
S. Azzopardi, A. Gatt and G.J. Pace /

Reasoning About Partial Contracts

Shaun AZZOPARDI a, Albert GATT b and Gordon PACE a

a Department of Computer Science, University of Malta, Malta
b Institute of Linguistics, University of Malta, Malta

Abstract. Natural language techniques have been employed in attempts

to automatically translate legal texts, and specifically contracts, into
formal models that allow automatic reasoning. However, such techniques

suffer from incomplete coverage, typically resulting in parts of the text
being left uninterpreted, and which, in turn, may result in the for-

mal models failing to identify potential problems due to these unknown

parts. In this paper we present a formal approach to deal with partiality,
by syntactically and semantically permitting unknown subcontracts in

an action-based deontic logic, with accompanying formal analysis tech-

niques to enable reasoning under incomplete knowledge.

Keywords. Deontic Logic, Partial Logic, Contracts, Automated Reasoning

1. Introduction

Many different formalisations have been given for contracts, all somehow encoding
deontic norms (at least obligation and prohibition). Such logics allow us to reason
about contracts in different ways, for example given a concurrent obligation and
prohibition to do the same action we can conclude from most representations that
there is a conflict.

Automatically extracting a formal description of a contract from a natural
language text is not trivial. Several approaches utilizing natural language tech-
niques have been presented in the literature that enable the identification of the
deontic details (such as the agent of a clause, whether it is an obligation or prohi-
bition, and the directed action or state) of each clause e.g. [11, 5, 14]. Using such
approaches, one can construct a formal model of the contract with one caveat: on
many texts the process may not produce a complete model of the contract due
to limitations in the natural language processing techniques used, which can miss
information (such as the agent of a sentence) or identify it incorrectly.

One way of addressing this problem is to have the parsing process be able to
identify which parts of the text it can confidently formalise, and which parts might
be problematic. This can be done in a variety of ways, from a simple strategy of
only tagging as confident parts of the text which match one of a set of templates,
to more complex approaches such as associating each part of the text with a
confidence factor and choosing a threshold, below which clauses are tagged as
indeterminate. Such a threshold can also be dynamically set depending on how
critical a part of the text is, e.g. a clause which includes the text “e1,000,000”

S. Azzopardi, A. Gatt and G.J. Pace /

would require higher confidence to accept, since misinterpretation of such a clause
might have serious effects.

These confidence tags can be used in the translation to a formal notation,
supporting more dependable reasoning processes. In this paper we propose a sim-
ple action-based deontic logic that supports a notion of explicitly tagging parts of
a contract description as unknown or undetermined. The semantics of the deon-
tic logic supports reasoning about these partially parsed contracts by identifying
monotonic operators in the logic, which can be used to reason about unknown
terms. For instance, we show how conflict identification results effectively in a
three-valued predicate in our formalism, with the indeterminism leading to three
possible outcomes: (i) conflict certainly present; (ii) conflict might be present; (iii)
certainly no conflict present. Our approach is illustrated on a use case, and has
been implemented in a tool (in the form of a Microsoft Word plugin) for contract
analysis.

2. Similar and Related Work

Our approach allows for syntactically representing uninterpreted parts of a con-
tract. To reason about such parts, one effectively has to consider them not sim-
ply as satisfied or violated clauses in a contract, but parts which have an un-
known value. Although we do not take a three-valued logic approach, our ap-
proach shares much with such logical systems. Classical logic is a bivalent logic,
with the only possible truth values being true and false. However, much work has
gone into developing three-valued logics to support unknown or undefined values.
Kleene [7] introduced a third truth-value to boolean logic, U, with the truth ta-
bles for boolean operators (¬, ∧, ∨, =⇒) extended accordingly. For example,
A∧U = U, but T∨U = T, which is consistent with interpreting U as an unknown,
or rather undecided, state, i.e. as a state that is either T or F but is unknown to
us. Lukasiewicz [9] similarly uses a third truth-value, but handles implication in
a different manner in that an unknown value implies itself. Blamey [4] also illus-
trates such a logic that considers truth-gaps and non-denoting sentences. These
works are related to our approach in that we introduce an unknown value into an
established semantics and then generalise the operators to deal with it.

In deontic logic we did not find any example of a logic with an explicit un-
known value, even if some work adopts many-valued logics. Most approaches use
three-valued logic to model other features in deontic logic — for instance such
an approach has been adopted to classify actions as good, neutral or bad [8], or
by allowing sentences to be both true and false, or neither, to allow inconsistent
worlds in a semi-paraconsistent logic [10]. Unlike these approaches, our approach
works at the syntactic, rather than at the semantic, level.

3. A Deontic Logic with Undetermined Subexpressions

In this section we present a deontic logic with unknown subexpressions and the
semantics behind it. The logic is action-based with obligation, permission and

S. Azzopardi, A. Gatt and G.J. Pace /

prohibition deontic modalities over actions and tagged by the party subject to
the norm. The syntax of the logic is defined in the following manner.

Definition 3.1. A contract C over action alphabet Σ is defined as follows:1

C := > | ⊥ | Op(α) | Pp(α) | Fp(α) |?p(α) | C B C | C I C | C & C | [e]C |?

α := Σ |?act

p := n |?party

e := α | 0 | ε | e.e | e+ e | e & e

We call the set of well-formed contracts C.

The core of the logic is similar to other action-based deontic logics e.g. [12, 6],
but with the addition of unknown terms ?, ?p(·), ?act and ?party.

The logic is action-based, with Σ representing actions which the system can
perform. The simplest contracts, which arise in the semantics, are the trivially
satisfied contract > and the trivially violated contract ⊥. The underlying deontic
modalities are (i) obligation on party p to perform action a ∈ Σ, written Op(a); (ii)
prohibition on party p to perform action a ∈ Σ, written Fp(a); and (iii) permission
for party p to perform action a ∈ Σ, written Pp(a). Contracts can be composed
using (i) sequential composition (written C B C ′) which means that contract C ′

is enacted once contract C is satisfied; (ii) conjunction (written C & C ′) which
means that both C and C ′ should hold; (iii) prefix conditional (written [e]C)
which means that contract C is enacted after event expression e is fully performed
(event expressions are built using standard regular expression operators other
than repetition — including sequence e.f , choice e+ f and conjunction e & f);
and (iv) reparation (written C I C ′) which means that if and when C is violated,
contract C ′ is enacted.

In addition to these standard deontic operators, the logic includes explicit
placeholders for unknown subexpressions, thus allowing the description of a con-
tract which is wholly or partially unknown. These placeholders are (i) the un-
known contract: ?; (ii) the undetermined norm on party p over action a ∈ Σ:
?p(a); (iii) the undetermined party: ?party; and (iv) the undetermined action: ?act.

In the rest of the paper we will write ? instead of ?act and ?party when no
ambiguity arises.

3.1. Semantics of the Logic

We specify the meaning of a contract using an operational semantics, in the form

of a relation of the form C
A−→ C ′ meaning that contract C ∈ C is transformed

into contract C ′ ∈ C when the system performs action set A ⊆ Σ. In the rest
of the paper we will write � to denote the power set of Σ, thus ranging over all
tags which may appear on transitions. Note that we use action sets as opposed
to single actions since, for instance, we may have different obligations in force at
the same time, which require multiple actions in order to be satisfied.

1Note that the question mark symbol (?) is part of the syntax of the logic.

S. Azzopardi, A. Gatt and G.J. Pace /

> A−→ > ⊥ A−→ ⊥

Op(a)
A−→ >

a ∈ A
Op(a)

A−→ ⊥
a 6∈ A

Fp(a)
A−→ >

a 6∈ A
Fp(a)

A−→ ⊥
a ∈ A

Pp(a)
A−→ >

a ∈ outgoing
Pp(a)

A−→ ⊥
a 6∈ outgoing

C1
A−→ C′

1, C2
A−→ C′

2

C1 & C2
A−→ C′

1 & C′
2

C1
A−→ C′

1

C1 B C2
A−→ C′

1 B C2

C1
A−→ C′

1

C1 I C2
A−→ C′

1 I C2

C
A−→ C′

[e]C
A−→ C′

containsEmpty(e)
[e]C

A−→ [e′]C
e′ = residual(A, e)

Figure 1. Core semantics

The semantics of the core language (without unknowns) is rather standard
and is given in Fig. 1. Obligation and prohibition reduce to the satisfied contract
or the violated one depending on the actions performed. Permission though does
not simply mean that an action can be done, but implies a promise of non-
interference from one party to another, as suggested by Von Wright [13] and used
in contract automata [3]. It is dealt with using an oracle predicate which allows
us to check whether an outgoing permitted action could have been taken, and
similarly reduces to > or ⊥ — we assume that if an action a 6∈ outgoing, then it
cannot appear in any outgoing transition action set.

Conjunction is handled by progressing along both conjunct contracts. Sequen-
tial composition (C B C ′) and reparation (C I C ′) allow progress along the first
operand. In order to progress further, we require additional formal machinery in
the form of a reducing equivalence relation which is applied between standard
transitions from left to right until no further reductions are possible:

C & > ≡ C ⊥ & C ≡ ⊥ > B C ≡ C
> & C ≡ C C & ⊥ ≡ ⊥ ⊥ I C ≡ C

This approach of adding syntactic equivalence allows us to simplify the presenta-
tion of the semantics in an approach akin to that typically used in process calculi.
We will write C C ′ if C reduces to C ′ when applying the equivalence relation
from left to right on subexpressions of the formula, and no further reductions
are possible. It is easy to show that these reductions always terminate and are
confluent, thus ensuring that is well-defined.

Finally, prefix guard contracts trigger the contract continuation if the expres-
sion includes the empty string, and also allow progress by updating the prefix
guard accordingly. The semantics use standard regular expression residuals, where
the residual of an expression e with respect to action set A (written residual(A, e))
is the expression e′ such that a trace A.t matches expression e if and only if trace

S. Azzopardi, A. Gatt and G.J. Pace /

?
A−→? ?p(a)

A−→?

Op(?)
A−→ >

A = Σ
Op(?)

A−→ ⊥
A = ∅

Op(?)
A−→?

otherwise

Fp(?)
A−→ ⊥

A = Σ
Fp(?)

A−→ >
A = ∅

Fp(?)
A−→?

otherwise

Pp(?)
A−→ >

A = Σ
Pp(?)

A−→?
otherwise

Figure 2. The semantics for terms with unknown contracts

t matches expression e′. For completeness we need to enrich the reduction relation
to deal with reduction of prefix guards which can no longer trigger and may thus
never lead to a violation again:

[e]C ≡ > if isEmpty(e)

The semantics for the fragment of the logic which deals with unknown terms
is given in Fig. 2. The conservative semantics reduce all unknowns into ?, with
special cases for when the the action set is either empty or the full alphabet.

The syntactic equivalence relation is enriched to deal with unknown subfor-
mulae:

? & ? ≡ ? ? B C ≡ ? ? I C ≡ ?

We can now proceed to define the languages over traces which lead to satis-
faction, violation or unknown contracts:

Definition 3.2. We define C
w
=⇒ C ′, where w ∈ �∗ is a string over subsets of the

alphabet Σ to be the transitive closure of
·−→ followed by reductions :

C
ε

=⇒ C ′
def
= C C ′

C
A.w
==⇒ C ′

def
= ∃C ′′, C ′′′ · C A−→ C ′′ C ′′′

w
=⇒ C ′

The set of violating traces of a contract C, written V(C), is defined to be
the set of traces that result in the violation ⊥. The set of satisfying traces of a
contract C (resulting in >), written S(C), and the set of indeterminate traces
of contract C (resulting in the unknown contract ?), written U(C) are similarly
defined:

V(C)
def
= {w : �∗ | C w

=⇒ ⊥}
S(C)

def
= {w : �∗ | C w

=⇒ >}
U(C)

def
= {w : �∗ | C w

=⇒?}

S. Azzopardi, A. Gatt and G.J. Pace /

A contract C is said to be partial, written partial(C), if it contains at least

one indeterminate trace: partial(C)
def
= U(C) 6= ∅.

3.2. Strictness

With these semantics, we can define a relation which relates two contracts C and
C ′ if C is stricter than C ′ — effectively when the violation traces of C ′ also violate
C. For example, consider Op(giveReceipt) and Op(giveReceipt) & Op(giveChange),
the latter is clearly stricter than the former contract.

One can take different interpretations of strictness in the presence of unknown
parts of a contract. For instance, consider the contracts Op(a) & ? and Op(a) &
Op(b). Depending on the real (though unknown) subcontract represented by ?, the
former can be stricter than the latter (e.g. when its actual value is Op(b) & Op(c))
or vice-versa (e.g. when the actual value is >). We choose to take a worst-case
scenario and consider that unknown traces could be violating.

Definition 3.3. The set of possibly violating traces of a contract C, written V?(C),

is defined as: V?(C)
def
= V(C) ∪ U(C).

Contract C is said to be stricter than contract C ′, written C ≥str C
′, if

and only if the possibly violating traces of C ′ are violations of C: C ≥str C
′ def

=
V?(C

′) ⊆ V(C).

This definition gives a sound interpretation to strictness in that if C ≥str C
′,

then whatever the actual value of unknowns, the strictness relation holds. On the
other hand, we lose completeness, in that there are possible values of unknowns
under which C would be stricter than C ′ but C ≥str C

′ does not hold. A number
of laws of strictness relation can be proved.

Lemma 3.1. (i) Strictness is a partial order; (ii) ⊥ is stricter than any contract:
⊥ ≥str C; (iii) > is weaker than any contract: C ≥str >.

Full proofs can be found in [1].

3.3. Instantiation of Unknowns

A contract with unknowns can be concretised by replacing unknown terms with
known ones. In this section we present an ordering on contracts based on unknown
subcontracts.

Definition 3.4. Given (possibly unknown) actions a, a′ ∈ Σ ∪ {?act}, a is said to
be more concrete than a′, written a ≥act

conc a
′, if they are equivalent or a′ is the

unknown action: a ≥act
conc a

′ def
= a = a′ ∨ a′ =?act. Similarly, we define what it

means for a party to be more concrete than another: p ≥party
conc p′

def
= p = p′ ∨ p′ =

?party. Finally, deontic modalities (possibly unknown) D and D′ can be similarly

compared: D ≥deon
conc D

′ def= D = D′ ∨D′ =?
A contract C is said to be more concrete than contract C ′, written C ≥conc C

′,
if C is syntactically identical to C ′ but with some unknown subcontracts resolved:

C ≥conc?

p ≥party
conc p′, a ≥act

conc a
′, D ≥deon

conc D′

Dp(a) ≥conc D
′
p′(a

′)

S. Azzopardi, A. Gatt and G.J. Pace /

This relation is also a partial order.

Lemma 3.2. The concreteness comparison relation ≥conc is a partial order.

3.4. Conflicts

Analysis of contracts under the possibility of unknown subcontracts allows rea-
soning about contracts despite that parts of these contracts are either not yet
available or were not fully formalised due to limitations in the parsing techniques
or otherwise. In this section we present an axiomatisation of conflicts with un-
knowns.

In order to enrich conflict analysis, in the rest of this section we will assume a
mutually exclusive actions relation, where we write a ./ b to signify that actions
a and b are mutually exclusive and may not appear together in an action set.

Given unknowns, which may possibly, but not necessarily, lead to a conflict,
we define two conflict relations between contracts: (i) C z

must
C ′ to signify that

there certainly is a conflict between C and C ′; and (ii) C z
may

C ′ to signify that a

conflict might be present.

Definition 3.5. The relation between contracts z
must

∈ C ↔ C such that C z
must

C ′

indicating that C necessarily conflicts with C ′ is defined through the following
axioms and rules:

` Pp(a) z
must

Fp(a)

a ./ a′ ` Op(a) z
must

Op(a
′)

a ./ a′ ` Op(a) z
must

Pp(a
′)

C1 z
must

C2 ` C2 z
must

C1

C1 z
must

C2 and C ′1 ≥str C1 ` C ′1 z
must

C2

Similarly, the relation z
may
∈ C ↔ C indicating that C may conflict with C ′ is

defined as follows:

C z
must

C ′ ` C z
may

C ′

C z
may

C ′ ` C ′ z
may

C

C1 z
may

C2 and C ′1 ≥str C1 ` C ′1 z
may

C2

C1 z
may

C2 and C1 ≥conc C
′
1 ` C ′1 z

may
C2

Consider a contract which obliges party p to board a plane, Op(boardPlane),
but also prohibits this action, Fp(boardPlane). By Lemma 3.1, it follows that
Op(boardPlane) ≥str Pp(boardPlane) and by the first conflict axiom, then
Pp(boardPlane) z

must
Fp(boardPlane). Therefore, using the fifth conflicts axiom, it

follows that Op(boardPlane) z
must

Fp(boardPlane).

S. Azzopardi, A. Gatt and G.J. Pace /

Contract Pattern
Norm 〈obligation〉 | 〈permission〉 | 〈prohibition〉
Obligation 〈agent〉 should 〈action〉.
Permission 〈agent〉 may 〈action〉.
Prohibition 〈agent〉 should not 〈action〉.
Concurrency 〈contract〉 and 〈contract〉.
Sequential Composition 〈norm〉, after which 〈norm〉.
Conditional If 〈action〉, 〈contract〉.
Reparation 〈contract〉. If this is violated, 〈contract〉.

〈contract〉, otherwise 〈contract〉.

Figure 3. Some possible rules for an English-to-DL algorithm.

4. Case Study

The logic we have presented has been implemented in a proof-of-concept tool
which supports natural language contract analysis [2]. The tool has been imple-
mented as a Word plugin and uses natural language techniques to attempt to
parse English contracts into the logic we have presented in this paper. The parsing
algorithms are conservative in that we preferred to err on the side of leaving parts
of a contract unparsed (i.e. formalised as the unknown contract ?) rather than
parse parts of the contract incorrectly. The logic and conflict analysis presented
in this paper were required to enable us to be able to analyse contracts which
were not fully parsed. In this section we present a small use case to show how a
contract in English, and which is parsed (using a simple set of heuristics) into our
logic with unknown (unparsed) parts, can still be analysed for conflicts.

In English, norms can be specified in several ways. We consider an algorithm
that formalises a natural language text by defining pattern matching rules, e.g.
〈agent〉 〈norm-specifier〉 〈action〉, would match each unit specified in the following
sentence as marked: ‘passenger should have their boarding pass’. Some rules that
can be considered are illustrated in Fig 3.

Given some set of such rules, consider the contract shown in Fig 4. Our
unknowns can be used when sentences do not match any of the rules (or match
them partially) of a certain algorithm, but more deeply, unknowns can be used to
represent those cases when we cannot determine the semantics of a sentence, or it
is ambiguous. For example, looking at the first clause, it is not specified exactly
what the local regulations are, since these would depend on which country the
passenger is catching the plane. An algorithm could thus overlook this clause,
by representing it as the unknown contract, but still parse the rest of the un-
ambiguous clauses, allowing partial analysis of the contract.

Using unknowns in this case allows us to maintain enough of the contract
structure to be able to analyse it for conflicts. In fact note how if we assume
that the two actions checkInDesk and leave are mutually exclusive, then we can
conclude that the clauses presented must conflict, since the first argument to
each reparation operator may be violated at the same time, reaching a state
where both Opassenger(leave) and Opassenger(checkInDesk) hold, using the second
conflicts axiom. The contract may also conflict, since after the passenger arrives
at the boarding gate, the formalised contract representation cannot parse the first

S. Azzopardi, A. Gatt and G.J. Pace /

1. Provided the passenger satisfies any local airport regulations
and checks, when at the boarding gate, the passenger should
board the plane. If this is violated, they should return to the
check-in desk.

2. If the passenger is at the boarding gate, the passenger should
not be carrying any weapons, otherwise the passenger should
leave the airport.

Formalisation:

1. ([atGate]?BOp(boardPlane)) I Op(checkInDesk)
2. ([atGate]Op(noWeapons)) I Op(leave)

Figure 4. Airline contract example [3], and formalisation given patterns in Fig 3.

obligation (i.e. it cannot elicit what the normative sentence requires), meaning it

has to assume, for soundness, that it may conflict with any other norms active at

the same time (in this case with Op(noWeapons)).

This case illustrates how our logic enables imperfect algorithms to still give

useful output that is amenable to logical analysis.

5. Conclusions

We have presented a logic that introduces the concept of unknowns in a deontic

context. These unknowns are used both to represent clauses or parts of these

whose deontic meaning was not parsed or is not yet available. The applicability

of such an approach has been shown through a use case of a contract between an

airline company and its passengers — using unknowns to allow reasoning under

imperfect knowledge (e.g. conflict analysis). The formal logic analysis algorithms

presented in this paper have also been implemented in a tool [2].

The treatment of unknown contracts in our approach is rather coarse-grained

and can be used to represent any contract. We envisage building more fine-grained

formalisation and reasoning tools, for instance enabling reasoning about unknown

contracts which can range over a limited set, or enable negatively tagged unknown

parts (e.g. this contract certainly contains no obligation). Another limitation of

our approach is that there is no way of relating unknown parts of a contract e.g.

the same unparseable clause may appear twice in a contract, in which case our

concretisation relation allows for refining the unknown parts in different ways,

even if we know that they have to be identical. On the other hand, such finer-

grained analysis will mean more computationally expensive analysis and more

room for error when parsing natural language contracts.

S. Azzopardi, A. Gatt and G.J. Pace /

References

[1] Shaun Azzopardi. Intelligent contract editing. Master’s thesis, Department
of Computer Science, University of Malta, 2015.

[2] Shaun Azzopardi, Albert Gatt, and Gordon J. Pace. Integrating natural
language and formal analysis for legal documents. In 10th Conference on
Language Technologies and Digital Humanities 2016, 2016.

[3] Shaun Azzopardi, Gordon J. Pace, and Fernando Schapachnik. Contract au-
tomata with reparations. In Legal Knowledge and Information Systems - JU-
RIX 2014: The Twenty-Seventh Annual Conference, Jagiellonian University,
Krakow, Poland, 10-12 December 2014, pages 49–54, 2014.

[4] Stephen Blamey. Partial logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume 166 of Synthese Library, pages 1–70.
Springer Netherlands, 1986.

[5] Xibin Gao and Munindar P. Singh. Extracting normative relationships from
business contracts. In Proceedings of the 2014 International Conference on
Autonomous Agents and Multi-agent Systems, AAMAS ’14, pages 101–108,
Richland, SC, 2014. International Foundation for Autonomous Agents and
Multiagent Systems.

[6] Guido Governatori and Antonino Rotolo. Logic of violations: A gentzen
system for reasoning with contrary-to-duty obligations. Australasian Journal
of Logic, 4:193–215, 2006.

[7] S. C. Kleene. Introduction to Metamathematics. D. Van Nostrand, 1950.

[8] Piotr Kulicki and Robert Trypuz. Doing the right things – trivalence in
deontic action logic. In Paul Egre and David Ripley, editors, Trivalent Logics
and their applications, Proceedings of the ESSLLI 2012 Workshop, pages 53–
63, 2012.

[9] Gregorz Malinowski. Many-valued logic and its philosophy. In Dov M. Gab-
bay and John Woods, editors, The Many Valued and Nonmonotonic Turn in
Logic, volume 8 of Handbook of the History of Logic, pages 13 – 94. North-
Holland, 2007.

[10] Casey McGinnis. Semi-paraconsistent deontic logic. In W.A. Carnielli
J.Y. Beziau, editor, Paraconsistency with No Frontiers. Elsevier, 2006.

[11] Wim Peters and Adam Wyner. Extracting hohfeldian relations from text.
In Legal Knowledge and Information Systems - JURIX 2015: The Twenty-
Eighth Annual Conference, Braga, Portual, December 10-11, 2015, pages
189–190, 2015.

[12] Cristian Prisacariu and Gerardo Schneider. A formal language for electronic
contracts. In Formal Methods for Open Object-Based Distributed Systems, 9th
IFIP WG 6.1 International Conference, FMOODS 2007, Paphos, Cyprus,
June 6-8, 2007, Proceedings, pages 174–189, 2007.

[13] Georg Henrik Von Wright. Deontic logic: A personal view. Ratio Juris,
12(1):26–38, 1999.

[14] Adam Wyner and Wim Peters. On rule extraction from regulations. In Legal
Knowledge and Information Systems - JURIX 2011: The Twenty-Fourth An-
nual Conference, University of Vienna, Austria, 14th-16th December 2011,
pages 113–122, 2011.

