
29

Xjenza Online - Journal of The Malta Chamber of Scientists
www.xjenza.org
DOI: 10.7423/XJENZA.2014.2.05

Research Article

Monitoring Distributed Systems with Distributed PolyLarva

I. Cassar, C. Colombo, A. Francalanza
University of Malta, Department of Computer Science

Abstract. PolyLarva is a language-agnostic runtime verifica-
tion tool, which converts a PolyLarvaScript into a monitor for a
given system. While an implementation for PolyLarva exists, the
language and its compilation have not been formalised. We there-
fore present a formal implementation-independent model which
describes the behaviour of PolyLarvaScript, comprising of the
µLarvaScript grammar and of a set of operational semantics. This
allows us to prove important properties, such as determinism, and
also enables us to reason about ways of re-designing the tool in a
more scalable way. We also present a collection of denotational
mappings for µLarvaScript converting the constructs of our gram-
mar into constructs of a formal actor-based model, thus providing
an Actor semantics for µLarvaScript. We are also able to prove
certain correctness properties of the denotational translation such
as that the denoted Actors behave in a way which corresponds
to the behaviour described by our implementation-independent
model. We finally present DistPolyLarva, a prototype imple-
mentation of the distributed PolyLarva tool, which implements
the new actor-based semantics over a language that can natively
handle distribution and concurrency called Erlang.

1 Introduction
Runtime Verification (RV) is a dynamic Bauer et al. (2006),

Colombo (2008) verification technique which invokes monitoring
procedures at runtime so as to verify that the current execution,
of the system being verified, is correct with respect to a given
specification. It is therefore important that RV tools should be
verified for correctness themselves, thus making users more con-
fident in trusting and relying on such tools for verification. As RV
tools weave additional monitoring code into the system being ver-
ified, an inevitable runtime overhead is imposed upon the system.
Moreover, monitoring demands may quickly increase especially
when monitoring distributed systems, as these systems are able
to scale up rapidly. Such a drastic increase in monitoring load
would impose a negative effect on the monitoring efficiency, thus
also affecting the performance of the monitored system. For this
reason, various ways are being explored by which this overhead
can be minimized Colombo et al. (2012), Francalanza and Sey-
chell (2013). Concurrency and parallelisation provide a way of
decreasing these overheads by exploiting tightly-coupled, multi-

core architectures. When dealing with high monitoring demands,
distributed monitoring may also be a more scalable and feasible
alternative for increasing monitoring efficiency as distribution
also enables the exploitation of loosely-coupled processing units.

PolyLarvaMizzi (2012), Colombo et al. (2012) is a language
agnostic RV compiling tool, which when given an RV specifica-
tion written in polyLS (short for polyLarvaScript), creates the
additional monitoring computation for a given system. polyLS
language provides an event-driven monitoring framework by
which one can identify and specify a number of monitoring re-
quests, that each monitor can handle, in terms of Events. For
each monitor, one can also specify a set of monitoring checks and
handling procedures in terms of Conditions and Actions. These
three components are then associated with one another in the
monitor’s list of rules.

Example 1.1.

BR1 = ReqFunds(Usr,Sum) / !IsUsrValid(Usr)→ WarnUsr();

BR2 = ReqFunds(Usr,Sum) / !EnoughFunds(Sum)→ WarnUsr();

BR3 = ReqFunds(Usr,Sum) → TransferFunds(Usr,Sum);

Example 1.1 shows a sample pseudo-script defining three rules
all of which are related to the same ReqFunds event. Whenever
the monitor receives an event e from the system, it starts by
matching it with the event pattern of the first rule in the sequence,
i.e., BR1. If e is for example of the form ReqFunds(“usr1”,9000),
it would match the rule’s pattern ReqFunds(Usr,Sum) and as a
result replace every occurrence of variables Usr by “usr1” and
Sum by 9000. Subsequently, when e matches the event pattern
of BR1, the associated condition !IsUsrValid(Usr) would change
into !IsUsrValid(“usr1”) and evaluate to either true or false. If
true, the rule’s action WarnUsr() would also execute. Note that
once an event matches a rule, it is consumed and it cannot match
any further monitoring rules. Otherwise if e does not match the
event pattern of BR1, or does not satisfy the associated condition,
rule BR1 would be ignored and the event is matched with the
pattern of BR2.

1.1 Problem Definition
There are several problems with the original PolyLarva Mizzi
(2012):

1. PolyLarva was developed using a compiler-driven1

Colombo et al. (2012) approach, hence no formal language
1The aim was to develop an actual compiler implementation.

Correspondence to: I. Cassar (ian.cassar.10@um.edu.mt)

c© 2014 Xjenza Online

Monitoring Distributed Systems with Distributed PolyLarva 30

semantics exist for polyLS. This is not ideal as one would
require a thorough understanding of how the PolyLarva
compiler is implemented, in order to understand the be-
haviour of the language constructs. This also makes it hard
to understand how the PolyLarva compiler interprets and
converts the polyLS constructs into monitoring constructs
and even harder to improve it.

2. Since no formal model exists for PolyLarva , there also
does not exist any type of formal proof which substantiates
the validity and the correctness of the PolyLarva compiler.
This makes it hard for users to trust that our RV tool would
correctly verify their system, as specified in their compiled
script.

3. Due to the shared-state, multi-threaded design of the syn-
thesised monitor, PolyLarva does not provide a foundation
by which the compiled monitor could be easily scaled up in
order to make use of distributed architectures. A distributed
design would introduce more areas that can be explored in
order to exploit the advantages of distributed architectures
so as to be capable of handling higher monitoring demands.

2 The High-level Model
The main focus of this model is that of providing a for-

mal, implementation-independent description of the runtime be-
haviour of polyLS. In fact, this model formally describes the be-
haviour of the most essential constructs of PolyLarva ’s polyLS.
It consists of the µLarvaScript grammar, derived from the origi-
nal polyLS language, and from a series of operational semantics
which provide a formal implementation-independent description
of the runtime behaviour of the constructs in our grammar.

The µLarvaScript Grammar presented in Table 3.1 is made
from abstract syntax, meaning, that the language is treated as if
it has already been parsed and hence assumed to be syntactically
correct. It assumes denumerable sets of values v ∈ Val, variables
x ∈ Var, and identifiers i ∈ Id = Val ∪ Var, within its other
constructs. The state of a monitor uses variables to store values
collected from system events for further analysis. The grammar
also assumes the inclusion of predicate functions, which are used
in conditions so as to perform checks on the monitor’s state. The
entire µLarvaScript grammar is defined below.

Table 3.1 - The µLarvaScript Grammar.

M ∈ Mons ::= 〈State,RulesList〉 | 〈State,RulesList〉‖Mons
d ∈ RulesList ::= Rule; RulesList | ε
r ∈ Rule ::= ((q, c) 7→ a)
n ∈ EventName ⊇ {mthdInvoked, exThrown, mthdRet, internal}
s ∈ State : Var* ::= { x0 , x1 , . . . }
e ∈ Event ::= EventName(v0 ∈ Val . . . vk ∈ Val)
q ∈ Query ::= EventName(i0 . . . ik)
b ∈ Boolean ::= true | false
c ∈ Condition ::= Boolean | !(Condition) |

Condition && Condition | p(v0 ∈ Val, ... ,vk ∈ Val)
a ∈ Actions : (State→State) ::= stop | fail | noOp | a1,a2 |

update(State,Function) | load(Mons)

A monitoring system consists of a collection of concurrent
monitors, M0‖M1, where each individual monitor, 〈s, d〉, pos-
sesses its own current local state “s” and its own rule list “d”.

Monitors are able to process sequences of events “t” which are
forwarded to the monitor by the system. The state of a monitor,
“s”, comprises a set of local variables, {x0, ..., xn}, while a rule
list, “d” consists of a sequence of rules. Each individual rule, of
the form ((q, c) 7→ a), binds an event query “q”, and a condition
“c”, with an action “a”. Although an event query, “q”, has a very
similar structure to an event, “e”, the latter describes an actual
event which originates from the system being monitored.

Conversely, the former is used to describe a pattern which
states that the host monitor is able to handle system events which
match the pattern denoted by the query. A condition “c”, can
be a boolean formula or a predicate which performs checks
on the monitor’s current state and on the values passed as its
arguments, so as to yield a boolean result. Similarly, an action
“a” is a deterministic function which processes a sequence of
operations which can possibly modify the monitor’s current state.
The monitor supports the following actions: (i) stop − halts
the execution of the current monitor; (ii) fail − indicates that
the monitored system has violated the property; (iii) nop − the
monitor applies a rule but does not carry out an action; (iv)
update(S,F) − the monitor takes the current monitor state “S ”
and a custom action function “F” and applies “F(S)”, such that
F is able to take state S as input and return an updated monitor
state; (v) load(M) − a monitor is able to dynamically load another
monitor M.

The following example script shows the same rules defined in
Example 1.1, written in µLarvaScript syntax. As a shorthand, we
refer to an action update(state, Act(args)) as Act(args).

Example 3.1.

〈{usr1, f unds},
((ReqFunds(Usr, S um), !IsUsrValid(Usr)) 7→ WarnUsr());
((ReqFunds(Usr, S um), !EnoughFunds(Sum)) 7→ WarnUsr());
((ReqFunds(Usr, S um), true) 7→ TransferFunds(Usr,Sum); 〉

2.1 Operational Semantics
The operational semantics for polyLS consists of a group of

reduction rules. These rules, defined below, are segmented into
high level monitoring rules, denoted by the high-level relation
(−̀→), and into the low-level monitoring rules, denoted by the
low-level relation (→) relation. These rules serve to indicate
how a collection of monitors would behave when they receive
a system event. In fact, they describe how an event is ignored
when no monitor in the collection is able to handle the event.

µLarvaScript High-Level Monitoring rules

rHlMon1
t B M → t′ B M′

t B M −̀→ t′ B M′

rHlMon2
e; t B M 6→

e; t B M −̀→ t B M

µLarvaScript Low-Level Monitoring rules

rParMon
t B M0 → t′ B M′

0

t B M0 ‖ M1 → t′ B M′
0 ‖ M1

rMonEvtHandling
e, s, d ⇓ s′

e; t B 〈s, d〉 → t B 〈s′, d〉

10.7423/XJENZA.2014.2.05 www.xjenza.org

Monitoring Distributed Systems with Distributed PolyLarva 31

µLarvaScript Event Consumption rules

rConsAx
matches(q,e)= σ s, cσ ⇓c true

e, s, ((q, c) 7→ a); d ⇓ aσ(s)

rConsInd1
matches(q,e)6= σ e, s, d ⇓ s′

e, s, ((q, c) 7→ a); d ⇓ s′

rConsInd2
matches(q,e)= σ s, cσ ⇓c false e, s, d ⇓ s′

e, s, ((q, c) 7→ a); d ⇓ s′

µLarvaScript Condition Evaluation

rTru
s,true σ ⇓c true

rFls
s,false σ ⇓c false

rPred1
p(v0, . . . , vn)(s)

s, p(x0, . . . , xn)σ ⇓c true

rPred2
¬p(v0, . . . , vn)(s)

s, p(x0, . . . , xn)σ ⇓c false

rNot
s, cσ ⇓c b
(s, ! cσ) ⇓c b1

where b1 = ¬b

rAnd
s, c1σ ⇓c b1 s, c2σ ⇓c b2

s, c1σ && c2σ ⇓c b3

where b3 = b1 ∧ b2

The high-level monitoring rules (−̀→) state that a high-level
reduction is only possible if t B M is able to reduce into
t′ B M′ through a series of low-level reductions (→). However,
if a low-level reduction is unable to reduce e; t B M into some
other form, then it means that event “e” will be ignored, thus
reducing e; t B M into t B M where “t” is the tail of “e; t” and
“M” remained unmodified by the reduction.
rParMon is a low-level inductive rule which determines

whether t B M0‖M1, consisting of a sequence of events “t”
and monitor collection “M0‖M1”, is capable of reducing into
t′ B M′0‖M1, where “t′ ” is a modified stream of events while
“M′0‖M1” represents a modified monitor collection. It states that
such a reduction is only allowed if there exists some sub-monitor
collection “M0”, which when given the same event stream, “t”,
reduces it into event stream “t′ ” and “M′0”, i.e., a modified ver-
sion of collection “M0”. rMonEvtHandling is an axiom which
specifies that a monitor, of the form “〈s, d〉” which is provided
with a sequence of events “e; t”, changes its state to “s′”. It also
specifies that this reduction is allowed if the event “e”, together
with the current monitor’s state “s” and rule list “d”, are able to
evaluate into the next state “s′” by using the Event Consumption
rules.

The Event Consumption rules (⇓) describe how an individ-
ual monitor, consisting of state “s” and rule list “d”, reacts and
behaves in order to handle the received event “e”. In fact they
indicate that a successive state “s′” is derived once the event has
been handled by the monitor and removed from the event stream.
Hence, the above rules, describe the operational behaviour by
which a µLarvaScript monitor consumes a system event. Particu-
larly, these rules define that a modified state “s′” is only produced
when the received system event “e” matches a query “q” of one
of the monitor’s rules, which causes condition “c” to evaluate to
true, thus invoking an action “a” which modifies state “s” into
some “s′”. Note that σ is produced when a query q matches
2 an event e so to provide a mapping between the variables in
q and the system values received in e. This mapping is then

2(Cassar, 2013) provides the formal definition for matches(q, e) = σ.

used by conditions and actions which require information about
the system. Furthermore, To evaluate a condition “c”, the event
consumption rules use the Condition Evaluation rules (⇓c) to
determine whether the event satisfies or violates the associated
condition.

2.2 The Single Receiver Property
One of the most prominent properties observed in PolyLarva

was that no matter how many monitors are specified, only a max-
imum of one monitor ends up receiving and handling an event.
For this reason we assume that a sound monitoring specification
is one which coincides with the Single Receiver Property defined
by Definition 3.1. This property is quite essential, especially
in a distributed context, so to ensure that two or more moni-
tors are never allowed to handle the same event simultaneously,
meaning that at most only one monitor is allowed to execute an
action whenever a specific event occurs. We therefore base our
arguments and evaluation proofs upon this important property,
meaning that any guarantees offered by our models, only apply
for sound specifications.

Definition 3.1. The Single Receiver Property.

t B M0‖M1 → t′ B M′ implies

t B M0 → t′ B M′0 and t B M1 6→

3 The Distributed-State Model and its
Translation

This model aims to provide a formal description of the be-
haviour of the µLarvaScript constructs in a way which is closely
related to an actual, distributed-state implementation. In fact,
this distributed-state model consists in a formal translation from
µLarvaScript constructs to constructs of a formal Actor model
for Erlang (presented in Sections 3.2 and 3.3) adapted from Fran-
calanza and Seychell (2013). In this way, the meaning of the
µLarvaScript constructs is given in terms of a highly scalable
Haller and Sommers (2012), distributed state model, which pro-
duces a monitoring system capable of handling larger monitoring
demands with the same or better performance. This claim is
supported by Gustafson’s Law Gustafson (1988).

3.1 Concurrency, the Actor Model & Erlang
The Actor Model Gul A. et al. (2001) is a highly scalable

paradigm Haller and Sommers (2012) which offers a level of ab-
straction by which both data and procedures can be encapsulated
into a single construct.

Actors differ from objects since actors are also concurrent
units of execution, each of which executes independently and
asynchronously. This fusion of data abstraction and concurrency
relieves the developer from having to recur to the explicit con-
cept of a thread in order to make use of concurrency. Moreover,
since Actors communicate through Message Passing Gul A. et al.
(2001), the developer does not need to develop explicit synchro-
nization mechanisms to prohibit dangerous concurrent access to
the data, shared amongst the communicating threads.

Additionally, message passing between these actors is per-
formed asynchronously Gul A. et al. (2001), which means, that
an Actor is able to send a message without having to wait for the

10.7423/XJENZA.2014.2.05 www.xjenza.org

Monitoring Distributed Systems with Distributed PolyLarva 32

receiver’s response. Conversely, the receiver does not need to be
listening for incoming messages in order to receive them since
the messages are deposited in the Actor’s mailbox.

In order for an actor to retrieve the received data, it must
issue a receive command to recover a message from its mailbox.
An important factor is that message passing in the Actor model
normally assumes fairness, that is, any message sent by an actor
to another existing actor, is guaranteed to eventually be deposited
inside the target actor’s mailbox. In addition to this merger
between data, functions and concurrency, an actor is also assigned
a unique and persistent identifier, which is essential to identify the
target destination actor of the message being sent. A case in point
is Erlang Vermeersch (2009), Armstrong (2007), a programming
language which natively implements this model.

Although forms of concurrency are employed in the monitors
synthesised by PolyLarva , this is done through multi-threading
and shared state communication Mizzi (2012) using explicit
locking mechanisms. As these concurrent monitors do not use
a distributed state3, they can only be executed concurrently on
the same machine. This implies that unlike a distributed multi-
processing design, a multi-threaded monitor side cannot exploit
the full processing capabilities of loosely coupled distributed
architectures, making it less scalable A and P (2010).

3.2 Actor Calculus for Erlang
The following calculus, adapted from Francalanza and Sey-

chell (2013), denotes a formalized abstract syntax for modeling
the behaviour of Erlang programs. The calculus was further re-
stricted so as to only describe the core Erlang constructs which
are most relevant to our intents and purposes.

Calculus for Actor Systems:

A, B,C ∈ Actr ::= i[e / q] | A ‖ B | (i)A
q, r ∈ MBox ::= ε | v : q

e, d ∈ Exp ::= v | self | e!d | rcv g end | e(d) | spw e |
x = e, d | case e of g end | . . .

v, u ∈ Val ::= x | i | a | µy.λx.e | {v, . . . , v} | l | exit | . . .
l, k ∈ Lst ::= nil | v : l
p, o ∈ Pat ::= x | i | a | {p, . . . , p} | nil | p : x | . . .

g, f ∈ PLst ::= ε | p→ e; g | p when e→ e; g

Evaluation Contexts

C ::= [−] | C!e | v!C | C(e) | v(C) | x =C, e | . . .

This calculus uses denumerable sets of variables x, y, z ∈Var,
atoms a, b ∈Atom, and process identifiers i, j, k ∈Pid amongst
other constructs, so as to describe the execution of an Erlang pro-
gram in terms of a “system of actors” Francalanza and Seychell
(2013). A system of actors is composed of a collection of actors
executing in parallel, A‖B, where each individual actor, i[e / q],
is uniquely identified by its process identifier i.

Moreover, “e” represents an expression which the actor will
execute concurrently, with respect to its local mailbox “q” Fran-
calanza and Seychell (2013). An actor’s mailbox, is denoted as

3“Distributed state” means that each monitor has its own local state and
communicate through message passing.

a list of values4 “v : q”, where “v” represents the head of the
queue while “q” denotes its tail. Additionally, actor expressions
Francalanza and Seychell (2013) usually consist of a sequence
of expressions “x = e, d”, which is expected to reduce down
to a value. Moreover, expressions may consist of: (i) sending
messages to other actors through “e ! d” (where expression e
should reduce to a Pid; (ii) referencing to the actor’s own process
identifier by using self; (iii) applying functions to other expres-
sions with “e(d)”; (iv) branching using the case statement; and (v)
pattern matching when reading a value from the mailbox through
the recv g end construct, where “g ∈PLst” represents a guarded
/ protected list. Additionally, expressions Francalanza and Sey-
chell (2013) may also define evaluation contexts expressed as
“C”. An expression defined within a context will be the first
to execute entirely. Moreover, values may consist of variables,
recursive functions5 µy.λ.x.e, tuples {v1, ..., vn}, lists and other
constructs.

3.3 Erlang Reduction Semantics for Actor Sys-
tems

The operational semantics in figures 1, 2 and 3 Francalanza and
Seychell (2013), provide a formal description of the behaviour of
the actor calculus. Moreover, the semantics assume that the actor
systems are “well-formed” Francalanza and Seychell (2013),ie,
every actor is identified by a unique process identifier.

Com
j[C[i!v] / q] ‖ i[e / q] −→ j[C[v] / q] ‖ i[e / q:v]

Rd1
mtch(g, v) = e

i[C[rcv g end] / (v : q)] −→ i[C[e] / q]

Rd2
mtch(g, v) = ⊥ i[C[rcv g end] / q]m −→ i[C[e] / r]m

i[C[rcv g end] / (v : q)]m −→ i[C[e] / (v : r)]m

Figure 1: Reduction Semantics for Actor Systems - Part 1.

The Com rule, in Figure 1 describes a message passing mech-
anism by which an actor “ j[C[i!v] / q]” can send a message
containing a value “v” and append it at the end of the mailbox
of another actor. The recipient actor will only retrieve and be
notified about the message, residing in its mailbox, when it issues
a recv command. In fact, rules Rd1 and Rd2 can then be used
retrieve a message from the actor’s mailbox. Rd1 states that a
value is retrieved from the mailbox if it matches at least one
pattern of some protected list g ∈PLst, associated with the recv
command, thus returning the expression associated with the first
matching guarded rule, “p → e” or “p when → e”. Moreover,
rule Rd2 is an inductive rule which allows for an actor to perform
a selective receive, meaning that an actor is not restricted to only
retrieve the topmost message in the queue, but is allowed to keep
on searching in its mailbox, or if necessary keep on waiting for
new messages, until it finds a message which matches at least one
pattern in the guarded list, associated with the receive function.

The Cs1 rule, in Figure 2, states that a value “v” will only be

4The colon “:” in v : q, represents the list constructor operator, ie, value v is
added to list q.

5The “y” in µy.λ.x.e denotes a self-referencing variable which is required to
perform recursive calls for the function “λ.x.e”.

10.7423/XJENZA.2014.2.05 www.xjenza.org

Monitoring Distributed Systems with Distributed PolyLarva 33

Cs1
mtch(g, v) = e

i[C[case v of g end]]m −→ i[C[e]]m

Slf
i[C[self]] −→ i[C[i]]

App
i[C[µy.λx.e (v)]] −→ i[C[e{µy.λx.e/y}{v/x}]]

Spw
i[C[spw e] / q] −→ (j)(i[C[j] / q] ‖ j[e C ε])

Figure 2: Reduction Semantics for Actor Systems - Part 2.

accepted if it matches a pattern in the associated guarded list “g”.
For example, consider the following code:

case Bin of 1→ ok; 0→ ok; → nok end.

This code states that if variable “Bin” reduces to 1 or to 0, during
execution, then it is accepted and the “ok” atom is returned.
Otherwise, if it reduces to some other form, “nok” is returned,
since in Erlang, the “ ” pattern refers to a catch-all pattern which
matches anything. Moreover, the Spw rule is used to describe
how new concurrent actor instances can be dynamically created,
while the Slf rule dictates that the self statement reduces into
the calling Actor’s Pid. Moreover,App rule states that when
some value “v” is passed as an argument of a recursive function
“µy.λ.x.e”, then all occurrences of the self-referencing variable
“y” in expression “e”, will be replaced by the entire recursive
function. Moreover, all occurrences of argument “x”, in function
“λ.x.e”, will be replaced by the passed value “v”.

Moreover, the Ass rule, in Figure 3 below, describes that in
an expression sequence “x = e, d”, when the first expression e
is reduced into a value “v”, the value obtained can be used by
the second expression d. It also states that the obtained value “v”
will bind to variable “x”, meaning that this variable will store
the result obtained after reducing the entire expression sequence.
The remaining rules are quite self explanatory.

Ext
i[C[x = exit, e]] −→ i[C[exit]]

Ass
v 6= exit

i[C[x = v, e]] −→ i[C[e{v/x}]]

Par
A −→ A′

A ‖ B −→ A′ ‖ B

Figure 3: Reduction Semantics for Actor Systems - Part 3.

3.4 Alternative Semantics for µLarvaScript
The denotations in Figure 4.1 convert µLarvaScript constructs

into constructs of the formal Actor model for Erlang Fran-
calanza and Seychell (2013), thus giving Actor semantics to
µLarvaScript. Also one must distinguish between the constructs
which are declared within the denotations and those declared
without any denotation. The constructs declared in a denotation
are µLarvaScript constructs, for example, abc in ~abc�m refer

to a µLarvaScript construct, while if abc is not declared in a
denotation, then it is a construct of the Erlang model Francalanza
and Seychell (2013).
~t B M�m presents the root denotational function which takes

an event stream t and a µLarvaScript monitor specification “M”.
It then invokes another denotational function ~t�m

es, which creates
a coordinating Actor that executes in parallel with the monitor-
ing actors returned by fst(~M�m

par). Moreover, in order for the
denotation ~t�m

es to keep on reducing, it requires a list of process
identifiers6 (Pids) returned by snd(~M�m

par).
The translation ~t�m

es converts an event stream into a coordinat-
ing actor, when given a list of Pids. This special Actor is required
to interface with the monitored system and to make sure that the
synthesized monitor is behaving in accordance with the Single
Receiver Property. In fact, ~t�m

es creates an actor with ~t�m
mb as its

mailbox, meaning that the system events will be delivered to the
coordinator’s mailbox. The coordinator consists of a recursive
function which takes a list of Pids and listens for messages in its
mailbox via a recv command. Whenever the coordinator receives
the message {new, Pid}, it signifies that one of the concurrent
monitors has issued a ~load(M)�m

a action, so as to dynamically
create a new concurrent monitor. Hence, the coordinator adds
the Pid of the new monitor to its Pid-list and issues a recursive
call, to restart listening for other messages.

Fig 4.1 The formal translation.

~t B M�m def
= ~t�mes(snd(~M�mpar)) ‖ fst(~M�mpar)

~t�mes(PidList) def
= coord [(µ yrec · λ Xlst · (

recv {evt,E}:→
bcast({ E,self() },Xlst),
case await(len(Xlst)-1) of

0→ yrec(Xlst);
1→ yrec(Xlst);
→ error

end
{new,Pid} →

yrec(Xlst:Pid);
end.)(PidList) C ~t�mmb]

~M0‖M1�mpar
def
= {fst(~M0�mpar) ‖ fst(~M1�mpar) ,

snd(~M0�mpar) : snd(~M1�mpar)}

~〈s, d〉�mpar
def
= {i[(µyrec · λXstate · Xnew = recv(~d�md

(Xstate))end, yrec(Xnew).)(~s�ms))) / ε] , i}

~ε�md
def
= λXstate · { Coord , } → Coord ! nok, (Xstate);

~r1 ; d1�md
def
= λXstate · ~r1�mr (Xstate) ; ~d1�md (Xstate)

~((q, c) 7→ a)�mr
def
= λXstate · { Coord, ~q�mq } when

(~c�mc (Xstate)) 7→ (Coord ! ok, ~a�ma (Xstate))

~{x0, x1, . . . , xk}�ms def
= ~x0�mi : ~x1�mi : . . . : ~xk�mi

~∅�ms def
= ε

~n(v0, . . . , vk)�me
def
= {′n′ , {~v0�mi : ~v1�mi : . . . : ~vk�mi }}

~n(i0, . . . , ik)�mq
def
= {′n′, {~i0�mi : ~i1�mi : . . . : ~ik�mi }}

6A Pid uniquely identifies an Actor.

10.7423/XJENZA.2014.2.05 www.xjenza.org

Monitoring Distributed Systems with Distributed PolyLarva 34

~true�mc
def
= λXstate · true

~! (C)�mc
def
= λXstate · not ~C�mc

~C1&&C2�mc
def
= λXstate · ~C1�mc and ~C2�mc

~p(v0, . . . , vk)�mc
def
= λXstate · λv0, . . . , vk · P({v0, . . . , vk}, Xstate)

~stop�ma
def
= λXstate · exit.

~fail�ma
def
= λXstate · Coord ! error.

~noOp�ma
def
= λXstate · Xstate

~update(S,F)�ma
def
= λF · λS · F(S)

~load(M)�ma
def
= λXstate · (Coord ! {new,

spw(fst(~M�mpar)) }), Xstate

~a0, a1�ma
def
= λXstate · ~a1�ma (~a0�ma (Xstate))

Conversely, when the coordinator reads a system event mes-
sage, {evt, E}, it broadcasts the message7 emsg ≡ {self, E} to all
monitors executing concurrently, by using the “bcast” function.
The coordinator then awaits feedback from the monitors by call-
ing “await(count)”, where “count” is initially set to be the length
of the coordinator’s Pid-list. Moreover, the “await” function
makes use of a selective receive so as to only retrieve feedback
messages, of the form “ok” or “nok”, from all the monitors in its
Pid-list. This makes sure that only a maximum of one monitor
has indeed handled the broadcasted event. In fact it issues an
error if more than one monitor handles the event, thus signify-
ing that the Single Receiver Property has been violated by the
translated monitoring specification.
~−�m

par is a function that converts a µLarvaScript monitor into
a meta-level tuple containing a list of monitoring actors together
with another list with their Pids. The meta-functions fst and
snd are then invoked at compile-time so as to extract the two
separate lists from the denoted meta-tuple. Each actor denoted
by ~〈s, d〉�m

par is always associated with a unique Pid, “i”, and is
initialized with an empty mailbox “ε” so as to wait for event mes-
sages of the form {CoordPid, e}, by issuing a “recv” command so
as to listen for messages from the coordinator. This command is
followed by ~d�m

d which converts a µLarvaScript rule list into an
Erlang list of guarded rules. An empty µLarvaScript rule list, is
converted by ~ε�m

d into a guarded rule which matches any broad-
casted event message. This is required since when a message
matches its pattern, the monitor sends a rejection feedback to
the coordinator by using “Coord! nok” and leaves the monitor’s
current state unmodified.

Each µLarvaScript rule, in a non-empty rule list, is trans-
lated through ~((q, c) 7→ a)�m

r into an Erlang guarded com-
mand. Whenever the guarded rule’s tuple query, of the form
{Coord,~q�m

q }, pattern matches the structure of the received event
such that condition ~c�m

c returns true, the rule sends an “ok” feed-
back message to the coordinator, signifying that the event was
handled. It then executes the function denoted by ~a�m

a on the
monitor’s current state, thus generating the next state.

The denotation ~−�m
s , for the monitor’s state, dictates that the

monitor’s state variables are converted into a list of Erlang vari-
ables. The translation ~−�m

e , states that a µLarvaScript event is

7Where self refers to the coordinator’s Pid and E is the actual system event
received.

translated into an Erlang tuple containing the event name and a
tuple of values created by the system, while the query denotation,
~−�m

q , returns an Erlang tuple containing the event name and a
tuple of identifiers, where each identifier can be either a value or a
variable. The condition denotation ~−�m

c , converts µLarvaScript
conditions into Erlang functions which return a boolean value
after performing a check on the monitor state passed as its ar-
gument. The action denotation ~−�m

a , translates µLarvaScript
actions into Erlang functions which take the monitor’s current
state and return an updated state accordingly.

Example 6.1. This example outlines how a monitor containing
only the first rule used in Example 3.1, can be formally translated
into Erlang code by applying the denotational functions provided.

~〈{usr1, f unds}, ((ReqFunds(Usr, S um),

!IsUsrValid(Usr)) 7→ WarnUsr()); 〉�m

def
= { By applying the root denotation ~−�m}
~t�m

es(snd(~〈{usr1, f unds}, ((ReqFunds(Usr, S um),

!IsUsrValid(Usr)) 7→ WarnUsr()); 〉�m
par)) ‖

fst(~〈{usr1, f unds}, ((ReqFunds(Usr, S um),

!IsUsrValid(Usr)) 7→ WarnUsr()); 〉�m
par)

def
= { Applying ~−�m

par , and extracting pidList “[i]” with the

snd meta function and the actor expression with fst. }
~t�m

es([i]) ‖ i[(µyrec · λXstate · Xnew = recv(

~((ReqFunds(Usr, S um), !IsUsrValid(Usr)) 7→ WarnUsr())�m
d

(Xstate))end, yrec(Xnew).)(~{usr1, f unds}�m
s))) / ε] . . .

def
= { After applying the necessary denotations }
~t�m

es([i]) ‖ i[(µyrec · λXstate · Xnew = recv(λXstate·
{Coord, {‘ReqFunds’,Usr,Sum}} when (!IsUsrValid(Usr))

(Xstate) 7→ (Coord! ok, (WarnUsr()(Xstate)));

{ Coord , } → Coord ! nok, (Xstate))end) / ε]

def
= { Applying~t�m

esto create the coordinator}
coord[(µyrec · λXlst · (recv {evt, E}

→ bcast({E, sel f ()}, Xlst),

case await(len(Xlst) − 1) of 0→ yrec(Xlst);

1→ yrec(Xlst); → error end;

{new, Pid} → yrec(Xlst : Pid)end.)([i]) C ~t�m
mb]

‖ i[(µyrec · λXstate · Xnew = recv(λXstate·
{Coord, {‘ReqFunds’,Usr,Sum}} when (!IsUsrValid(Usr))

(Xstate) 7→ (Coord! ok, (WarnUsr()(Xstate)));

{ Coord , } → Coord ! nok, (Xstate))end) / ε]

4 The DistPolyLarva Prototype
DistPolyLarva ((Cassar, 2013)) is prototype implementation

based on our new actor-based design. This prototype seeks to
re-implement PolyLarva ’s monitor compiler in a way which con-
forms to the denotational translations provided in our distributed-
state model. This ensures that any guarantees offered by the
formal models would also apply for our prototype compiler.

Also, DistPolyLarva parses a variant of polyLS, called Pseudo-
polyLS, into a parse tree which, resembles the µLarvaScript

10.7423/XJENZA.2014.2.05 www.xjenza.org

Monitoring Distributed Systems with Distributed PolyLarva 35

abstract syntax, together with additional parsed constructs. Al-
though our prototype compiler is able to recognize all polyLS
keywords and synthesise additional monitoring features, which
are not formalized in our models, it only guarantees correct be-
haviour for specifications which only use constructs from the for-
malized subset which forms µLarvaScript. The parsed constructs
are then converted into Erlang actor expressions in a similar way
as in our formal translation. Furthermore, this prototype was
developed with the aim to demonstrate that our translation is
implementable.

4.1 The Compilation Phases
DistPolyLarva passes a given Pseudo-polyLS specification

from four subsequent stages so as to synthesise the required
monitoring Erlang code.

Lexical and Parsing Phases: The Lexical phase uses a regu-
lar grammar which defines a number of patterns that a character
sequence, in the given Pseudo-polyLS script, must match in or-
der to be translated into an abstract token. The generated token
sequence is passed to the Parsing phase which checks that the
structure of the script being compiled, is correct with respect to
the production rules defined by the context free grammar of our
language defined in Table 3.1. If the entire token sequence obeys
the rules of the grammar, it is converted into an unambiguous
parse tree which conforms to the abstract syntax of µLarvaScript.
DistPolyLarva’s lexer was implemented using a lexer generator
called LEEX while its parser was implemented using a parser
generator called YECC Ericsson AB (2013).

Semantic Analysis and Code Generation Phase: This
phase is essentially an Erlang implementation of our formal
denotations in Figure 4.1. It starts by invoking the initial de-
notational function which inspects the initial node of the parse
tree and invokes other denotational functions which inspect the
semantics of its child nodes, from left to right. The compiler
also checks that any event, condition and action referred by the
rules of a specific monitor, is actually declared within the same
monitor, so as to preserve scoping. The generated Erlang source
modules (.erl) are then written in a directory specified by the
user and are compiled into executable Beam files via the Erlang
compiler.

5 Evaluation
The high level and distributed-state models were evaluated

by proving certain theorems about the runtime behaviour they
describe. The guarantees obtained from proving these theorems
are also inherited by DistPolyLarva, as this was developed with
a close relation to the formal denotational translation. Moreover,
the prototype was further evaluated through a series of tests.

5.1 Evaluating the High-level Model
In order to evaluate the behaviour described by this model we

proved a theorem which guarantees that any monitoring system,
specified in µLarvaScript, will operate deterministically. This
property is important since it ensures that whenever any collec-
tion of µLarvaScript monitors is in a particular collective state8,
and it receives a specific system event, it will always handle the
event in the same manner, thus transitioning to the same succes-

8By “collective state” we refer to the local states of all monitors in the specified
monitor collection.

sive collective state. This means that no matter how many times
the monitoring system is executed, depending on the current state,
it will always handle a specific event in the same way, and so
transition to same consecutive state. Hence, this guarantees that
a monitoring system will operate consistently.

Theorem 6.1. µLarvaScript Determinism.
t B M −̀→ t′ B M′ ∧ t B M −̀→ t′′ B M′′ implies t′ =

t′′ ∧ M′ ≡ M′′

Specifically, Theorem 6.1 states Cassar (2013) that if M re-
duces to both t B M′ and t B M′′ , by a using high-level
reduction (−̀→), then it implies that t B M′ and t B M′′

are equal to each other. The proof of this theorem was divided
into separate lemmas, each of which were proved accordingly by
using various inductive techniques.

5.2 Evaluating the Formal Translation
The evaluation of our denotational semantics consisted in prov-

ing Theorem 6.2, which shows that our formal translation is
in some sense correct. We showed that the behaviour of any
actor-based monitoring system, derived using our denotational
conversion, corresponds to the behaviour described by the high-
level model. These proofs not only help to increase the user’s
confidence but also state that any property proved on our high-
level model, such as determinism in Theorem 6.1, would also
transitively apply to our synthesised monitoring system. In our
proofs we assume that all µLarvaScript specifications observe
the Single Receiver Property. This implies that the denotational
translation is only guaranteed to provide a correctly-behaving ac-
tor implementation when the specification script being translated
observes the Single Receiver Property.

Theorem 6.2. Behaviour Correspondence.
Let M be a sound µLarvaScript specification and assume
t B M behaves as ~t B M�m ·

if t B M −̀→ ∗t′ B M′ and ~t B M�m →∗ ~t′ B M′�m

then t′ B M′ behaves as ~t B M′�m

Theorem 6.2 was further subdivided and proven using the
following correspondence lemmas.

Lemma 6.1. Single-Step Correspondence.
t B M −̀→ t′ B M′ implies ~t B M�m →∗ ~t′ B M′�m

Lemma 6.2. Multi-Step Correspondence.
t B M −̀→ ∗t′ B M′ implies ~t B M�m →∗ ~t′ B M′�m

Lemma 6.1 guarantees that for one high-level reduction, i.e.,
t B M −̀→ t′ B M′, there exists a corresponding translation,
~t B M�m, which reduces in 0 or more Erlang reduction steps
into ~t′ B M′�m. The proof for Lemma 6.2 relies on Lemma 6.1
so as to guarantee that for 0 or more high level reductions, we
can find a denotational translation which reduces ~t B M�m in 0
or more Erlang steps into ~t′ B M′�m.

6 Future Work
As part of our future work we propose to extend our

µLarvaScript grammar so as to formalize other polyLS constructs
such as timers. This extension requires modifications to our for-
mal models, as well as, additional formal results. The new results

10.7423/XJENZA.2014.2.05 www.xjenza.org

Monitoring Distributed Systems with Distributed PolyLarva 36

would guarantee that the extended high-level model still operates
deterministically and that its behaviour still corresponds to the
behaviour of an extended version of our distributed-state model.
The additional features in our DistPolyLarva compiler could
then be properly implemented in a way which guarantees correct
operation.

Moreover, as we were more concerned with the mathematical
aspect of our designs and since our prototype implementation
was only intended to demonstrate our actor-based concept, the
DistPolyLarva compiler was rapidly developed. Hence we pro-
pose to provide a more thorough implementation based on our
prototype and on our formal models. In fact we propose that the
code of the prototype should be properly structured so as to be
more maintainable in the future. Moreover, the synthesised mon-
itoring code can be further optimized so as to reduce the tool’s
monitoring overhead as much as possible. Additionally, the final-
ized compiler should also provide better error reporting and error
recovery mechanisms which would further aid users to debug
their Pseudo-polyLS specification scripts. We also suggest that
the proper implementation should also be tested for efficiency
and compared with the original PolyLarva implementation.

7 Conclusion
We have sought to increase the understandability and reliabil-

ity of PolyLarva with the aim of elevating the user’s level of
confidence in our RV tool. This was done by providing a high-
level operational model which describes the runtime behaviour
of the core constructs of polyLS. The evaluation for this model
consisted in proving that the model describes a deterministic
monitoring behaviour. We also created denotational semantics
which convert µLarvaScript specifications into Erlang actor ex-
pressions. The evaluation of this model consisted in proving
the correctness of the formal translation, which permits that any
property proved for the high-level model would also apply for
the denoted monitoring Actors. This also helps in increasing the
user’s level of confidence in our tool. This formal translation
was then implemented as the DistPolyLarva prototype compiler

which guarantees a correct translation for Pseudo-polyLS spec-
ifications which only include constructs that are formalized in
µLarvaScript.

References
A, M. K. and P, K. (2010). Distributed computing approaches for

scalability and high performance.
Armstrong, J. (2007). Programming Erlang: Software for a Con-

current World. Pragmatic Bookshelf.
Bauer, A., Leucker, M. and Schallhart, C. (2006). Runtime Verifi-

cation for LTL and TLTL.
Cassar, I. (2013). Monitoring Distributed Systems with Dis-

tributed PolyLarva. University of Malta.
Colombo, C. (2008). Practical Runtime Monitoring with Impact

Guarantees of Java Programs with Real-Time Constraints
(Master’s thesis, University of Malta).

Colombo, C., Francalanza, A., Mizzi, R. and Pace, G. J.
(2012). polyLarva: Runtime Verification with Configurable
Resource-Aware Monitoring Boundaries. In Softw. eng.
form. methods - 10th int. conf. sefm 2012 (Vol. 7504,
pp. 218–232). Lecture Notes in Computer Science.
Springer.

Ericsson AB. (2013). Parse Tools Reference Manual.
Francalanza, A. and Seychell, A. (2013). Synthesising Cor-

rect Concurrent Runtime Monitors in Erlang (tech. rep.
No. CS2013-01). University of Malta.

Gul A., A., Prasannaa, T. and Reza, Z. (2001). Actors: A Model
for Reasoning about Open Distributed Systems. University
of Illinois at Urbana USA.

Gustafson, J. L. (1988). Reevaluating Amdahl’s Law. Commun.
ACM. 31, 532–533.

Haller, P. and Sommers, F. (2012). Actors in Scala. USA: Artima
Incorporation.

Mizzi, R. (2012). An Extensible and Configurable Runtime Verifi-
cation Framework. (Master’s thesis, University of Malta).

Vermeersch, R. (2009, January). Concurrency in Erlang and
Scala.

10.7423/XJENZA.2014.2.05 www.xjenza.org

