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We study the problem of disentangling locked processes via code refactoring. We identify and char-
acterise a class of processes that is not lock-free; then we formalise an algorithm that statically detects
potential locks and propose refactoring procedures that disentangle detected locks. Our development
is cast within a simple setting of a finite linear CCS variant — although it suffices to illustrate the
main concepts, we also discuss how our work extends to other language extensions.

1 Introduction

The scenario. Concurrent programming is nowadays pervasive to most computational systems and
present in most software development processes. In particular, concurrent programming is prevalent
in cloud platforms and web-services, i.e., inherently distributed systems that rely heavily on message-
based communication protocols. Unfortunately, this style of programming is notoriously difficult and
error-prone: concurrency bugs appear frequently and have a substantial impact, as several recent reports
show [7, 2]. Concurrency errors are hard to detect because not every execution interleaving exhibits
them, and this is further compounded by the large number of possible execution scenarios. Automatic
techniques and tools are thus needed to analyse and ensure correct concurrent code.

One common form of bugs is that of (dead)locks [6]: they arise when a computational entity holds
exclusive access to a resource without releasing it, while other entities wait to access that resource. In
this work we characterise them in a very simple model of concurrent computation, show how to statically
detect them, and in some cases, even show how to automatically solve some of the (dead)locks.

Static analysis to the rescue. Concurrency theory is a well-established discipline, providing mathe-
matical models of concurrent systems at various degrees of expressiveness, (logical) languages to specify
properties of such systems, suites of verification techniques of both safety and liveness properties, as well
as tools to (automatically) analyse if some property holds for a given specification.

We are interested in models centered around communication primitives and synchronisation mecha-
nisms, as these are the key characteristics of a concurrent system. In particular, we are concerned with the
static verification of properties for these models, not only because the approach analyses source code, but
also because it is used pre-deployment, in an automatic way. The models are useful to specify and verify
communication intensive systems and protocol implementations; the static analysis is a light verification
technique that demands less from the user, as (s)he does not have to be an expert in logic.
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Concretely, herein we use the Calculus of Communicating Systems (CCS) [12] and define a static
analysis and refactoring algorithm that is not only fully automatic, but also working on “pure” source
code, without further annotations or even types.

Behavioural types. This field of study has gained momentum recently by providing statically more
than the usual safety properties: (dead)lock-freedom or even progress can be statically established by
relying on a broad spectrum of analysis techniques [3, 4, 5, 1, 8, 9, 11, 13, 14]. Despite their utility, such
static detection techniques inevitably approximate the solution (conservatively) — since they are “decid-
ing undecidable properties” — and reject lock-free programs (give false positives). More importantly,
however, these techniques simply reject programs, without providing help as to where the problem might
be, or providing insights on how to solve the problem detected.

Methodology. Following the approach of Giunti and Ravara [9], in this paper we propose that such
techniques go a step further, and provide suggestions on how to fix a detected bug, showing possible
patches. In particular, the work in [9] focussed on resolving self-holding (dead)locks, i.e., when a thread
holds the resources it wants to use itself. In order to detect such errors, a local analysis within one thread
of computation, such as those discussed in [9], sufficed.

By contrast, in this paper we investigate methods for resolving circular-wait (dead)locks, i.e., more
general instances where concurrent entities block one another by holding access to a subset of the com-
monly requested resources. Detecting such (dead)locks requires analyses that spread across parallel
threads of computation, and one of the main challenges is to devise static techniques that are compo-
sitional (thus scalable) wrt. the independent computing entities. For this expository paper, we do not
consider the full language of [9]. Instead we distill minimal features of the language — namely synchro-
nisation, prefixes, and parallel composition — that permit us to focus the core challenges to be addressed.
However, the ultimate aim of the work is still to address circular-wait (dead)locks in the full language of
[9]; in the conclusion, we outline some of the additional issues that arise in the full language setting.

Contributions. § 2 briefly introduces a concise, yet sufficiently expressive, process language to rigor-
ously define (dead)locks. In § 3 we formalise the class of non lock-free processes targeted by our work
and give an alternative characterisation for this class. We present an algorithm for statically detecting
processes in this class in § 4, and in § 5 we describe disentangling procedures for the detected processes.
§ 6 concludes. We note that whereas § 3 presents formal results, § 4 and § 5 deal with ongoing work. In
particular, they present our general approach by formalising potential algorithms for static analysis and
resolution, and outlining the properties that these algorithms are expected to satisfy.

2 Language

We consider a very basic language. Assume a countable set NAMES of names, ranged over by a,b, . . . ,
and a disjoint countable set NAMES of co-names, such that for every a ∈ NAMES there is a a ∈ NAMES;
the co-action operation is idempotent i.e., ¯̄a = a, and let α,β ∈

(
NAMES∪NAMES

)
denote actions. The

grammar in Fig. 1 defines the syntax of the language, a process algebra containing only prefixing and par-
allel composition, together with action synchronisations akin to CCS [12]. We write C [Q] (resp. E [Q])
for the process obtained by substituting the hole [−] occurring in the context C (resp. E ) with Q. The
(dynamic) semantics is standard, relying on a structural equivalence relation,≡ (the smallest congruence
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P,Q,R ∈ PROC ::= 0 (inert) | α.P (prefix) | P‖Q (composition)

E ::= [−] | P‖E | E ‖P (Evaluation Contexts)

C ::= [−] | P‖C | C ‖P | α.C (Process Contexts)

SNIL P‖0 ≡ P SCOM P‖Q ≡ Q‖P SASS P‖(Q‖R) ≡ (P‖Q)‖R

COM
a.P‖ ā.Q−→ P‖Q

CTX
P−→ P′

E [P]−→ E [P′]
STR

P≡ P′ −→ Q′ ≡ Q
P−→ Q

Figure 1: The language (finite CCS): syntax and operational semantics

including the relation inductively generated by the rules below the grammar) and on a reduction relation,
−→, inductively generated by the rules of Fig. 1. We use −→∗ to denote the reflexive and transitive
closure of→. Finally, assume henceforth a type system enforcing a linear use of names, Γ ` P, along the
lines of [10]. In well-typed processes, no name appears more than once with a given capability (input
or output), i.e., a name occurs at most twice in a process, or none at all. We let LPROC be the subset of
PROC induced by the typing system `.

3 Lock Freedom

Our point of departure is lock-freedom, as defined and studied by Kobayashi and by Padovani [10, 13].
Definition 3.1 (Synchronisation predicates [13]).

in(a,P) def
= ∃P′,P′′ ·P≡ P′ ‖ a.P′′ out(a,P) def

= ∃P′,P′′ ·P≡ P′ ‖ ā.P′′

sync(a,P) def
= in(a,P) and out(a,P) wait(a,P) def

= in(a,P) exor out(a,P)

Definition 3.2 (Lock-Free [13]). We define LF
def
= {P ∈ PROC | lfree(P)} where:

lfree(P) def
= P−→∗ Q and wait(a,Q) implies ∃R ·Q−→∗ R and sync(a,R)

Following Def. 3.2, locked processes, LPROC \LF, are those that never provide the resp. co-action
for some waiting action. In the setting of § 2, this could be due to either of two cases: (i) the co-action is
not present in the process; (ii) the co-action is present, but stuck underneath a blocked prefix. Whereas
in the case of (i), the context may unlock (i.e., catalyse [4]) the process by providing the necessary
co-action, in the case of (ii) no context can do so without violating the linear discipline of the process.
Our work targets the unblocking of this second class of locked processes, specifically by refactoring the
prefixing of the existing process. To this aim, we introduce the notion of a complete process.

Definition 3.3 (Complete Processes). LPROC ⊇ CMP
def
= {P | cmp(P)} where:

cmp(P) def
= ∀a ·

(
cin(a,P) iff cout(a,P)

)
and

cin(a,P) def
= ∃C [−],Q ·P≡ C [Q] and in(a,Q) cout(a,P) def

= ∃C [−],Q ·P≡ C [Q] and out(a,Q)
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Remark 3.4. In contrast to in(a,P) and out(a,P) of Def. 3.1, the predicates cin(a,P) and cout(a,P) of
Def. 3.3 consider actions under contexts as well.

Example 3.5. The process P = a.b.0 ‖ b̄.c̄.0 is not complete since, e.g., cin(a,P) but not cout(a,P). The
process is also locked, but can be unlocked by the catalyser [−]‖ ā.c.0 without violating channel linearity
i.e., [P]‖ ā.c.0−→∗ 0. The inert process, 0 is clearly lock-free and complete.

P1 = a.b.0 ‖ b̄.c̄.0 ‖ c.ā.0 P2 = d.(a.b.0‖ b̄.c̄.0) ‖ d̄.c.ā.0
P3 = a.ā.0 P4 = a.(b.ā.0 ‖ b̄.0)

By contrast, processes P1,P2,P3 and P4 (above) are both complete but not lock-free. Note that we rule
out complete processes such as a.ā.a.0 since they violate linearity and are thus not typeable (see § 2). �

Our work targets the process class CMP\LF. In what follows we provide a characterisation for this
class that is easier to work with.

Definition 3.6 (Deadlock). dl(P) def
=
(
6 ∃Q ·P−→ Q

)
and P 6≡ 0

Definition 3.7 (Top-Complete).

tcmp(P) def
= (in(a,P) implies cout(a,P)) and (out(a,P) implies cin(a,P))

Definition 3.8 (Potentially Self-Locking). PSL
def
= {P ∈ CMP | psl(P)} where:

sl(P) def
= dl(P) and tcmp(P)

psl(P) def
= ∃E [−],Q ·

(
P−→∗ E [Q] and sl(Q)

)
A self-deadlocked processes, sl(P), denotes a deadlocked process that cannot be unlocked by a con-

text without violating the linearity discipline, since the resp. actions are already present in the process,
i.e., tcmp(P). This, together with dl(P), also guarantees that these resp. actions will never be released.
A potentially self-locking process, psl(P), contains an execution that leads to a top-level sub-process,
i.e., Q in E [Q], that is self-deadlocked, sl(Q): tcmp(Q) then guarantees Q cannot interact with any of the
future reductions of E [−].

Example 3.9. Recall the processes in Ex. 3.5. Process P1 is self-locking, sl(P1), and thus potentially
self-locking as well, psl(P1). Although P2 is not self-locking, ¬sl(P2) — it is not deadlocked and can
reduce by interacting on name d — it is potentially self-locking, psl(P2), since P2 −→ P1.

Both P3 and P4 are self-locking as well, but constitute instances of the self-holding deadlocked pro-
cesses studied in [9]: in both cases, the locked resource (port a) is blocked by the co-action under the
prefix of the same process. Such locks may be detected by a local analysis of the process prefixed by
the blocked action. By contrast, in order to determine psl(P1) and psl(P2), the analysis needs to spread
across parallel processes. �

The main result of the section is that PSL characterises CMP\LF.

Theorem 3.10. PSL= CMP\LF

Proof. See § A.
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Environment Operations

Γ+ /0 = Γ

Γ1 +Γ2 = Γ3 a 6∈ dom(Γ2)

(Γ1,a :ρ)+Γ2 = Γ3,a :ρ

Γ1 +Γ2 = Γ3

Γ1,a :ρ +Γ2,a : µ = Γ3,a :ρ +µ

Layered Environments and Verdicts, and Operations

∆ ∈ LAYEREDENV ::= ε | Γ;∆ φ ∈ VERDICT ::= ∆ | X

∆+ ε = ∆

∆1 +∆2 = ∆3

Γ1;∆1 +Γ2;∆2 = (Γ1 +Γ2);∆3 |ε|= /0
|∆|= Γ′

|Γ;∆|= Γ+Γ′

Γ :: φ
def
=

{
X if φ =X or

(
φ = ∆ and dl(Γ) and Γ⊆ |∆|

)
Γ;φ otherwise

φ1⊕φ2
def
=


X if φ1 =X or φ2 =X

X if φ1 = Γ1;∆1,φ2 = Γ2;∆2,dl(Γ1+Γ2) and Γ1+Γ2 ⊆ |∆1+∆2|
∆1⊕∆2 if φ1 = Γ1;∆1,φ2 = Γ2;∆2 and cmp(Γ1 +Γ2)

φ1 +φ2 otherwise (since φ1 = ∆1,φ2 = ∆2)

Compositional Static Analysis Rules

DNIL
0. /0

DIN
P.φ

a.P. (a :↓::φ)
DOUT

P.φ

ā.P. (a :↑::φ)
DPAR

P1 .φ1 P2 .φ2

P1 ‖P2 .φ1⊕φ2

Figure 2: Static Analysis for Potential Self-Deadlock

4 Static Detection for Potentially Self-Locking Processes

We devise an algorithm for detecting potentially self-locking processes. In order to be scalable, the
algorithm is compositional whereby the analysis of composite processes, e.g., P1‖P2, is defined in terms
of the individual analyses of its constituents, i.e., P1 and P2. The intuition behind our algorithm is that
of constructing layers of permission environments Γ1; . . . ;Γn approximating the prefixing found in the
process being analysed, and then checking whether this structure satisfies the two conditions defining
self-deadlock (see sl(−) in Def. 3.8), namely that the top environment Γ1 represents a deadlock and that
the layered structure is, in some sense, top-complete.

Example 4.1. We determine that the process P1 from Ex. 3.5 is (potentially) self-locking by constructing
the list of layered environments

(a :↓,b :↑,c :↓)︸ ︷︷ ︸
Γ1

; (a :↑,b :↓,c :↑)︸ ︷︷ ︸
Γ2

; ε

and checking that

• the top environment Γ1 does not contain any matching permissions, i.e., l6∈ cod(Γ1) — this implies
that the (composite) process is deadlocked;
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• that all the resp. dual permissions are in Γ2 — this implies that the (composite) process is blocking
itself and cannot be unblocked by an external process composed in parallel with it.

The main challenge of our compositional analysis is to detect eventual self-deadlocks in cases when the
constituent are dispersed across a number of parallel processes. In the case of P2 of Ex. 3.5, we need
to analyse the parallel (sub) processes d.(a.b.0‖ b̄.c̄.0) and d̄.c.ā.0 in isolation, and then determine the
eventual deadlock once we merge the sub-analyses; recall, from Ex. 3.9, that P2 reduces to P1 from the
respective continuations prefixed by d and d̄. �

Formally, permissions, ρ,µ ∈ {↓,↑,l}, denote resp. input, output and input-output capabilities. The
merge, ρ +µ , and complement, ρ , (partial) operations are defined as:

↓+ ↑def
=l ↓ def

=↑ ↑ def
=↓ l def

=l

Environments, Γ, are partial maps from names to permissions. We assume the following overloaded no-
tation: complementation, Γ, inverts the respective permissions in cod(Γ) whereas deadlock and complete
predicates are defined as:

dl(Γ)
def
= cod(Γ) = {↓,↑} cmp(Γ)

def
= cod(Γ) = {l}

The rules in Fig. 2 define the merge operation over environments, Γ1 +Γ2 (we elide symmetric rules).
Layered environments, ∆, are lists of environments. Our static analysis sequents take the form P.φ

where φ is a verdict: it can either be a layered environment orX, denoting a detection. Layered environ-
ments may be merged, ∆1 +∆2, or flattened into a single environment, |∆|; see Fig. 2.

The static analysis rules are given in Fig. 2, and rely on two verdict operations. Prefixing, Γ :: φ ,
collapses to the definite verdict X if φ was definite or else Γ is deadlocked, dl(Γ), and top-complete,
Γ ⊆ |∆|, but creates an extended layered environment otherwise. Verdict merging, φ1⊕ φ2, collapses
to X if either subverdict is a definite detection, or the combined top environments, Γ1 + Γ2, satisfy
environment deadlock and top-completeness; if Γ1 + Γ2 is complete, then it is safe to discard it and
check for self-deadlock in the sub-layers (see Rem. 4.3) otherwise the verdicts (which must both be
layered environments) are merged.

Example 4.2. Recall process P2 from Ex. 4.1. We can derive the sequents:

d.(a.b.0‖ b̄.c̄.0) . ( d :↓) ; (a :↓,b :↑) ; (b :↓,c :↓) ; ε (1)

d̄.c.ā.0 . (d :↑) ; (c :↓) ; (a :↑) ; ε (2)

For instance, in the case of (1), we first derive the judgements a.b.0 . a :↓;b :↓;ε and b̄.c̄.0 . b :↑;c :↑;ε

using rules DNIL, DIN and DOUT. Applying DPAR on these two judgements requires us to calculate

(a :↓;b :↓;ε)⊕ (b :↑;c :↑;ε) = (a :↓;b :↓;ε)+(b :↑;c :↑;ε) = (a :↓,b :↑);(b :↓,c :↓);ε

using the definition of φ1⊕φ2 from Fig. 2. We thus obtain (1) by applying DIN on the resultant judgement.
Importantly, when we use rule DPAR again, this time to merge judgements (1) and (2), the definition

of φ1⊕φ2 allows us to reexamine the environments in the sub-layers, since the merged top-layer is com-
plete, cmp(d :↓+d :↑), from which we infer that the top actions guarding the merged parallel processes
will safely interact and release the processes in the sub-layers. Stated otherwise, we obtain:(

d :↓;(a :↓,b :↑);(b :↓,c :↓);ε
)
⊕
(
d :↑;c :↓;a :↑;ε

)
=
(
(a :↓,b :↑);(b :↓,c :↓);ε

)
⊕
(
c :↓;a :↑;ε

)
= X

since dl((a :↓,b :↑)+(c :↓)) and a :↓,b :↑,c :↓ ⊆ |
(
(b :↓,c :↓);ε

)
+
(
a :↑;ε

)
|= (b :↓,c :↓,a :↑). �
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Γ∝1 0 def
= 0 Γ∝1 P‖Q def

= (Γ∝1 P)‖(Γ∝1 Q)

Γ∝1 ā.P def
=

{
ā.0‖P Γ(a) =↑
ā.(Γ∝1 P) otherwise

Γ∝1 a.P def
=

{
a.0‖P Γ(a) =↓
a.(Γ∝1 P) otherwise

Γ∝2 0 def
= 0 Γ∝2 P‖Q def

= (Γ∝2 P)‖(Γ∝2 Q)

Γ∝2 ā.P def
=


ā.0‖(Γ∝2 P) Γ(a) =↑
(Γ∝2 P) Γ(a) =↓
ā.(Γ∝2 P) otherwise

Γ∝2 a.P def
=

{
a.(Γ∝2 P)‖ ā.0 Γ(a) =↓
a.(Γ∝2 P) otherwise

Figure 3: Disentangling for Potential Self-Deadlock

Remark 4.3. When merging verdicts, it is unsafe to ignore individual complete mappings, e.g., a :l,
even though this makes the analysis imprecise. It is only safe to ignore them (and check for potential
deadlocks in lower layers) when the entire top environment is complete, i.e., cmp(Γ). As a counter-
example justifying this, consider the lock-free process (a.b̄.0‖b.0)‖ ā.0. We currently deduce

(a.b̄.0‖b.0) . (a :↓,b :↓);b :↑;ε and ā.0 . a :↑;ε where a :↓,b :↓+a :↑= a :l,b :↑6⊆ b :↑

However, eliding a :l from the analysis, i.e., assuming that (a :↓,b :↓)+ a :↑ = b :↑, yields an unsound
detection. Precisely, when merging the sub-verdicts for rule DPAR,

(
(a :↓,b :↓);b :↑;ε

)
⊕
(
a :↑;ε

)
,

we would first obtain dl((a :↓,b :↓) + a :↑) and moreover that (a :↓,b :↓)+a :↑ = b :↑ is a subset of
|(b :↑;ε)+ ε|= b :↑, which yieldsXaccording to Fig. 2. �

We expect the judgement P.X to imply psl(P), which would in turn imply ¬lfree(P) by Thm. 3.10. We
leave the proof of the first implication for future work.

5 Disentangling Potentially Self-Locking Processes

To illustrate better the ultimate aim of our study, we outline possible disentangling functions that refactor
a potentially self-deadlocked process into a corresponding lock-free process. These disentangling func-
tions are meant to be used in conjunction with the detection algorithm of § 4 as a static analysis tool for
automating the disentangling of processes.

There are a number of requirements that a disentangling algorithm should satisfy. For instance,
it should not violate any safety property that is already satisfied by the entangled process (e.g., if an
entangled process P type-checked according to some typing discipline, i.e., Γ ` P , the resulting disen-
tangled processes, say Q, should still typecheck wrt. the same type discipline/environment, i.e., Γ ` Q).
Additionally, one would also expect the resultant disentangled process to be lock-free, as expressed in
Def. 3.2, or at the very least to resolve a subset of the locks detected. But there are also a number of
additional possibilities for what constitutes a valid process disentangling. Within the simple language of
§ 2, we can already identify at least two (potentially conflicting) criteria:

1. the order of name usage respects that dictated by the innermost prefixing of the entangled process.
Stated otherwise, any locks are assumed to be caused by prefixing at the top-level of the process.
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2. the order of input prefixes in the entangled process should be preserved.

We envisage a straightforward extension to the system P . φ of § 4, with extended detection reports,
〈X,Γ〉. The tuple 〈X,Γ〉, in some sense, explains the source of the problem detected by including the
offending top-layer environment of a self-deadlock, Γ; this information is then used by the disentangling
procedure to refactor the detected process.

Fig. 3 defines two disentangling functions that take this (top-layer) environment and the resp. de-
tected process as input, and return a refactored process as output. The first function, Γ ∝1 P, translates
problematic prefixing (as dictated by Γ) into parallel compositions. The second function Γ∝2 P operates
asymmetrically on input and output prefixes: whereas problematic outputs are treated as before, blocked
inputs are not parallelised; instead the resp. output is pulled out at input level.

Example 5.1. The algorithm of § 4 could detect P5 (below) as P5 . 〈X,(a :↓,c :↑)〉, where Γ = (a :↓,c :↑)

P5 = a.b̄.c.0 ‖ c̄.b.ā.0

Using the offending top-layer environment Γ, we can apply the two disentangling algorithms of Fig. 3
and obtain the following:

Γ∝1 P5 = (a.0‖ b̄.c.0)‖(c̄.0‖b.ā.0) (3)

Γ∝2 P5 = (ā.0‖a.b̄.c.0)‖(c̄.0‖b.0) (4)

While both refactored processes are lock-free, it turns out that the first disentangling function observes
the first criteria: in the refactored process, (3), interactions on a and c happen after interactions on b,
since these names are (both) prefixed by b (and b̄) at the innermost level of P5. Conversely, the second
disentangling function observes the second criteria discussed above: in the refactored process, (4), the
input prefixing that orders a before c in P5 is preserved (this was not the case in (3)). Note that both
refactorings preserve channel linearity (a safety criteria) while returning lock-free processes. �

6 Conclusion

We have outlined our strategy for automating correct disentangling of locked processes, generalising pre-
liminary results previously presented [9]. Although we limited our discussion to a very simple language
— the variant of the finite CCS without recursion, choice or name scoping — this was expressive enough
to focus on the usefulness of the concepts and techniques we propose, i.e., resolving circular locks across
parallel compositions. We define precisely the class of (dead)locked processes within this setting, and
provide a faithful characterisation of them in terms of a novel notion: potentially self-locking processes,
Def. 3.8. We also devised a compositional algorithm to statically detect these processes and unlock them,
improving previous results (cf. [9]). In particular, in [9], they used a different technique to ours (based
on balanced session types) and could only disentangle self-holding deadlocks such as those in processes
P3 and P4 of Ex. 3.5. However, they were unable to reason about (and disentangle) locks across parallel
compositions, such as those shown for processes P1 and P2 of Ex. 3.5 and P5 of Ex. 5.1.

We also expect the concepts and techniques developed to carry over, at least in part, to more ex-
pressive languages. To this end, we have already performed exploratory investigations for language
extensions such as process recursion, unrestricted channel names (to allow non-determinism), and value-
passing. For instance, disentangling the following value-passing program (an extension of the process P5
in Ex. 5.1):

P6 = a(x).b̄〈x+1〉.c(y).0 ‖ c̄〈5〉.b(z).ā〈7〉.0
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may not be possible for certain disentangling functions (and criteria) e.g., Γ ∝1 P, whereas others may
require auxiliary machinery, e.g., the findVal(−) function used by [9] for pulling out the resp. output
values in Γ∝2 P; in (complete) linear settings, there is a unique output for any particular channel, which
can be obtained through a linear scan of the process. The input binding structure may also make certain
processes impossible to disentangle. E.g., consider a modification in P6 above where the value 7 is
changed to the bound value z. This would create a circular binding dependency: one between the input
on channel a and the output on b through variable x, but also another one between the input on b and the
output on a through variable z. These issues will all be considered in future work.
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10 Unlocking Blocked Communicating Processes

A Proofs

This section is devoted to the proof of Theorem 3.10. We start with some auxiliary definitions and
lemmas.

Given a process P of Figure 1, we indicate with NAMES(P) the subset of NAMES induced by the
rule NAMES(a.P) = {a}∪NAMES(P): the remaining cases are homomorphic. We use t for disjunctive
union of sets.

We remember that we assume that the processes P of our interest are linear, that is they never contain
two or more inputs or outputs on the same channel, and deploy the following results.
Lemma A.1. If P→ P′ then there is port, a, such that NAMES(P′)t{a}= NAMES(P) and sync(a,P).

Proof. By induction on the rules of Figure 1; straightforward.

Corollary A.2. If P→∗ Q then the following holds:
1. NAMES(Q)⊆ NAMES(P)

2. if NAMES(P)\NAMES(Q) = {a, . . .} then there exists a Pa and a P′a such that P→∗ Pa→ P′a→∗ Q
with NAMES(P′a)t{a}= NAMES(Pa) and sync(a,Pa).

Lemma A.3. If cin(a,P) (cout(a,P)) and P→∗ Q then exactly one of the following cases holds:
1. cin(a,Q) (cout(a,Q))

2. a 6∈NAMES(Q) and there exists an Ra and an R′a such that P→∗ Ra→ R′a→∗ Q and NAMES(R′a)t
{a}= NAMES(Ra) and sync(a,Ra).

Proof. We have two cases corresponding to (i) a∈NAMES(Q) or (ii) a 6∈NAMES(Q). In case (i), assume
P→ P1→1 · · · →n Qn→Q. We proceed by induction on n. From Lemma A.1 we know that there exists
b such that NAMES(P1)t{b} = NAMES(P) and sync(b,P). Since NAMES(Q) ⊂ NAMES(P1), we infer
a ∈ NAMES(P1) and in turn a 6= b. From this and cin(a,P) we deduce that cin(a,P′). Now assume that
cin(a,Qn). From Lemma 1 we deduce NAMES(Q)t{c}= NAMES(Qn) for some c 6= a: thus cin(a,Q).
The case cout(a,P) is analogous. Case (ii) is a direct consequence of Corollary A.2.

Lemma A.4. If P ∈ CMP and P→∗ Q then Q ∈ CMP.
Lemma A.5. For any P there exists Q such that P→∗ Q and Q 6→.

Proof of Theorem 3.10. To show the right to the left direction, assume P ∈ CMP\LF. By definition:

CMP\LF def
= {P ∈ CMP | ∃(Q,a) . P→∗ Q ∧ wait(a,Q)⇒∀R . Q→∗ R⇒¬sync(a,R)}

Let Qa be a distinctive redex of P: thus in(a,Qa) exor out(a,Qa). Assume in(a,Qa) and consider
Rstop such that Qa →∗ Rstop 6→, which does exists by Lemma A.5. By Lemma A.3 we know that
in(a,Rstop): from ¬sync(a,Rstop) we infer ¬out(a,Rstop). From Lemma A.4 we infer Rstop ∈ CMP:
thus cout(a,Rstop). Therefore dl(Rstop) and tcmp(Rstop), as required. The case out(a,Qa) is analogous.

To see the left to the right direction, assume that P ∈ CMP and that P −→∗ E [Q] with dl(Q) and
tcmp(Q). Note that this excludes the case Q≡ 0: therefore NAMES(Q) 6= /0, and in turn NAMES(P) 6= /0,
because of Corollary A.2. From NAMES(Q) 6= /0 and the rules of structural congruence we infer that there
is a ∈ NAMES(Q) such that (i) Q ≡ a.Q′ ‖ Q′′ or (ii) Q ≡ a.Q′ ‖ Q′′. In case (i) we infer in(a,Q); from
Q 6→ we deduce ¬out(a,Q); in case (ii) we infer out(a,Q) ; from Q 6→ we deduce ¬in(a,Q). In both
cases we infer wait(a,Q), and in turn ¬sync(a,Q) which completes the proof since Q has no redexes:
that is, P ∈ CMP\LF .
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