
HIT-MSRA Summer School 2012-07-16

Practical Project: Natural Language Generation

Albert Gatt

Institute of Linguistics, University of Malta

Tilburg center for Cognition and Comunication (TiCC)

Department of Computing Science, University of Aberdeen

1. Overview
This project focuses on building a small NLG data-to-text application. The domain you will be

working with is that of Neonatal Intensive Care; this is the domain in which the BabyTalk systems

were designed.

The aim of this project is to get you to work with some real data, and try to convert it into text by

going through the stages of:

1. Document Planning (mainly to structure the messages in the text into a document plan tree)

2. Microplanning (mainly to work out the temporal properties of the events mentioned in the

text)

3. Realisation (using an existing realisation engine called simpleNLG to map from the outcome

of microplanning to actual English).

1.1 A note for programmers
This practical assumes familiarity with Java, and an ability to work with Java APIs. If you’re more

comfortable with another programming language, feel free to use it. However, this will mean that

you’ll be unable to use some of the libraries and APIs provided (described below) and will have to

work out your own solution to replace them.

Whichever language you use, I strongly recommend an object-oriented approach to the tasks here.

1.2 A note for non-programmers
If you’re not comfortable programming, you can still do most of this practical. Just focus on the parts

which do not have “for programmers” in the title.

2. Resources required
Apart from Java, you will need to have installed the following:

1. An IDE (such as Eclipse or NetBeans which supports Java)

2. Protégé – this is an editor that allows you to browse ontologies encoded in the OWL

description logic. Protégé is freely distributed by Stanford University. It can be downloaded

from: http://protege.stanford.edu/

http://protege.stanford.edu/

The following resources have been provided:

3. project.zip – this is a skeleton NLG system, which provides the basic APIs, to facilitate the

implementation. It is subdivided into:

a. src/ -- the actual java code directory (this should be easy to import into an IDE like

eclipse)

b. doc/ -- javadocs for the code provided

c. lib/ -- contains other jar files which need to be in your classpath. Note in particular

the presence of:

 Carados – a library for reading in and working with OWL ontologies. Note

that this requires two further java libraries to work: aries and owlapi-bin.

 SimpleNLG – a Java API that greatly simplifies the process of generating text

in English. SimpleNLG is fully documented and downloadable from this

page: http://code.google.com/p/simplenlg/

4. data/ – this directory contains the input data, as well as some example output texts and

document plans. This is further described in Section 3 below.

Note: Programmers should spend some time familiarising themselves with the application, the

APIs and the JavaDoc.

3. Outline of the data provided
The BabyTalk systems take raw data (in the form of numbers, symbols etc) as their starting point,

and the stages of signal analysis and data interpretation map this input onto an ontology, creating

instances of various events.

For this project, you will not be doing any signal or data analysis/interpretation. You have been

provided with the ontology, with the instances already set up.

You have the following at your disposal in the directory called data/.

a. babytalk.owl is the ontology developed for BabyTalk. The ontology represents the entities

and events in the domain (as well as possible relations between them).

b. scenario.owl is the same ontology as babytalk.owl. However, it also contains all the

instances that were created from the raw data related to a real hospital patient, collected

over a 12-hour shift in the NICU.

c. scenario_computer.html is the text that the BT-Nurse system generated automatically from

the data. Only one section of the document is shown, namely the one related to the

patient’s respiration.

d. scenario_docplan.txt is a text file containing the actual document plan produced by the Bt-

Nurse system for this data, for the part of the document shown in scenario_computer.html.

The document plan is the basis for the generation of the text in scenario_computer.html.

Note that the document plan is a tree, and its leaf nodes are actually instances in the

ontology (which is what BabyTalk uses as its “messages”).

e. scenario_docplan_simplified.txt is a simplified version of the document plan, where only

one section of the document is shown, namely the section related to Events During the Shift,

under Respiratory Support. This will be our focus for this practical.

http://code.google.com/p/simplenlg/

4. Familiarisation with the domain
In Protégé, open the babytalk.owl ontology. Spend a bit of time looking at the concepts represented

and especially the properties that each class has.

4.1 Reverse engineering the text
Now, look at the computer-generated text, scenario_computer.html. Just focus on the section

entitled Respiratory Support, and especially on the part titled Events during the shift. This is the

section that is related to data about a patient’s breathing. To familiarise yourself with the domain,

you’re going to try to ‘reverse engineer’ the text, by identifying which of the concepts in the

ontology have been mentioned in the text. These are basically the messages that the document

planner included.

Here are some questions to guide you in this process:

Q1. Read the text on its own first, without reference to the ontology. Try to identify and make a list

of the main events mentioned in the section. (Hint: focus especially on the noun phrases and the

verbs.)

Q2. Now compare your list to the ontology and try to find the actual concepts (or classes) that you

think should correspond to the events you identified in your list.

4.2 Analysing a document plan
Q3. Now, open scenario_docplan_simplified.txt and scenario.owl. Recall that the document plan

has leaves corresponding to messages, which are ontology instances; these instances are all to be

found in scenario.owl. The edges of the document plan tree represent relations between the

instances. Here is an example:

The above specifies a section of the document with the following features:

 This part of the document is a paragraph. It consists of a temporal sequence (TSEQUENCE: a

series of events in time), the main one of which is an ET_SUCTION.

 This paragraph has two further children, both phrases, and the plan indicates that they are

INCLUDEd in the TSEQUENCE. These two children report observations which are usually

made after an ET_SUCTION.

In the rest of the document plan, you’ll also notice some states, which are instances of a class called

NUMERIC_STATE. These summarise some numerical values related to some property of the patient.

In this case, they are parameters related to various levels of chemicals in the patient’s blood.

You will also see a TREND which, on inspection, turns out to be related to oxygen saturation (the

level of oxygen in a patient’s blood, or SATURATION_O2). This is an example of an abstraction

+++TSEQUENCE/PARAGRAPH: et_suction_230

++++INCLUDES/PHRASE: purulent_secretion_227

++++INCLUDES/PHRASE: mucoid_secretion_226

Figure 1: Document plan snippet

created during data interpretation, whereby large numbers of numerical readings are grouped under

a single class to describe a state of the patient. Without this, we would end up with thousands of

values, which are impossible to report and would be very difficult to understand.

Q4. In the ontology, find the instances which are mentioned in the simplified document plan. Look

carefully at the properties of each of these instances. Some of these properties are actually

described in the text, while others are not. Which of the properties of each class are actually

mentioned by the text?

Q5. Now look again at the document plan and focus especially on the relations between the

messages/instances. Note that:

 Some of these relations are actually identified during the data interpretation, and are in the

ontology itself. You can find them by looking under the RELATION node in the ontology. For

example, there is an instance of a CONTAINS_LINK which relates two instances, an

INTUBATION and a DRUG_ADMINISTRATION. This reflects the fact that an INTUBATION

usually involves giving the patient this kind of drug.

 Some other relations (e.g. the ELABORATION in the above example) are created by the

document planner itself.

5. Document Planning
You will now attempt to create a document plan yourself. As before, we will only focus on

Respiratory Support, rather than on all body systems. The aim here is to:

1. Select the right ontology instances for the document plan – for this, you should mainly

consider using the importance property of each instance. Recall from the lectures that

importance is computed during data interpretation, and reflects the clinical significance of

an instance.

2. Structure these instances into a plan of the text.

5.1 Getting started: Implementing a document plan (for programmers)
For this part of the practical, you will focus on implementing the DocPlanner interface in the

NLGApp. Note that a DocPlan is also provided, but of course, feel free to change or extend the code!

Formally, the DocPlan is equivalent to a tree data structure, where leaves are ontology instances,

and edges can be labelled with rhetorical relations.

5.2 Writing some rules to relate messages
Based on the example and on your analysis for Q5, create some rules which associate messages

together (for example, to indicate that certain messages ELABORATE others, or that certain

IF X is-a ET_SUECTION

 AND Y is-a SUCTION_SECRETION_OBSERVATION

 AND Y occurs at roughly the same time as X

messages CONTAIN others). Your rules should make reference to the CLASS and its properties. An

example corresponding to Figure 1 is shown below in figure 2.

Programmers should implement these rules as part of the DocPlanner.

5.3 Choosing content (for programmers)
In the NLGApp class, write code to read in the scenario.owl ontology, so that you have the whole set

of instances and classes in memory and can pass it to the document planner. You can use the

carados API for this. Here is a snippet of code that shows you how:

In your DocumentPlanner, implement code that executes the following steps:

1. Find the concepts in the ontology which are related to Respiratory Support, and which you

identified in Q3 above. You can do this quite easily with the carados ontology handler. See

Code listing 2.

import java.net.URI;

mport uk.ac.abdn.carados.OntologyClassHandler;

import uk.ac.abdn.carados.OntologyException;

import uk.ac.abdn.carados.OntologyHandler;

import uk.ac.abdn.carados.OntologyInstanceHandler;

import uk.ac.abdn.carados.owl2.Owl2CaradosOntology();

//instantiate an ontology handler

OntologyHandler ontologyHandler = new Owl2CaradosOntology();

try {

ontologyHandler.loadOntology(URI.create(<your onto file>));

} catch(Exception e) {

 Systeml.err.println(e.getMessage());

 e.printStackTrace();

 System.exit(1);

}

Code listing 1: Reading in an OWL ontology

//check that a class exists

if(ontologyHandler.containsClass(CLASS_NAME)) {

 //get the actual class/concept

 OntologyClassHandler cls = ontologyHandler.getOntologyClass(CLASS_NAME);

//iterate through the instances of the class/concept

for(OntologyInstanceHandler instance: cls.getInstances(false)) {

2. Each of the concepts will have multiple instances, but of course, not all of them are

important enough to include in the text. Use the importance value of each instance to make

your choice. In particular, experiment with different cut-offs. For example, try to select only

instances whose importance is greater than, say, 75.

3. Structure the instances you select into a document plan tree. Try to do this in two different

ways:

a. The simple way: Simply order all messages in the tree by time (earliest first).

b. A slightly more complex way: Find the most important messages/instances first (the

key messages), identify the messages which are related to them by the rules you

designed in Section 5.3, then create a paragraph for each key message and related

messages.

6. Microplanning
You will now focus on mapping from messages/instances to structures which are more “linguistic”,

and which can later be realised as text. The main tasks we’re going to focus on are:

1. Lexicalisation, that is, choosing the words (verbs, nouns etc) to express a message

2. Choosing the tense (present, past, past perfect etc) for the message

Programming note: For this part of the practical, you should focus on the LexicalTemplate and

Microplanner classes.

6.1 Creating lexicalisation templates
In Section 3 and 4, you identified the concepts which need to be expressed in the relevant section of

the text. You also looked at which properties are expressed, and which are not. This information is

going to be useful in this part of the exercise.

One way in which this can be done is to create templates which map linguistic information.

Consider, as an example, the et_suction instance in Figure 1. The figure below shows all the

properties of this instance:

Figure 3: Properties of an instance

The corresponding part of the text is An ET Suction was done at about 23:45. Given the

instance in Figure 3 and the example text, we could create a template with the information

that:

1. the verb to use is do (since we have was done in the text)

2. the voice is passive (we have suction was done not someone did the suction)

3. the passive subject of the sentence (which is grammatically the object, since it is the

thing which was done, not the person who did it) is the name of the class (ET

Suction).

Go through the small document plan in scenario_docplan_simplified.txt and create a

template for all the ontology classes mentioned in this part of the text. Focus especially on

which properties of an instance are mentioned, and on how they are mentioned.

Programmers should implement these templates (e.g. by extending the LexicalTemplate

class) for use by the Microplanner class.

6.2 Choosing the right tense
Based on what we discussed in the lecture concerning time, we will now look at ways of identifying

the right tense. Remember that you need:

1. Utterance Time: this can simply be the current time at which you’re generating the text;

2. Event Time: events in the data have two start times and two end times, which represent the

earliest and latest possible start and end. This is because the data is very noisy, so start and

end times are represented as intervals. However, you only need to focus on the latest

possible start and end. Work out the event times from these.

3. Reference Time: you should obtain this from the context. Use the previously mentioned

event to get the reference time. If there is no previously mentioned event, then the

reference time and the event time are the same. Experiment with different ways of doing

this. For example, what happens if you restrict the context to the current paragraph (the

paragraph in which an event is mentioned) when working out the reference time?

Based on these temporal parameters, work out the tense of the event, and add it to the template.

Programmers should consider using the simplenlg TENSE enumerated type for this; that will also

make it easier to realise sentences.

6.3 Time modifiers (optional)
In the text, you’ll also see that the first event in each paragraph has a time modifier (e.g. at about

23:45). Experiment with different ways of adding time modifiers. As an example, here are some

alternative ways of saying roughly the same thing:

 An ET Suction was done at about 23:45

 An ET Suction was done late at night

 An ET Suction was done in the middle of the night

 An ET Suction was done at 23:47

Programmers should consider adding these modifiers to the Lexical Templates they created

earlier.

7. Realisation (for programmers)
At this point, we’ve planned a small document, and created message templates to choose the words

to render it into English. In terms of your implementation, you’ve worked on your DocPlanner and

your Microplanner. Now we’ll work on the NLGRealiser class.

To realise these templates, you can use SimpleNLG, which provides a simple API to realise sentences

in English. You’ll probably find it useful to follow some of the tutorial examples in the SimpleNLG

site to get used to how it works.

The code snippet below shows one way (not the only one!) of realising the ET Suction template we

discussed above:

import simplenlg.realiser.english.Realiser;

import simplenlg.features.*;

import simplenlg.syntac.english.*;

import simplenlg.framework.NLGFactory;

import simplenlg.lexicon.*;

//initialise a phrase factory and a realise

Realiser realiser = new Realiser(); //realiser for strings

8. Informal evaluation
Once you’ve realised your text, compare it with the relevant part of the computer-generated text

and the human text. Can you find any missing content or cases where the language is very

different? If so, try to think of the reasons why this occurred.

