that are deterministic and codeterministic, and for which one can
construct accepting monitors. These classical definitions of monitorability are independent of how
a monitor might be implemented. Conversely, implementations of LTL monitors [Giannakopoulou
and Havelund 2001; Havelund and Rosu 2002] do not seem to refer to the concept of monitorability
at all. In line with previous work [Francalanza et al. 2017b], our operational approach bridges this
gap by defining what can be monitored explicitly in terms of how specifications are monitored.
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