
Investigating Instrumentation Techniques for ESB
Runtime Verification?

Christian Colombo1, Gabriel Dimech2, and Adrian Francalanza1

1 Department of Computer Science, University of Malta
2 Ricston Ltd., Malta

christian.colombo@um.edu.mt, gabriel.dimech@ricston.com,
adrian.francalanza@um.edu.mt

Abstract. Enterprise Service Buses (ESBs) are highly-dynamic component plat-
forms that are hard to test for correctness because their connected components
may not necessarily be present prior to deployment. Runtime Verification (RV)
is a potential solution towards ascertaining correctness of an ESB, by checking
the ESB’s execution at runtime, and detecting any deviations from the expected
behaviour. A crucial aspect impinging upon the feasibility of this verification ap-
proach is the runtime overheads introduced, which may have adverse effects on
the execution of the ESB system being monitored. In turn, one factor that bears a
major effect on such overheads is the instrumentation mechanism adopted by the
RV setup. In this paper we identify three likely (but substantially different) ESB
instrumentation mechanisms, detail their implementation over a widely-used ESB
platform, assess them qualitatively, and empirically evaluate the runtime over-
heads introduced by these mechanisms.

1 Introduction

Enterprise Service Buses (ESBs) [4] are software platforms used to streamline the com-
munication across various components within an enterprise, ranging from legacy sys-
tems, locally housed databases, third-party off-the-shelf applications, to cloud services.
They abstract away from complications associated with differing communication pro-
tocols/data formats and component distributions, by providing a message-oriented mid-
dleware that handles the necessary format translations and message routing. This en-
ables the enterprise administrator to organise these components into a Service-Oriented
Architecture (SOA) [17, 15] where one can focus on the enterprise application logic.

Despite their merits, component systems running on ESBs are still hard to build
correctly. ESBs are inherently dynamic so as to handle the changing needs of an en-
terprise over an uninterrupted period of operation. For instance, new components may
be added at runtime, others may be disconnected or replaced, or even duplicated so as
to improve aspects such as throughput and fault-tolerance. This dynamicity has a rip-
ple effect on the internal workings of the resp. middleware, whereby the destination
of messages may need to be determined at runtime. Moreover, ESB communication is

? The research work disclosed in this publication is partially funded by the Master it! Scholar-
ship Scheme (Malta).



2 C. Colombo, G. Dimech and A. Francalanza

intrinsically asynchronous so as to make the architecture scalable; this means that one
has also to contend with message reordering, which introduces another layer of un-
predictability. These aspects substantially diminish the effectiveness of commonly used
pre-deployment techniques for ascertaining correctness, e.g., testing and static analysis.

Runtime Verification (RV) [11] is a technique that allows a system to be verified
post-deployment: using software entities called monitors, it analyses system runtime
events and checks whether they adhere to (or violate) a predefined correctness speci-
fication. Since checks are performed at runtime, RV may potentially use information
that is not necessarily known before execution commences, such as the components
currently connected to the ESB, the resp. execution interleaving of these (concurrent)
components, and the order of messages received (together with their resp. payloads).
This allows the analysis to be more precise and tractable, thereby circumventing the
limitations of the pre-deployment verification techniques discussed above.

A determining criteria for whether such a verification technique is feasible in prac-
tice is the level ofruntime overheads induced by the RV setup, which should be kept
below some acceptable threshold. More specifically, the runtime checks carried out by
the monitors, together with the additional machinery required to extract and report the
system events of interest, has a computational burden on the execution of the system
being analysed in terms of the additional computational resources required; this typi-
cally results in performance degradation of the system itself, once it starts competing
with the RV setup over scarce resources.

Instrumentation — the mechanism by which the monitors are hooked on to the sys-
tem so as to extract events and analyse them — is a fundamental ingredient of any RV
setup, affecting aspects such as the observability of system events and the maintainabil-
ity of the setup. Importantly, instrumentation can usually be introduced in a variety of
ways, each carrying varying effects on the level of overheads induced. The choice of
an appropriate instrumentation strategy for RV does not, however, depend solely on the
induced overheads. In this paper, we focus on the following instrumentation criteria:

Efficiency [16] Instrumenting software naturally introduces an overhead in two re-
spects: the amount of extra resources used, and the extent to which this impacts the
user experience, e.g., longer response time. Although resource consumption, by it-
self, may not lead directly to service degradation (namely due to the availability
of excess resources), it is generally still interesting to measure resource consump-
tion for the eventuality of an increase of load on the system. In the context of RV,
instrumentation efficiency affects directly runtime overheads of the technique.

Level of abstraction [12, 13] Choosing the right level of abstraction dictates how un-
derstandable and easy it is to express the instrumentation points of interest. In gen-
eral, lower abstraction levels give better access to the internals of the system, at the
expense of usability and maintainability, since it requires an understanding of how
the system works at that level of abstraction. Since RV relies on the user to specify
points of interest, selecting a level of abstraction familiar to the user affects the
usability of the RV framework.

Expressiveness [13] (flexibility in [12]) The instrumentation (join)points available —
sub-classified into structural (e.g., a method or a class variable) and temporal (e.g.,
before the method is called or after the method returns) — affect what can be ob-



Instrumentation Techniques for ESB Runtime Verification 3

served. In the case of layered architectures such as ESBs, this is (in part) linked to
the abstraction level chosen, since the points of interest available at a lower level
may have no corresponding point of interest at a higher level. Expressiveness may
inhibit the possibility of certain checks being carried out at runtime.

Coupling (combining/extending flexibility [16] and portability [12]) The level of
coupling refers to the bond between the weaving mechanism and the system being
weaved. This has implications on maintainability (e.g., whether the weaving mech-
anism can be changed without affecting the system, or whether the system requires
recompilation upon instrumentation modification) and reusability (e.g., whether the
same weaving approach can be applied to other systems). In dynamic RV settings,
this affects whether correctness criteria may be feasibly altered at runtime.

Finding the right balance across these criteria is not an easy task as some of them
are in direct conflict. In the context of this work targetting RV setups for ESBs, we
assume that efficiency is given a higher priority than the other criteria and it is down
to the RV specifier to leverage a balance between the other criteria so as to attain ade-
quate levels of overhead. In Section 2 we present three RV instrumentation alternatives
for ESBs and evaluate their resp. advantages wrt. the software instrumentation crite-
ria above. Through a series of empirical investigations over a typical ESB case study,
in Section 3 we analyse the resp. runtime overheads introduced by each of the instru-
mentation methods identified in Section 2, and compare gains and losses wrt. the other
instrumentation criteria. Our findings may thus be used as a guiding principle by an RV
instrumentor when leveraging a feasible RV setup over any ESB setting.

2 Design

There are various ESB solutions used in industry [2, 18, 20, 9] all sharing similar ar-
chitectures and core concepts [4]. Our study focusses on one of the open source solu-
tions, namely Mule ESB, with a considerable market share (i.e., 16% [8]). Mule ESB
is organised over three layers: (1) a domain-specific language (DSL) layer (configura-
tion layer), which allows users to connect remote components via (XML) configuration
scripts [7]; (2) a Java source code layer which is compiled from the XML specification,
and thirdly, (3) a layer of protocols (e.g., HTTP) over which components communicate.
These layers present various options for choosing an instrumentation strategy. In this
study, we consider one strategy per layer, and evaluate them against the backdrop of the
criteria presented in the Introduction.

Configuration layer strategy. This is the level of abstraction a typical Mule user is ac-
customed to, since the events exposed are the high level events expressed within the
application specification. These are then instrumented as shown in Figure 1(a) by a cus-
tom XML weaver, generating an ESB configuration which, once compiled, intercepts
relevant events and relays them to a dedicated verifier component (see Figure 2(left)).
This strategy induces a high level of coupling: modifying the application configura-
tion (which is expected to happen regularly, e.g., update the components connected or
adding new features to the ESB) requires re-weaving, i.e., the process shown in Fig-
ure 1(a) would have to be repeated.



4 C. Colombo, G. Dimech and A. Francalanza

Modified XML

XML configuration

Event list

XML
Weaver

(a) Weaving the ESB XML specification

AspectJ

Event list
Weaver

Mule ESB Java

Modified Mule ESB

(b) Weaving the ESB Java implementation

Proxy
Generator

ProxyEvent list

(c) Generating the proxy

Fig. 1: The three approaches of generating weavers

Runtime verifier

. . .

Component A

Component Z

Weaved

ESB
User−Configured Proxy

Runtime verifier

User−Configured 
ESB

. . .

Component A

Component Z

Fig. 2: Event interception through XML and Java weaving (left), proxy (right)

Source layer strategy. The Mule ESB is implemented in Java and this strategy exposes
all the internal workings of the ESB. As a result, it provides the highest level of ex-
pressivity amongst the three approaches. The flip-side of this is that the RV specifier
requires knowledge of how the ESB is implemented at source level, something a reg-
ular ESB user may not have. An important consideration is that this instrumentation
strategy is not affected by changes in the application configuration (i.e., the instrumen-
tation process depicted in Figure 1(b) does not involve XML configurations); rather,
instrumentation is affected by software updates to the ESB implementation. However,
ESB software updates occur less frequently than application reconfigurations.

Protocol layer strategy. This strategy intercepts system events as communication mes-
sages on the bus, and thus sits at a higher abstraction level than the other approaches3.
Instrumentation can even be implemented as a proxy (see Figure 1(c)), leaving the ap-
plication configuration or the ESB implementation unaffected, thus requiring the lowest
level of coupling. The price paid for this autonomy is expressivity: limiting intercep-

3 As the communication mechanism is itself layered, there are a number of levels of abstraction
possible. However, we choose to work at the most abstract level possible, i.e., Mule messages.



Instrumentation Techniques for ESB Runtime Verification 5

Abstraction Expressivity Low coupling
Configuration Layer ∼ ∼ ↓

Source Layer ↓ ↑ ∼

Protocol Layer ↑ ↓ ↑

Table 1: Comparing strategies: good (↑), bad (↓), and in-between (∼).

tions to communication messages means that internal states/events may not be visible
from this abstraction level. From the specifier’s perspective, identifying events of inter-
est is similar to the configuration layer strategy where one specifies inbound/outbound
endpoints whose messages should be reported to the monitor. The only difference is
that internal component events are not available from this external perspective. To avoid
programming the proxy manually, we chose to automatically generate a proxy from the
specified events (as shown in Figure 1(c)) which is able to intercept and relay relevant
events at runtime (see Figure 2(right)).

Table 1 summarises the characteristics of the three strategies thus far. Each strategy
has its strengths and weaknesses, reflecting the trade-offs discussed above. Note that we
do not give a verdict on the efficiency aspect of the resp. instrumentation techniques at
this stage; this is investigated in more depth in the next section.

3 Performance Evaluation

The instrumentation strategies of Section 2 exhibit different characteristics that affect
the type of properties monitored and their resp. ease of monitoring. For instance, certain
properties cannot be monitored at certain levels of abstraction, whereas a verification
technology that is not Java-based would disadvantage instrumentation strategies that are
close to the Mule source implementation. In what follows, we normalise these differ-
ences (e.g., by limiting our experiments to properties referring to events expressible in
any instrumentation strategy) and focus on various quantitative measures for assessing
the overheads introduced by each strategy.

3.1 Case Study

We employ a third-party, medium-sized ESB application4 that was not purposely built
with our experiments in mind, but for which various loads could be applied. The ap-
plication listens for changes made in the ‘Opportunities’ table within a cloud-based
service (Salesforce Customer Relationship Management (CRM) [6]). Each time this ta-
ble is updated, the ESB is notified and triggers a request to retrieve the full details of the
update via a web service request. Subsequently, the ESB transforms the received data
into canonical format and routes the message based on its content: If the opportunity is
‘Won’, the message is routed to an external Business Process Management (BPM) ap-
plication, Activity Workflow Engine, which will allow the account manager to approve

4 https://github.com/jdeoliveira/esb-bpm-example



6 C. Colombo, G. Dimech and A. Francalanza

(a) CPU Usage (b) Memory Usage

(c) Message Latency (d) Message Throughput

Fig. 3: ESB performance metrics

the opportunity. If the opportunity is ‘Lost’, then the BPM process is not invoked but
persisted either in database or file system depending on the postal address.

The expected (correct) behaviour described above was formalised in terms of a fi-
nite state machine and we used RV to ensure that the ESB behaviour complies to the
specification, e.g., ensuring that a ‘Won’ opportunity is followed by a corresponding
valid message. To this end, first, we used message timestamps to determine the order
in which messages were sent out. Secondly, we used message contents to identify the
kind of message and verify that it is handled accordingly.

3.2 Results

Runtime overheads introduced by RV tools are typically measured in terms of the addi-
tional CPU and memory used by the resp. monitored system; see [1]. CPU and memory
usage statistics for varying request loads are reported in the top row of Figure 3, for both
the base-line (unmonitored system) and the resp. instrumentation strategies presented



Instrumentation Techniques for ESB Runtime Verification 7

in Section 2. Whilst CPU and memory usage trends give insight into the performance
of the system, we also calculated overheads in terms of message latency and message
throughput as these are more indicative of the service deterioration experienced by the
end users in asynchronous, message-based component systems. The results are reported
in the bottom row of Figure 3.

Every measure attests that ESB Source Layer instrumentation yields the lowest
overheads. Whereas, in the case of CPU usage, these overheads seem marginally better
than the Protocol Layer instrumentation, a major discrepancy can be observed between
the Source Layer instrumentation and the other strategies in the case of memory con-
sumption; in fact, the memory consumed by the former instrumentation is remarkably
close to that of the baseline. These results are also confirmed by the bottom graphs of
Figure 3: for both message latency and throughput there is a pronounced discrepancy
between Source Layer instrumentation overheads and the overheads introduced by other
instrumentation strategies. We also note, however, that in every case the Protocol Layer
instrumentation performs better than the Configuration Layer instrumentation.

Although Source Layer instrumentation yields the lowest overheads, it is by no
means a silver bullet. As summarised in Table 1, adequate installation requires suffi-
cient knowledge of the source-level ESB implementation; this level of expertise cannot
usually be expected from ESB administrators, who are mainly concerned with opera-
tions at the business logic tier and thus mainly operate in terms of XML configuration
scripts. Source Layer instrumentation may also pose maintenance problems when new
Mule implementation updates are installed, which may affect the definition of the cor-
rectness specifications being monitored for that rely on state variables and methods
from the previous implementation; in Table 1 this is summarised as medium coupling.
In cases where the specifier does not possess adequate knowledge of the ESB imple-
mentation internals, and the properties to be monitored for can be suitably expressed,
Protocol Layer instrumentation may constitute a good compromise amongst the various
strategies. Although the overheads introduced are higher, its low coupling also means
that the system instrumented with the resp. RV setup would be easier to maintain.

4 Conclusion

We have identified and studied three potential instrumentation strategies that may be
adopted when setting up an RV framework over ESBs. Our contributions are:

– We provide a proof-of-concept implementation for each instrumentation method
over Mule [7], an industry-strength ESB distribution.

– We evaluate each instrumentation method wrt. a series of criteria typically applied
to evaluate software instrumentation (see Table 1).

– We asses the overheads introduced by each method, in terms of system perfor-
mance, Figure 3.

Related Work: We are aware of two main bodies of work which apply runtime verifica-
tion to ESBs. Psiuk et al. [17] propose an RV framework for ESB systems implemented
using the JBI specification (e.g., ServiceMix and OpenESB) using AspectJ as instru-
mentation, while Kruger et al. [10] apply runtime verification to a Mule ESB using



8 C. Colombo, G. Dimech and A. Francalanza

Spring AOP. In both cases, the focus was not performance or the choice of the instru-
mentation approach but rather the design of the architecture, from the specification of
the properties, to monitor synthesis, to instrumentation, and effective monitoring.

Future Work: Due to the inherent nature of ESBs, the instrumentation used in our study
is asynchronous [14, 19, 3], where the execution of the individual ESB components gen-
erating the events is independent to that of the monitor. Although asynchronous moni-
toring yields lower overheads than its synchronous counterpart [3], it may result in late
detections. It is worth investigating the applicability of hybrid techniques such as [5,
3] over ESBs so as to attain timely detections. Independently to this, it is worthwhile
verifying whether the results obtained in our study can be replicated over (i) other ESB
implementations other than Mule (ii) other ESB case-studies.

References
1. 1st international competition of software for runtime verification.
http://rv2014.imag.fr/monitoring-competition (2014)

2. Barnett, M., Schulte, W.: Spying on Components: A runtime Verification Technique. In:
SAVCBS. pp. 7–13. OOPSLA (2001)

3. Cassar, I., Francalanza, A.: On Synchronous and Asynchronous Monitor Instrumentation for
Actor-based Systems. In: FOCLASA. EPTCS, vol. 175, pp. 54–68 (2014)

4. Chappell, D.A.: Enterprise Service Bus: Theory in Practice. O’Reilly Media (2004)
5. Colombo, C., Pace, G.J.: Fast-forward runtime monitoring - an industrial case study. In: RV.

LNCS, vol. 7687, pp. 214–228. Springer (2012)
6. Cusumano, M.: Cloud computing and SaaS as new computing platforms. Communications

of the ACM 53(4), 27–29 (2010)
7. Dossot, David D’Emic, J., Romero, V.: Mule in Action. Manning Publications Co. (2014)
8. Gopal, J., more: Guide To Enterprise Integration. http://www.dzone.com/research/guide-to-

enterprise-integration (2014)
9. Ibsen, C., Anstey, J.: Camel in Action. Manning Publications Co. (2010)

10. Krüger, I.H., Meisinger, M., Menarini, M.: Interaction-Based Runtime Verification for Sys-
tems of Systems Integration. J. Log. Comput. 20(3), 725–742 (2010)

11. Leucker, M., Schallhart, C.: A Brief Account of Runtime Verification. JLAP 78(5), 293–303
(2009)

12. Mahrenholz, D., Spinczyk, O., Schroder-Preikschat, W.: Program instrumentation for debug-
ging and monitoring with AspectC++. In: ISORC. pp. 249–256 (2002)

13. Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: Disl: a domain-specific
language for bytecode instrumentation. In: AOSD. pp. 239–250. ACM (2012)

14. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP runtime
verification framework. STTT (2011)

15. Papazoglou, M., van den Heuvel, W.J.: Service Oriented Architectures: Approaches, Tech-
nologies and Research Issues. VLDB 16(3), 389–415 (2007)

16. Popovici, A., Alonso, G., Gross, T.: Just-in-time aspects: Efficient dynamic weaving for java.
In: AOSD. pp. 100–109. ACM (2003)

17. Psiuk, M., Bujok, T., Zielinski, K.: Enterprise Service Bus Monitoring Framework for SOA
Systems. IEEE Transactions on Services Computing 5(3), 450–466 (2012)

18. Rademakers, T., Dirksen, J.: Open-Source ESBs in Action. Manning Publications Co. (2008)
19. Roşu, G., Havelund, K.: Rewriting-Based Techniques for Runtime Verification. ASE 12(2),

151–197 (2005)
20. Siriwardena, P.: Enterprise Integration with WSO2 ESB. Packt Publishing Ltd (2013)


