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1 Introduction

Runtime Verification (RV) [31,22] is a lightweight verification technique whereby
the execution of a system is analysed with the aim of inferring correctness with
respect to some property. The technique is often used to mitigate scalability issues
such as state-explosion problems, typically associated with more traditional ver-
ification techniques like Model Checking. RV is also useful in settings where the
full execution state space of a system is not accessible or available prior deploy-
ment, and the only means of analysing the behaviour of a system is by observing
its current system run. Despite its advantages, the technique is generally limited
when compared to other verification techniques that consider system behaviour
beyond its current execution [32,17]. For instance, online RV incrementally anal-
yses partial executions (up to the current execution point of the system) which
limits its applicability to satisfaction analyses relating to correctness properties
that describe complete (i.e., potentially infinite) executions.

There are broadly two approaches in the field of RV that are used to address
such a limitation. The first approach is to restrict the expressive power of the cor-
rectness specifications: typically, one either limits specifications to descriptions of

finite traces such as regular expressions (RE) [8,25], or else redefines the semantics
of existing logics (e.g., LTL) so as to reflect the limitations of the runtime setting
[21,10,12,11]. The second approach is to leave the semantics of the specification
logic unchanged, and then identifying which subsets of the logic can be verified at
runtime, with respect to a specific monitoring setup [27,35,18,26,20,38].

Both approaches have their merits. For instance, the first approach is generally
more popular and tends to produce specifications that are closely related to the
monitors that check for them (e.g., RE and automata in [34,8,25]), thus facilitat-
ing aspects such as the study of monitor correctness (which is well-understood in
certain settings). On the other hand, the second approach does not hinder the ex-
pressive power of the logic. Instead, it allows a verification framework to determine
whether to synthesise a monitor that checks for a property at runtime (when possi-
ble), or else to employ more powerful (and expensive) verification techniques such
as model-checking. One can even envisage a combined approach, where some parts
of a property are verified using RV and other parts of the property are checked
using other techniques, along the lines of [4].

More importantly, however, the second approach leads to better separation of

concerns: since it is agnostic of the verification technique used, one can change the
method of verification without impinging on the property semantics. Prosaically,
when specifying the correct behaviour expected of a system (typically during the
design stage of development) one should ideally be unencumbered by how this
correctness specification is checked for in the target system. Instead, the focus at
this development stage should be on the expressiveness of the specification for-
malism used. Indeed, there are many cases where the verification strategy to be
adopted becomes apparent later on in the development process or else is changed
due to evolving requirements of the software project (e.g., the development team
may decide to use a proprietary software component whose source code is un-
available). Alternatively, the project requirements may change in such a way so as
to require more expressive logics to be able to specify the augmented correctness
requirements.
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This work adheres to the second approach discussed above. In particular, it
revisits the Hennessy-Milner Logic with recursion [30,3], µHML, a reformulation
of the modal µ-calculus [29], used to describe correctness properties of reactive
system. We choose to conduct our study in this logic for a number of reasons. The
logic has been shown to be a very powerful and expressive formalism for describing
behavioural properties of systems; it is more expressive than widely used temporal
logics such as CTL and CTL* [19,7] which suggests that the findings of this work
can be carried over to these logics. In addition, our work can serve to complete the
picture for existing work in the context of RV: fragments of µHML have already
been adapted for detectEr [37], an RV tool used to specify and verify at runtime
actor-based reactive systems [26,13–15], and constructs from the modal µ-calculus
have been used in other RV tools such as Eagle [9]. In this study, we consider the
logic in its entirety, and investigate the monitorability of fragments of the logic
with respect to an operational definition of a general class of monitors that employ
both acceptance and rejection verdicts [12,22]. It turns out that our results extend
the class of monitorable µHML properties used in [26] and establish monitorability
upper bounds for this logic. We also present new results that relate the utility of
multi-verdict monitors for logics that are defined over program execution graphs,
in contrast to other work on monitorability that considers logics and properties
defined over traces [12,22,18]. The concrete contributions of the paper are:

1. An operational definition of what it means for a formula in a branching-time
logic to be monitored by a specific monitor, Definition 4. Underpinning this
definition is an instrumentation relation unifying the individual behaviour of
processes and monitors as a single monitored system entity, given in Figure 4
that complements other foundational work on monitor behavior [23,14].

2. A definition that formalises when a logical formula is considered to be mon-
itorable in this setting, Definition 5, that is then lifted to logical languages,
used to define monitorable subsets of µHML.

3. The identification of a subset of µHML, Definition 6, that is shown to be
monitorable according to Definition 5 (see Theorem 1) but also maximally ex-
pressive with respect to this monitorability definition, Theorem 4. This means
that there are no other (semantically equivalent) properties in µHML that can
be monitored for in the setting that we consider.

4. A result asserting that with respect to the monitor setting of Definition 4, uni-
verdict monitors, i.e., monitors with just an acceptance or a rejection verdict,
suffice to attain the full expressive monitoring power, Theorem 2. We assert
that this property is inherent to branching-time specifications in general.

To the best of our knowledge, this is one of the first bodies of work (along with
[38]) investigating the limits of RV with respect to the branching-time dimension
of logical specifications (i.e., properties that talk about the execution graph of a
program). Other work pertaining to the aforementioned second approach tend to
follow a more traditional approach, focussing on linear-time logics defined over
execution traces, exploring RV’s limits along the linear-time dimension, see e.g.,

[18].
This article is a full version of the extended abstract published as the confer-

ence paper [24]; it includes the detailed definitions, expanded explanations, more
detailed examples, and complete proofs. We have also updated the related work
with recent literature. The rest of the paper is structured as follows. Section 2
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Syntax

p, q, r ∈ Proc ::= nil (inaction) | α.p (prefixing) | p+ q (choice)

| p‖q (parallel) | newα.p (scoping) | recx.p (recursion)

| x (rec. variable)

Dynamics

Act
α.p

α−−→ p
SelL

p
µ−−→ p′

p+ q
µ−−→ p′

SelR
q

µ−−→ q′

p+ q
µ−−→ q′

Syn
p

α−−→ p′ q
α−−→ q′

p‖q τ−−→ p′ ‖q′
ParL

p
µ−−→ p′

p‖q µ−−→ p′ ‖q
ParR

q
µ−−→ q′

p‖q µ−−→ p‖q′

Rec
recx.p

τ−−→ p[recx.p/x]
Scp

p
µ−−→ p′ µ 6∈ {α, α}

newα.p
µ−−→ newα.p′

Fig. 1 A Model for describing Systems

introduces our model for reactive systems and Section 3 presents the logic µHML

defined over this model. Section 4 formalises our abstract RV operational setup
in terms of monitors and an instrumentation relation. In Section 5 we argue for
a particular correspondence between monitors and µHML properties within this
setup. Section 6 identifies monitorability limits for the logic but also establishes a
monitorable logical subset that satisfies the correspondence of Section 5. Section 7
shows that this subset is maximally expressive, using a result about multi-verdict
monitors. Section 8 concludes by discussing related and future work.

2 The Model

We describe systems abstractly as Labelled Transition Systems (LTSs) [3,29]. An
LTS is a triple 〈Proc, (Act∪{τ}),−→〉 consisting of a set of states, p, q, . . . ∈ Proc,
a set of actions, α, α, β, α, . . . ∈ Act with distinguished silent action τ , and a
transition relation, −→⊆ (Proc× (Act∪ {τ})×Proc). We assume that the set of
actions Act comes equipped with an involution function α, where α = α, and where
α is considered to be the complement of α. We also assume that µ ∈ Act ∪ {τ},
that τ 6∈ Act and refer to the actions in Act as visible actions (as opposed to the
silent action τ).

LTS states can be expressed as processes, Proc, from a standard variant of
CCS [33] as defined by the syntax in Figure 1. Assuming a specific set of (visible)
actions Act and a denumerable set of (recursion) variables x, y, z ∈ Vars, processes
are defined as either the inactive process nil, a prefixed process by an action α,
a mutually-exclusive choice between two processes, a parallel composition of two
processes, a scoping of an action in a process, or a recursive process. The process
construct recx.p acts as a binder for x in p whereas the process construct newα.p

acts as a binder for actions α, α in p; we work up to alpha-conversion of bound
variables and scoped actions. All recursive processes are assumed to be guarded,
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Fig. 2 A depiction of the system in Example 1

meaning that all occurrences of bound variables occur under an action prefix (ei-
ther directly or indirectly). Closed terms are processes where all occurrences of
variables are bound. Occasionally, we elide inactive processes when describing sys-
tems and write p instead of nil ‖ p or p ‖ nil and α.β.nil as α.β; in order to lighten
our presentation we also implicitly work up to associativity and commutativity of
parallel compositions where, for example, p‖q is some times treated as q‖p.1

The dynamic behaviour of a process is described by the transition rules of
Figure 1, defined over the closed and guarded terms in Proc. The suggestive

notation p
µ−−→ p′ denotes (p, µ, p′) ∈−→; we also write p 6 µ−−→ to denote ¬(∃p′. p µ−−→

p′). The rules in Figure 1 are standard. For example, p1+p2
µ−−→ q if either p1

µ−−→ q

or p2
µ−−→ q by rules SelL or SelR; dually, p1 ‖p2

µ−−→ q if p1
µ−−→ p′1 and q = p′1 ‖p2

for some p′1, or p2
µ−−→ p′2 and q = p1 ‖ p′2 for some p′2. We note that rule Syn

describes the synchronisation of two parallel processes on complementing actions
whereas rule Scp restricts visible actions to those that are not scoped by α in
newα.p. We employ the usual notation for weak transitions and write p =⇒ p′ in

lieu of p(
τ−−→)∗p′ and p

µ
=⇒ p′ for p =⇒ · µ−−→ · =⇒ p′, referring to p′ as a µ-derivative

of p. We let t, u ∈ Act∗ range over sequences of visible actions and write sequences

of transitions p
α1=⇒ . . .

αn=⇒ pn as p
t

=⇒ pn, where t = α1, . . . , αn. For more details
the reader is invited to consult standard texts such as [33,3] .

Example 1 A (reactive) system that acts as a server that repeatedly accepts requests

and subsequently answers them, with the possibility of terminating through the
special close request, may be expressed as the following process, p.

p = recx.
(
req.ans.x+ cls.nil

)
A server that non-deterministically stops offering the close action is denoted by
process q, whereas r only offers the close action after the first serviced request.

q = recx.
(
req.ans.x+ cls.nil + (rec y.req.ans.y)

)
r = req.ans.recx.

(
req.ans.x+ cls.nil

)
1 These are normally expressed as structural equivalence rules such as p ‖ nil ≡ p and

p‖q ≡ q‖p in standard CCS. We elide them here to alleviate our exposition.
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We will use the processes p, q and r to exemplify some of the technical notions
to follow. Abstractly, the respective LTSs denoted by these processes may be
represented by the graphs in Figure 2, where the nodes correspond to processes
and the arcs correspond to weak transitions,

α
=⇒. Note that these graphs do not

describe the full branching structure of the respectively processes and abstract
away from τ -derivatives such as

(
req.ans.p+cls.nil

)
(in the case of p). This omission

is intensional and the intuition conveyed by these graphs, namely finite depictions

of sets of transions p′
t

=⇒ p′′, suffices for the intuitions underpinning the logical
specifications that follow. �

Example 2 Consider the system described by the process p′ below:

p′ = recx.
((

req.work.nil + cls.nil
)
‖ work.ans.x

)
By abstracting away from τ -transitions, we can also use the finite graph for p from
Figure 2 to describe the behaviour of the process new work.p′, where the action work

is locally scoped. In particular, such a graph abstracts away from the τ -transitions
(1) and (2) below.

new work.p′
τ−−→ new work.

(
(req.work.nil + cls.nil) ‖ work.ans.p′

)
(1)

req−−−→ new work.
(
work.nil ‖ work.ans.p′

)
τ−−→ new work.

(
ans.p′

)
(2)

ans−−−→ new work.p′

Importantly, not all processes describe a finite execution graph. As a simple demon-
stration of this, consider the process variants p′′ and p′′′ below:

p′′ = recx.new work.
(
work.nil ‖ (req.ans.x+ cls.nil)

)
p′′′ = recx.

(
req.ans.(x‖x) + cls.nil

)
In the case of p′′, we can easily observe the sequence of non-repeating states where
new parallel copies of work.nil are spawned (we rename the bound name work to
work’ to highlight distinct bindings):

p′′
req·ans

====⇒ new work.(work.nil ‖ p′′)
req·ans

====⇒ new work.
(
work.nil ‖ new work’.(work’.nil ‖ p′′)

) req·ans
====⇒ . . .

We can also observer a similar expansion in the case of p′′′. For instance, consider
the execution trace below:

p′′′
req·ans

====⇒ p′′′ ‖ p′′′ req·ans
====⇒ p′′′ ‖ p′′′ ‖ p′′′ req·ans

====⇒ . . .

In fact, the execution graph of p′′′ is far more complicated than that since req and
ans from the generated parallel copies of p′′′ can arbitrarily be interleaved. �
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Syntax

ϕ, φ ∈ µHML ::= tt (truth) | ff (falsehood)

| ϕ∨φ (disjunction) | ϕ∧φ (conjunction)

| 〈α〉ϕ (possibility) | [α]ϕ (necessity)

| minX.ϕ (min. fixpoint) | maxX.ϕ (max. fixpoint)

| X (rec. variable)

Semantics

Jtt, ρK def
= Proc Jff, ρK def

= ∅
Jϕ1∧ϕ2, ρK

def
= Jϕ1, ρK ∩ Jϕ2, ρK Jϕ1∨ϕ2, ρK

def
= Jϕ1, ρK ∪ Jϕ2, ρK

J[α]ϕ, ρK def
=

{
p | ∀q.p α

=⇒ q implies q ∈ Jϕ, ρK
}

J〈α〉ϕ, ρK def
=

{
p | ∃q.p α

=⇒ q and q ∈ Jϕ, ρK
}

JminX.ϕ, ρK def
=

⋂
{S | Jϕ, ρ[X 7→ S]K ⊆ S}

JmaxX.ϕ, ρK def
=

⋃
{S | S ⊆ Jϕ, ρ[X 7→ S]K} JX, ρK def

= ρ(X)

Fig. 3 µHML Syntax and Semantics

3 The Logic

The logic µHML [30,3] assumes a countable set of logical variables X,Y ∈ LVar,
and is defined as the set of closed formulae generated by the grammar of Fig-
ure 3. Apart from the standard constructs for truth, falsehood, conjunction and
disjunction, the logic is equipped with possibility and necessity modal operators,
together with recursive formulae expressing least or greatest fixpoints; formulae
minX.ϕ and maxX.ϕ respectively bind free instances of the logical variable X in
ϕ, inducing the usual notions of open/closed formulae and formula equality up to
alpha-conversion.

Formulae are interpreted over the process powerset domain, S ∈ P(Proc).
The semantic definition of Figure 3 is given for both open and closed formulae and
employs an environment from logical variables to sets of processes, ρ ∈ LVar ⇀

P(Proc). This permits an inductive definition of Jϕ, ρK, the set of processes satis-
fying the formula ϕ with respect to an environment ρ, based on the structure of
the formula. For instance, in Figure 3, the semantic meaning of a variable X with
respect to an environment ρ is the mapping for that variable in ρ. The semantics of
truth, falsehood, conjunction and disjunction are standard (e.g., ∨ and ∧ are inter-
preted as set-theoretic union and intersection). Possibility formulae 〈α〉ϕ describe
processes with at least one α-derivative satisfying ϕ whereas necessity formulae
[α]ϕ describe processes where all of their α-derivatives (possibly none) satisfy ϕ.
The powerset domain P(Proc) is a complete lattice with respect to set-inclusion,
⊆, which guarantees the existence of least and largest solutions for the recursive
formulae of the logic; as usual, these can be respectively specified as the intersec-
tion of all the pre-fixpoint solutions and the union of all post-fixpoint solutions [3].
Note that ρ[X 7→ S] denotes an environment ρ′ where ρ′(X) = S and ρ′(Y ) = ρ(Y )
for all other Y 6= X. Since the interpretation of closed formulae is independent of
the environment ρ, we sometimes write JϕK in lieu of Jϕ, ρK. We say that a process
p satisfies a closed formula ϕ whenever p ∈ JϕK, and violates a formula whenever
p 6∈ JϕK.
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Example 3 Formula 〈α〉tt describes processes that can perform action α whereas
formula [α]ff describes processes that cannot perform action α. Consider the for-
mulae defined as follows:

ϕ1 = minX.(〈req〉〈ans〉X ∨ [cls]ff)

ϕ2 = maxX.(〈req〉〈ans〉X ∨ [cls]ff)

ϕ3 = maxX.([req][ans]X ∧ 〈cls〉tt)

ϕ4 = maxX.([req][ans]X ∧ [cls]ff)

Formula ϕ1 denotes a liveness property describing processes that stop offering
the action cls after some number of serviced request, i.e., after performing some
sequence of actions in (req.ans)∗—processes q and r from Example 1 satisfy this
property but p does not. Concretely, in the case of q we can observe the com-

putation q
req·ans

====⇒ q4 and q4 ∈ J[cls]ffK since q4 6
cls

==⇒, whereas in the case of r

we immediately have r 6 cls
==⇒. Intuitively, p does not satisfy ϕ1 because we have

p
cls

==⇒ and whenever p
req·ans

====⇒ p′ for some p′, then it necessarily the case that
p′ = p again (or its unfolding req.ans.p + cls.nil). If we change the fixpoint of ϕ1

into a maximal one, i.e., ϕ2, the resulting formula would include p in the property
as well. This is because Jϕ2K also includes processes that exhibit the infinite trace
(req·ans)∗, which process p can display by following the looping transition sequence

p
req·ans

====⇒ p.
Formulae ϕ3 and ϕ4 denote safety properties: e.g., ϕ3, describes (terminating

and non-terminating) processes that can always perform a cls action after any
number of serviced requests, i.e., after having performed any trace in (req.ans)∗

(the maximal fixpoint allows these processes to perform an infinite number of
serviced requests). Process p satisfies property ϕ3, due to an analogous argument
to the one above justifying p 6∈ Jϕ1K. However q and r do not satisfy this property
because not all execution paths satisfy this property. In the case of process q,

although paths along the looping sequence q
req·ans

====⇒ q validate this property

(since q itself can perform the (weak) transition q
cls

==⇒), it violates this property

along a different path, such as in the case of q
req·ans

====⇒ q4. Formula ϕ4 is analogous
but prohibits the cls action after any number of serviced requests; we revisit this
formula again in Example 7.

ϕ5 = 〈req〉〈ans〉maxX.
(
([req]ff ∨ 〈req〉〈ans〉X) ∧ [cls]ff

)
ϕ6 = minX.

(
(〈req〉〈ans〉tt ∧ [req][ans]X) ∨ 〈cls〉tt

)
Formula ϕ5 is satisfied by processes that, after one serviced request, req.ans, exhibit
a maximal2 transition sequence in (req.ans)∗ ∪ (req.ans)ω that never offers action

cls. Process q satisfies this property through the path q
req·ans

====⇒ q4, whereas pro-
cesses p and r do not satisfy such a property. Formula ϕ6 describes processes that
along all serviced request sequences, i.e., traces in (req.ans)∗, eventually reach a
state where they offer action cls. All the processes in Figure 2 satisfy this prop-
erty: p and q satisfy the criteria immediately, whereas process r satisfies it for

2 A transition sequence is maximal if it is either infinite or affords no more actions.



Monitorability for HML with Recursion 9

Syntax

m,n ∈Mon ::= v | α.m | m+ n | recx.m | x
v, u ∈ Verd ::= end | no | yes

Dynamics

mAct
α.m

α−−→ m
mRec

recx.m
τ−−→ m[recx.m/x]

mSelL m
µ−−→ m′

m+ n
µ−−→ m′

mSelR n
µ−−→ n′

m+ n
µ−−→ n′

mVer
v

α−−→ v

Instrumentation

iMon
p

α−−→ p′ m
α−−→ m′

m / p
α−−→ m′ / p′

iTer
p

α−−→ p′ m 6 α−−→ m 6 τ−−→

m / p
α−−→ end / p′

iAsyP
p

τ−−→ p′

m / p
τ−−→ m / p′

iAsyM m
τ−−→ m′

m / p
τ−−→ m′ / p

Fig. 4 Monitors and Instrumentation

(req.ans)n sequences where n ≥ 1. At an intuitive level, property ϕ6 is, in some
sense, analogous to the LTL formula 〈req〉〈ans〉tt U 〈cls〉tt. �

4 Monitors and instrumentation

Monitors are often expressed in terms of automata [8,22] and may therefore also
be viewed as LTSs, through the syntax of Figure 4. The syntax is similar to a sub-
language of that for processes given in Figure 1, with the exception that the inert
process nil is replaced by three verdict constructs, yes, no and end, respectively
denoting acceptance, rejection and termination (i.e., an inconclusive outcome).
Monitor behaviour is similar to that of processes for the common constructs; see
the transition rules in Figure 4. The only new transition rule concerns verdicts,
mVer, stating that a verdict may transition with any α ∈ Act and go back to the
same state, thereby modelling the requirement that verdicts are irrevocable.

Figure 4 also describes an instrumentation relation, connecting the behaviour
of a process p with that of a monitor m: the configuration m/ p denotes a monitored

system. In an instrumentation, the process leads the (visible) behaviour of a mon-
itored system (i.e., if the process cannot α-transition, then the monitored system
will not either) while the monitor passively follows, transitioning accordingly; this
is in contrast with well-studied parallel composition operations over LTSs [33,28].
Specifically, rule iMon states that if a process can transition with action α and
the respectively monitor can follow this by transitioning with the same action,
then in an instrumented monitored system they transition in lockstep. However,
if the monitor cannot (immediately) follow such a transition, m 6 α−−→ , and (since
it is already stable) there is no chance of it being able to do so after any sequence

internal actions, m 6 τ−−→ , the instrumentation forces it to terminate with an in-
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conclusive verdict, end, while the process is allowed to proceed unaffected; see rule
iTer. We remark that since end can produce any action, future transitions by p are
still allowed while the terminated monitor maintains its state, using the rule iMon.
Rules iAsyP and iAsyM allow monitors and processes to transition independently
with respect to internal moves. This means that when a monitor cannot match a
process action, but can transition silently, the instrumentation allows it to do so,
and the matching check is then postponed to the τ -derivative monitor.

Example 4 Consider the monitor m defined below, which reaches an acceptance

verdict after observing the action req followed by the action ans, but reaches a
rejection verdict when it observes the action ans first.

m = (req.ans.yes) + (ans.no)

When it is instrumented with process p from Example 1, we observe the following
behaviour for the monitored system whereby on line (**) the monitor preserves
the yes verdict for all remaining transitions.

m / p
τ−−→ m / req.ans.p+ cls.nil using iAsyP

req−−−→ ans.yes / ans.p using iMon

ans−−−→ yes / p using iMon

req.ans
====⇒ yes / p

req.ans
====⇒ yes / p

req.ans
====⇒ . . . (**)

When it is instrumented with a different system, such as ans.p, the monitor yields
a different (persistent) verdict,

m / ans.p
ans−−−→ no / p

req.ans
====⇒ no / p

req.ans
====⇒ . . .

Importantly, when m is instrumented with the process req.ans.nil we observe the
following monitored system behaviour below. In the second transition, rule iTer is
used because the emitted action, ans does not correspond with any of the actions
the monitor is expecting at that stage, namely ans (note the bar on one of the latter
action, ans, which makes it distinct from the former action ans from a monitoring
perspective).

m / req.ans.nil
req−−−→ (ans.yes) / (ans.nil) using iMon

ans−−−→ end / nil using iTer

It is important that a monitor is terminated (with an inconclusive verdict) when-
ever it cannot match the exhibited trace event by the process, since leaving the
monitor state unaltered may lead to unwanted detections. Consider the instrumen-
tation of monitor m with the process req.cls.ans.nil and let us analyse the runtime
behaviour below:

m / req.cls.ans.nil
req−−−→ (ans.yes) / cls.ans.nil

cls−−→ end / ans.nil
ans−−−→ end / nil

(Good)

m / req.cls.ans.nil
req−−−→ (ans.yes) / cls.ans.nil

cls−−→ (ans.yes) / ans.nil
ans−−−→ end / nil

(Bad)
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The transition sequence labelled (Good) describes the behaviour according to the
instrumentation rules in Figure 4 where, in particular, when the monitor cannot
analyse action cls, it is terminated with an inconclusive state, which is then retained
for the remaining transitions. By contrast, the transition sequence labelled (Bad)
describes the behaviour obtained if we had to leave the state of a monitor unaltered
when an action cannot be matched. Precisely, in (Bad), the residual monitor ends
up matching the subsequent action, ans and reaching an unintended acceptance
verdict. �

It is worth highlighting a few additional aspects of the instrumentation relation
in Figure 4. First, note that the instrumentation LTS models the fact that a
monitor does not have access to the execution graph of a process, and can only
analyse the part of the execution graph exhibited by the process at runtime. We
illustrate this in the following example.

Example 5 Recall monitor m defined in Example 4 and process p from Example 1.
The monitored system may exhibit the following runtime behaviour

m / p
τ−−→ m / req.ans.p+ cls.nil

cls−−→ end / nil

which prohibits the monitor from observing the execution path we saw before at
(**) in Example 4, leading to an acceptance verdict. �

Second, we draw attention to the fact that the instrumentation composition
relation is asymmetric and lets a monitored system produce a transition as long
as a system can produce that transition (even though the monitor cannot perform
it). This models the requirement that monitors should (as much as possible) have
a passive role in an instrumented setting and not interfere with the execution of
a system. It also contrasts with the standard intersection and union constructions
used in automata theory. We formalise these important properties in Proposition 1
below; for a more comprehensive study of the properties of this instrumentation
relation, we refer the reader to [23].

Proposition 1 m / p
t

=⇒ m′ / p′ iff p
t

=⇒ p′ and

(i) either m
t

=⇒ m′

(ii) or m′ = end and ∃t′, α, t′′,m′′. t = t′αt′′, m′′ 6 τ−−→ and m
t′

=⇒ m′′ 6 α−−→.

Proof The only-if case is proved by numerical induction on the number of transions

n in m/ p
t

=⇒ m′ / p′, where
t

=⇒=
µ1−−→ · µ2−−→ . . .

µ2−−→ for some n ≥ 0. The inductive
case, i.e., n = k+1, performs a rule case analysis on the first monitored transition.
The subcase where rule iTrm is used yields subcase (ii).

For the if case, we prove the two subcases separately. We first show the first
subcase through

p
t

=⇒ p′ and m
t

=⇒ m′ implies m / p
t

=⇒ m′ / p′ (3)

by numerical induction on the number of transions n in p
t

=⇒ p′, where
t

=⇒=
µ1−−→

· µ2−−→ . . .
µ2−−→ for some n ≥ 0. The second subcase is proved by numerical induction

on the number of transions n in m
t

=⇒ m′′ 6 α−−→ and m′′ 6 τ−−→, where
t

=⇒=
µ1−−→ · µ2−−→
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. . .
µ2−−→ for some n ≥ 0, and where t = t′αt′′ for some t′, α, t′′,m′′, i.e., t can be

decomposed into three parts where t′ is the prefix of t that can be followed by
the monitor, α is the first action that the monitor cannot follow, and t′′ is the
remaining trace after α. The subproof relies on the property that for every trace

t and verdict v, we have v
t

=⇒ v, and uses property (3) as well. ut

Remark 1 Since we strive towards a general theory of monitorability, the monitor
syntax and semantics in Figure 4 allows us to specify non-deterministic monitors
such as α.yes + α.no or α.nil + α.β.yes. There are settings where determinism is
unattainable (e.g., distributed monitoring [25]) or desirable/intended (e.g., in the
case of testers [34], or as a means of introducing controlled monitor imperfec-
tions to enlarge the set of accepted/analysed traces [36]), and others where non-
determinism may be used to express behavioural under-specification, which can
be then employed in frameworks for program refinement [1,23]. Thus, expressing
non-determinism allows us to study the cases where it is either considered useful,
tolerated or considered erroneous. This also allows us to differentiate between dif-
ferent forms of non-deterministic monitor behaviour, as we discuss in more detail
in the following sections. �

We conclude the section by considering monitors that can detect arbitrarily
long execution traces, some of which also behave non-deterministically. We revisit
these monitors in subsequent sections.

Example 6 Monitor m1 (defined below) monitors for runtime executions whose
trace is of the form (req.ans)∗.cls and returns the acceptance verdict yes, whereas
m2 dually rejects executions of that form. When composed with process p from
Example 1, the monitored system m1 / p may either service requests forever, m1 /

p
req

==⇒ · ans−−−→ m1 / p, or else terminate with a yes verdict, m1 / p
cls

==⇒ yes / nil.

m1 = recx.
(
req.ans.x+ cls.yes

)
m2 = recx.

(
req.ans.x+ cls.no

)
m3 = recx.

(
req.ans.x+ cls.yes + req.req.x

)
m4 = recx.

(
req.ans.x+ cls.yes + cls.no

)
Monitor m3 may either behave like m1 or non-deterministically terminate upon a

serviced request, i.e., m3 / p
req

==⇒ req.m3 / p1
ans−−−→ end/ p. Conversely, monitor m4

non-deterministically returns verdict yes or no upon a cls action, e.g., m4 / p
cls

==⇒
yes / nil but also m4 / p

cls
==⇒ no / nil. �

5 Correspondence

Although the techniques, algorithms and tools for statically checking system cor-
rectness with respect to µHML are well established [3,5], there are situations where
checking for system correctness at runtime through monitors is appealing and/or
useful. Indeed, the aforementioned static techniques are prone to state-explosion
problems in the setting of finite-state systems and are often not applicable to anal-
yse infinite-state systems. In these cases, RV might offer a scalable compromise
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for determining system correctness. Alternatively, the system may not be avail-
able for analysis prior to deployment, and RV would constitute the only means of
analysing system behaviour for correctness.

Our goal is therefore to establish a correspondence between the verdicts reached
by monitors over an instrumented system from Section 4 and the properties spec-
ified using the logic of Section 3. In particular, we would like to relate acceptances
(yes) and rejections (no) reached by a monitor m when monitoring a process p
with satisfactions (p ∈ JϕK) and violations (p 6∈ JϕK) for that process with respect
to some closed µHML formula, ϕ. This will, in turn, allow us to determine when
a monitor m represents (in some precise sense) a property ϕ.

Example 7 Recall monitor m1 from Example 6

m1 = recx.
(
req.ans.x+ cls.yes

)
Intuitively, one can argue that m1 monitors for any satisfactions of the property

ϕ7 = minX.(〈req〉〈ans〉X ∨ 〈cls〉tt)

This property describes processes that are able to perform a cls action after a
number of serviced requests, i.e., sequences of req.ans along one particular execution
path. In fact, monitor m1 produces a yes verdict for a computation labelled with
a trace in the language (req.ans)∗.cls from a process p, attesting that p ∈ Jϕ7K.
Similarly, one can argue that m2 from Example 6 monitors for violations of the
property ϕ4 from Example 3. The same cannot be said for

m4 = recx.
(
req.ans.x+ cls.yes + cls.no

)
again from Example 6, and ϕ7 above. This is because, for some processes, e.g., p
from Example 1, m4 may produce both verdicts yes and no for the same witness
execution traces in (req.ans)∗.cls; this, in turn, leads to contradictions at a logical
level since we cannot have both semantic judgements p ∈ Jϕ7K and p 6∈ Jϕ7K. A
similar argument applies to m4 and m2 from Example 6. �

When instrumented with a process, a monitor may behave non-deterministically
in other ways from the behaviour discussed in Example 7 for the case of m4.

Example 8 Since the process drives the execution in a monitored system, non-
deterministic behaviour from the side of the process may affect the detection ca-
pabilities of the instrumented monitor. For instance, we argued in Example 7 that
m1 monitors for property ϕ7. When monitor m1 is instrumented with process q
from Example 1, m1 may reach an acceptance verdict along various executions

such as in the case of m1 / q
cls

==⇒ yes / nil. However, the monitored system may
also exhibit the execution

m1 / q
req.ans

====⇒ m1 / q4 where q4 = rec y.req.ans.y

from which m1 cannot issue an acceptance verdict for q, even though q ∈ Jϕ7K. �

Example 9 Recall m3 = recx.
(
req.ans.x+ cls.yes + req.req.x

)
from Example 6. This

monitor may sometimes flag an acceptance but also refrain from doing so when
monitoring p from Example 1. This inconsistent behaviour can be observed even

when p produces the same trace. E.g.,, for t = req.ans.cls we have m3 / p
t

=⇒ yes / nil

but also m3 / p
t

=⇒ end / nil. �
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There is however a key difference between the non-determinism exhibited by
monitor m4 in Example 7 and that discussed in Example 8 and Example 9. Specif-
ically, in the latter two cases, the non-deterministic behaviour was between detec-
tions (i.e., yes and no) and non-detections (i.e., end or any other non-verdict state),
which does not lead to any inconsistencies from a logical perspective. By contrast,
the non-determinism exhibited by monitor m4 in Example 7 leads to logical con-
tradictions. This difference provides a blueprint for the subsequent formal frame-
work. Specifically, we investigate conditions that one could require for establishing
the correspondence between monitors and formulae. We start with Definition 2,
which defines the criteria expected of a monitor m when it monitors soundly for

a property ϕ, predicate smon(m,ϕ) in Definition 2 below, by requiring that ac-
ceptances (respectively rejections) imply satisfactions (respectively violations) for
every monitored execution of a process p.

Definition 1 (Acceptance and Rejection Predicates)

1. acc(p,m)
def
= ∃t, p′. m / p

t
=⇒ yes / p′

2. rej(p,m)
def
= ∃t, p′. m / p

t
=⇒ no / p′ �

Definition 2 (Sound Monitoring) We say that a monitor m monitors soundly
for the property represented by the formula ϕ, denoted as smon(m,ϕ), whenever
for all processes p ∈ Proc the following conditions hold:

1. acc(p,m) implies p ∈ JϕK
2. rej(p,m) implies p 6∈ JϕK �

We note that Definition 2 rules out contradicting verdicts by monitors. When-
ever smon(m,ϕ) holds for some monitor m and formula ϕ, and there exists some
process p where acc(p,m), it must be the case that p ∈ JϕK by Definition 2. Thus,
from the logical satisfaction definition we have ¬(p 6∈ JϕK) and by the contrapos-
itive of Definition 2, we must also have ¬rej(p,m). A symmetric argument also
applies for any process p where rej(p,m), from which ¬acc(p,m) follows.

Example 10 From Example 7 and Example 9, we can formally state and prove that
smon(m1, ϕ7) and smon(m3, ϕ7). Moreover, from Example 3 and Example 6 we
can also show that smon(m2, ϕ4).

For instance, recall that m2 = recx.
(
req.ans.x + cls.no

)
, which means that the

only verdicts corresponding to logical satisfactions or logical violations that this
monitor can produce are rejections. Moreover, from the semantics of Figure 4, each
time a rejection is produced by m2, this can only be the result of analysing an
execution trace in the language (req.ans)∗.cls. But then, from the logic semantics
of Figure 3, any such execution trace is enough for the process to violate property
ϕ4 = maxX.([req][ans]X ∧ [cls]ff).

Using Definition 2, we can also show that certain monitors do not soundly
monitor for specific formulas, such as ¬smon(m4, ϕ7) and ¬smon(m4, ϕ4). �

Sound monitoring is arguably the least requirement for relating a monitor with
a logical property. Further to this, the obvious additional requirement would be to
ask for the dual of Definition 2, i.e., complete monitoring for m and ϕ. Intuitively,
this would state that for all p, p ∈ JϕK implies acc(p,m), and also that p 6∈ JϕK
implies rej(p,m). However, such a requirement turns out to be too strong for a
large part of the logic presented in Figure 3.
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Example 11 Consider the core basic formula 〈α〉tt, describing processes that can
perform action α. One could check that the simple monitor α.yes satisfies the con-
dition that p ∈ JϕK implies acc(p,m) for all p. However, for this same formula,
there does not exist a sound monitor satisfying p 6∈ JϕK implies rej(p,m) for any
arbitrary process p. We can show this by contradiction. Assume that one such
(sound) monitor m exists. Since nil 6∈ J〈α〉ttK then we should have rej(nil,m). By
Definition 1 and Proposition 1, this means that this particular monitor can pro-
duce the behaviour m =⇒ no which, in turn, implies that rej(α.nil,m) also holds
although, clearly, α.nil ∈ J〈α〉ttK. This makes m unsound, contradicting our initial
assumption.

A dual argument can be carried out for another core basic formula in µHML,
namely [α]ff, describing the property of not being able to produce action α. Al-
though there are sound monitors satisfying the condition ∀p. p 6∈ JϕK implies rej(p,m),
there are none that also satisfy the other condition ∀p. p ∈ JϕK implies acc(p,m).

�

The core formulas discussed in Example 11 are enough evidence to convince
us that requiring complete monitoring would limit correspondence to a trivial
subset of the logic. In fact, it would limit it to the semantic subset tt and ff. In
view of this, we define weaker forms of completeness, as stated below, where we
require completeness with respect to either logical satisfactions or violations (but
not both).

Definition 3 (Satisfaction, Violation, and Partially-Complete Monitoring)

scmon(m,ϕ)
def
= ∀p. p ∈ JϕK implies acc(p,m) (satisfaction complete)

vcmon(m,ϕ)
def
= ∀p. p 6∈ JϕK implies rej(p,m) (violation complete)

cmon(m,ϕ)
def
= scmon(m,ϕ) or vcmon(m,ϕ) (partially complete) �

Using the partially-complete monitoring predicate cmon(m,ϕ) of Definition 3
and the sound monitoring predicate of Definition 2, we can formalise our touch-
stone notion for monitor-formula correspondence. Specifically, Definition 4 below
states that m monitors for formula ϕ, mon(m,ϕ), if it can do it soundly, and in
a partially-complete manner, i.e., if it is either satisfaction complete or violation
complete as stated in Definition 3.

Definition 4 (Monitor-Formula Correspondence)

mon(m,ϕ)
def
= smon(m,ϕ) and cmon(m,ϕ) �

6 Monitorability

At a general level, monitorability is a property of a correctness specification de-
scribing the ability to be adequately analysed at runtime; it can also be lifted
in pointwise fashion to sets of such specifications. This definition is thus funda-
mentally dependent on the monitoring setup assumed and the conditions that
constitute an adequate runtime analysis. In this section we investigate the mon-
itorability of our logic µHML using Definition 4 as our base notion for adequate
monitoring.
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Definition 5 (Monitorability) Formula ϕ is monitorable iff there exists a monitor
m such that mon(m,ϕ). A logical language L ⊆ µHML is monitorable iff every
ϕ ∈ L is monitorable. �

We immediately note that not all logical formulae are monitorable. The fol-
lowing example gives evidence of this.

Example 12 Through the witness monitor outlined in Example 11, we can show
that formulae 〈α〉tt and 〈β〉tt are monitorable with a satisfaction complete monitor.
However, the composite formula ϕ8 defined below is not.

ϕ8 = 〈α〉tt∧〈β〉tt

At an intuitive level, this is the case because once a monitor observes one of the
actions required to check either sub-formula 〈α〉tt or 〈β〉tt, it cannot “go back in
time” to observe another action and thus check for the other sub-formula.

Formally, we show this by arguing towards a contradiction. Assume that there
exists some monitor m such that mon(m,ϕ8). There are two sub-cases to consider:

– If m is satisfaction complete, then acc(α.nil + β.nil,m) since α.nil + β.nil ∈ Jϕ8K.
By Proposition 1, m reaches verdict yes along one of the traces ε, α or β. If the
trace is the empty trace ε, then m must also accept nil, which is unsound (since
nil 6∈ Jϕ8K). If the trace is α, m must also accept the process α.nil, which is also
unsound (α.nil 6∈ Jϕ8K); the case for β is analogous.

– If m is violation complete then rej(β.nil,m) since β.nil 6∈ Jϕ8K. By Proposition 1,

we either have m
ε

=⇒ no or m
β

=⇒ no and for both cases we can argue that m
also rejects process α.nil + β.nil, which is unsound since α.nil + β.nil ∈ Jϕ8K. �

We now identify the following syntactic subset of µHML formulae called mHML,
with the aim of showing that it is a monitorable subset of the logic. At an intuitive
level, logical language consists of the safe and co-safe syntactic subsets of µHML,
denoted as sHML and cHML respectively.

Definition 6 (Monitorable Logic) ψ, χ ∈ mHML
def
= sHML ∪ cHML where:

θ, ϑ ∈ sHML ::= tt | ff | [α]θ | θ∧ϑ | maxX.θ | X
π,$ ∈ cHML ::= tt | ff | 〈α〉π | π∨$ | minX.π | X

Example 13 Recall formulas ϕ4 from Example 3 and ϕ7 from Example 7. We have
ϕ4 ∈ sHML ⊆ mHML and ϕ7 ∈ cHML ⊆ mHML. However, ϕ8 from Example 12 is
not in mHML; this can be easily determined via a simple syntactic analysis. �

Remark 2 Strictly speaking, the respective definitions for sHML and cHML can
be tightened even further. In the case of sHML, we note that tt may be expressed
as maxX.X since JttK = JmaxX.XK. Dually, in the case of cHML, the formula
minX.X may be written instead of ff because JffK = JminX.XK. This is in fact
the approach adopted in our of earlier works [26]. We decided to include these
basic formulas in Definition 6 for a number of reasons. First, tt (respectively ff) is
always considered to be a trivial case of a safety (respectively co-safety) property
and omitting it would seem to contradict our target of identifying the maximal
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monitorable subsets of the logic µHML (see Section 7); the fact that these basic
formulas can be encoded is not immediately discernible from the semantics of
Figure 3. Second, having an explicit formula for truth and falsehood is handy
for tool implementations and extensions based on the logic. For instance, in [14,
15] a branching construct for reasoning about event data is introduced, and the
aforementioned basic formulas facilitate the specification of no-op branches. �

Clearly mHML ⊆ µHML. To show that mHML is monitorable in the sense of
Definition 5, we still need to find a representative monitor for every formula in
mHML. Thus, we define a monitor synthesis function L−M generating a monitor
for each ψ ∈ mHML and then show that LψM is the witness monitor required by
Definition 5 to demonstrate the monitorability of ψ.

Definition 7 (Monitor Synthesis)

LffM def
= no LttM def

= yes LXM def
= x

L[α]ψM def
=

{
α.LψM if LψM 6= yes

yes otherwise
L〈α〉ψM def

=

{
α.LψM if LψM 6= no

no otherwise

Lψ1∧ψ2M
def
=


no

{
if Lψ1M=no

or Lψ2M=no

Lψ1M if Lψ2M=yes

Lψ2M if Lψ1M=yes

Lψ1M+Lψ2M otherwise

Lψ1∨ψ2M
def
=


yes

{
if Lψ1M=yes

or Lψ2M=yes

Lψ1M if Lψ2M=no

Lψ2M if Lψ1M=no

Lψ1M+Lψ2M otherwise

LmaxX.ψM def
=

{
recx.LψM if LψM 6= yes

yes otherwise
LminX.ψM def

=

{
recx.LψM if LψM 6= no

no otherwise

A few comments are in order regarding Definition 7. We first note that the syn-
thesis function L−M is compositional ; see e.g., [34] for reasons why this is desirable.
It also assumes a bijective mapping between the denumerable sets X ∈ LVar and
x ∈ Vars; see synthesis for X, maxX.ψ and minX.ψ, where the logical variable X
is converted to the process variable x. We also note that, even though Definition 7
covers both sHML and cHML, the syntactic constraints of Definition 6 mean that
synthesis for a formula ψ uses at most the first row and then either the first column
(in the case of sHML) or the second column (in case of cHML). Finally, we note
that the conditional cases used in synthesis of conjunctions, disjunctions, necessity
formulas, possibility formulas, and maximal and minimal fixpoints are necessary to
be able to generate sound and complete monitors, and handle logically equivalent
formulae. We illustrate this in the next two examples.

Example 14 Consider the cHML formula 〈α〉tt∨ff (which is logically equivalent to
〈α〉tt). A naive synthesis without the case checks of Definition 7 would generate
the monitor α.yes + no which is not only redundant, but unsound. For instance,
for process p = α.nil we have both acc(p, α.yes + no) and rej(p, α.yes + no). Similar
problems would manifest themselves for less obvious cases. Consider the cHML

formula

〈α〉tt∨〈β〉ff∨(minX.〈α〉ff)∨(〈α〉minX.ff)
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which also turns out to to be logically equivalent to 〈α〉tt because J〈β〉ffK = JffK,
as is JminX.〈α〉ffK = JffK = J〈α〉minX.ffK. However, in all of these cases, the mon-
itor synthesis of Definition 7 generates the (sound) monitor α.yes due to its side
conditions. �

Example 15 Consider the cHML formula tt∨〈α〉tt. A naive synthesis without the
case checks of Definition 7 would generate the monitor yes +α.yes which is clearly
not violation complete, but its not satisfaction complete either. In fact, one can
easily see that nil ∈ Jtt∨〈α〉ttK but acc(nil, yes +α.yes) does not hold, because there

is no trace t such that yes + α.yes / nil
t

=⇒ yes / nil. �

Remark 3 The monitor synthesis algorithm of Definition 7 may generate non-
deterministic monitors for certain formulas in mHML. Consider, for example, the
formula

ϕ10 = (〈α〉tt)∨(〈α〉〈β〉tt) ∈ cHML

From Definition 7 we have Lϕ10M = α.yes+α.β.yes, where the generated monitor may
sometimes refrain from producing an acceptance verdict for satisfying processes.
Specifically, for the process α.nil ∈ Jϕ10K we have acc(α.nil, (α.yes+α.β.yes)) because

of the monitored execution (α.yes +α.β.yes)/ (α.nil)
α

=⇒ yes/ nil. At the same time,

we can also have the alternative monitored execution (α.yes +α.β.yes) / (α.nil)
α

=⇒
β.yes/ nil. Note, however, that the generated monitor still adequately monitors for
the formula, i.e., mon(α.yes + α.β.yes, ϕ10).

Although we could have defined a more sophisticated monitor synthesis algo-
rithm that handles this non-determinism (at the expense of obscuring further its
intended meaning and complicating the ensuing proofs), we opted for a simpler
translation that yields correct monitors while still preserving a degree of mod-
ularity. An alternative solution could also be to use the synthesis algorithm of
Definition 7 and massage mHML formulas before performing the translation (e.g.,
ϕ10 would be translated to the semantically equivalent formula 〈α〉(tt∨〈β〉tt) which
would then be synthesised to the monitor α.yes). �

Theorem 1 (Monitorability) ϕ ∈ mHML implies ϕ is monitorable.

To prove this theorem, we use L−M to generate witnesses and show that for all
ϕ ∈ mHML, mon(LϕM, ϕ) holds. This proof is given in the dedicated Section 6.1.
The reader may safely skip this subsection and proceed to Section 7 upon first
reading. Before this, however, we discuss the importance of this result.

Theorem 1 provides us with a simple syntactic check to determine whether a
formula is monitorable; as shown earlier in Example 12, determining whether a
formula is monitorable is in general non-trivial. The proof of Theorem 1 yields
also a pleasing side effect: through Definition 7, we obtain an automatic monitor
synthesis algorithm that is correct according to Definition 4.

Example 16 Since ϕ4 from Example 3 is in mHML, we know it is monitorable.
Moreover, we can generate the correct monitor Lϕ4M = recx.

(
req.ans.x+cls.no

)
= m2

(from Example 6). Using similar reasoning, ϕ7 (Example 7) is also monitorable,
and a correct monitor for it is m1 from Example 6. �
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6.1 Proving Monitorability

Using the monitor synthesis L−M of Definition 7, Theorem 1 is proved in two steps.
First we show that the witness monitors generated by L−M are sound, according
to Definition 2. In the second step, we show that they are partially complete,
according to Definition 3.

We start with soundness. Expanding Definition 2 (Monitor Soundness), we
need to show that for all ψ ∈ mHML, and for all p ∈ Proc, we have:

acc(p, LψM) implies p ∈ JψK (4)

rej(p, LψM) implies p 6∈ JψK (5)

To simplify the technical exposition, we proceed by proving soundness for the
two syntactic subsets, sHML and cHML, separately. We here present the proofs for
the subset sHML; those for the cHML subset are similar and can be constructed
by the interested reader following a similar procedure.

For sHML, property (4) follows from Lemma 4. This lemma, in turn uses a
number of auxiliary lemmata stated below. For instance, Lemma 2 states that
if the monitor synthesis of Definition 7 generates a yes monitor from a formula
θ ∈ sHML, then it must be the case that this formula is semantically equivalent to
tt. Lemma 3 states that the only sythesised monitor from the formulas in sHML

that can transition to the verdict yes is precisely yes itself.

Lemma 1 (Verdict Persistence) v
t

=⇒ m implies m = v.

Proof By induction on the length of the transition sequence v
t

=⇒ m. ut

Lemma 2 ∀θ ∈ sHML. LθM = yes implies JθK = JttK.

Proof By structural induction on θ. Some of the main cases are:

θ = θ1∧θ2: By Definition 7 Lθ1∧θ2M = yes only when Lθ1M = yes and Lθ2M = yes. By
I.H. we obtain Jθ1K = JttK and Jθ2K = JttK, from which Jθ1∧θ2K = JttK follows.

θ = maxX.ϑ: By Definition 7 LmaxX.ϑM = yes only when LϑM = yes. By I.H. we
obtain JϑK = JttK from which the required result follows. ut

Lemma 3 ∀θ ∈ sHML. LθM t
=⇒ yes implies LθM = yes.

Proof By numerical induction on the length of the transition sequence
t

=⇒.

n = 0: Immediate.

n = k + 1: We have LθM
µ−−→ m

t′
=⇒ yes. We proceed by case analysis of the structure

of θ. We here outline one of the main cases:
θ = [α]ϑ: From Definition 7 we have two sub-cases to consider:

LϑM = yes: By Definition 7, this implies L[α]ϑM = yes as required.
LϑM 6= yes: By Definition 7, his implies L[α]ϑM = α.LϑM. We can therefore

rewrite LθM
µ−−→ m

t′
=⇒ yes as α.LϑM α−−→ LϑM and LϑM t′

=⇒ yes where µ

could have only been α. However, by LϑM t′
=⇒ yes and I.H. we know that

LϑM = yes which gives us a contradiction. ut
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Lemma 4 ∀θ ∈ sHML, p ∈ Proc. acc(p, LθM) implies p ∈ JθK.

Proof By expanding the definition of acc(p, LθM), and then by Proposition 1, we

know that there exists a trace t such that LθM t
=⇒ yes. By Lemma 3 we know that

LθM = yes and subsequently, by Lemma 2, we obtain JθK = JttK, from which p ∈ JθK
follows trivially. ut

For sHML, property (5) follows from Lemma 7. This lemma, again uses a
number of auxiliary lemmata, some of which have already been presented; the rest
are stated below.

Lemma 5 ∀θ ∈ sHML. p, p′ ∈ Proc. p
τ−−→ p′ and p′ 6∈ JθK implies p 6∈ JθK.

Proof In [2](Proposition 3.8 and 3.9), it is shown that:

∀θ ∈ sHML, p ∈ Proc. p ∈ JθK iff
(
∀p′ ∈ Proc.p

ε
=⇒ p′ implies p′ ∈ JθK

)
(6)

The required result follows immediately from the contrapositive of (6) above. ut

Lemma 6 ∀θ ∈ sHML. LθM = no implies JθK = JffK.

Proof By structural induction on θ. Most cases are immediate, where the only
non-trivial case is:

θ = θ1∧θ2: By Definition 7 Lθ1∧θ2M = no only when Lθ1M = no or Lθ2M = no. Without
loss of generality, assume the former, i.e., Lθ1M = no. By I.H. we obtain Jθ1K =
JffK and thus by Figure 3 we deduce Jθ1∧θ2K = Jθ1K ∩ Jθ2K = JffK ∩ Jθ2K =
∅ ∩ Jθ2K = ∅ = JffK as required. ut

Lemma 7 ∀θ ∈ sHML, p ∈ Proc. rej(p, LθM) implies p 6∈ JθK.

Proof By expanding rej(p, LθM), we know that there exists a trace t such that LθM /
p

t
=⇒ no / p′. The proof thus proceeds by numerical induction on the length of the

transition sequence
t

=⇒ and then by induction on the structure of θ.

n = 0: We thus know that LθM = no. By Lemma 6 we obtain JθK = JffK = ∅, from
which the required result follows.

n = k + 1: We have LθM / p
µ−−→ m′′ / p′′

t′
=⇒ no / p′. The main sub-cases are:

θ = tt: Thus LθM = yes. This however contradicts Lemma 1, since it can never
be the case that a yes monitor transitions to a monitor that constitutes a
no verdict.

θ = [α]ϑ: By Definition 7, we have two sub-cases. If LθM = yes then we get
a contradiction as in the case for θ = tt. The other sub-case is where
LθM = α.LϑM. We have three sub-cases to consider:

– α.LϑM / p τ−−→ α.LϑM / p′′ t′
=⇒ no / p′ because p

τ−−→ p′′. By I.H. and

α.LϑM / p′′ t′
=⇒ no / p′ we obtain p′′ 6∈ J[α]ϑK, from which p 6∈ J[α]ϑK

follows by p
τ−−→ p′′ and Lemma 5.

– α.LϑM / p
β−−→ end / p′′

t′
=⇒ no / p′. We get a contradiction by end

t′
=⇒ no

and Lemma 1.

– α.LϑM / p α−−→ LϑM / p′′ t′
=⇒ no / p′ because p

α−−→ p′′. By I.H. we know
that p′′ 6∈ JϑK and by p

α−−→ p′′ we deduce that p 6∈ J[α]ϑK.
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θ = θ1∧θ2: By Definition 7, we have four sub-cases:
– Lθ1∧θ2M = no because Lθ1M = no or Lθ2M = no. By Lemma 6 we obtain

JθK = JffK = ∅, from which the required result follows.
– Lθ1∧θ2M = Lθ1M because Lθ2M = yes. By I.H. we know p 6∈ Jθ1K. Moreover,

by Lθ2M = yes and Lemma 2 we know Jθ2K = JttK, and thus Jθ1∧θ2K =
Jθ1K. Thus p 6∈ Jθ1∧θ2K follows.

– Lθ1∧θ2M = Lθ2M because Lθ1M = yes. Analogous.
– Lθ1∧θ2M = Lθ1M + Lθ2M. We have four further sub-cases to consider:

– Lθ1M + Lθ2M / p
τ−−→ Lθ1M + Lθ2M / p′′

t′
=⇒ no / p′ because p

τ−−→ p′′. By

I.H. and Lθ1M + Lθ2M / p′′
t′

=⇒ no / p′ we obtain p′′ 6∈ Jθ1∧θ2K, from
which p 6∈ Jθ1∧θ2K follows by p

τ−−→ p′′ and Lemma 5.

– Lθ1M + Lθ2M / p
β−−→ end / p′′

t′
=⇒ no / p′. We get a contradiction by

end
t′

=⇒ no and Lemma 1.

– Lθ1M+Lθ2M/ p
µ−−→ m/ p′′

t′
=⇒ no/ p′ because Lθ1M/ p

µ−−→ m/ p′′. This
means that t = µt′. We can thus construct the transition sequence

Lθ1M/ p
t

=⇒ no/ p′ from which we obtain, by I.H., p 6∈ Jθ1K and hence
p 6∈ Jθ1∧θ2K.

– Lθ1M + Lθ2M / p
µ−−→ m / p′′

t′
=⇒ no / p′ because Lθ2M / p

µ−−→ m / p′′.
Analogous.

θ = maxX.ϑ: By Definition 7, we have two sub-cases. If LθM = yes then we
get a contradiction as in the case for θ = tt. The other sub-case is where
LθM = recx.LϑM. Again we have two sub-cases to consider:

– recx.LϑM / p τ−−→ recx.LϑM / p′′ t′
=⇒ no / p′ because p

τ−−→ p′′. It follows
I.H. and Lemma 5, as in the cases above.

– recx.LϑM / p τ−−→ LϑM[recx.LϑM/x] / p
t′

=⇒ no / p′. By I.H. we obtain p 6∈
Jϑ[maxX.ϑ/X]K and, since JmaxX.ϑK = Jϑ[maxX.ϑ/X]K, the required result
follows. ut

Although we can prove the respectively lemmata for cHML in analogous fash-
ion, we just state them here. From these intermediary results, Proposition 2 follows.

Lemma 8 ∀π ∈ cHML, p ∈ Proc. acc(p, LπM) implies p ∈ JπK

Lemma 9 ∀π ∈ cHML, p ∈ Proc. rej(p, LπM) implies p 6∈ JπK

Proposition 2 (Monitorability Soundness) ∀ψ ∈ mHML. smon(LψM, ψ)

Proof Immediate from Lemma 4, Lemma 7, Lemma 8 and Lemma 9.

To prove partial completeness of mHML, we again tackle the sub-languages
sHML and cHML separately, which allows us to prove finer results. Namely, we
can show that all sHML formulae are violation complete with respect to their
synthesised monitors of Definition 7, and that all cHML formulae are satisfaction
complete. Once again, we provide full details for sHML, and leave the analogous
proofs for the cHML case for the interested reader.

Lemma 10 ∀θ ∈ sHML, p ∈ Proc. p 6∈ JθK implies rej(p, LθM)
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Proof Following [2], the semantic definition of sHML can be given an alternative
coinductive characterisation as the largest satisfiability relation satisfying the im-
plications of Table 1 in [2]. In our specific case, in order to prove the required
statement, it suffices to show that the relation

R def
=
{

(p, θ) | 6 ∃t ∈ Act∗, p′ ∈ Proc. JθK / p t
=⇒ no / p′

}
(7)

is a satisfiability relation. In effect, this proves the contrapositive of the statement
we want to show, namely:

¬rej(p, JθK) implies p ∈ JθK

The proof proceeds by induction on the structure of θ. The main cases are:

θ = θ1∧θ2: From definition (7), we know that

6 ∃t ∈ Act∗, p′ ∈ Proc. Jθ1∧θ2K / p
t

=⇒ no / p′. (8)

To show that R is a satisfiability relation, we have to show that (p, θ1) ∈ R
and (p, θ2) ∈ R. By Definition 7, we have three sub-cases to consider:
– Lθ1∧θ2M = Lθ1M because Lθ2M = yes. From (8) we know 6 ∃t ∈ Act∗, p′ ∈

Proc. Jθ1K / p
t

=⇒ no / p′, hence (p, θ1) ∈ R. Also, since Lθ2M = yes,
Lemma 1 states that this verdict is persistent. Hence we also know that

6 ∃t ∈ Act∗, p′ ∈ Proc. Jθ2K / p
t

=⇒ no / p′, which means that (p, θ2) ∈ R as
required.

– Lθ1∧θ2M = Lθ2M because Lθ1M = yes. Analogous.

– Lθ1∧θ2M = Lθ1M + Lθ2M. From (8) we know 6 ∃t ∈ Act∗, p′ ∈ Proc. Jθ1K / p
t

=⇒
no/ p′ and 6 ∃t ∈ Act∗, p′ ∈ Proc. Jθ2K/ p

t
=⇒ no/ p′ which imply (p, θ1) ∈ R

and (p, θ2) ∈ R as required.
θ = [α]ϑ: From definition (7), we know that

6 ∃t ∈ Act∗, p′ ∈ Proc. J[α]ϑK / p t
=⇒ no / p′. (9)

According to [2], to show that R is a satisfiability relation, we have to show

the following implication holds: p
α

=⇒ p′ implies (p′, ϑ) ∈ R. By Definition 7,
we have two sub-cases to consider:
– L[α]ϑM = yes because LϑM = yes. By Lemma 1 we know that, for any p′,

6 ∃t ∈ Act∗, p′′ ∈ Proc. yes / p′
t

=⇒ no / p′′ which, by LϑM = yes implies

(p′, ϑ) ∈ R for any p′. The implication p
α

=⇒ p′ implies (p′, ϑ) ∈ R thus
holds trivially.

– L[α]ϑM = α.JϑK. By (9) we know 6 ∃t ∈ Act∗, p′ ∈ Proc. α.JϑK / p t
=⇒ no / p′

which either implies:
– p 6 α=⇒, in which case the implication holds trivially.
– α.JϑK / p α

=⇒ JϑK / p′ where p
α

=⇒ p′ and 6 ∃t′ ∈ Act∗, p′′ ∈ Proc. JϑK /

p′
t′

=⇒ no / p′′, which by I.H., implies that for any such p′, we have
(p′, ϑ) ∈ R as the implication requires.

θ = maxX.ϑ: From definition (7), we know that

6 ∃t ∈ Act∗, p′ ∈ Proc. JmaxX.ϑK / p t
=⇒ no / p′. (10)

According to [2], to show that R is a satisfiability relation, we have to show
that (p, ϑ[maxX.ϑ/X]) ∈ R. By Definition 7, we have two sub-cases to consider:
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– LmaxX.ϑM = yes because LϑM = yes. This means that Lϑ[maxX.ϑ/X]M = yes as
well, which, by Lemma 1 implies that

6 ∃t ∈ Act∗, p′ ∈ Proc. Lϑ[maxX.ϑ/X]M / p t
=⇒ no / p′.

Hence (p, ϑ[maxX.ϑ/X]) ∈ R as required.
– LmaxX.ϑM = recx.LϑM. From (10) we obtain

6 ∃t ∈ Act∗, p′ ∈ Proc. LϑM[LmaxX.ϑM/x] / p
t

=⇒ no / p′.

Hence (p, ϑ[maxX.ϑ/X]) ∈ R as required. ut

Lemma 11 ∀π ∈ cHML, p ∈ Proc. p ∈ JπK implies acc(p, LπM)

Proof For cHML, the satisfaction relation p ∈ JπK can be characterised in standard
fashion as the least relation R satisfying the following rules:

– (p, tt) ∈ R
– (p, π1) ∈ R implies (p, π1∨π2) ∈ R
– (p, π2) ∈ R implies (p, π1∨π2) ∈ R
– p

α
=⇒ q and (q, π) ∈ R implies (p, 〈α〉π) ∈ R

– (p, π[minX.π/X]) ∈ R implies (p,minX.π) ∈ R

The required result thus follows if we show that for any π:

(p, π) ∈ R implies acc(p, LπM) (11)

The proof of property (11) can be using a proof by rule induction on the rules
characterising the relation. We here outline the proof for one of the main cases:

– Assume (p, 〈α〉π) ∈ R because

p
α
=⇒ q (12)

(q, π) ∈ R (13)

By the I.H., from (13) we know that

acc(q, LπM) (14)

Recall from Definition 7, L〈α〉πM can either be

α.LπM if LπM 6= no (15)

or no whenever LπM = no. Since LπM = no would contradict (14) (see Lemma 1),
we rule out the latter case, i.e., L〈α〉πM = no, and only consider the case (15).

Now, from (12) and (15) we can deduce that L〈α〉πM / p α
=⇒ LπM / q and, as a

result of this and of (14), we may conclude acc(p, L〈α〉πM) as required. ut

Proposition 3 (Monitorability Partial Completeness)

∀ψ ∈ mHML. cmon(LψM, ψ)

Proof Follows from Lemma 10, Lemma 11 and Definition 3. ut

Following these results, Theorem 1 follows.

Theorem 1. (Monitorability). ϕ ∈ mHML implies ϕ is monitorable.

Proof Immediate from Proposition 2 and Proposition 3. ut
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7 Expressiveness

The results obtained in Section 6 beg the question of whether mHML is the largest

monitorable subset of µHML. One way to provide an answer to this question would
be to show that, in some sense, every monitor corresponds to a formula in mHML

according to Definition 4. However, this approach quickly runs into problems since
there are monitors, such as yes + no, that make little sense from the point of view
of Definition 4.

To this end, we prove a general (and perhaps surprising) result. Theorem 2
below asserts that multi-verdict monitors are necessarily unsound, at least with
respect to properties defined over processes (as opposed to logics defined over
other domains such as traces, e.g., [18,12,22]).

Theorem 2 (Multi-verdict Monitors) For all monitors m ∈Mon(
∃t, u ∈ Act∗. m

t
=⇒ yes and m

u
=⇒ no

)
implies 6 ∃ϕ ∈ µHML. mon(m,ϕ).

Proof By contradiction. Assume that there exists a logical formula ϕ ∈ µHML

such that mon(m,ϕ). From the traces t and u, we can construct the obvious
representative processes for each trace using the construction:

Jα.tKtrc2proc = α.(JtKtrc2proc) JεKtrc2proc = nil

We can therefore also construct the process p = (JtKtrc2proc)+(JuKtrc2proc), where

clearly p
t

=⇒ nil and p
u

=⇒ nil. Using the assumptions m
t

=⇒ yes, m
u

=⇒ no and

Proposition 1 we can thus deduce both m/ p
t

=⇒ yes / nil and m/ p
u

=⇒ no / nil. We
therefore have acc(p,m) and rej(p,m), and by monitor soundness (Definition 2),
that p ∈ JϕK and p 6∈ JϕK. This is clearly a contradiction. ut

This result also implies that, in order to answer the aforementioned question
of whether for every sensible monitor m there exists a formula ϕ ∈ mHML that
corresponds to it, that is mon(m,ϕ), it suffices to focus on uni-verdict monitors
that flag either acceptances or rejections (but not both). In fact, a closer inspection
of the synthesis algorithm of Definition 7 reveals that all the monitors generated
using it are, in fact, uni-verdict.

We further restrict the set of what we deem to be sensible monitors in terms of
how verdicts are specified. In particular, since monitor verdicts are expected to be
definitive, it makes little sense to place them at the top level of an external choice,
e.g., no +m since the meaning of such verdicts is unclear. In fact, a similarly prob-
lematic monitor has already been discussed in Example 15. We therefore consider
all such monitors as ill-formed and restrict our expressivity analysis to well-formed

monitors, i.e., the complement of ill-formed monitors. It is not hard to see that the
monitors generated by Definition 7 are, in fact, all well-formed; this can be show
by a simple induction on the structure of the formula.

We partition the set of well-formed, uni-verdict monitors into the obvious
classes: acceptance monitors, AMon (using verdict yes), and rejection monitors,
RMon (using no). In what follows, we focus our technical development on one
monitor class, in the knowledge that the corresponding development for the other
class is analogous.
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Definition 8 (Rejection Expressive-Complete) A subset language L ⊆ µHML

is expressive-complete with respect to (well-formed) rejection monitors iff for all
m ∈ RMon, there exists some ϕ ∈ L such that mon(m,ϕ). �

We show that the language sHML (Definition 6) is rejection expressive-complete.
We do so with the aid of a mapping function 〈〈−〉〉 from a rejection monitor to a
corresponding formula in sHML defined below. Definition 9 is fairly straightfor-
ward, thanks to the fact that we only need to contend with a single verdict. Again,
it assumes a bijective mapping between the denumerable sets LVar and Vars (as
in the case of Definition 7). The mapping function is defined inductively on the
structure of m where we note that (i) no translation is given for the monitor yes

(since these are rejection monitors) and (ii) the base case end is mapped to formula
tt, which contrasts with the mapping used in Definition 7.

Definition 9 (Rejection Monitors to sHML Formulae)

〈〈no〉〉 def
= ff 〈〈end〉〉 def

= tt 〈〈x〉〉 def
= X

〈〈α.m〉〉 def
= [α]〈〈m〉〉 〈〈m+ n〉〉 def

= 〈〈m〉〉∧〈〈n〉〉 〈〈recx.m〉〉 def
= maxX.〈〈m〉〉

In the case of rejection monitors, RMon, the monitorability constraint, Defi-
nition 4, relating a monitor m with a formula ϕ can be simplified to the condition
below, since the respectively monitors never produce an acceptance.

∀p ∈ Proc. rej(p,m) iff p 6∈ JϕK (16)

The required result, namely Proposition 4, follows from Lemma 12, the proof
of which may be skipped upon first reading.

Lemma 12 For all rejection monitors m ∈ RMon and arbitrary process p ∈ Proc

we have rej(p,m) iff p 6∈ J〈〈m〉〉K

Proof For the only-if case we need to show that

m / p
t

=⇒ no / p′ implies p 6∈ J〈〈m〉〉K

The proof proceeds by numerical induction on l, the length of the transition se-

quence
t

=⇒ and then by induction on the structure of m. The main cases are:

l = 0: We necessarily have that m = no. By Definition 9 〈〈no〉〉 = ff from which
p 6∈ JffK = ∅ follows.

l = k + 1: We know that m / p
µ−−→ m′ / p′′

t
=⇒ no / p′. The main cases are:

m = α.n: From the structure of the monitor, we know

α.n / p
α

=⇒ n / p′′ where p
α

=⇒ p′′ (17)

n / p′′
t′

=⇒ no / p′ (18)

By (18) and I.H. we know p′′ 6∈ J〈〈n〉〉K and by p
α

=⇒ p′′ from (17) we can
conclude that p 6∈ J[α]〈〈n〉〉K = J〈〈α.n〉〉K.
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m = n1 + n2: From the structure of the monitor, we know that we have

either n1 / p
t

=⇒ no / p′ or n2 / p
t

=⇒ no / p′

If n1 / p
t

=⇒ no / p′, then by I.H. we obtain p 6∈ J〈〈n1〉〉K, which implies

p 6∈ J〈〈n1〉〉∧〈〈n2〉〉K = J〈〈n1 + n2〉〉K. The sub-case for n2 / p
t

=⇒ no / p′ is
analogous.

m = recx.n: From the structure of the monitor, we know

recx.n / p
τ

=⇒ n[recx.n/x] / p′′ where p =⇒ p′′ (19)

n[recx.n/x] / p′′
t

=⇒ no / p′ (20)

In particular, for (19), the instrumentation rules of Figure 4 prohibit process
p from performing any visible actions until at least recx.n unfolds (using a
τ -transition). From (20) and p =⇒ p′′ of (19) we can construct the transition
sequence

n[recx.n/x] / p
t

=⇒ no / p′ (21)

where (21) uses (strictly) one less transition than recx.n / p
t

=⇒ no / p′.
Hence, by the I.H. we obtain p 6∈ J〈〈n[recx.n/x]〉〉K = J〈〈n〉〉[maxX.〈〈n〉〉/X]K. Now,
by Definition 9 and 〈〈recx.n〉〉 = maxX.〈〈n〉〉, the required result follows from
the fact that JmaxX.〈〈n〉〉K = J〈〈n〉〉[maxX.〈〈n〉〉/X]K.

For the if case we need to show that

p 6∈ J〈〈m〉〉K implies m / p
t

=⇒ no / p′ for some t

We exploit the fact that our monitors are all assumed to be guarded, and prove the
above statement by induction on the structure of m and the number of consecutive
top-level recx.m constructs a monitor has. We outline the main cases below:

m = α.n: By Definition 9 we know p 6∈ J[α]〈〈n〉〉K, which implies that

p
α

=⇒ p′ for some p′ (22)

p′ 6∈ J〈〈n〉〉K (23)

By (23) and I.H. we obtain n / p′
t′

=⇒ no / p′′ for some t′, p′′. Thus by p
α

=⇒ p′

from (22) we derive α.n / p
αt′

==⇒ no / p′′ as required.
m = recx.n: By Definition 9 we know p 6∈ JmaxX.〈〈n〉〉K = J〈〈n〉〉[maxX.〈〈n〉〉/X]K. Note

that 〈〈n[recx.n/x]〉〉 = 〈〈n〉〉[maxX.〈〈n〉〉/X], and since n[recx.n/x] must have fewer top-
level consecutive rec y.− constructs than recx.n (processes and monitors are
assumed to be guarded), we can use p 6∈ J〈〈n〉〉[maxX.〈〈n〉〉/X]K and I.H. to obtain

n[recx.n/x] / p
t

=⇒ no / p′ for some t, p′. From this, we can derive recx.n / p
t

=⇒
no / p′ as required. ut

Proposition 4 sHML is Rejection Expressive-Complete.

Proof Follows from Lemma 12, (16), and the fact that the co-domain of 〈〈−〉〉 is
that of sHML formulae. ut
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Definition 10 (Acceptance Expressive-Complete) Language L ⊆ µHML is
expressive-complete with respect to acceptance monitors iff for all m ∈ AMon there
exists some ϕ ∈ L such that mon(m,ϕ). �

Proposition 5 cHML is Acceptance Expressive-Complete.

Proof The proof is analogous to that of Proposition 4. ut

Equipped with Proposition 4 and Proposition 5, it follows that mHML is ex-
pressive complete with respect to uni-verdict monitors.

Definition 11 (Expressive-Complete) L ⊆ µHML is expressive-complete with
respect to well-formed uni-verdict monitors iff for all m ∈ AMon ∪ RMon there
exists some ϕ ∈ L such that mon(m,ϕ). �

Theorem 3 mHML is Expressive-Complete.

Proof Follows immediately from Proposition 4 and Proposition 5. ut

We are now in a position to prove the result alluded to at the beginning of
this section, namely that mHML is the largest monitorable subset of µHML up
to logical equivalence, i.e., Theorem 4 to follow. First, however, we define what
we understand by language inclusion up to formula semantic equivalence, Defini-
tion 12.

Definition 12 (Language Inclusion) For all L1,L2 ∈ µHML

L1 v L2
def
= ∀ϕ1 ∈ L1. ∃ϕ2 ∈ L2 such that Jϕ1K = Jϕ2K

We also prove the following important proposition, which gives an upper bound
to the expressiveness of languages satisfying monitorability properties.

Proposition 6 For any L ⊆ µHML:

1.
(
∀ϕ ∈ L, ∃m ∈ AMon, ∀p ∈ Proc.(acc(p,m) iff p ∈ JϕK)

)
implies L v cHML.

2.
(
∀ϕ ∈ L, ∃m ∈ RMon, ∀p ∈ Proc.(rej(p,m) iff p 6∈ JϕK)

)
implies L v sHML.

Proof We prove the first clause; the second clause is analogous. Assume ϕ ∈ L. We
need to show that ∃π ∈ cHML such that JϕK = JπK. For ϕ we know that

∃m ∈ AMon.
(
∀p.(acc(p,m) iff p ∈ JϕK)

)
. (24)

By Proposition 5, for the monitor m used in (24), we also know

∃π ∈ cHML.
(
∀p.(acc(p,m) iff p ∈ JπK)

)
. (25)

Assume an arbitrary p ∈ JϕK. By (24) we obtain acc(p,m), and by (25) we obtain
p ∈ JπK. Thus JϕK ⊆ JπK. Dually, we can also reason that JπK ⊆ JϕK. ut

Theorem 4 (Completeness) If a language L ⊆ µHML is monitorable then L cannot

(semantically) express more properties than mHML, that is L v mHML.
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Proof Since L is monitorable, by Definition 5 and Definition 4 we know:

∀ϕ ∈ L. ∃m such that smon(m,ϕ) and cmon(m,ϕ) (26)

By Theorem 2, we know that every m used in (26) is uni-verdict. This means that
we can partition the formulae in L into two disjoint sets Lacc ] Lrej where:(

∀ϕ ∈ Lacc.∃m ∈ AMon. ∀p.(acc(p,m) iff p ∈ JϕK)
)

(27)(
∀ϕ ∈ Lrej. ∃m ∈ RMon.∀p.(rej(p,m) iff p 6∈ JϕK)

)
(28)

By (27), (28) and Proposition 6 we obtain Lacc v cHML and Lrej v sHML respec-
tively, from which the required result follows. ut

Theorem 2 and Theorem 4 constitute powerful results with respect to the moni-
torability of the branching-time logic µHML. Completeness, Theorem 4, guarantees
that limiting oneself to the syntactic subset mHML does not hinder the expressive

power of the specifier when formulating monitorable properties. Alternatively, one
could also determine whether a formula is monitorable by rewriting it as a logi-
cally equivalent formula in mHML. This would enable a verification framework to
decide whether to check for a µHML property at runtime, or resort to more ex-
pressive (but expensive means) otherwise. Whenever the property is monitorable,
Theorem 2 guarantees that a uni-verdict monitor is the best monitor that we can
synthesise. This is important since multi-verdict monitor constructions, such as
those in [12], generally carry higher overheads than uni-verdict monitors.

Example 17 By virtue of Theorem 4, we can conclude that properties ϕ1, ϕ2, ϕ3,
ϕ5 and ϕ6 from Example 3 are all non-monitorable properties according to Defini-
tion 5, since no logically equivalent formulae in mHML exist. Arguably, the problem
of establishing logical equivalence through syntactic manipulation of formulae is
easier to determine and automate, when compared to direct reasoning about the
semantic definitions of monitorability and those of the respectively properties; re-
call that Definition 5 (Monitorability) — through Definition 2 and Definition 3
— universally quantifies over all processes, which generally poses problems for
automation.

For instance, in the case of ϕ1, we could use Theorem 2 to substantially reduce
the search space of our witness monitor to the uni-verdict ones, but this still leaves
us with a lot of work to do. Specifically, we can reason that the witness cannot be
an acceptance monitor, since it would need to accept process nil, which implies that
it must erroneously also accept the process cls.nil (using reasoning similar to that
used in Example 11). It is less straightforward to argue that the witness cannot

be a rejection monitor either. We argue towards a contradiction by assuming that
such a monitor exists. Since it is violation-complete (Definition 3) it should reject
the process req.nil + cls.nil since this process does not satisfy ϕ1: by Proposition 1
we know that it can do so along either of the traces ε, req or cls. If it rejects it
along ε, then it also rejects the satisfying process nil; if it rejects along trace req,
it also rejects the satisfying process req.ans.nil; finally, if it rejects it along cls, it
must also reject the satisfying process req.ans.nil + cls.nil. Thus, the monitor must
be unsound, meaning that it cannot be a rejection monitor. �
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8 Conclusion

We have investigated monitorability aspects of a branching-time logic called µHML,
a reformulation of the modal µ-calculus that is regarded as one of the most expres-
sive temporal logics [29,30] for graph-based system descriptions (such as LTSs).
More specifically, we identified a syntactic subset of this logic, Definition 6, that is
the largest monitorable subset in terms of semantic expressivity, Theorem 1 and
Theorem 4. We conjecture that our results and methodologies are applicable, at
least in part, to other logical specifications that are not necessarily bespoke for
RV, thereby extending the utility of the verification technique to a wider class
of program logics. Our methods for delineating monitorable logical subsets can
also be useful as a foundation for establishing guiding principles when apportion-
ing verification across the pre-deployment and post-deployment phases of software
development [4,20].

Future Work: The results obtained in this work are cast with respect to a specific
definition of monitorability, Definition 5, which relies on a particular set of require-
ments for adequate monitoring, Definition 4. However, there are arguably other
valid notions of adequate monitoring, depending the application targeted, and it
is worth exploring how such alternative definitions for monitorability affect the
monitorable subset of µHML identified in this work. For instance, one could relax
the conditions of Definition 4 by only requiring soundness (Definition 2), or require
more stringent conditions with respect to verdicts and monitor non-determinism;
see [26] for a practical motivation of this.

Monitorability is, in turn, largely dependent on the underlying monitoring
setup and instrumentation relation. Potentially, there are other sensible relations
apart from the one defined in Figure 4 that are worth considering and it would be
interesting to investigate whether this impacts on the monitorable logical subset
identified in this work.

In a parallel line of research, we intend to investigate manipulation techniques
that decompose formulae into monitorable components as proposed in [20]. For
instance, reformulating a generic µHML formula ϕ as the disjunction φ∨$ (recall
that $ ∈ cHML) could allow for a combined verification approach where $ can
be adequately verified at runtime using an automatically synthesised dedicated
monitor, L$M, whereas the remainder formula φ can be verified using traditional
techniques such as model checking.

Related Work: We are not the first to address the issue of monitorability in specifi-
cation logics. In [34], a notion of monitorability is defined for formulae defined over

traces (e.g., LTL) whenever the formula semantics does not contain ugly prefixes;
an ugly prefix is a trace from which no finite extension will ever lead to a conclusive
verdict. They however do not investigate any maximally expressive monitorable
subset of the logic. The closest result in this regard is that found in [18]: the au-
thors identify an LTL subset for which satisfactions are backed up by derivations in
a sound proof system for the logic, and subsequently show how a monitoring algo-
rithm can be automated to infer such proof derivations. They however do not show
whether this subset is in some sense maximal in terms of monitorability. Falcone
et al. [22] revisit the monitorability definition of [34], and extend it to the Safety-
Progress property classification, while proposing an alternative definition in terms
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of the structure of the recognising Streett Automata of the respectively property.
Although our definition is cast within a different setting (a logic over processes),
and has a distinct operational flavour in terms of monitored system executions, it
is certainly worthwhile to try to reconcile these different definitions. For instance,
in some sense, one can see sHML (respectively cHML) as characterising the set
of processes that generate prefix-closed (respectively suffix closed) languages. We
however anticipate such a reconciliation effort to be non-trivial, partly due to the
difference in the technical machinery used by the respective bodies of work.

The logic µHML has been previously studied from a linear-time perspective in
[2,16], in order to find subsets that characterise may/must testing equivalences.
Tests are different from the monitors used in our study (e.g., they actively inter-
act with the system under scrutiny) and the composition relation between tests
and systems is distinctly different from the our monitor instrumentation relation.
Moreover, their notion of successful computations is disparate from our definition
of acceptances and rejections (e.g., in a testing setup, success may be revoked
and computations are anonimised, whereas in monitored executions detections are
persistent and may be distinguished by their visible trace of actions); see [23] for
a more detailed comparison. Interestingly however, the logic subset identified in
[2] is related to mHML; in fact the testable subset with respect to may testing
coincides with sHML.

Subsets of the logic µHML have already been used to develop RV tools for
checking the behaviour of reactive systems. In [26], the monitorable subset sHML

was used to specify safety properties of concurrent Erlang programs. For this
logical subset, a monitor synthesis algorithm is defined that generates decentralised
monitor arrangements that check for property violations in a concurrent fashion.
Based on the work presented in this paper, the tool was then extended to the full
monitorable subset in [6], so as to include cHML specifications and acceptance
verdicts. In recent work [15,14], the sub-logic sHML has been extended into a
form of domain specific language so as to specify adaptation procedures to be
taken by the monitor once a violation is detected, thereby mitigating program
errors at runtime.

The instrumentation relation used in this work has been investigated further
in [23], where it is used to define a number of contextual refinement preorders for
monitors that share a similar structure to the ones employed in our study. The work
subsequently develops compositional reasoning techniques for the preorders based
on our instrumentation relation. In relation to our work, the monitor refinement
relations of [23] can be used to compare alternative monitor synthesis procedures
such as ours and that of [26] for the monitorable logical subsets identified.
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