
An LTL Proof System for Runtime Verification

Clare Cini1 and Adrian Francalanza1

Computer Science, ICT, University of Malta
{clare.cini.08,adrian.francalanza}@um.edu.mt

Abstract. We propose a local proof system for LTL formalising de-
ductions within the constraints of Runtime Verification (RV), and show
how such a system can be used as a basis for the construction of online
runtime monitors. Novel soundness and completeness results are proven
for this system. We also prove decidability and incrementality proper-
ties for a monitoring algorithm constructed from it. Finally, we relate its
expressivity to existing symbolic analysis techniques used in RV.

1 Introduction

Runtime verification (RV) is a lightweight verification technique that checks
whether the current execution of a system under scrutiny satisfies or violates
a given correctness property. It has its origins in model checking, as a more
scalable (yet still formal) approach to program verification where state explosion
problems (which are part and parcel of model checking) are mitigated [LS09].
Linear Temporal Logic, (LTL) [Pnu77] is prevalently used for formal expositions
of RV [Gei01,SRA04,BLS07,BLS10,BLS11,BF12], because it has a pleasingly
straightforward definition over strings, denoting execution traces.

Proof systems [Bus98,TS00] embody mechanical syntactic deductions sim-
ilar to those made by monitors in RV. We propose a proof system for LTL
attuned to the constraints of an RV setting, and show how it can be used as a
basis for monitor construction. Although deductive systems for LTL exist, e.g.,
[MP91,KI11,BL08] they are geared towards reasoning about the full statespace
of a system. By contrast, our proof system is local [SW91] focussing on check-
ing whether a specific point lies within a property set, instead of interpreting a
formula wrt. a set of points; this mirrors closely the runtime analysis in RV.

RV settings pose further constraints on our symbolic analysis. In online set-
tings, deductions are often performed on the partial traces generated thus far,
while the program is still executing. This has two important consequences: (a)
conclusive deductions must be consistent with any extension leading to a com-
plete trace (b) in order to keep RV overheads low, inconclusive deductions must
reusable, and contribute to deductions of subsequent extensions i.e., the analy-
sis must be incremental. In addition, monitors for partial traces typically reason
about trace satisfactions, but also trace violations [BLS11,BLS10] so as to deter-
mine good/bad prefixes [KYV01]. Accordingly, proof system deductions should
reason directly about both satisfactions and violations. Moreover, timely de-
tections often require synchronous monitor instrumentation where monitored

system execute in lock-step with the respective monitor, producing a trace event
and waiting for the monitor to terminate its (incremental) analysis before execut-
ing further. Thus, in order for such an instrumentation to be safe, it is important
to ensure that incremental deductions are decidable.

We formally compare our system with other LTL symbolic techniques used
in RV. In particular we consider Geilen’s work [Gei01], based on informative pre-
fixes [KYV01], as well as Sen et al.’s work [SRA04] which is based on derivatives
[HR01]. Apart from enabling a better understanding of each approach, facilitat-
ing comparisons between seemingly different formalisations, this study enables
cross fertilisation of techniques from one formalisation to the other.

The paper is structured as follows. After introducing the logic, §2, we present
our proof system in §3. §4 presents the associated monitor algorithm. §5 details
formal comparisons with other symbolic analyses and §6 concludes.

2 The Logic: An LTL Primer

Syntax. Fig. 1 defines the core syntax of LTL as used in [BLS11,EFH+03], pa-
rameterised by a set of predicates p ∈ Pred. It consists of two base cases, i.e., the
true formula, tt, and a predicate formula, p, standard negation and conjunction
constructors, ¬ψ and ψ1 ∧ ψ2, and the characteristic next and until formulas,
Xψ and ψ1 U ψ2 resp. Other studies of LTL (e.g., [Gei01,BL08]) prefer to work
with formulas in negation normal form (nnf), where negations are pushed to the
leaves of a formula. To accommodate this, we also consider an extended LTL
syntax in Fig. 1, that also includes base formulas for falsity, ff, and constructors
such as disjunctions, ϕ1 ∨ϕ2, and release formulas, ϕ1 R ϕ2. Our extended syn-
tax also employs an extended predicate notation that includes co-predicates, i.e.,
for any predicate1 p = S ⊆ Σ, its co-predicate, denoted as p, represents its dual
and is defined as Σ \ S. This allows us to eliminate negations from normalised
formulas; because of this we sometimes refer to an nnf formula as negation-free.
Fig. 1 also defines a translation function, 〈−〉 :: LTL→ eLtl from formulas of
the core LTL to a negation-free formula in the extended syntax.

Model. The logic semantics is also given in Fig. 1. It assumes an alphabet, Σ
(with element variables σ), over which predicates are defined, p :: Σ → Bool.
As in other RV studies [Gei01,SRA04,BLS11], the logic is defined over infinite
strings, s ∈ Σω; finite strings over the same alphabet are denoted by the variable
t ∈ Σ∗. A string with element σ at its head is denoted as σs (resp. σt). For
indexes i, j ∈ Nat, si denotes the ith element in the string (starting from index
0) and [s]i denotes the suffix of s starting at index i; note that for any s, [s]0 = s.
Infinite strings with a regular (finite) pattern t are sometimes denoted as t∗,
whereas the shorthand t . . . represents infinite strings with a (finite) prefix t.

Semantics. The denotational semantic function J−K :: eLtl → P(Σω) is de-
fined by induction over the structure of LTL formulas; in Fig. 1 we define the

1 Predicates are sometimes denoted as sets over Σ.

Core LTL Syntax

ψ ∈ LTL ::= tt | p | ¬ψ | ψ1 ∧ ψ2 | Xψ | ψ1 U ψ2

Extended LTL Syntax

ϕ ∈ eLtl ::= tt | p | ϕ1 ∧ ϕ2 | ϕ1 U ϕ2 | Xϕ | ¬ϕ
| ff | p | ϕ1 ∨ ϕ2 | ϕ1 R ϕ2

Formula Translation (Normalisation)

〈tt〉 def
= tt 〈¬tt〉 def

= ff 〈p〉 def
= p 〈¬p〉 def

= p

〈Xψ〉 def
= X〈ψ〉 〈¬Xψ〉 def

= X〈¬ψ〉 〈¬¬ψ〉 def
= 〈ψ〉

〈ψ1 ∧ ψ2〉
def
= 〈ψ1〉 ∧ 〈ψ2〉 〈¬

(
ψ1 ∧ ψ2

)
〉 def

= 〈¬ψ1〉 ∨ 〈¬ψ2〉

〈ψ1 U ψ2〉
def
= 〈ψ1〉 U 〈ψ2〉 〈¬

(
ψ1 U ψ2

)
〉 def

= 〈¬ψ1〉 R 〈¬ψ2〉

Semantics

JttK def
= Σω JffK def

= ∅
JpK def

= {s | p(s0)} JpK def
= {s | not p(s0)}

Jϕ1 ∧ ϕ2K
def
= Jϕ1K ∩ Jϕ1K Jϕ1 ∨ ϕ2K

def
= Jϕ1K ∪ Jϕ1K

JXψK def
=
{
s | [s]1 ∈ JψK

}
J¬ϕK def

=
(
Σω
)
\ JϕK

Jϕ1 U ϕ2K
def
=
{
s | ∃j such that [s]j ∈ Jϕ2K and (i < j implies [s]i ∈ Jϕ1K)

}
Jϕ1 R ϕ2K

def
=
{
s | ∀j we have

(
[s]j ∈ Jϕ2K or (∃i < j such that [s]i ∈ Jϕ1K)

)}
Fig. 1. Linear Temporal Logic Syntax and Semantics

semantics for the extended LTL syntax (of which the core syntax is a subset).
Most cases are standard. For instance, JttK (resp. JffK) returns the universal
(resp. empty) set of strings, J¬ϕK returns the dual of JϕK, whereas Jϕ1 ∧ ϕ2K
(resp. Jϕ1 ∨ ϕ2K) denotes the intersection (resp. union) of the meaning of its
subformulas, Jϕ1K and Jϕ2K. The meaning of JpK (resp. JpK) contains all strings
whose first element satisfies the predicate p (resp. p). The temporal formulas
are more involving. The denotation of JXϕK contains all strings whose immedi-
ate suffix (i.e., at index 1) is included in JψK. Until formulas Jϕ1 U ϕ2K contain all
strings that contain a suffix (at some index j) satisfying Jψ2K, and all the suffixes
preceding j satisfy Jψ1K. Finally, release formulas, ϕ1 R ϕ2 contain strings whose
suffixes always satisfy ϕ2, as well as strings that contain a suffix satisfying both
ϕ1 and ϕ2 and all the preceding suffixes satisfying ϕ2.

The denotational semantics allows us to observe the duality between the for-
mulas tt, ϕ1 ∧ ϕ2 and ψ1 U ψ2, and their counterparts ff, ϕ1 ∨ ϕ2 and ψ1 R ψ2.
It also helps us understand the mechanics of the translation function, push-
ing negation to the leaves of a formula using negation propagation identities
(e.g., DeMorgan’s law), converting constructors to their dual constructor; at the
leaves the function then performs direct translations from tt and p to ff and p

resp. The semantics also allows us to prove Prop. 1, justifying the use of a corre-
sponding negation-free formula instead of a core LTL formula, in order to reason
exclusively in terms of positive interpretations. It states that (i) the translation
function is total (otherwise the equality cannot be determined) but also that (ii)
the translated formula preserves the semantic meaning of the original formula.

Proposition 1. For any ψ ∈ LTL, JψK = J〈ψ〉K

Example 1. The behaviour of a traffic-light system may be described by observ-
ing its states consisting of green, g, orange, o, and red, r. Complete executions
may thus be represented as traces (strings) over the alphabet Σ = {g, o, r}. Pred-
icate definitions may be defined as sets over this alphabet Σ e.g., st = {o, r} is
true for stopping actions o and r; singleton-set predicates are denoted by single-
letter names e.g., g = {g}. We can specify the following properties:

– (¬r) ∧ Xr describes a trace where the system is not in a red state initially,
but turns red at the next instant. e.g., gr . . . or or . . .;

– g U o describes traces that eventually switch to the orange state from a
green state e.g., go . . . or gggo . . .;

– G st, i.e., always st, which is shorthand for ¬(tt U ¬st), describes traces that
contain only stopping states, e.g., strings of the form (or)∗ or r∗.

To determine whether r∗ ∈ JG stK, we can use J¬(tt U ¬st)K for which we
would need to calculate Jtt U ¬stK and then take its dual. Alternatively, we
can calculate the denotation of 〈¬(tt U ¬st)〉, which translates to ff R st, and
check inclusion wrt. the translated negation-free formula, safe in the knowledge
that J¬(tt U ¬st)K = Jff R stK. Using similar reasoning, to determine whether
r . . . 6∈ J(¬r) ∧ XrK, we can check whether r . . . ∈ Jr ∨ XrK holds. �

3 An Online Monitoring Proof System

Online2 runtime verification of LTL properties consist in determining whether
the current execution satisfies (or violates) a property from the trace generated
thus far. We present a local proof system [SW91,BS92] that characterises such
runtime analysis, and allows us to determine whether any (complete) trace ts
with finite prefix t is included in (or excluded from) JϕK. The proof system is
defined as the least relation satisfying the rules in Fig. 2. These rules employ
two, mutually dependent, judgements: the sequent t `+ ϕ denotes a satisfaction
judgement, whereas t `− ψ denotes a violation judgement; note the polarity
differentiating the two judgements, i.e., + and −.

Fig. 2 includes three satisfaction axioms (pTru, pPrd and pCoP) and three
violation axioms (nFls, nPrd and nCoP); the system is parametric wrt. the
pre-computation of predicates and co-predicates, p and p. The conjunction and
disjunction rules, pAnd, pOr1 and pOr2 (resp. nAnd1, nAnd2 and nOr) de-
compose the composite formula of the judgement for their premises. The negation

2 By contrast, offline monitoring typically works on complete execution traces. [RH05]

Satisfaction Rules

pTru
t `+ tt

pPrd
p(σ)

σt `+ p
pCoP

p(σ)

σt `+ p
pNeg

t `− ϕ
t `+ ¬ϕ

pAnd
t `+ ϕ1 t `+ ϕ2

t `+ ϕ1 ∧ ϕ2
pNxt

t `+ ϕ

σt `+ Xϕ

pOr1
t `+ ϕ1

t `+ ϕ1 ∨ ϕ2
pOr2

t `+ ϕ2

t `+ ϕ1 ∨ ϕ2

pUnt1
t `+ ϕ2

t `+ ϕ1 U ϕ2
pUnt2

σt `+ ϕ1 t `+ ϕ1 U ϕ2

σt `+ ϕ1 U ϕ2

pRel1
t `+ ϕ1 t `+ ϕ2

t `+ ϕ1 R ϕ2
pRel2

σt `+ ϕ2 t `+ ϕ1 R ϕ2

σt `+ ϕ1 R ϕ2

Violation Rules

nFls
t `− ff

nPrd
p(σ)

σt `− p nCoP
p(σ)

σt `− p nNeg
t `+ ϕ

t `− ¬ϕ

nOr
t `− ϕ1 t `− ϕ2

t `− ϕ1 ∨ ϕ2
nNxt

t `− ψ
σt `− Xψ

nAnd1
t `− ϕ1

t `− ϕ1 ∧ ϕ2
nAnd2

t `− ϕ2

t `− ϕ1 ∧ ϕ2

nUnt1
t `− ϕ1 t `− ϕ2

t `− ϕ1 U ϕ2
nUnt2

σt `− ϕ2 t `− ϕ1 U ϕ2

σt `− ϕ1 U ϕ2

nRel1
t `− ϕ2

t `− ϕ1 R ϕ2
nRel2

σt `− ϕ1 t `− ϕ1 R ϕ2

σt `− ϕ1 R ϕ2

Fig. 2. Satisfaction and Violation Proof Rules

rules pNeg and nNeg also decompose the formula, but switch the modality of
the sequents for their premises, transitioning from one judgement form to the
other. Specifically, in the case of pNeg, the satisfaction sequent t `+ ¬ϕ is
defined in terms of the violation sequent t `− ϕ (and dually for nNeg).

The rules for the temporal formulas may decompose judgement formulas, e.g.,
pUnt1, pRel1, nUnt1, nRel1, but may also analyse suffixes of the trace in
incremental fashion. For instance, in order to prove σt `+ Xϕ, rule pNxt requires
the satisfaction judgement to hold for the immediate suffix t and the subformula
ϕ, i.e., t `+ ϕ. Similarly, to prove the satisfaction sequent σt `+ ϕ1 U ϕ2, rule
pUnt2 requires a satisfaction proof of the current trace σt and the subformula
ϕ1, as well as a satisfaction proof of the immediate suffix t wrt. ϕ1 U ϕ2. Since
this suffix premise is wrt. to the same composite formula ϕ1 U ϕ2, it may well be
the case that pUnt2 is applied again for suffix t. In fact, satisfaction proofs for
until formulas are characterised by a series of pUnt2 applications, followed by
an application of rule pUnt1 (the satisfaction proofs for ϕ1 R ϕ2 and violation

proofs for ϕ1 U ϕ2 and ϕ1 R ϕ2 follow an analogous structure). This incremental
analysis structure mirrors that of RV algorithms for LTL [Gei01,SRA04,BLS11]
and contrasts with the descriptive nature of the resp. semantic definition for
ϕ1 U ϕ2 (Fig. 1) (which merely stipulates the existence of some index j at which
point ϕ2 holds without stating how to find this index).

We note the inherent symmetry between the satisfaction and violation rules,
internalising the negation-propagation mechanism of the normalisation function
〈−〉 of §2 through rules pNeg and nNeg. For instance, there are no satisfaction
(resp. violation) proof rules for the formula ff (resp. tt). The resp. predicate ax-
ioms for satisfactions and violations are dual to one another, as are the rules

for conjunctions and disjunctions. More precisely, following 〈¬
(
ψ1 ∧ ψ2

)
〉 def

=
〈¬ψ1〉 ∨ 〈¬ψ2〉 from Fig. 1, the violation rules for conjunctions (nAnd1 and
nAnd2) have the same structure as the satisfaction rules for the resp. disjunc-
tions (pOr1 and pOr2). The symmetric structure carries over to the temporal
proof rules as well, e.g., violation rules nUnt1 and nUnt2 have an analogous
structure to that of rules pRel1 and pRel2.

Example 2. Recall property g U o from Ex. 1. We can construct the satisfaction
proof for trace go and the violation proof for trace gr below:

g(g)
pPrd

go `+ g

o(o)
pPrd

o `+ o
pUnt1

o `+ g U o
pUnt2

go `+ g U o

o(g)
nPrd

gr `− o

g(r)
nPrd

r `− g

o(r)
nPrd

r `− o
nUnt1

r `+ g U o
nUnt2

gr `− g U o

Crucially, however, we are unable to construct any proof for the trace gg. For
instance, attempting to construct a satisfaction proof fails because we hit the
end-of-trace, ε, before completing the proof tree. Intuitively, we do not have
enough information from the trace generated thus far to conclude that the com-
plete trace satisfies the property. For instance, the next state may be o, in which
case we can infer satisfaction for ggo, or it can be r, in which case we infer a
violation for ggr; if it is g, we postpone any conclusive judgement once again.

g(g)
pPrd

gg `+ g

g(g)
pPrd

g `+ g
??

ε `+ g U o
pUnt2

g `+ g U o
pUnt2

gg `+ g U o �

Properties. Our proof system is sound, in the following sense.

Theorem 1 (Soundness). For arbitrary t, ϕ:

(t `+ ϕ implies ∀s. ts ∈ JϕK) and (t `− ϕ implies ∀s. ts 6∈ JϕK)

Proof. By rule induction on t `+ ϕ and t `− ϕ. ut

Example 3. The satisfaction and violation proofs of Ex. 2 suffice to prove gos ∈
Jg U oK and grs 6∈ Jg U oK for any (infinite) suffix s. Moreover, to determine
whether r . . . 6∈ J(¬r) ∧ XrK from Ex. 1, it suffices to consider the prefix r and

either construct a violation proof directly, or else normalise the negation of the
formula, 〈¬((¬r) ∧ Xr)〉 = r ∨ Xr and construct a satisfaction proof:

r(r)
pPre

r `+ r
pNeg

r `− ¬r
nAnd1

r `− (¬r) ∧ Xr

r(r)
pPre

r `+ r
pOr1

r `+ r ∨ Xr �

Remark 1. The apparent redundancy (Ex. 3) allows us to use the proof system as
a unifying framework that embeds other approaches (cf. §5), which may handle
negation directly [SRA04], or work exclusively with formulas in nnf [Gei01].

Our proof system handles empty strings ε, as these arise naturally from the
incremental analysis of finite traces discussed above.

Example 4. We can prove oo . . . ∈ JX X ttK from the prefix oo, by constructing
the proof tree below; the leaf node relies on being able to deduce ε `+ tt:

pTru
ε `+ tt

pNxt
o `+ X tt

pNxt
oo `+ XX tt �

Theorem 2 (Incompleteness). For arbitrary t, ϕ:

(∀s. ts ∈ JϕK does not imply t `+ ϕ) and (∀s. ts 6∈ JϕK does not imply t `− ϕ)

Proof. By counter example. For the positive case, consider t = ε. We have
∀s. ts ∈ JX ttK but t 6`+ X tt, ∀s. ts ∈ Jp ∨ p̄K but t 6`+ p ∨ p̄, and ∀s. ts ∈ Jff R ttK
but t 6`+ ff R tt. Curiously, whenever p(σ) holds for all σ ∈ Σ, we also have
∀s. ts ∈ JpK but t 6`+ p. Analogous examples can be drawn up for the negative
case. ut

We can however prove completeness for a syntactic subset of the logic, limit-
ing ourselves to discriminating predicates3, i.e., predicates p where ∃σ1, σ2 ∈ Σ
such that σ1 6= σ2, p(σ1) and ¬p(σ2). We define the following syntactic subset:

φ ∈ pLtl ::= tt | ff | p | p̄ | φ1 ∧ φ2 | φ1 U φ2 | ¬γ
γ ∈ nLtl ::= tt | ff | p | p̄ | γ1 ∨ γ2 | γ1 R γ2 | ¬φ

Theorem 3 (Partial Completeness). For arbitrary t, φ, γ:

(∀s. ts ∈ JφK implies t `+ φ) and (∀s. ts 6∈ JγK implies t `− γ)

Proof. By induction on the structure of φ and γ. ut

4 An Automation

An automated proof search using the rules in Fig. 2 can be syntax directed by the
formula (and the polarity) since, for most formulas, there is only one applicable
rule. Moreover, the exception cases have at most two applicable rules.

3 This does not decrease expressivity, since tt and ff can be used for the other cases.
Note also that the co-predicate of a discrimination predicate is also discriminating.

exp(d)
def
=

{L M} if L M ∈ d
{} if d = {}
d if c ∈ d implies sat(c)

exp(
⋃

c∈d expC(c)) otherwise

expC(c)
def
=
⊕

o∈c expO(o)

expO(o)
def
=

{
{c | r ∈ rls(ϕ, q), c = prm(r, t, ϕ)} if o = (t, ϕ)q

{L dε, ϕeq M} if o = dε, ϕeq

Fig. 3. A breadth-first incremental search algorithm

Notation. In what follows, (t, ϕ)+ and resp. (t, ϕ)− denote the resp. outstand-
ing proof obligations t `+ ϕ and t `− ϕ. Since our algorithm works on partial
traces, dε, ϕe+ and dε, ϕe− are used to denote saturated proof obligations, where
the string ε does not yield enough information to complete the proof search (e.g.,
ε `+ g U o in Ex. 2). A conjunction set L o1, . . . , on M denotes a conjunction of
proof obligations; metavariables oi range over obligations of the form (t, ϕ)q or
dt, ϕeq for q ∈ {+,−}. A disjunction set {c1, . . . , cn}, where ci range over con-
junction sets, denotes a disjunction of conjunction sets.4 We employ a merge
operation over disjunction sets, ⊕, defined below:

d⊕ d′ def
= {c ∪ c′ | c ∈ d, c′ ∈ d′}

The disjunction set {L M} acts as the identity, , i.e., {L M} ⊕ d = d⊕ {L M} = d,
whereas the disjunction set {} annihilates such sets, i.e., {} ⊕ d = d⊕ {} = {}.

Algorithm. A breadth-first proof search algorithm is described in Fig. 3. Dis-
junction sets encode the alternative proof derivations that may lead to a com-
pleted proof-tree (resulting from multiple proof rules that can be applied at
certain stages of the search), and conjunction sets represent the outstanding
obligations within each potential derivation. Thus, a disjunction set with an ele-
ment L M, denotes a successful search, whereas an empty disjunction set {} repre-
sents a failed search. Another terminating condition for the search algorithm of
Fig. 3 is when a disjunction set contains only saturated conjunction sets: these
containing only saturated obligations of the form dε, ϕeq (the predicate sat(c)
denotes this).

To verify whether the judgement t `q ϕ holds, we initiate the function
exp(−) with the disjunction set {L (t, ϕ)q M}. If none of the terminating con-
ditions in Fig. 3 are met, exp(−) expands each conjunction set using expC(−),
and recurses. Conjunction set expansion consists in expanding and merging every
proof obligation using expO(−) and ⊕. Obligation expansion returns a disjunc-
tion set, where each conjunction set denotes the proof obligations resulting from
the premises of the rules applied. It uses two auxilliary functions:

4 For clarity, conjunction set notation, L− M, differs from that of disjunction sets, {−}.

– rls(ϕ, q) returns a set of rule names r from Fig. 2 that can be applied to obli-
gations with the formula ϕ and polarity qualifier q (e.g., rls(ϕ1 U ϕ2,+) =
{pUnt1,pUnt2} and rls(Xϕ,−) = {nNxt}).

– prm(r, t, ϕ) returns a conjunction set with the premises of rule r instantiated
to the conclusion with string t and formula ϕ (e.g., prm(pUnt2, go, g U o) =
L (go, g)+, (o, g U o)+ M and prm(pTru, go, tt) = L M). Importantly:

(i) For cases such as prm(pUnt2, ε, g U o) the function returns L dε, g U oe+ M
since the string ε prohibits the function from generating all the premises
for the rule (one premise requires the string to be of length ≥ 1).

(ii) The function is undefined when rule conditions are not satisfied (e.g.,
prm(pPrd, g, o) is undefined since o(g) does not hold).

Example 5. Recall the inconclusive judgement gg `+ g U o from Ex. 2.

exp({L (gg, g U o)+ M}) = exp({L (gg, o)+ M, L (gg, g)+, (g, g U o)+ M})
= exp({} ∪ ({L M} ⊕ {L (g, o)+ M, L (g, g)+, (ε, g U o)+ M})
= exp({L (g, o)+M, L (g, g)+, (ε, g U o)+ M}) = {L dε, g U oe+ M} �

Properties. An execution of exp({L (t, ϕ)q M}) may yield either of three verdicts.
Apart from success, {L M}, meaning that a full proof tree was derived, the algo-
rithm partitions negative results as either a definite fail, {}, or an inconclusive
verdict, consisting of a saturate disjunction set d (where c ∈ d implies sat(c)).

Saturated disjunction sets make the algorithm incremental, in the following
sense. When a further suffix t′ is learnt to a judgement t `q ϕ with an inconclusive
verdict, we can reuse the saturated disjunction set returned for t `q ϕ, instead
of processing tt′ `q ϕ from scratch. This is done by converting each obligation
of the form dε, ϕeq in each saturated conjunction set to the active obligation
(t′, ϕ)q using an auxilliary “append” function app(−).

Example 6. To determine whether ggo `+ g U o holds, we can take the in-
conclusive outcome of exp({L (gg, g U o)+ M}) from Ex. 5, convert the saturated
obligations using suffix o, app({L dε, g U oe+ M}, o) = {L (o, g U o)+ M}, and calculate
from that point onwards, exp({L (o, g U o)+ M}) = {L M}. �

Theorem 4 (Incrementality). sat(exp({L (t1, ϕ)q M})) implies

exp({L (t1t2, ϕ)q M}) = exp(app(exp({L (t1, ϕ)q M}), t2))

Proof. By induction on t2. ut

The algorithm of Fig. 3 is also decidable for the proof rules of Fig. 2. Intu-
itively, the main reason for this is because the proof system is cut-free, where rule
premises are either defined in terms of string suffixes or subformula. Formally,
we define a rank function | − | mapping proof obligations to pairs of naturals,

for which we assume a lexicographical ordering (n1,m1) ≥ (n2,m2)
def
= n1 ≥

n2 ∨ (n1 = n2 ∧ m1 ≥ m2) and the obvious function max(−) returning the

greatest element from a set of such pairs. Apart from |t|, we also assume |ϕ|
returning the maximal depth of the formula (e.g., |p U ¬(p̄∨p)| = 3 and |p̄| = 0).

|(t, ϕ)q| def
= (|t|, |ϕ|) |dt, ϕeq| def= (0, 0) |c| def= max({|o| | o ∈ c} ∪ {(0, 0)})

|d| def
= if L M ∈ d then (0, 0) else max({|c| | c ∈ d} ∪ {(0, 0)})

Above, the rank function maps saturated obligations to the bottom element
(0, 0). We overload the function to conjunction sets, where we add (0, 0) to the
max(−) calculation to cater for the case where c is empty. Following a similar
pattern, we also extend the rank function to disjunction sets, but equate all sets
with an empty conjunction set to the bottom element (0, 0); this mirrors the
termination condition of the algorithm in Fig. 3 which terminates the search as
soon as the shortest proof tree is detected.

Theorem 5 (Decidability). exp({L (t, ϕ)q M}) always terminates.

Proof. Follows from the fact that when |d| = (0, 0), exp(d) terminates immedi-
ately, and when |d| 6= (0, 0), we have |d| > |

⋃
c∈d expC(c)|. ut

Runtime Monitoring. We can obtain a setup akin to the three-valued mon-
itors of [BLS11] with outcome Y, denoting satisfaction, outcome N, denoting
violation, and outcome ?, denoting an inconclusive outcome. Following [BLS11],
given a finite trace t and a property ϕ, we attempt to construct a deduction
for both the satisfaction, t `+ ϕ and violation, t `− ϕ, by concurrently running
exp({L (t, ϕ)+ M}) and exp({L (t, ϕ)− M}) with the following possible outcomes:

1. We are able to construct a proof for t `+ ψ, corresponding to Y.
2. We are able to construct a proof for t `− ψ, corresponding to N.
3. We are unable to construct proofs for either case, corresponding to ?.

Remark 2. The fourth possible outcome, i.e., constructing a proof for both t `+3 ψ
and t `−3 ψ, is ruled out by soundness (Thm. 1), which implicitly guarantees that
our analysis is consistent (since the semantics is defined in terms of sets).

Like in most online RV setups, Thm. 4 allows for incremental monitor, as
soon as individual trace elements are received. Moreover, Thm. 5 allows for a safe
synchronous instrumentation, where the monitor and system execute in lock-step
(i.e., the system is paused after producing each monitored event so as to allow
the monitor to carry out its analysis and perform timely detections). Since the
monitoring analysis always terminates, the monitored system is guaranteed to
be able to progress normally under a synchronous instrumentation.

5 Alternative RV Symbolic Techniques for LTL

We relate our deductive system to two prominent, but substantially distinct,
symbolic techniques for LTL in the context of RV, namely [Gei01] and [SRA04].

5.1 Informative Prefixes

Intuitively, an informative prefix for a formula explains why a trace satisfies
that formula [KYV01]. In [Gei01], trace satisfactions are monitored wrt. LTL
formulas in nnf, by checking whether a trace contains an informative prefix.

Example 7. Recall g U o (Ex. 1). Prefix go is informative because (i) although
the head, g, does not satisfy g U o in a definite manner, it allows the possibility
of its suffix to satisfy the formula conclusively (g(g) holds); (ii) the immediate
suffix, o, satisfies g U o conclusively (o(o) holds). In [Gei01], both go and o
are deemed to be locally-informative wrt. g U o but go generates satisfaction
obligations for the immediate suffix (temporal informative successor). �

The algorithm in [Gei01] formalises the notion of locally informative by con-
verting formulas to their informative normal forms. Moreover, temporal infor-
mative successors are formalised through the function next(−), returning a set
of formulas from a given formula and a trace element. For instance, in Ex. 7
next(g, g U o) = {g U o} whereas next(o, g U o) = {}. These functions are then
used to construct automata that check for these properties over string prefixes.

gTru
linf(t, tt, ∅)

gPre1
p(σ)

linf(σt, p, ∅)
gPre2

p̄(σ)

linf(σt, p̄, ∅)

gOr1
linf(t, ϕ1,m)

linf(t, ϕ1 ∨ ϕ2,m)
gOr2

linf(t, ϕ2,m)

linf(t, ϕ1 ∨ ϕ2,m)

gAnd
linf(t, ϕ1,m1) linf(t, ϕ2,m2)

linf(t, ϕ1 ∧ ϕ2,m1 ∪m2)
gNxt

linf(t,Xϕ, {ϕ})

gUnt1
linf(t, ϕ2,m)

linf(t, ϕ1 U ϕ2,m)
gUnt2

linf(t, ϕ1,m)

linf(t, ϕ1 U ϕ2,m ∪ {ϕ1 U ϕ2})

gRel1
linf(t, ϕ1,m1) linf(t, ϕ2,m2)

linf(t, ϕ1 R ϕ2,m1 ∪m2)
gRel2

linf(t, ϕ2,m)

linf(t, ϕ1 R ϕ2,m ∪ {ϕ1 R ϕ2})

In this section, we express the locally-informative predicate and the associ-
ated temporal informative successors as the single judgement linf(t, ϕ,m), de-
fined as the least relation satisfying the rules above. It states that t is locally
informative for ϕ with obligations m ∈ P(eLtl) for the succeeding suffix. For
example, for a formula Xϕ, any string t is locally informative, but requires the
immediate suffix to satisfy ϕ (see gNxt); in the case of ϕ1 U ϕ2, if t is locally
informative for ψ1 with suffix obligations m, then t is also locally informative
for ϕ1 U ϕ2 with obligations m ∪ {ϕ1 U ϕ2} (see gUnt2). Informative prefixes
are formalised as the predicate inf(t, ϕ) below. Note that recursion in inf(t, ϕ) is
employed on a substring of t and terminates when m = ∅.

inf(t, ϕ)
def
= ∃m.

(
linf(t, ϕ,m) and

(
ϕ′ ∈ m implies (inf([t]1, ϕ′))

))

Example 8. We can deduce that inf(go, g U o) because linf(go, g U o, {g U o})
and then that linf(o, g U o, ∅). �

We can formally show a correspondence between informative prefixes and
our monitoring proof systems.

Theorem 6. For all ϕ in nnf, inf(t, ϕ) iff t `+ ϕ

Proof. By structural induction on t, then by rule induction on linf(t, ϕ,m) for
the only-if case. By rule induction for the if case. ut

In the only-if direction, Thm. 6 ensures that our system is as expressive as
[Gei01]. In the if direction, Thm. 6 shows that every derivation in our proof
system corresponds to an informative prefix as defined in [KYV01]5. This re-
inforces existing justifications as to why our system is unable to symbolically
process certain prefix and formula pairs.

Example 9. The proof system of §3 is unable to deduce ε `+ Xtt (cf. proof for
Thm. 2) even though, on a semantic level, this holds for any string continuation
because ε in not an informative prefix of Xtt. �

Thm. 6 has another important implication. One justification of informative
prefixes is that any bad/good prefixes detected can be accompanied by an expla-
nation [BLS11]. However, whereas in [Gei01] this explanation is given in terms
of the algorithm implementation, delineating the proof system from its imple-
menting monitor (as in our case) allows for better separation of concerns, by
giving the explanation as a derivation6 in terms of the proof rules of Fig. 2.

5.2 Derivatives

In a derivatives approach [HR01,SRA04], LTL formulas are interpreted as func-
tions that take a state i.e., an element of the alphabet Σ, and return another
LTL formula. The returned formula is then applied again to the next state in
the trace, until either one of the canonical formulas tt or ff are reached; the trace
analysis stops at canonical formulas, since tt (resp. ff) are idempotent, returning
tt (resp. ff), irrespective of the state applied to. In [SRA04], coinductive deduc-
tive techniques are used on derivatives to establish LTL formula equivalences,
which are then used to obtain optimal monitors for good/bad prefixes.

Example 10. Recall ε 6`+ Xtt from Ex. 9. In [SRA04], they establish that formu-
las tt and Xtt are equivalent wrt. good prefixes, tt ≡G Xtt, which allows them to
reason symbolically about ε and Xtt in terms of ε and tt instead. �

Formally, a derivative is a rewriting operator { } :: aLtl × Σ −→ aLtl
(adapted from [SRA04]) defined on the structure of the formula as follows:

5 As a corollary, we also establish a correspondence between t `− ϕ and inf(t,¬ϕ) as
used in [Gei01] for bad prefixes.

6 The algorithm in §4 can be easily extended so as to record the rules used.

tt{σ} def
= tt ff{σ} def

= ff

p{σ} def
= if p(σ) then tt else ff

(¬ψ){σ} def
= (tt⊕ ψ){σ} ψ1 ⊕ ψ2{σ}

def
= ψ1{σ} ⊕ ψ2{σ}

ψ1 ∧ ψ2{σ}
def
= ψ1{σ} ∧ ψ2{σ} ψ1 ∨ ψ2{σ}

def
= ψ1{σ} ∨ ψ2{σ}

Xψ{σ} def
= ψ

ψ1 U ψ2{σ}
def
= ψ2{σ} ∨ (ψ1{σ} ∧ ψ1Uψ2)

Above, we position rewriting definitions for core LTL formulas of Fig. 1 on
the left; formula rewriting however also uses an extended set of formulas that
include falsity, ff, disjunction, ψ1 ∨ ψ2, and exclusive-or, ψ1 ⊕ ψ2. The derivatives
algorithm also works up to formula normalisations using the following equalities:

tt ∧ ψ ≡ ψ ff ∧ ψ ≡ ff ff ∨ ψ ≡ ψ tt ∨ ψ ≡ tt

ψ ∧ ψ ≡ ψ ψ ∨ ψ ≡ ψ ff ⊕ ψ ≡ ψ (ψ1 ∧ ψ2)⊕ ψ1 ⊕ ψ2 ≡ ψ1 ∨ ψ2

Thus, for any finite trace t of the form σ1σ2 . . . σn we say:

– t is a good prefix for ψ iff ((ψ{σ1}){σ2}){. . . σn} ≡ tt;
– t is a bad prefix for ψ iff ((ψ{σ1}){σ2}){. . . σn} ≡ ff.

Example 11. The partial trace go is a good prefix for gUo (Ex. 1) because:

(gUo{g}){o} def
= o{g} ∨

(
g{g} ∧ gUo

)
{o}

def
= ff ∨

(
g{g} ∧ gUo

)
{o} ≡

(
g{g} ∧ gUo

)
{o}

def
=
(
tt ∧ gUo

)
{o} ≡ gUo{o}

def
= o{o} ∨

(
g{o} ∧ gUo

) def
= tt ∨

(
g{o} ∧ gUo

)
≡ tt �

Good (resp. bad) prefixes, as defined in[SRA04], correspond to finite traces
with a satisfaction (resp. violation) proof in our system (§3), and vice-versa.

Theorem 7. For any finite trace t = σ1 . . . σn, and core LTL formula ψ:(
(ψ{σ1}){. . . σn} ≡ tt iff t `+ ψ

)
and

(
(ψ{σ1}){. . . σn} ≡ ff iff t `− ψ

)
Proof. For the only-if case both statements are proved simultaneously by nu-
merical induction on n and then by structural induction on ψ. For the if case
both statements are proved simultaneously by rule induction. ut

Apart from establishing a one-to-one correspondence between derivative pre-
fixes and proof deductions for core LTL formulas in our system, Thm. 7 (together
with Thm. 6) allows us to relate indirectly the informative prefixes of §5.1 to
derivative prefixes. Moreover, Thm. 7 identifies from where the additional expres-
sivity of the analysis in [SRA04] derives, namely through the deductive system
for formula equivalence wrt. good/bad prefixed, ` ψ1 ≡G ψ2 and ` ψ1 ≡B ψ2.
This opens up the possibility of merging the two approaches, perhaps by extend-
ing our deductive system with rules analogous to those show below:

pEq
t `+ ϕ1 ` ϕ1 ≡G ϕ2

t `+ ϕ2
nEq

t `− ϕ1 ` ϕ1 ≡B ϕ2

t `− ϕ2

6 Conclusion

We presented a proof system and the respective monitor generation for runtime-
verifying LTL properties. One novel aspect of our approach is that we tease
apart the specification of the symbolic analysis from its automation. This al-
lows us to localise correctness results e.g., soundness is determined for the proof
system, independent of the subsequent automation. The higher level of abstrac-
tion used elucidates completeness studies, seldom tackled in other work in RV
e.g., syntactic class identified for Thm. 3 appears to be new. This separation of
concerns also facilitates comparisons and cross-fertilisation with other symbolic
techniques (§ 5) and leads to modular organisations that are easier to maintain
e.g., more efficient monitor automation may be considered without changing the
proof rules. The concrete contributions are:

1. A sound, local LTL proof system inferring complete trace inclusion from finite
prefixes, Thm. 1, together with completeness results, Thm. 2 and Thm. 3.

2. A mechanisation of proof derivations for this system that is formally incre-
mental, Thm. 4, and decidable, Thm. 5.

3. An exposition of how the proof system can be used as a unifying framework
where to relate different runtime monitoring formalisms, Thm. 7 and Thm. 6.

Related Work. Apart from the deductive system for LTL formula equivalence
in [SRA04], there are other LTL proof systems [GPSS80,MP91,KI11,BL08]. Each
differ substantially from ours. For instance, the model used in [GPSS80,MP91]
is different from ours, i.e., programs (sets of traces) instead of traces; the work
in [GPSS80,KI11] is concerned with developing tableau methods for inferring
the validity of a formula from a conjunction of formulas; [BL08] study cut-
free sequent systems; importantly, none of these proof systems are local. In
[MP91], they develop three tailored proof systems for separate classes of prop-
erties, namely safety, response and reactivity properties; crucially however, they
do not consider aspects such as deductions from partial traces.

A substantial body of work studies alternative LTL semantics for partial
traces [EFH+03,BLS07,BLS11]; consult [BLS10] for a comprehensive survey. Al-
though complementary, the aim and methodology of this work is substantially
different from ours. In particular, we keep the LTL semantics constant, and
explore the soundness, completeness and expressivity aspects of our symbolic
analysis wrt. to this fixed semantics.

Future Work. It would be fruitful to relate other LTL symbolic analyses to
the ones discussed in §5. Our work may also be used as a point of departure
for developing proof systems for other interpretations of LTL. For instance, a
different LTL model to that of §2, consisting of both finite and infinite traces,
alters the negation propagation identities used for the translation function (e.g.,
¬Xψ ≡ X¬ψ does not hold) which, amongst other things, would require tweak-
ing to the proof rules. Similar issues arise in distributed LTL interpretations such
as [BF12] where instead of having one execution trace, we have a set of traces

(one for each location). We also leave complexity analysis and the assessment of
the runtime overheads introduced by our setup as future work.

References

[BF12] Andreas Bauer and Ylis Falcone. Decentralised LTL Monitoring. In FM,
volume 7436 of LNCS, pages 85–100. Springer, 2012.

[BL08] Kai Brunnler and Martin Lange. Cut-free sequent systems for temporal
logic. JLAP, 76(2):216 – 225, 2008.

[BLS07] Andreas Bauer, Martin Leucker, and Christian Schallhart. The good, the
bad, and the ugly, but how ugly is ugly? In RV, volume 4839 of LNCS, pages
126–138, Berlin, Heidelberg, November 2007. Springer.

[BLS10] Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing LTL
semantics for runtime verification. Logic and Comput., 20(3):651–674, 2010.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verifi-
cation for LTL and TLTL. TOSEM, 20(4):14, 2011.

[BS92] Julian Bradfield and Colin Stirling. Local model-checking for infinite state
spaces. TCS, 96:157–174, 1992.

[Bus98] Samuel R. Buss, editor. Handbook of Proof Theory. Elsevier, 1998.
[EFH+03] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac,

and David Van Campenhout. Reasoning with temporal logic on truncated
pathsxs. In CAV, volume 2725 of LNCS, pages 27–39. Springer, 2003.

[Gei01] Marc Geilen. On the construction of monitors for temporal logic properties.
ENTCS, 55(2):181–199, 2001.

[GPSS80] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the
temporal analysis of fairness. In POPL, pages 163–173, New York, NY,
USA, 1980. ACM.

[HR01] Klaus Havelund and Grigore Rosu. Monitoring programs using rewriting.
In ASE, pages 135–143, Wash., DC, USA, 2001. IEEE.

[KI11] Kensuke Kojima and Atsushi Igarashi. Constructive linear-time temporal
logic: Proof systems and kripke semantics. Inf. Comput., 209(12):1491–1503,
2011.

[KYV01] Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties.
Form. Methods Syst. Des., 19(3):291–314, October 2001.

[LS09] Martin Leucker and Christian Schallhart. A brief account of Runtime Veri-
fication. JLAP, 78(5):293 – 303, 2009.

[MP91] Zohar Manna and Amir Pnueli. Completing the Temporal Picture. Theo-
retical Computer Science, 83(1):97 – 130, 1991.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In SFCS, pages 46–57,
Wash., DC, USA, 1977. IEEE.

[RH05] Grigore Roşu and Klaus Havelund. Rewriting-based techniques for runtime
verification. Automated Software Engg., 12(2):151–197, April 2005.

[SRA04] Koushik Sen, Grigore Rosu, and Gul Agha. Generating optimal linear tem-
poral logic monitors by coinduction. In ASIAN, LNCS, pages 260–275.
Springer, 2004.

[SW91] Colin Stirling and David Walker. Local model-checking in the modal mu-
calculus. TCS, 89:161–177, 1991.

[TS00] A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge
University Press, 2000.

