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A typical evaluation scenario 

How good is my generator? 

• Do people like the output? 

• Does it compare well to what 
people do? 

• Does it help people achieve a 
task? 

 

 Are these questions 
completely different, or are 
they related in some way? 
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Evaluation in NLG 

Evaluation strategies 
• Evaluate performance of single modules 

– e.g. realisation 
– e.g. Generation of Referring Expressions 

• Evaluate entire system (“end to end evaluation”). 
 

Evaluation methods (Sparck Jones & Galliers `95) 

• Extrinsic (looking at a system’s utility) 
– through experiments with human users in relevant settings 

• “Does the system/module achieve what it is meant to achieve?” 

 
• Intrinsic (looking at output quality in its own right) 

– against corpora 
• “Is the output like that produced by people in a similar situation?” 

– by eliciting human judgements 
• “Do people like the output?” 
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NLG Evaluation: extrinsic/task-oriented 

Method 
• Evaluation with target users 

– STOP: how effective are generated letters in motivating people to stop 
smoking? (Reiter `05) 

– PEACH: are people’s museum visits enhanced by automatic generation 
of information on a  PDA? (Stock et al `07) 

– BT-45: do generated summaries help doctors and nurses take clinical 
decisions? (Portet et al `09) 

 
• Widely accepted as the most conclusive sort of NLG 

evaluation. 
 

• Very expensive! 
– STOP evaluation cost ca. £75,000 
– BT-45 evaluation cost ca. £20,000 (Reiter/Belz `09) 
– BT-NURSE evaluation cost even more! 



5 

NLG evaluation: intrinsic/human 

Method 
• Show readers a generated text and ask for judgements 

– JAPE: do children recognise generated jokes as such? Are they funny? 
(Binsted et al `97) 

– SumTime: how do readers judge generated vs expert-written 
forecasts? (Reiter et al `05) 

– COMIC: which strategy for combining speech and gesture is preferred 
by human judges? (Foster/Oberlander `07) 

– STORYBOOK: which components of a story generator contribute to 
making readers’ judgements more positive? (Callaway/Lester `02) 

 

 

• One of the most widespread methodologies in NLP. 

• Probably more appropriate for some domains than extrinsic evaluation. 
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NLG evaluation: intrinsic/automatic 

Method 

• Compare output to a corpus of human-
authored reference texts using some 
evaluation metric. 

– Not very typical in end-to-end system evaluation 
(but see Belz and Kow `09; Reiter and Belz `09) 

– To date, mainly used to evaluate coverage and 
correctness of realisers (Langkilde-Geary `02; Callaway `03) 
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Precedents 

Intrinsic evaluation in Machine Translation 

• Heavily dominated by BLEU (Papineni et al `02) 
– Essentially, intrinsic, corpus-based method; 

– Often used in NLG evaluations of realisers. 

 

• Some doubts have been cast on whether BLEU properly 
reflects translation quality (Callison-Burch et al `06).  
– E.g. to what extent does it correlate with human judgements? 

 

• Question: which human judgements? 
– It’s one thing to ask monolinguals to judge a translation, quite another 

to ask bilinguals. 

 

 



8 

Precedents 

Intrinsic evaluation of automatic summarisation 

• Methods range from judgements (pyramid 
method) to automatic intrinsic metrics (ROUGE) 

 

• Correlations have been reported between ROUGE 
and human judgements. 

 

• Very low correlations between ROUGE and 
extrinsic methods (based on relevance) (Dorr et al `05). 
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Precedents in NLG 

Role of corpora 
• Recent evaluations show that judgements of generated texts 

don’t correlate well with corpus-based measures (Reiter/Belz `09). 

 
• Many have questioned whether corpus texts should be 

treated as NLG “gold standards” (e.g. Reiter/Sripada `02). 

 

Role of judgements 
• Experimental results suggest that people’s preferences don’t 

reflect their task performance: 
– Law et al `05: compared medical decision making with visualisations vs 

human-written summaries of patient data. 
• Doctors & nurses preferred visualisations. 
• But decision-making was much better with text! 
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Why this matters 

• Ultimately, we’re interested in the relationship 
between these methods. 

 

– Do automatic results against corpora tell us 
anything about the quality of our output? 

 

– Do people’s judgements converge with corpus-
based results? 

 

– Can we predict effectiveness of a text (extrinsic) 
from corpus-based metrics or judgements? 



EXTRINSIC EVALUATION OF THE 
BABYTALK BT-45 PROTOTYPE SYSTEMS 

Part 1 



BabyTalk Evaluation 

• In BabyTalk, there was a fairly clear target user 
population. 

• Aim was also fairly clear: help medics (doctors, 
nurses) take clinical decisions. 
– BT-Family had a different aim. 

 

• Here, we’ll look at: 
– Evaluation of BT-45: prototype system which 

summarises 45 minutes of data. 

– Evaluation of BT-Nurse: system that summarises 12 
hours of data (next part) 



BT-45 Summary 

[…] 
Over the next 24 minutes 
there were a number of 
successive desaturations 
down to 0. Fraction of 
Inspired Oxygen (FIO2) 
was raised to 100%. There 
were 3 successive 
bradycardias down to 69.  
[…] 
 

Input data Output text 
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Prototype evaluation: BT-45 

Method 

• Tested decision-making by medical staff given exposure to 
some information about a patient; 

• Experiment conducted off-ward in 2008-9. 

 

Conditions 

• (G) Data presented as visualisation (the usual way) 

• (H) Human summary produced by experts 
– consensus summary of the data by a senior neonatal nurse and a 

consultant neonatologist 

• (C) Computer-generated summary by BT-45 
– completely automatic 

14 



Prototype evaluation: BT-45 

Participants 

• 35 junior and senior doctors and nurses 
 

Procedure 

• Participants shown 24 scenarios in one of the conditions; 

• Asked to select one or more appropriate actions given the 
summary. 

• For each scenario, there were 18 actions to choose from. 
 

Scoring 

• Decision-making score reflects the extent to which a 
participant made appropriate selections (range: [0,1]). 
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Performance metrics 
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18 actions 

appropriate inappropriate neutral 

P-APP 
(proportion) 

P-INAPP 
(proportion) 

- 
P 

(main score in original study) 



Prototype Evaluation: Results 

  

G = 0.33 0.14 

H = 0.39 0.11 

C = 0.34 0.14 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

Junior Nurse Senior Nurse Junior Doctor Senior Doctor 

Biggest difference 
for Junior Nurses 
 

H best overall 
 

G no better than C 

G 

H 

C 
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F. Portet, E. Reiter, A. Gatt, J. Hunter, S. Sripada, Y. Freer, and C. Sykes. (2009). Automatic generation of 
textual summaries from neonatal intensive care data. Artificial Intelligence 173 (7-8): 789-816 



Prototype Evaluation: Summary 

• Generated summaries are at least as good as 
graphical presentations. 
 

• Automatic summarisation shown to be 
feasible in the neonatal context. 
 

• Text may be more effective for some user 
groups (Junior Nurse). 
 

• But what makes human texts better? 
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BT-45 vs Human 
A qualitative comparison 
• BT-45 texts suffered from a lack of continuity. 

– BT-45: TcPO2 suddenly decreased to 8.1. [...] TcPO2 suddenly decreased to 9.3. 

 

• BT-45 focus is on medically important events. Humans take context 
into account. 
– Human: The pO2 and pCO2 both have spikes in the traces [...] There are 

several episodes of artefact 
– BT-45: never mentions noise or artefact. 

 

• BT-45 doesn’t give long-term overviews. Humans do this all the 
time. 
– Human: He is warm centrally. 
– BT-45: Core Temperature (T1) = 36.4 

 

• Humans handle time much better! 
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other lessons from an evaluation of an NLG system that summarises clinical data. Proc. INLG-08 



Question 

 

Is there a relationship between the content of 
the generated texts and the level of decision 

making by doctors and nurses? 

 

• We tried to answer this in an evaluation that 
tried to predict decision-making performance 
from the textual content. 

• This relied very heavily on the domain 
knowledge in the system. 



Can we quantify this somehow? 
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Our method 

• Compare human and BT-45 texts on a number of metrics 
based on  
– surface structure 

– content 

– discourse/temporal structure  

– Relevance 

In practice 

• We annotate the human and BT-45 texts, using our ontology. 

• We compute scores, most of which rely heavily on that 
ontology. 

• We see if there is a relationship between the text scores and 
the decision-making scores in the experiment. 

These make heavy use of 
domain knowledge. 
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Textual annotation I: Content 
1. Using the ontology, human and BT-45 texts were annotated 

with the events they express.   
2. Annotation also reflects the functional concept (roughly, body 

system) that an event in the text is associated to. 
  

TYPE = DESATURATION 
ASSOCIATED-TO = RESPIRATION  
 

there are brief desaturations to 
the mid 80s;  

recovery to baseline is 
spontaneous 

TYPE = TREND 
SOURCE = Saturation O2 
ASSOCIATED-TO = RESPIRATION  
 



Textual annotation II: Structure 
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• At 14:15 hours a heel prick is 
done. 

 

• The HR increases at this 
point ... 

 

• ... and for 7 minutes from 
the start of this procedure 
there is a lot of artefact... 

TREL: at 
ARG0: HEEL-PRICK 
ARG1: TIMESTAMP 
 

TREL: starts 
ARG0: TREND(HR) 
ARG1: HEEL-PRICK 
 

TREL: starts 
ARG0: HEEL-PRICK 
ARG1: ARTEFACT 
 

• Temporal relations are based on Allen’s (`84) typology. 
• Also annotated discourse relations of CAUSE and CONTRAST (Mann & 
Thompson `88) 



Textual annotation III: deriving trees 
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• At 14:15 hours a heel 
prick is done. 

 

• The HR increases at 
this point ... 

 

• ... and for 7 minutes 
from the start of this 
procedure there is a 
lot of artefact... 



Evaluation metrics 
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Surface properties (n-gram overlap) 
• ROUGE-4 
• ROUGE-SU (skip bigrams + unigrams) 
 
Content and structure 
• No. of events mentioned in a text 
• No. of temporal/discourse relations mentioned in a text 
• Tree Edit Distance between texts 
 
Knowledge-based relevance measure 
• REL: extent to which events mentioned in a text are relevant to one 

or more appropriate action(s). 
• IRREL: extent to which events are relevant to one or more 

inappropriate action(s). 



Quantifying relevance – I  

Main hypothesis 
• Texts can reference actions to different degrees. This may bias readers 

towards some actions more than others. 
• This is reflected by a weight assigned to each action, for each text.  
 
The scores 
• REL = sum of weights of appropriate actions referenced in the text 
• IRREL = sum of weights of inappropriate actions referenced in the text 
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action 1 

action 2 

action 3 

w1 

w2 

w3 



Quantifying relevance - II 
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• DESATURATION is 
functionally linked to 
RESPIRATION 

 

• So are some of the actions 
– E.g. MANAGE VENTILATION 

 

• The DESAT references 
RESPIRATION-related actions 

 

“There are 3 episodes of desaturation 
to 70%”  

 



Quantifying relevance – III  
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Pruning spurious connections 

• With the reasoning so far, we can end up with a lot of 
actions related to each event. 

• But not all of these are warranted, given the status of a 
patient. 

• Solution: use knowledge-based expert rules to prune 
these connections. 

 

 

• Only assume a connection between an event and the 
INTUBATE action if the action can indeed be taken. 

 

 

CMV)ON(BABY,BABYINTUBATE 



Quantifying relevance - IV 
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Estimating prior probabilities 
• Not all actions that could have been chosen are equally 

probable. 
– MANAGE VENTILATION – routine 
– RESUSCITATE PATIENT – drastic, only in highly critical 

situations 

• Actions are weighted by their prior probability, based 
on a DB of 48K clinical actions (Hunter et al `03) 
 

Event importance 
• Events are also weighted by their importance. 
• A resuscitation is much more important than a nappy 

change. 



Correlation with difference in human performance on 
H and C texts 
 
 
 
 
 
 
• No correlations are significant. 

Results – Surface Properties (I) 
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ROUGE-4 ROUGE-SU 

P -.19 .04 

P-APP -.2 .01 

P-INAPP -.01 -.1 

SP  -.1 .13 



Correlation with performance on C texts only 
 
 
 
 
 
 
• No correlations are significant. 

Results – Surface Properties (II) 
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ROUGE-4 ROUGE-SU 

P .33 -.03 

P-APP .38 -.02 

P-INAPP .2 .05 

SP  -.03 -.31 



Performance metrics for evaluation 
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18 actions 

appropriate inappropriate neutral 

P-APP 
(proportion) 

P-INAPP 
(proportion) 

- 
P 

(main score in original study) 

SP “precision” 
(proportion of appropriate actions selected out of the 18 actions) 



Results – Content and Structure (I) 

EVENTS RELATIONS 

Gatt & Portet, INLG 2010 33 

t = 2.44, p = .05 t = 3.70, p < .05 



Results – Content and Structure (II) 
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Discourse/temporal relations 
• For BT-45 texts: 

– Negative correlation with P-INAP (r = -.49, p < .05) 
– Positive correlation with SP precision (r = .7, p < .001) 
– Temporal/discourse relations made texts easier to 

understand in the case of BT-45. 

 
Events 
• For BT-45 texts: 

– Negative correlation with P-APP (r = -.53, p < .05) 
– Negative correlation with P (r = -.5, p < .05) 
– Suggests that BT-45 may have mentioned several 

“irrelevant” events. 



Results – Content & Structure (III) 

EVENTS RELATIONS TREE EDIT 

P .43 .34 .36 

P-APP .42 .30 .33 

P-INAPP -.09 -.15 -.14 

SP  .02 0 .09 
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•  Performance score is positively correlated to the number 
of events mentioned. 

•  Correlations with relations in the predicted direction. 

•  No significant correlation with Tree Edit  
• Problem with node duplication method? 

Correlation with performance differences (H-C) 



Results – Relevance  
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Correlation: Human texts 

 

 

 

 

 

 

• All correlations in the predicted direction. 

• Positive correlations with our precision score, SP. 

REL IRREL 

P .14 -.25 

P-APP .11 -.22 

P-INAPP -.14 .1 

SP  .60 -.56 



Results – Relevance  

Gatt & Portet, INLG 2010 37 

Correlation: BT-45 texts 

 

 

 

 

 

 

• The same overall trends as with H texts. 

• Suggests that our knowledge-based relevance 
metrics may be on the right track. 

 

REL IRREL 

P .33 -.34 

P-APP .24 -.26 

P-INAPP -.49 .43 

SP  .7 -.62 



Summary 
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• Lack of correlations between “surface” metrics and 
performance, which echoes similar results by many 
other authors. 

 

• The content and structure of the text correlates with 
various performance measures. 
– But we need a better way of comparing underlying text 

structure directly (graph-based methods?) 

 

• Our experiment also gives us a workable definition of 
the notion of “relevance”, which is found to correlate 
with precision on a decision-making task. 

 



Conclusions 
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• Unlike many previous evaluation studies, we 
place more emphasis on domain knowledge: 

– Enables us to quantify aspects of content, structure 
and relevance. 

– These are more systematically related to performance 
than surface properties. 

 

• From a methodological point of view, our results 
suggest that evaluating NLG systems must factor 
in the domain knowledge they incorporate. 

 



EVALUATING BT-NURSE 

Part 3  



BT-Nurse: Example summary 
Respiratory Support 
Current Status 
Currently, the baby is on CMV in 27 % O2. Vent RR is 55 breaths per minute. 

Pressures are 20/4 cms H2O. Tidal volume is 1.5. 
SaO2 is variable within the acceptable range and there have been some 

desaturations. 
The most recent blood gas was taken at around 07:45. Parameters are 

acceptable.  
 
Events During the Shift 
[...] Another ABG was taken at around 23:00. Blood gas parameters had 

deteriorated to respiratory acidosis by around 23:00.  
[…] The baby was intubated at 00:15 and was put on CMV. […] He was given 

morphine and suxamethonium. 
[…] Between 00:30 and 03:15, SaO2 increased from 88 % to 97 %. 
Another ABG was taken at around 00:45. pH was 7.18. CO2 dropped to 7.95 

kPa. BE was -4.8 mmol/L. 
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Evaluating BT-Nurse 

Method 

• Deployed on-ward for three months (1 month pilot + 2 
months evaluation) at the Edinburgh Royal Infirmary. 

– Integrated with cotside patient management system; 

– Used under supervision (for evaluation purposes); 

– Generated summaries from real-time, unseen patient data. 
 

Details 
• 54 different nurses; 31 different patients 
• 165 evaluation scenarios  

– 92 with incoming nurses (56%); 73 with outgoing nurses (44%) 

• System breakdowns: 0% 
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Deployment of BT-Nurse 



Evaluation measures 

• Nurses asked to express dis/agreement with 
three statements: 
– Understandability: "The BT-Nurse summary was 

easy to understand”  

– Accuracy: “The BT-Nurse summary is accurate” 

– Utility: “The BT-Nurse summary would help me...”  
• “...write a shift summary” [outgoing]  

• “...plan a shift” [incoming] 

 

• Nurses also asked to comment freely on the 
text. 
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“The summary reflects what actually 
happened” 
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Positive trend is statistically significant. 
No difference between incoming/outgoing. 



“The summary was easy to 
understand” 
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Positive trend is statistically significant. 
No difference between incoming/outgoing. 



“The summary was helpful” 
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Positive trend is statistically significant. 
No difference between incoming/outgoing. 



Comments from users 

• We obtained comments for 138 scenarios out of 165 
(83.6%) 

 
Segmentation 
• Comments were manually segmented. 

– 237 segments in all 

• Content categories: 
– Overall (good/bad/neutral) 
– Content (good/unnecessary/missing...) 
– Language (good/poor) 

• 3 independent annotators; good to moderate 
agreement using Kappa. 
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Example segmentation 
Example 
• Cardio - 'HR increased from 153 bpm to 154 bpm.' Not 

significant. Temp gap - ? Acceptable range. Would 
prefer a number 

 
Segmentation 
• Content: Cardio - 'HR increased from 153 bpm to 154 

bpm.' Not significant.  
– Category: unnecessary 

• Language: Temp gap - ? Acceptable range. Would 
prefer a number 
– Category: poor 
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Summary content 

• Mostly about missing or 
incorrect content. 
– I cannot see how BT got the 

figure of 6.91 ml for urine 
output. 

 
• Sometimes directly relevant 

to BT’s content selection & 
document planning: 
– [BT has done a good job of 

reporting extubation and 
intubation,] though the listing 
of the dose of suxamethonium 
could have been with the note 
about intubation. 
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185 segments 



Language 

• 11 segments only. 
 

• How do we interpret this? 
– Maybe language only 

draws attention to itself 
when it’s really bad (or 
really good). 

– The absence of comments 
might mean that it was ok 
most of the time. 

 

• Comments about wording 
or phrasing: 
– Changes to vent settings is 

written in a confusing way. 

 
• Sometimes, BT-Nurse gets 

the pragmatics wrong: 
– BT says: 'Between 22:30 

and 02:30, FiO2 was raised 
from 40% to 51%'. When I 
read this phrase it makes 
me think that the baby 
spent those whole four 
hours at 51% oxygen.  
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Summary 
Summary 
• Majority of users find summaries easy to understand, accurate and useful. 
• Comments suggest that language is OK. Content issues could be resolved 

with more knowledge engineering. 
 

Methodological pros: 
• Real setup 
• Real users 
• No artificial tasks 
• A solid test of system robustness 
 
Methodological cons: 
• Relatively uncontrolled (not an experimental design) 
• Difficult to answer questions about decision-making accuracy 
• Need to rely on user comments for evaluation of content selection and 

language generation. 
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Language Shift Summaries from Complex Heterogeneous Medical Data. Submitted to Journal of the American Medical 
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COMPARATIVE EVALUATION OF 
REFERRING EXPRESSION GENERATION 

Part 4 



Comparative evaluation 

• In many cases (as with BT), an evaluation depends on the 
nature of the system one has designed. 

• However, in many areas of NLP, it is common to organise 
shared tasks: 
– A common input 
– A common task 
– Compare outputs in an evaluation 

 

• The advantages are: 
– It’s easier to see which solutions perform best and find the 

reasons why. 
– We have a lot of data for the same problem, and so can 

experiment with different evaluation methods and see whether 
they are comparable. 
 
 
 



Case Study 

• Generation Challenges has been organised 
since 2007.  

 

• Wide range of different NLG tasks. 

 

• We focus here on the TUNA tasks. 

– Comparison of algorithms for Generating 
Referring Expressions. 

– Based on data collected during the TUNA project. 
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NLG “consensus” architecture 

Document Planner 

Microplanner  
(text planner) 

Surface Realiser 

● Select content 
● Structure document 
● Relate document parts 

● Map content to semantic structure 
● Select lexical items 
● Generate referring expressions 
● Perform syntactic aggregation 

● Create syntactic structure 
● Morphological operations 
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NLG “consensus” architecture 

Document Planner 

Microplanner  
(text planner) 

Surface Realiser 

● Select content 
● Structure document 
● Relate document parts 

● Map content to semantic structure 
● Select lexical items 
● Generate referring expressions 
● Perform syntactic aggregation 

● Create syntactic structure 
● Morphological operations 

What does the system 
know about a 
discourse entity?  
What properties 
should it use? 
How should it be 
realised? 
●the bradycardia 
●the bradycardia 
down to 69 
●it 
●the first bradycardia 
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Generation of Referring Expressions 

Input 
– domain of relevant discourse entities 

– a target referent 

Output 
– a noun phrase to identify that entity. 

 

Subtasks 

• Content determination 
– choosing what to say (the properties of the entity) 

• Realisation 
– choosing how to say it 

 

• An important component of many NLG systems. 

• One of the most intensively studied tasks in NLG. 
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GRE Example 

Domain + referent Distinguishing descriptions 

 

● the red chair facing back 
● the large chair facing back 
● the red chair 
● the chair facing back 
● it 
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GRE and comparative evaluation 

Generation Challenges 

• Series of shared tasks in areas of NLG 
– TUNA-REG Challenges organised as part of this, 

over three years (2007 – 2009) 

– Focus today: results from 2009 

 

• GRE considered a very good candidate for the 
first shared tasks. 
– Significant agreement on task definition. 

– Data available: TUNA Corpus 
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Data & task 

TUNA Corpus  
– human-authored referring expressions of furniture or people; 

– collected via an online elicitation experiment; 

– human authors typed descriptions of referents in a visual context; 

– referents belonged to 2 domains: furniture or people. 

 

Task definition 

• Submitted systems needed to: 
– select the content of referring expressions 

– realise it as a string 
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Corpus data 

“the bald man with a beard” 

<DOMAIN> 
  <ENTITY type=“target”> 
    <ATTRIBUTE NAME=“type” VALUE=“person”/> 
    <ATTRIBUTE NAME=“hasHair” VALUE=“0”/> 
    <ATTRIBUTE NAME=“hasBeard” VALUE=“1”/> 
   …. 
  </ENTITY> 
   
  <ENTITY type=“distractor”> … </ENTITY> 
 …. 
</DOMAIN> 

Input 

Reference output 
 
<WORD-STRING> 
 the bald man with a beard 
</WORD-STRING> 
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Shared Task Setup 

Original TUNA Corpus (singular section) 
– 80% training data 

– 20% development data 

 

Test data 
– 112 input DOMAINs 

– 2 human outputs for each input DOMAIN 

– equal no. of people and furniture cases 

 

Participants 

• 6 different systems in the 2009 edition 

• many others in previous (2007-8) editions 
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Evaluation criteria in TUNA-REG 

 

• Humanlikeness 

• Adequacy/Clarity 

• Fluency 

 

 

• Referential Clarity 

Intrinsic methods: 
Assess properties of systems in their 
own right 

Extrinsic method: 
Assesses properties of systems in 
terms of its effect on human 
performance 
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Evaluation criteria 

1. Humanlikeness 

– compares system outputs to human outputs 

– automatically computed 
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Measures of humanlikeness 

1. String Edit (Levenshtein) Distance 
– number of insertions, deletions and substitutions to convert a peer 

description into the human description 

2. BLEU-3 
– n-gram based string comparison 

3. NIST-5 
– weighted version of BLEU, with more importance given to less 

frequent n-grams 

4. Accuracy  
– proportion of outputs which are identical to the corresponding 

human description 



67 

Evaluation criteria 

1. Humanlikeness 

– compares system outputs to human outputs 

– automatically computed 

2. Adequacy 

– judgement of adequacy of a description for the referent in its 
domain 

– assessed by native speakers 
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Evaluation criteria 

1. Humanlikeness 

– compares system outputs to human outputs 

– automatically computed 

2. Adequacy 

– judgement of adequacy of a description for the referent in its 
domain 

– assessed by native speakers 

3. Fluency  

– judgement of fluency of description 

– assessed by native speakers 
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Measures of adequacy and fluency 

• Experiment with 8 linguistically aware native speakers 
– all postgraduate students in Language/Linguistics 

 
• Participants shown: 

– system-generated or human-authored description 
– corresponding visual domain 

 
• Answered two questions: 

– How clear is this description? (Is it clear what object it refers to?) 
– How fluent is this description? (Does it read well?) 

 
• Ratings given using a slider (value between 1 and 100) 

– overcomes some of the objections to means comparison with interval 
scales 
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Experimental trial  
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Evaluation criteria 

1. Humanlikeness 
– compares system outputs to human outputs 
– automatically computed 

2. Adequacy 
– judgement of adequacy of a description for the referent in its 

domain 
– assessed by native speakers 

3. Fluency 
– judgement of fluency of description 
– assessed by native speakers 

4. Referential clarity (task-based) 
– speed and accuracy in an identification experiment 
– performance on task as index of output quality 
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Measuring referential clarity 

• Identification experiment with 16 participants 

 

Procedure 
– participants shown a visual domain 

– heard a description over headset produced using a TTS system 

– clicked on the object identified 

 

Measures 
– Identification speed (ms): how fast an object was identified 

– Identification accuracy (%): whether the correct (intended) object was 
identified 

 



• Identification speed = speed of identification based on description 

• Identification accuracy = error rate 

 

Referential clarity experimental setup 

System description: 
blue chair facing left 
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Our main question 

 

 Are the different measures meaningfully 
related?  

Do they tell us the same things about system 
quality? 

Do they correlate? 
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Intrinsic human 

Fluency Adequacy Acc. SE BLEU NIST ID Acc. ID Speed 

Fluency 1 0.68 

Adequacy 0.68 1 

Accuracy 

SE 

BLEU 

NIST 

ID Acc. 

ID Speed 
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Intrinsic human + intrinsic automatic 

Fluency Adequacy Acc. SE BLEU NIST ID Acc. ID Speed 

Fluency 1 0.68 0.85 -0.57 0.66 0.3 

Adequacy 0.68 1 0.83 -0.29 0.6 0.48 

Accuracy 0.85 0.83 1 -0.68 .86 0.49 

SE -0.57 -0.29 -0.68 1 -0.75 -0.07 

BLEU 0.66 0.6 .86 -0.75 1 0.71 

NIST 0.3 0.48 0.49 -0.07 0.71 1 

ID Acc. 

ID Speed 
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Intrinsic human + intrinsic automatic + extrinsic 

Fluency Adequacy Acc. SE BLEU NIST ID Acc. ID Speed 

Fluency 1 0.68 0.85 -0.57 0.66 0.3 0.5 -0.89 

Adequacy 0.68 1 0.83 -0.29 0.6 0.48 0.95 -0.65 

Accuracy 0.85 0.83 1 -0.68 .86 0.49 0.68 -0.79 

SE -0.57 -0.29 -0.68 1 -0.75 -0.07 -0.01 0.68 

BLEU 0.66 0.6 .86 -0.75 1 0.71 0.49 -0.51 

NIST 0.3 0.48 0.49 -0.07 0.71 1 0.6 0.06 

ID Acc. 0.5 0.95 0.68 -0.01 0.49 0.6 1 -0.39 

ID Speed -0.89 -0.65 -0.79 0.68 -0.51 0.06 -0.39 1 
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Results: summary 

What is the relationship between evaluation methods? 

• no correlation between intrinsic automatic and extrinsic 
measures; 

• intrinsic, human measures correlate better with extrinsic 
measures; 

• intrinsic, automatic measures correlate only partially with 
intrinsic, human measures (Accuracy only) 

 

Do these results generalise? 

• Similar results found in two previous Shared Tasks (2007, 
2008). 
– These included many more systems. 
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Some possible explanations 

• Corpus contains a lot of individual variation (several authors). 

• Not all referring expressions are of “high quality” (e.g. some 
are very telegraphic). 

• BLEU/NIST more appropriate for long texts. 

 

But still… 

• What people do need not reflect what people like. 
– We should not always expect intrinsic automatic measures to correlate 

with judgements. 

• What people do/like need not reflect what is effective. 
– We should not always expect intrinsic measures to correlate with task 

performance. 
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Some general conclusions 

• Our results suggest that the relationship 
between intrinsic/corpus-based and extrinsic 
evaluation is problematic. 

– Referring expressions generation: 3 different sets 
of evaluation studies, over 3 years. 

 

• In general, we should not rely on automatic 
techniques to make inferences about 
effectiveness of our NLG modules. 



Data etc 

• Generation Challenges data archive (includes 
TUNA data, plus data from other shared tasks 
in NLG): 

 https://sites.google.com/site/genchalrepository/ 

 

• TUNA Project (where the TUNA corpus was 
developed): 

 http://www.abdn.ac.uk/ncs/computing/research/nlg
/projects/previous/tuna/ 

https://sites.google.com/site/genchalrepository/
https://sites.google.com/site/genchalrepository/
http://www.abdn.ac.uk/ncs/computing/research/nlg/projects/previous/tuna/
http://www.abdn.ac.uk/ncs/computing/research/nlg/projects/previous/tuna/

