
On Verifying Hennessy-Milner Logic
with Recursion at Runtime?

Adrian Francalanza1, Luca Aceto2, and Anna Ingolfsdottir2

1 CS, ICT, University of Malta, Malta adrian.francalanza@um.edu.mt
2 ICE-TCS, Reykjavik University, Iceland {luca,anna}@ru.is

Abstract. We study µHML (a branching-time logic with least and
greatest fixpoints) from a runtime verification perspective. We establish
which subset of the logic can be verified at runtime and define correct
monitor-synthesis algorithms for this subset. We also prove completeness
results wrt. these logical subsets that show that no other properties apart
from those identified can be verified at runtime.

1 Introduction

Runtime Verification (RV) [20, 14] is a lightweight verification technique whereby
the execution of a system is analysed with the aim of inferring correctness wrt.
some property. Despite its advantages, the technique is generally limited when
compared to other verification techniques such as model-checking because certain
correctness properties cannot be verified at runtime [21, 10]. For instance, online
RV analyses partial executions incrementally (up to the current execution point
of the system) which limits its applicability to satisfaction verdicts relating to
correctness properties describing complete (i.e., potentially infinite) executions.

There are broadly two approaches to address such a limitation. The first
approach is to restrict the expressive power of the correctness specifications:
typically, one either limits specifications to descriptions of finite traces such as
regular expressions (RE) [12, 15], or else redefines the semantics of existing logics
(e.g., LTL) so as to reflect the limitations of the runtime setting [13, 5, 7, 6]. The
second approach is to leave the semantics of the specification logic unchanged,
and study which subsets of the logic can be verified at runtime [17, 24, 11, 16].

Both approaches have their merits. The first approach is, in general, more
popular and tends to produce specifications that are closely related to the mon-
itors that check for them (e.g., RE and automata in [15, 23]), thus facilitating
aspects such as monitor correctness. On the other hand, the second approach
does not hinder the expressive power of the logic. Instead, it allows a verifica-
tion framework to determine whether either to check for a property at runtime
(when possible), or else to employ more powerful (and expensive) verification
techniques such as model-checking. One can even envisage a hybrid approach,

? The research of L. Aceto and A. Ingolfsdottir was supported by the project 001-
ABEL-CM-2013 of the NILS Science and Sustainability Programme and the project
Nominal SOS (nr. 141558-051) of the Icelandic Research Fund.

Syntax

p, q, r ∈ Proc ::= nil (inaction) | α.p (prefixing) | p+ q (choice)

| recx.p (recursion) | x (rec. variable)

Dynamics

Act
α.p

α−−→ p
Rec

recx.p
τ−−→ p[recx.p/x]

SelL
p

µ−−→ p′

p+ q
µ−−→ p′

Fig. 1. A Model for describing Systems

where parts of a property are verified using RV and other parts are checked using
other techniques. More importantly, however, the second approach leads to bet-
ter separation of concerns: since it is agnostic of the verification technique used,
one can change the method of verification without impinging on the property
semantics.

This paper follows this second approach. In particular, it revisits Hennessy-
Milner Logic with recursion [3], µHML, a reformulation of the expressive modal
µ-calculus [19], used to describe correctness properties of reactive system; sub-
sets of the logic have already been adapted for detectEr [25], an RV tool for
runtime-verifying actor-based systems [16, 8], whereas constructs from the modal
µ-calculus have been used in other RV tools such as Eagle [4]. In this study we
consider the logic in its entirety, and investigate the monitorability of the logic
wrt. an operational definition of a general class of monitors that employ both
acceptance and rejection verdicts [7, 14]. In particular, our results extend the
class of monitorable µHML properties used in [16] and establish monitorability
upper bounds for this logic. We also present new results that relate the utility of
multi-verdict monitors wrt. logics defined over programs (as opposed to traces).
To the best of our knowledge, this is one of the first bodies of work investigating
the limits of RV wrt. a branching-time logic that specifies properties about the
execution graph of a program; other work pertaining to the aforementioned sec-
ond approach has focussed on linear-time logics defined over execution traces,
and has explored RV’s limits along the linear-time dimension, e.g., [11].

In the rest of the paper, Sec. 2 introduces our model for reactive systems
and Sec. 3 presents the logic µHML defined over this model. Sec. 4 formalises
our abstract RV operational setup in terms of monitors and our instrumentation
relation. In Sec. 5 we argue for a particular correspondence between monitors
and µHML properties within this setup. Sec. 6 identifies monitorability limits
for the logic but also establishes a monitorable logical subset that satisfies the
correspondence of Sec. 5. Sec. 7 shows that this subset is maximally expressive,
using a result about multi-verdict monitors. Sec. 8 concludes.

pp1 p2

req

ans
cls

qq1

q2

q3 q4req

ans cls

req
ans

req

r2r3

r1

r4

r

req

ans

cls

req
ans

Fig. 2. A depiction of the system in Example 1

2 The Model

We describe systems abstractly as Labelled Transition Systems (LTSs) [3, 19].
An LTS is a triple 〈Proc, (Act∪{τ}),−→〉 consisting of a set of states, Proc, a
set of actions, Act with distinguished silent action τ (we assume µ ∈ Act∪{τ}
and τ 6∈ Act), and a transition relation, −→⊆ (Proc× (Act ∪ {τ})× Proc).
LTS states can be expressed as processes, Proc, from the regular fragment of
CCS [22] as defined in Fig. 1. Assuming a set of (visible) actions, α, β ∈ Act and
a set of (recursion) variables x, y, z ∈ Vars, processes may be either inactive,
prefixed by an action, a mutually-exclusive choice amongst two processes, or
recursive; recx.p acts as a binder for x in p and we work up to alpha-conversion
of bound variables. All recursive processes are assumed to be guarded.

The dynamic behaviour is then described by the transition rules of Fig. 1,
defined over the closed and guarded terms in Proc (we elide the symmetric rule

SelR). The suggestive notation p
µ−−→ p′ denotes (p, µ, p′) ∈−→; we also write

p 6 α−−→ to denote ¬(∃p′. p α−−→ p′). For example, p1 + p2
µ−−→ q if either p1

µ−−→ q

or p2
µ−−→ q. As usual, we write p =⇒ p′ in lieu of p(

τ−→)∗p′ and p
µ

=⇒ p′ for

p =⇒ · µ−−→ · =⇒ p′, referring to p′ as a µ-derivative of p. We let t, u ∈ Act∗

range over sequences of visible actions and write p
α1=⇒ . . .

αn=⇒ pn as p
t

=⇒ pn,
where t = α1, . . . , αn. See [22, 3] for more details.

Example 1. A (reactive) system that acts as a server that repeatedly accepts
requests and subsequently answers them, with the possibility of terminating
through the special close request, may be expressed as the following process, p.

p = recx.
(
req.ans.x+ cls.nil

)

Syntax

ϕ, φ ∈ µHML ::= tt (truth) | ff (falsehood)

| ϕ∨φ (disjunction) | ϕ∧φ (conjunction)

| 〈α〉ϕ (possibility) | [α]ϕ (necessity)

| minX.ϕ (min. fixpoint) | maxX.ϕ (max. fixpoint)

| X (rec. variable)

Semantics

Jtt, ρK def
= Proc Jff, ρK def

= ∅
Jϕ1∧ϕ2, ρK

def
= Jϕ1, ρK ∩ Jϕ2, ρK Jϕ1∨ϕ2, ρK

def
= Jϕ1, ρK ∪ Jϕ2, ρK

J[α]ϕ, ρK def
=

{
p | p α

=⇒ q implies q ∈ Jϕ, ρK
}

J〈α〉ϕ, ρK def
=

{
p | p α

=⇒ q and q ∈ Jϕ, ρK
}

JminX.ϕ, ρK def
=

⋂
{S | Jϕ, ρ[X 7→ S]K ⊆ S}

JmaxX.ϕ, ρK def
=

⋃
{S | S ⊆ Jϕ, ρ[X 7→ S]K} JX, ρK def

= ρ(X)

Fig. 3. µHML Syntax and Semantics

A server that non-deterministically stops offering the close action is denoted by
process q, whereas r only offers the close action after the first serviced request.

q = recx.
(
req.ans.x+ cls.nil + (rec y.req.ans.y)

)
r = req.ans.recx.

(
req.ans.x+ cls.nil

)
Pictorially, the resp. LTSs denoted by processes p, q and r are shown in Fig. 2,

where the arcs correspond to weak transitions,
µ

=⇒. �

3 The Logic

The logic µHML assumes a countable set of logical variables X,Y ∈ LVar, and
is defined as the set of closed formulae generated by the grammar of Fig. 3. Apart
from the standard constructs for truth, falsehood, conjunction and disjunction,
the logic is equipped with possibility and necessity modal operators, together
with recursive formulae expressing least or greatest fixpoints; formulae minX.ϕ
and maxX.ϕ resp. bind free instances of the logical variable X in ϕ, inducing
the usual notions of open/closed formulae and equality up to alpha-conversion.

Formulae are interpreted over the process powerset domain, S ∈ P(Proc).
The semantic definition of Fig. 3 is given for both open and closed formulae
and employs an environment from variables to sets of processes, ρ ∈ LVar ⇀
P(Proc); this permits an inductive definition on the structure of the formula.
For instance, in Fig. 3, the semantic meaning of a variable X wrt. an environ-
ment ρ is the mapping for that variable in ρ. The semantics of truth, falsehood,
conjunction and disjunction are standard (e.g., ∨ and ∧ are interpreted as set-
theoretic union and intersection). Possibility formulae 〈α〉ϕ describe processes

with at least one α-derivative satisfying ϕ whereas necessity formulae [α]ϕ de-
scribe processes where all of their α-derivatives (possibly none) satisfy ϕ. The
powerset domain P(Proc) is a complete lattice wrt. set-inclusion, ⊆, which
guarantees the existence of least and largest solutions for the recursive formulae
of the logic; as usual, these can be resp. specified as the intersection of all the
pre-fixpoint solutions and the union of all post-fixpoint solutions [3]. Note that
ρ[X 7→ S] denotes an environment ρ′ where ρ′(X) = S and ρ′(Y) = ρ(Y) for all
other Y 6= X. Since the interpretation of closed formulae is independent of the
environment ρ, we sometimes write JϕK in lieu of Jϕ, ρK. We say that a process p
satisfies a formula ϕ whenever p ∈ JϕK, and violates a formula whenever p 6∈ JϕK.

Example 2. Formula 〈α〉tt describes processes that can perform action α whereas
formula [α]ff describes processes that cannot perform action α.

ϕ1 = minX.(〈req〉〈ans〉X ∨ [cls]ff) ϕ2 = maxX.(〈req〉〈ans〉X ∨ [cls]ff)

ϕ3 = maxX.([req][ans]X ∧ 〈cls〉tt) ϕ4 = maxX.([req][ans]X ∧ [cls]ff)

Formula ϕ1 denotes a liveness property describing processes that eventually stop
offering the action cls after any number of serviced request, (req.ans)∗—processes
q and r from Ex. 1 satisfy this property but p does not. Changing the fixpoint
into a maximal one, i.e., ϕ2, would include p in the property as well. Formulae
ϕ3 and ϕ4 denote safety properties: e.g., ϕ3, describes (terminating and non-
terminating) processes that can always perform a cls action after any number of
serviced request (p satisfies this property but q and r do not).

ϕ5 = 〈req〉〈ans〉maxX.
(
([req]ff ∨ 〈req〉〈ans〉X) ∧ [cls]ff

)
ϕ6 = minX.

(
(〈req〉〈ans〉tt ∧ [req][ans]X) ∨ 〈cls〉tt

)
Formula ϕ5 is satisfied by processes that, after one serviced request, req.ans,
exhibit a complete3 transition sequence (req.ans)∗ that never offers action cls
(q from Ex. 1 satisfies this property whereas p and r do not). Formula ϕ6 de-
scribes processes that along all serviced request sequences, (req.ans)∗, eventually
reach a stage where they offer action cls (processes p and q satisfy the criteria
immediately, whereas r satisfies it for (req.ans)∗ sequences longer than 1). �

4 Monitors and instrumentation

Monitors may also be viewed as LTSs, through the syntax of Fig. 4; this is
similar to that of processes, with the exception that nil is replaced by three verdict
constructs, yes, no and end, resp. denoting acceptance, rejection and termination
(i.e., an inconclusive outcome). Monitor behaviour is similar to that of processes
for the common constructs; see rules in Fig. 4. The only new transition concerns
verdicts, mVer, stating that a verdict may transition with any α ∈ Act and go
back to the same state, modelling the requirement that verdicts are irrevocable.

3 A transition sequence is complete if it is either infinite or affords no more actions.

Syntax

m,n ∈Mon ::= v | α.m | m+ n | recx.m | x
v, u ∈ Verd ::= end | no | yes

Dynamics

mAct
α.m

α−−→ m
mRec

recx.m
τ−−→ m[recx.m/x]

mSelL m
µ−−→ m′

m+ n
µ−−→ m′

mSelR n
µ−−→ n′

m+ n
µ−−→ n′

mVer
v

α−−→ v

Instrumentation

iMon
p

α−−→ p′ m
α−−→ m′

m / p
α−−→ m′ / p′

iTer
p

α−−→ p′ m 6 α−−→ m 6 τ−−→
m / p

α−−→ end / p′

iAsyP
p

τ−−→ p′

m / p
τ−−→ m / p′

iAsyM m
τ−−→ m′

m / p
τ−−→ m′ / p

Fig. 4. Monitors and Instrumentation

Fig. 4 also describes an instrumentation relation connecting the behaviour of
a process p with that of a monitor m: the configuration m / p denotes a moni-
tored system. In an instrumentation, the process leads the (visible) behaviour of
a monitored system (i.e., if the process cannot α-transition, then the monitored
system will not either) while the monitor passively follows, transitioning accord-
ingly; this is in contrast with well-studied parallel composition relations of LTSs
[22, 18]. Specifically, rule iMon states that if a process can transition with action
α and the resp. monitor can follow this by transitioning with the same action,
then in an instrumented monitored system they transition in lockstep. However,
if the monitor cannot follow such a transition, m 6 α−−→ , even after any number
of internal actions, m 6 τ−→ , instrumentation forces it to terminate with an in-
conclusive verdict, end, while the process is allowed to proceed unaffected; see
rule iTer. Rules iAsyP and iAsyM allow monitors and processes to transition
independently wrt. internal moves.4

Proposition 1. m / p
t

=⇒ m′ / p′ iff p
t

=⇒ p′ and

– either m
t

=⇒ m′

– or m′ = end and ∃t′, α, t′′,m′′. t = t′αt′′, m′′ 6 τ−→ and m
t′

=⇒ m′′ 6 α−−→.

Remark 1. Since we strive towards a general theory, the syntax in Fig. 4 allows
for non-deterministic monitors such as α.yes +α.no or α.nil +α.β.yes. There are

4 If a monitor cannot match a process action, but can transition silently, it is allowed
to do so, and the matching check is applied again to the τ -derivative monitor.

settings where determinism is unattainable (e.g., distributed monitoring [15]) or
desirable (e.g., testers [23]), and others where non-determinism expresses under-
specification (e.g., program refinement [1]). Thus, expressing non-determinism
allows us to study the cases where it is tolerated or considered erroneous.

Example 3. Monitor m1 (defined below) monitors for executions of the form
(req.ans)∗.cls returning the acceptance verdict yes, whereas m2 dually rejects ex-
ecutions of that form. When composed with process p from Ex. 1, the monitored

system m1 / p may either service requests forever, m1 / p
req

==⇒ · ans−−−→ m1 / p, or

else terminate with a yes verdict, m1 / p
cls

==⇒ yes / nil. By contrast, when instru-
mented over a process capable of the transition p′

ans−−−→ p′′, m1 may terminate
its process observation after one transition, i.e., m1 / p

′ ans
==⇒ end / p′′.

m1 = recx.
(
req.ans.x+ cls.yes

)
m3 = recx.

(
req.ans.x+ cls.yes + req.req.x

)
m2 = recx.

(
req.ans.x+ cls.no

)
m4 = recx.

(
req.ans.x+ cls.yes + cls.no

)
Monitor m3 may either behave like m1 or non-deterministically terminate upon

a serviced request, i.e., m3 / p
req

==⇒ req.m3 / p1
ans−−−→ end / p. Conversely,

monitor m4 non-deterministically returns verdict yes or no upon a cls action,

e.g., m4 / p
cls

==⇒ yes / nil but also m4 / p
cls

==⇒ no / nil. �

5 Correspondence

Our goal is to establish a correspondence between the verdicts reached by moni-
tors over an instrumented system from Sec. 4 and the properties specified using
the logic of Sec. 3. In particular, we would like to relate acceptances (yes) and
rejections (no) reached by a monitor m when monitoring a process p with sat-
isfactions (p ∈ JϕK) and violations (p 6∈ JϕK) for that process wrt. some µHML
formula, ϕ. This will, in turn, allow us to determine when a monitor m represents
(in some precise sense) a property ϕ.

Example 4. Monitor m1 from Ex. 3 monitors for satisfactions of the property

ϕ7 = minX.(〈req〉〈ans〉X ∨ 〈cls〉tt)

describing processes that can perform a cls action after a number of serviced
requests. Stated otherwise, m1 produces a yes verdict for a computation of the
form (req.ans)∗.cls from a process p, attesting that p ∈ Jϕ7K. Similarly, m2 from
Ex. 3 monitors for violations of the property ϕ4 from Ex. 2. The same cannot
be said for m4 from Ex. 3 and ϕ7 above: for some processes, e.g., p from Ex. 1,
it may produce both verdicts yes and no for witness computations (req.ans)∗.cls,
which leads to contradictions at a logical level i.e., we cannot have both p ∈ Jϕ7K
and p 6∈ Jϕ7K. A similar argument applies to m4 and m2 from Ex. 3. �

Remark 2. A monitor may behave non-deterministically in other ways wrt. a
process. For instance, m3 from Ex. 3 may sometimes flag an acceptance but

at other times may not when monitoring p from Ex. 1, even when p produces

the same trace: e.g., for t = req.ans.cls we have m3 / p
t

=⇒ yes / nil but also

m3 / p
t

=⇒ end / nil. However, since any other terminal monitor state apart from
yes and no (i.e., end and any other non-verdict state) is of no consequence from
a logical satisfaction/violation point of view, we abstract from such outcomes.

We investigate conditions that one could require for establishing the cor-
respondence between monitors and formulae. We start with Def. 2 (below): it
defines when m is able to monitor soundly for a property ϕ, smon(m,ϕ), by re-
quiring that acceptances (resp. rejections) imply satisfactions (resp. violations)
for every monitored execution of a process p.

Definition 1 (Acceptance/Rejection). acc(p,m)
def
= ∃t, p′. m / p

t
=⇒ yes / p′

and rej(p,m)
def
= ∃t, p′. m / p

t
=⇒ no / p′.

Definition 2 (Sound Monitoring).

smon(m,ϕ)
def
= ∀p.

(
acc(p,m) implies p ∈ JϕK

)
and

(
rej(p,m) implies p 6∈ JϕK

)
Note that, if smon(m,ϕ) and ∃p.acc(p,m), by Def. 2 we know p ∈ JϕK; thus,
¬(p 6∈ JϕK) and by the contrapositive of Def. 2, we must also have ¬rej(p,m).

Example 5. From Ex. 4, we formally have smon(m1, ϕ7), smon(m2, ϕ2) and
smon(m3, ϕ7). We can also show that ¬smon(m4, ϕ7) and ¬smon(m4, ϕ2). �

Sound monitoring is arguably the least requirement for relating a monitor
with a logical property. Further to this, the obvious additional requirement would
be to ask for the dual of Def. 2, i.e., complete monitoring for m and ϕ, stating
that for all p, p ∈ JϕK implies acc(p,m), and also that p 6∈ JϕK implies rej(p,m).
However, such a requirement turns out to be too strong for a large part of the
logic presented in Fig. 3.

Example 6. Consider the basic formula 〈α〉tt. One could ascertain that the sim-
ple monitor α.yes satisfies the condition that p∈JϕK implies acc(p,m) for all p.
However, there does not exist a sound monitor that can satisfy ∀p.p 6∈ JϕK implies
rej(p,m) for 〈α〉tt. Arguing by contradiction, assume that one such monitor m
exists. Since nil 6∈ J〈α〉ttK then we should have rej(nil,m). By Def. 1 and Prop. 1,
this means m =⇒ no which, in turn, implies that rej(α.nil,m) although, clearly,
α.nil ∈ J〈α〉ttK. This makes m unsound, contradicting our initial assumption.

A similar, albeit dual, argument can be carried out for another core ba-
sic formula, [α]ff: although there are sound monitors satisfying the condition
∀p.p 6∈ JϕK implies rej(p,m), there are none that also satisfy the other condition
∀p.p ∈ JϕK implies acc(p,m). �

Concretely, requiring complete monitoring would limit correspondence to a
trivial subset of the logic, namely tt and ff. We therefore define the weaker forms
of completeness that are stated below.

Definition 3 (Satisfaction/Violation/Partially-Complete Monitoring).

scmon(m,ϕ)
def
= ∀p.p ∈ JϕK implies acc(p,m) (satisfaction complete)

vcmon(m,ϕ)
def
= ∀p.p 6∈ JϕK implies rej(p,m) (violation complete)

cmon(m,ϕ)
def
= scmon(m,ϕ) or vcmon(m,ϕ) (partially complete)

We can now formalise monitor-formula correspondence: m monitors for ϕ,
mon(m,ϕ), if it can do it soundly, and in a partially-complete manner, i.e., if it
is either satisfaction complete or violation complete.

Definition 4 (Monitoring). mon(m,ϕ)
def
= smon(m,ϕ) and cmon(m,ϕ).

6 Monitorability

Using Def. 4, we can define what it means for a formula to be monitorable.

Definition 5 (Monitorability). Formula ϕ is monitorable iff ∃m.mon(m,ϕ).
A language L ⊆ µHML is monitorable iff every ϕ ∈ L is monitorable.

We immediately note that not all logical formulae are monitorable.

Example 7. Through the witness outlined in Ex. 6, we can show that formulae
〈α〉tt and 〈β〉tt are monitorable with a satisfaction complete monitor. However,
ϕ8 = 〈α〉tt∧〈β〉tt (their conjunction), is not. Intuitively, this is so because once a
monitor observes one of the actions, it cannot “go back” to check for the other.
Formally, we argue towards a contradiction by assuming that ∃m.mon(m,ϕ8).
There are two subcases to consider.

If m is satisfaction complete, then acc(α.nil + β.nil,m) since α.nil + β.nil ∈
Jϕ8K. By Prop. 1, m reaches verdict yes along one of the traces ε, α or β. If the
trace is ε, then m also accepts nil, which is unsound (since nil 6∈ Jϕ8K) whereas
if the trace is α, m must also accept α.nil, which is also unsound (α.nil 6∈ Jϕ8K);
the case for β is analogous.

If m is violation complete then rej(β.nil,m) since β.nil 6∈ Jϕ8K. By Prop. 1,

we either have m
ε

=⇒ no or m
β

=⇒ no and for both cases we can argue that m
also rejects process α.nil + β.nil, which is unsound since α.nil + β.nil ∈ Jϕ8K. �

We now identify a syntactic subset of µHML formulae called mHML, with
the aim of showing that it is a monitorable subset of the logic. At an intuitive
level, it consists of the safe and co-safe syntactic subsets of µHML, sHML and
cHML respectively.

Definition 6 (Monitorable Logic). ψ, χ ∈ mHML
def
= sHML∪cHML where:

θ, ϑ ∈ sHML ::= tt | ff | [α]θ | θ∧ϑ | maxX.θ | X
π,$ ∈ cHML ::= tt | ff | 〈α〉π | π∨$ | minX.π | X

To prove monitorability for mHML, we define a monitor synthesis function
L−M generating a monitor for each ψ ∈ mHML. We then show that LψM is the
witness monitor required by Def. 5 to demonstrate the monitorability of ψ.

Definition 7 (Monitor Synthesis).

LffM def
= no LttM def

= yes LXM def
= x

L[α]ψM def
=

{
α.LψM if LψM 6= yes

yes otherwise
L〈α〉ψM def

=

{
α.LψM if LψM 6= no

no otherwise

Lψ1∧ψ2M
def
=

Lψ1M if Lψ2M=yes

Lψ2M if Lψ1M=yes

Lψ1M + Lψ2M otherwise

Lψ1∨ψ2M
def
=

Lψ1M if Lψ2M=no

Lψ2M if Lψ1M=no

Lψ1M + Lψ2M otherwise

LmaxX.ψM def
=

{
recx.LψM if LψM 6= yes

yes otherwise
LminX.ψM def

=

{
recx.LψM if LψM 6= no

no otherwise

A few comments are in order. We first note that Def. 7 is compositional ; see
e.g., [23] for reasons why this is desirable. It also assumes a bijective mapping
between the denumerable sets LVar and Vars; see synthesis for X, maxX.ψ
and minX.ψ, where the logical variable X is converted to the process variable
x. Although Def. 7 covers both sHML and cHML, the syntactic constraints
of Def. 6 mean that synthesis for a formula ψ uses at most the first row and
then either the first column (in the case of sHML) or the second column (in
case of cHML). The conditional cases handle logically equivalent formulae, e.g.,
since JffK = JminX.〈α〉ffK we have LffM = LminX.〈α〉ffM = no. In the case of
conjunctions and disjunctions, these are essential to be able to generate sound
monitors.

Example 8. Consider the cHML formula 〈α〉tt∨ff (which is logically equivalent
to 〈α〉tt). A naive synthesis without the case checks would generate the monitor
α.yes + no which is not only redundant, but unsound e.g., for p = α.nil we have
both acc(p, α.yes + no) and rej(p, α.yes + no). Similar problems would mani-
fest themselves for less obvious cases, e.g., 〈α〉tt∨(minX.〈α〉ff)∨(〈α〉minX.ff).
However, in all of these cases, our monitor synthesis of Def. 7 generates α.yes. �

Theorem 1 (Monitorability). ϕ ∈ mHML implies ϕ is monitorable.

Proof. We show that for all ϕ ∈ mHML, mon(LϕM, ϕ) holds.

Thm. 1 provides us with a simple syntactic check to determine whether a
formula is monitorable; as shown earlier in Ex. 7, determining whether a formula
is monitorable is in general non-trivial. Moreover, the proof of Thm. 1 (through
Def. 7) provides us with an automatic monitor synthesis algorithm that is correct
according to Def. 4.

Example 9. Since ϕ4 from Ex. 2 is in mHML, we know it is monitorable. More-
over, we can generate the correct monitor Lϕ4M = recx.

(
req.ans.x+ cls.no

)
= m2

(from Ex. 3). Using similar reasoning, ϕ7 (Ex. 4) is also monitorable, and a
correct monitor for it is m1 from Ex. 3. �

7 Expressiveness

The results obtained in Sec. 6 beg the question of whether mHML is the largest
monitorable subset of µHML. One way to provide an answer to this question
would be to show that, in some sense, every monitor corresponds to a formula in
mHML according to Def. 4. However, this approach quickly runs into problems
since there are monitors, such as yes + no, that make little sense from the point
of view of Def. 4. To this end, we prove a general (and perhaps surprising) result.

Theorem 2 (Multi-verdict Monitors and Monitoring). ∀m ∈Mon(
∃t, u ∈ Act∗. m

t
=⇒ yes and m

u
=⇒ no

)
implies 6 ∃ϕ ∈ µHML.mon(m,ϕ).

Proof. By contradiction. Assume that ∃ϕ.mon(m,ϕ). Using t and u, we can

construct the obvious process p = t+ u, where m / p
t

=⇒ yes / nil and m / p
u

=⇒
no / nil. We therefore have acc(p,m) and rej(p,m), and by monitor soundness
(Def. 2), that p ∈ JϕK and p 6∈ JϕK. This is clearly a contradiction.

Stated otherwise, Thm. 2 asserts that multi-verdict monitors are necessarily
unsound, at least wrt. properties defined over processes (as opposed to logics
defined over other domains such as traces, e.g., [11, 7, 14]). This also implies
that, in order to answer the aforementioned question, it suffices to focus on uni-
verdict monitors that flag either acceptances or rejections (but not both). In
fact, a closer inspection of the synthesis algorithm of Def. 7 reveals that all the
monitors generated using it are, in fact, uni-verdict.

We partition uni-verdict monitors into the obvious classes: acceptance mon-
itors, AMon (using verdict yes), and rejection monitors, RMon (using no). In
what follows, we focus our technical development on one monitor class, in the
knowledge that the corresponding development for the other class is analogous.

Definition 8 (Rejection Expressive-Complete). A subset L ⊆ µHML is
expressive-complete wrt. rejection monitors iff

∀m ∈ RMon. ∃ ϕ ∈ L such that mon(m,ϕ).

We show that the language sHML (Def. 6) is rejection expressive-complete.
We do so with the aid of a mapping function from a rejection monitor to a
corresponding formula in sHML defined below. Def. 9 is fairly straightforward,
thanks to the fact that we only need to contend with a single verdict. Again,
it assumes a bijective mapping between the denumerable sets LVar and Vars
(as in the case of Def. 7). The mapping function is defined inductively on the
structure of m where we note that (i) no translation is given for the monitor
yes (since these are rejection monitors) and (ii) the base case end is mapped to
formula tt, which contrasts with the mapping used in Def. 7.

Definition 9 (Rejection Monitors to sHML Formulae).

〈〈no〉〉 def
= ff 〈〈end〉〉 def

= tt 〈〈x〉〉 def
= X

〈〈α.m〉〉 def
= [α]〈〈m〉〉 〈〈m+ n〉〉 def

= 〈〈m〉〉∧〈〈n〉〉 〈〈recx.m〉〉 def
= maxX.〈〈m〉〉

Proposition 2. sHML is Rejection Expressive-Complete.

Proof. We show that for all m ∈ RMon, mon(m, 〈〈m〉〉) holds.

Definition 10 (Acceptance Expressive-Complete). Language L ⊆ µHML
is expressive-complete wrt. acceptance monitors iff ∀m ∈ AMon. ∃ ϕ ∈ L such
that mon(m,ϕ).

Proposition 3. cHML is Acceptance Expressive-Complete.

Equipped with Prop. 2 and Prop. 3, it follows that mHML is expressive
complete wrt. uni-verdict monitors.

Definition 11 (Expressive-Complete). L ⊆ µHML is expressive-complete
wrt. uni-verdict monitors, iff ∀m ∈ AMon ∪RMon. ∃ ϕ ∈ L. mon(m,ϕ).

Theorem 3. mHML is Expressive-Complete.

Proof. Follows from Prop. 2 and Prop. 3

We are now in a position to prove the result alluded to at the beginning of
this section, namely that mHML is the largest monitorable subset of µHML up
to logical equivalence, i.e., Thm. 4. First, however, we define what we understand
by language inclusion up to formula semantic equivalence, Def. 12.

Definition 12 (Language Inclusion). For all L1,L2 ∈ µHML

L1 v L2
def
= ∀ϕ1 ∈ L1. ∃ϕ2 ∈ L2 such that Jϕ1K = Jϕ2K

We also prove the following important proposition, that gives an upper bound
to the expressiveness of languages satisfying monitorability properties.

Proposition 4. For any L ⊆ µHML:

1.
(
∀ϕ ∈ L.∃m ∈ AMon.∀p.(acc(p,m) iff p ∈ JϕK)

)
implies L v cHML.

2.
(
∀ϕ ∈ L.∃m ∈ RMon.∀p.(rej(p,m) iff p 6∈ JϕK)

)
implies L v sHML.

Proof. We prove the first clause; the second clause is analogous. Assume ϕ ∈ L.
We need to show that ∃π ∈ cHML such that JϕK = JπK. For ϕ we know that

∃m ∈ AMon.
(
∀p.(acc(p,m) iff p ∈ JϕK)

)
. (1)

By Prop. 3, for the monitor m used in (1), we also know

∃π ∈ cHML.
(
∀p.(acc(p,m) iff p ∈ JπK)

)
. (2)

Assume an arbitrary p ∈ JϕK. By (1) we obtain acc(p,m), and by (2) we obtain
p ∈ JπK. Thus JϕK ⊆ JπK. Dually, we can also reason that JπK ⊆ JϕK.

Theorem 4 (Completeness). (L ⊆ µHML is monitorable) implies L v mHML.

Proof. Since L is monitorable, by Def. 5 and Def. 4 we know:

∀ϕ ∈ L. ∃m such that smon(m,ϕ) and cmon(m,ϕ) (3)

By Thm. 2, we know that every m used in (3) is uni-verdict. This means that
we can partition the formulae in L into two disjoint sets Lacc] Lrej where:(

∀ϕ ∈ Lacc.∃m ∈ AMon.∀p.(acc(p,m) iff p ∈ JϕK)
)

(4)(
∀ϕ ∈ Lrej.∃m ∈ RMon.∀p.(rej(p,m) iff p 6∈ JϕK)

)
(5)

By (4), (5) and Prop. 4 we obtain Lacc v cHML and Lrej v sHML resp., from
which the required result follows.

Thm. 2 and Thm. 4 constitute powerful results wrt. the monitorability of
our branching-time logic. Completeness, Thm. 4, guarantees that limiting one-
self to the syntactic subset mHML does not hinder the expressive power of the
specifier when formulating monitorable properties. Alternatively, one could also
determine whether a formula is monitorable by rewriting it as a logically equiv-
alent formula in mHML.5 This would enable a verification framework to decide
whether to check for a µHML property at runtime, or resort to more expres-
sive (but expensive means) otherwise. Whenever the property is monitorable,
Thm. 2 guarantees that a uni-verdict monitor is the best monitor that we can
synthesise. This is important since multi-verdict monitor constructions, such as
those in [7], generally carry higher overheads than uni-verdict monitors.

Example 10. By virtue of Thm. 4, we can conclude that properties ϕ1, ϕ2, ϕ3,
ϕ5 and ϕ6 from Ex. 2 are all non-monitorable properties according to Def. 5,
since no logically equivalent formulae in mHML exist. Arguably, the problem
of establishing logical equivalence through syntactic manipulation of formulae
is easier to determine and automate, when compared to direct reasoning about
the semantic definitions of monitorability and those of the resp. properties; recall
that Def. 5 (Monitorability) — through Def. 2 and Def. 3 — universally quantifies
over all processes, which generally poses problems for automation.

For instance, in the case of ϕ1, we could use Thm. 2 to substantially reduce
the search space of our witness monitor to the uni-verdict ones, but this still
leaves us with a lot of work to do. Specifically, we can reason that the witness
cannot be an acceptance monitor, since it would need to accept process nil,
which implies that it must erroneously also accept the process cls.nil (using
reasoning similar to that used in Ex. 6). It is less straightforward to argue that the
witness cannot be a rejection monitor either. We argue towards a contradiction
by assuming that such a monitor exists. Since it is violation-complete (Def. 3)
it should reject the process req.nil + cls.nil since this process does not satisfy ϕ1:
by Prop. 1 we know that it can do so along either of the traces ε, req or cls. If it
rejects it along ε, then it also rejects the satisfying process nil; if it rejects along

5 The problem of determining whether a (general) formula is logically equivalent to
one in mHML is decidable in exponential time — probably EXPTIME complete.

trace req, it also rejects the satisfying process req.ans.nil; finally, if it rejects it
along cls, it must also reject the satisfying process req.ans.nil + cls.nil. Thus, the
monitor must be unsound, meaning that it cannot be a rejection monitor. �

8 Conclusion

We have investigated monitorability aspects of a branching-time logic called
µHML, which impinges on what properties can be verified at runtime. It extends
and generalises prior work carried out in the context of reactive systems modelled
as LTSs [16]. The concrete contributions of the paper are:

1. An operational definition of monitorability, Def. 4, specified over an instru-
mentation relation unifying the individual behaviour of processes and mon-
itors, Fig. 4, which is used to define monitorable subsets of µHML, Def. 5.

2. The identification of a subset of µHML, Def. 6, that is shown to be moni-
torable, Thm. 1, and also maximally expressive, Thm. 4, wrt. Def. 5.

3. A result asserting that, wrt. Def. 4, uni-verdict monitors suffice for monitor-
ing branching-time properties, Thm. 2.

Future Work: It is worth exploring other definitions of monitorability apart
from that of Def. 4, and determining how this affects the monitorable subset of
µHML identified in this work. For instance, one could relax the conditions of
Def. 4 by only requiring soundness (Def. 2), or require more stringent conditions
wrt. verdicts and monitor non-determinism; see [16] for a practical motivation
of this. Moreover, monitorability is also largely dependent on the underlying
instrumentation relation used; there may be other sensible relations apart from
the one defined in Fig. 4 that are worth investigating within this setting.

A separate line of research could investigate manipulation techniques that de-
compose formulae into monitorable components. For instance, reformulating a
generic formula ϕ as the disjunction φ∨π (recall π ∈ cHML) could allow for a hy-
brid verification approach that distributes the load between the pre-deployment
phase and the runtime phase whereby we model-check for the satisfaction of a
system wrt. φ and, if this fails, runtime verify the system wrt. π.

Related Work: In [23], monitorability is defined for formulae defined over traces
(e.g., LTL) whenever the formula semantics does not contain ugly prefixes; an
ugly prefix is a trace from which no finite extension will ever lead to a conclu-
sive verdict. Falcone et al. [14] revisit this classical definition, extending it to
the Safety-Progress property classification, while proposing an alternative defi-
nition in terms of the structure of the recognising Streett Automata of the resp.
property. Although our definition is cast within a different setting (a logic over
processes), and has a distinct operational flavour in terms of monitored system
executions, it is certainly worthwhile to try to reconcile the different definitions.

The logic µHML has been previously studied from a linear-time perspective
in [2, 9], in order to find subsets that characterise may/must testing equivalences.
Although tests are substantially different from our monitor instrumentations, the
logic subsets identified in [2, 9] are related to (albeit different from) mHML.

References

1. J. R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. L. Aceto and A. Ingólfsdóttir. Testing Hennessy-Milner Logic with Recursion. In
FoSSaCS’99, pages 41–55. Springer, 1999.

3. L. Aceto, A. Ingólfsdóttir, K. G. Larsen, and J. Srba. Reactive Systems: Modelling,
Specification and Verification. Cambridge Univ. Press, New York, NY, USA, 2007.

4. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifi-
cation. In VMCAI, volume 2937 of LNCS, pages 44–57. Springer, 2004.

5. A. Bauer, M. Leucker, and C. Schallhart. The good, the bad, and the ugly, but
how ugly is ugly? In RV, volume 4839 of LNCS, pages 126–138. Springer, 2007.

6. A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL semantics for runtime
verification. Logic and Comput., 20(3):651–674, 2010.

7. A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL.
TOSEM, 20(4):14, 2011.

8. I. Cassar and A. Francalanza. On Synchronous and Asynchronous Monitor Instru-
mentation for Actor Systems. In FOCLASA, volume 175, pages 54–68, 2014.

9. A. Cerone and M. Hennessy. Process behaviour: Formulae vs. tests. In EXPRESS,
volume 41 of EPTCS, pages 31–45, 2010.

10. E. Chang, Z. Manna, and A. Pnueli. Characterization of temporal property classes.
In ALP LNCS, pages 474–486. Springer-Verlag, 1992.

11. C. Cini and A. Francalanza. An LTL Proof System for Runtime Verification. In
TACAS, volume 9035, pages 581–595. Springer, 2015.

12. C. Colombo, G. Pace, and G. Schneider. LARVA — Safer monitoring of Real-Time
Java programs (Tool paper). In SEFM, pages 33–37, 2009.

13. C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. V. Campenhout.
Reasoning with temporal logic on truncated paths. In CAV, volume 2725 of LNCS,
pages 27–39. Springer, 2003.

14. Y. Falcone, J.-C. Fernandez, and L. Mounier. What can you verify and enforce at
runtime? STTT, 14(3):349–382, 2012.

15. A. Francalanza, A. Gauci, and G. J. Pace. Distributed System Contract Monitor-
ing. JLAP, 82(5-7):186–215, 2013.

16. A. Francalanza and A. Seychell. Synthesising Correct concurrent Runtime Moni-
tors. Formal Methods in System Design (FMSD), pages 1–36, 2014.

17. M. Geilen. On the Construction of Monitors for Temporal Logic Properties. In
RV, volume 55 of ENTCS, pages 181–199, 2001.

18. C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, 1985.
19. D. Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, 1983.
20. M. Leucker and C. Schallhart. A brief account of Runtime Verification. JLAP,

78(5):293 – 303, 2009.
21. Z. Manna and A. Pnueli. Completing the Temporal Picture. TCS, 83(1):97–130,

1991.
22. R. Milner. A Calculus of Communicating Systems. Springer, 1982.
23. A. Pnueli and A. Zaks. Psl model checking and run-time verification via testers.

In FM, pages 573–586. Springer, 2006.
24. K. Sen, G. Rosu, and G. Agha. Generating optimal linear temporal logic monitors

by coinduction. In ASIAN, LNCS, pages 260–275. Springer, 2004.
25. detectEr Project. http://www.cs.um.edu.mt/svrg/Tools/detectEr/.

