
SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your web site

 Make learning easy and fun

PA
N

TO
N

E
2955

C
PA

N
TO

N
E

O
range

021
C

C
M

Y
K

100,45,0,37
C

M
Y

K
O

,53,100,0

B
lack 100%

B
lack 50%

#
-
9
+
�

0AN
TO
N
E�

'
REY�SCALE

PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

#-9+�

0ANTONE�

'REY�SCALE

Patrick Lenz has been developing web applications for
more than ten years. Founder and lead developer of the
freshmeat.net software portal, he and his Rails consultancy
and web application development company, limited
overload, are responsible for numerous community driven
web applications developed using Ruby on Rails.

ABOUT PATRICK LENZ

Build and deploy your own Rails web application.�

Reap the benefits of using best-practice MVC architecture.�

Use Rails’s Ajax features to create slick interfaces.�

Interact with databases easily using ActiveRecord.�

Add the magic of REST to your apps with Rails Resources.�

Use plugins to enhance your applications easily.�

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

USD $39.95

WEB PROGRAMMING

CAD $39.95

ISBN-13: 978-0-9804552-0-5

THE SIMPLE AND EASY WAY TO BUILD
BULLETPROOF WEB APPLICATIONS

ALL SOURCE CODE AVAILABLE FOR DOWNLOAD

Updated to take advantage of all the new Rails 2 features, Simply Rails 2 is a

comprehensive, step-by-step guide to building powerful web applications using

Ruby On Rails. Perfect for the programming novice or someone looking to move into

the agile Rails framework, this book will teach you how to build bulletproof Web 2.0

applications from scratch, with more features using less code.

“If you’re looking for
your first Rails book,
this is a good choice”

www.ibm.com
GARY POLLICE

“The way this book is
laid out is first class”

www.rubyinside.com
PETER COOPER

“Definitely a good
introduction, especially
if you are new to Ruby.”

weblog.jamisbuck.org
JAMIS BUCK

R
A

ILS
S

IM
P

LY R
A

ILS
 2

LENZ

Patrick

simplyrails.indd 1 4/16/2008 11:00:53 AM

SIMPLY

RAILS 2

BY PATRICK LENZ

THE ULTIMATE BEGINNER’S GUIDE TO RUBY ON RAILS

Summary of Contents

Preface . xix

1. Introducing Ruby on Rails . 1

2. Getting Started . 15

3. Introducing Ruby . 53

4. Rails Revealed . 93

5. Models, Views, and Controllers . 119

6. Helpers, Forms, and Layouts . 155

7. Ajax and Web 2.0 . 197

8. Protective Measures . 249

9. Advanced Topics . 303

10. Rails Plugins . 351

11. Debugging, Testing, and Benchmarking . 379

12. Deployment and Production Use . 425

Index . 449

SIMPLY RAILS 2
BY PATRICK LENZ
SECOND EDITION

iv

Simply Rails 2
by Patrick Lenz

Copyright © 2008 SitePoint Pty. Ltd.

Expert Reviewer: Luke Redpath Editor: Hilary Reynolds

Managing Editor: Simon Mackie Index Editor: Max McMaster

Technical Editor: Andrew Tetlaw Cover Design: Alex Walker

Technical Director: Kevin Yank

Printing History:

First Edition: January 2007

Second Edition: May 2008

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embedded in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9804552-0-5

Printed and bound in the United States of America

mailto:business@sitepoint.com

v

About the Author

Patrick Lenz has been developing web applications for more than ten years. Founder and

lead developer of the freshmeat.net software portal, he and his Rails consultancy and web

application development company, limited overload, are responsible for several community-

driven web applications developed using Ruby on Rails. Patrick also authored some of the

first articles to appear on the web about architecting and scaling larger Rails applications.

Patrick lives in Wiesbaden, Germany, with his wife Alice and his daughter Gwendolyn.

When not working in front of a computer, he can often be seen with a camera in his hand,

either taking artsy pictures or documenting the progress of his baby girl conquering the

world.1 He also enjoys cars, music, and extended weekend brunches with friends.

His weblog can be found at http://poocs.net/.

About the Expert Reviewer

Luke Redpath is a programmer with over seven years’ experience in the web design and de­

velopment field. A recovering PHP and ASP developer, Luke has been using Ruby and Rails

professionally for nearly two years and has released and contributed to several Ruby libraries

and Rails plugins, including UJS—the Rails unobtrusive JavaScript plugin.2 He currently

resides in North London with his long-term partner Julie.

About the Technical Editor

Andrew Tetlaw has been tinkering with web sites as a web developer since 1997 and has

also worked as a high school English teacher, an English teacher in Japan, a window cleaner,

a car washer, a kitchen hand, and a furniture salesman. At SitePoint he is dedicated to making

the world a better place through the technical editing of SitePoint books and kits. He is also

a busy father of five, enjoys coffee, and often neglects his blog at http://tetlaw.id.au/.

About the Technical Director

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica­

tions—books, articles, newsletters, and blogs. He has written over 50 articles for SitePoint,

but is best known for his book, Build Your Own Database Driven Website Using PHP &

1 His pictures are regularly published to Flickr and are available at http://flickr.com/photos/scoop/
2 http://www.ujs4rails.com/

http://www.ujs4rails.com/
http://www.sitepoint.com/books/phpmysql1/
http://poocs.net/
http://tetlaw.id.au/
http://flickr.com/photos/scoop/
http://www.ujs4rails.com/

vi

MySQL. 3 Kevin lives in Melbourne, Australia, and enjoys performing improvised comedy

theater and flying light aircraft.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles, and

community forums.

3 http://www.sitepoint.com/books/phpmysql1/

http://www.sitepoint.com/books/phpmysql1/
http://www.sitepoint.com/
http://www.sitepoint.com/books/phpmysql1/

To my daughter Gwendolyn and

my wife Alice.

Table of Contents

Preface . xix

What You’ll Learn . xx

What’s in This Book? . xx

The Book’s Web Site . xxii

The Code Archive . xxii

Updates and Errata . xxiii

The SitePoint Forums . xxiii

The SitePoint Newsletters . xxiii

Your Feedback . xxiii

Conventions Used in This Book . xxiv

Code Samples . xxiv

Tips, Notes, and Warnings . xxv

Acknowledgments . xxv

Who Should Read This Book? . xix

Chapter 1 Introducing Ruby on Rails 1

History . 4

Development Principles . 5

Convention Over Configuration . 5

Don’t Repeat Yourself . 7

Agile Development . 8

Building the Example Web Application . 9

What Is Digg? . 10

Features of the Example Application . 12

Summary . 14

x

Chapter 2 Getting Started . 15

What Does All This Cost? . 16

Installing on Windows . 17

Installing on Mac OS X . 19

Mac OS X 10.5 (Leopard) . 20

Mac OS X 10.4 (Tiger) and Earlier . 20

Installing on Linux . 31

Using a Package Manager . 32

Prerequisites . 32

Installing Ruby on Linux . 33

Installing RubyGems on Linux . 35

Installing Rails on Linux . 37

Installing SQLite on Linux . 38

Installing the SQLite Database Interface for Ruby 39

Building a Foundation . 40

One Directory Structure to Rule Them All . 40

Creating the Standard Directory Structure . 41

Starting Our Application . 43

Which Text Editor? . 46

Windows Text Editors . 47

Mac OS X Text Editors . 48

Linux and Cross-platform Editors . 50

Summary . 50

Chapter 3 Introducing Ruby . 53

Ruby Is a Scripting Language . 53

Compiled Languages . 54

Scripting Languages . 54

The Great Performance Debate . 54

Ruby Is an Object Oriented Language . 55

xi

Reading and Writing Ruby Code . 59

The Interactive Ruby Shell (irb) . 59

Interacting with Ruby Objects . 60

Punctuation in Ruby . 62

Object Oriented Programming in Ruby . 65

Classes and Objects . 66

Object-level Functionality . 66

Class-level Functionality . 70

Inheritance . 72

Return Values . 73

Standard Output . 74

Ruby Core Classes . 75

Arrays . 75

Hashes . 77

Strings . 79

Numerics . 80

Symbols . 82

nil . 82

Running Ruby Files . 83

Control Structures . 83

Conditionals . 85

Loops . 88

Blocks . 90

Summary . 92

Chapter 4 Rails Revealed . 93

Three Environments . 93

Database Configuration . 95

The Database Configuration File . 95

The Model-View-Controller Architecture . 96

xii

MVC in Theory . 97

MVC the Rails Way . 98

ActiveRecord (the Model) . 100

The ActionPack Module . 105

The REST . 110

Code Generation . 113

ActionMailer . 115

Testing and Debugging . 115

Testing . 115

Debugging . 117

Summary . 117

Chapter 5 Models, Views, and Controllers 119

Generating a Model . 119

The Model Generator . 119

Modifying the Schema Using Migrations . 125

Managing Data Using the Rails Console . 133

Where’s the SQL? . 138

Generating a Controller . 139

Running the generate Script . 140

Understanding the Output . 141

Starting Our Application … Again . 143

Creating a View . 145

Generating Views with Scaffolding . 145

Creating Static Pages . 148

Creating Dynamic Pages . 148

Passing Data Back and Forth . 150

Pulling in a Model . 151

Summary . 153

xiii

Chapter 6 Helpers, Forms, and Layouts 155

Calling upon Our Trusty Helpers . 155

Enabling Story Submission . 156

Creating a Form . 157

Saving Data to the Database . 166

Redirecting with URL helpers . 167

Creating a Layout . 168

Enabling User Feedback with the Flash . 172

Testing the Form . 178

Testing the Model . 180

Testing the Controller . 185

Revisiting the Logs . 193

Summary . 195

Chapter 7 Ajax and Web 2.0 . 197

Generating a Vote Model . 197

Creating the Model . 198

Examining the Vote Migration . 198

Applying the Migration . 200

Introducing Relationships . 200

Introducing the has_many Clause . 201

Introducing the belongs_to Clause . 204

How’s Our Schema Looking? . 205

Making a Home for Each Story . 206

Determining Where a Story Lives . 206

Displaying Our Stories . 207

Improving the Story Randomizer . 208

Implementing Clean URLs . 209

Ajax and Rails . 213

Introducing Ajax . 213

xiv

Remote Scripting with Prototype . 214

Adding Visual Effects with script.aculo.us 215

Making Stories Shove-able . 217

Introducing Partials . 231

Adding Voting History . 231

Creating the Partial . 232

Styling the Voting History . 233

Tweaking the Voting History . 236

Testing the Voting Functionality . 238

Testing the Model . 238

Testing the Controller . 242

Running the Full Test Suite . 247

Summary . 247

Chapter 8 Protective Measures 249

Introducing Sessions and Cookies . 249

Identifying Individual Users . 250

What’s a Cookie? . 250

What’s a Session? . 252

Sessions in Rails . 253

Modeling the User . 254

Generating a User Model . 254

Adding Relationships for the User Class . 256

Creating a User . 258

Developing Login Functionality . 259

Creating the Controller . 259

Creating the View . 261

Adding Functionality to the Controller . 263

Introducing Filters . 266

Before Filters . 266

xv

After Filters . 266

Around Filters . 267

A Word on Filter Methods . 267

Managing User Logins . 269

Retrieving the Current User . 269

Displaying the Name of the Current User . 271

Allowing Users to Log Out . 273

Adding a Navigation Menu . 275

Restricting the Application . 276

Protecting the Form . 276

Restricting Access to Story Submission . 279

Associating Stories with Users . 281

Testing User Authentication . 284

Testing the Model . 284

Testing the Controllers . 289

Summary . 300

Chapter 9 Advanced Topics . 303

Promoting Popular Stories . 303

Using a Counter Cache . 304

Implementing the Front Page . 308

Implementing the Voting Bin . 313

Adding Custom Actions to RESTful Routes 315

Abstracting Presentation Logic . 316

Requiring a Login to Vote . 321

Auto-voting for Newly Submitted Stories . 323

Introducing Model Callbacks . 324

Adding a Callback . 325

Adding a Description to Stories . 326

Adding a Model Attribute . 326

xvi

Expanding the Submission Form . 327

Adding User Pages . 330

Introducing the Join Model Relationship . 330

Introducing the has_many :through Association 331

Adding Another Controller . 332

Creating the View . 333

Testing the New Functionality . 336

Testing the Model . 336

Testing the StoriesController . 341

Testing the VotesController . 345

Testing the UsersController . 346

Running the Complete Test Suite . 347

Summary . 348

Chapter 10 Rails Plugins . 351

What Is a Plugin? . 351

Adding Tagging to Shovell . 353

Introducing the acts_as_taggable_on_steroids

Plugin . 354

Enabling Tag Submission . 363

Enabling Tag Display . 364

Assigning Our First Tags . 365

Viewing Stories by Tag . 367

Testing the Tagging Functionality . 372

Testing the Model . 372

Testing the Controller . 374

Running the Test Suite ... Again! . 377

Summary . 378

xvii

Chapter 11 Debugging, Testing, and
Benchmarking . 379

Debugging Your Application . 380

Debugging within Templates . 380

Debugging using ruby-debug . 388

Using the Rails Logging Tool . 405

Overcoming Problems in Debugging . 408

Testing Your Application . 408

Integration Tests . 408

Using Breakpoints in a Test . 412

Revisiting the Rails Console . 414

Benchmarking Your Application . 417

Taking Benchmarks from Log Files . 418

Manual Benchmarking . 421

Summary . 423

Chapter 12 Deployment and Production
Use . 425

The Implications of “Production” . 425

Choosing a Production Environment . 427

Web Server Options . 428

Back-end Options . 430

Deploying Shovell . 432

Moving to the Production System . 432

Setting up Apache . 438

Alternatives for Session Storage . 441

The ActiveRecord Store Session Container 441

The MemCached Store Session Container 443

Further Reading . 444

xviii

Caching . 444

Version Control and Deployment Management 445

Errors by Email . 446

Summary . 446

Index . 449

Preface

Ruby on Rails has shaken up the web development industry in a huge way—espe­

cially when you consider that version 1.0 of Rails was only released in December

2005. The huge waves of enthusiasm for the new framework, originally in weblogs

and later in the more traditional media, are probably the reason why this book is

in your hands.

This book will lead you through the components that make up the Rails framework

by building a clone of the popular story-sharing web site digg.com. This will give

you a chance to get your feet wet building a simple, yet comprehensive web applic­

ation using Ruby on Rails.

While the first edition of this book hit the shelves shortly after Rails 1.2 was released,

the Rails Core Team quickly hurried off to work on an even better and even more

polished version of the framework—a version that was released in December of

2007 as Rails 2.0. Although seen as an evolutionary (rather than a revolutionary)

update, Rails 2 features improvements in almost every corner of its comprehensive

code base, hence the requirement to update this book. And the improvements con­

tinue: as we go to press, the 2.1 release of Rails is imminent.

Without going into too many boring details, rest assured that with Rails 2 you have

the fastest and most secure, concise, fun and rewarding version of Rails in existence.

You get a secure web application almost out of the box; using the latest web techno­

logies such as Ajax has never been more accessible; and it’s just as easy to produce

a well-tested application as it is not to do any automated testing.

If that’s all Klingon to you, don’t worry. I’ll get you started, and by the time you

finish this book, you’ll be able to discuss all things Web 2.0 with your friends and

coworkers, and impress your dentist with geeky vocabulary.

Who Should Read This Book?
This book is intended for anyone who’s eager to learn more about Ruby on Rails in

a practical sense. It’s equally well suited to design-oriented people looking to build

web applications as it is to people who are unhappy with the range of programming

languages or frameworks they’re using, and are looking for alternatives that bring

the fun back into programming.

http:digg.com

xx

I don’t expect you to be an expert programmer; this isn’t a pro-level book. It’s written

specifically for beginning to intermediate web developers who, though they’re fa­

miliar with HTML and CSS, aren’t necessarily fond of—or experienced with—any

server-side technologies such as PHP or Perl.

As we go along, you’ll gain an understanding of the components that make up the

Ruby on Rails framework, learn the basics of the Ruby programming language, and

come to grips with the tools recommended for use in Ruby on Rails development.

All these topics are covered within the context of building a robust application

which addresses real-world problems.

In terms of software installation, I’ll cover the installation basics of Ruby and Ruby

on Rails on Mac OS X, Windows, and Linux. All you need to have preinstalled on

your system are your favorite text editor and a web browser.

What You’ll Learn
Web development has never been easier, or as much fun as it is using Ruby on Rails.

In this book, you’ll learn to make use of the latest Web 2.0 techniques, RESTful

development patterns, and the concise Ruby programming language, to build inter­

active, database driven web sites that are a pleasure to build, use, and maintain.

Also, as web sites tend to evolve over time, I’ll teach you how to make sure you

don’t wreak havoc with a careless change to your application code. We’ll implement

automated testing facilities and learn how to debug problems that arise within your

application.

What’s in This Book?
Chapter 1: Introducing Ruby on Rails

This chapter touches on the history of the Rails framework, which—believe it

or not—is actually rather interesting! I’ll explain some of the key concepts behind

Rails and shed some light on the features that we’re planning to build into our

example application.

Chapter 2: Getting Started

Here’s where the real action starts! In this chapter, I’ll walk you through the

installation of the various pieces of software required to turn your Mac or PC

xxi

into a powerful Ruby on Rails development machine. I’ll also show you how

to set up the database for our example application, so that you can start your

application for the first time, in all its naked glory.

Chapter 3: Introducing Ruby

Ruby on Rails is built on the object oriented programming language Ruby, so it

helps to know a bit about both object oriented programming and the Ruby syntax.

This chapter will give you a solid grounding in both—and if you’d like to get

your hands dirty, you can play along at home using the interactive Ruby console.

Chapter 4: Rails Revealed

In this chapter, we start to peel back the layers of the Rails framework. I’ll talk

about the separation of environments in each of the application’s life cycles,

and introduce you to the model-view-controller architecture that forms the basis

of a Rails application’s organization.

Chapter 5: Models, Views, and Controllers

In this chapter, we’ll generate our first few lines of code. We’ll create a class for

storing data, a view for displaying the data, and a controller to handle the inter­

action between the two.

Chapter 6: Helpers, Forms, and Layouts

This chapter starts off by looking at how Rails’s built-in helpers can reduce the

amount of code required to create functionality for your application. I’ll show

you how to use one of the helpers to create a fully functioning form, and we’ll

style the end result with some CSS so that it looks good! I’ll then show you how

to write unit and functional tests to verify that the application is working as

expected.

Chapter 7: Ajax and Web 2.0

Let’s face it, this chapter is the reason you bought this book! Well, it won’t dis­

appoint. I’ll walk you through the steps involved in adding to our app some

nifty effects that use Ajax to update parts of a page without reloading the entire

page. Along the way, I’ll explain the different relationships that you can establish

between your objects, and we’ll make sure that our application uses clean URLs.

Chapter 8: Protective Measures

In this chapter, I’ll show you how to keep out the bad guys by adding simple

user authentication to our application. We’ll cover sessions and cookies, and

xxii

we’ll see firsthand how database migrations allow for the iterative evolution of

a database schema.

Chapter 9: Advanced Topics

This chapter will give our example application a chance to shine. We’ll add a

stack of functionality, and in the process, we’ll learn about model callbacks and

join models.

Chapter 10: Plugins

In this chapter, I’ll show you how to add a plugin—a component that provides

features that expand the functionality of your application—to the example ap­

plication. We’ll also talk about some of the more advanced associations that are

available to your models.

Chapter 11: Debugging, Testing, and Benchmarking

This chapter will cover testing and benchmarking, as well as the reasons why

you should complete comprehensive testing of all your code. We’ll also walk

through a couple of examples that show how to debug your application when

something goes wrong.

Chapter 12: Deployment

Now that you’ve developed a feature-packed, fully functional application, you’ll

want to deploy it so that other people can use it. In this chapter, I’ll introduce

you to the options available for deploying your application to a production

server, and walk you through the steps involved in taking your application to

the world.

The Book’s Web Site
Head over to http://www.sitepoint.com/books/rails2/ for easy access to various re­

sources supporting this book.

The Code Archive
The code archive for this book, which can be downloaded from

http://www.sitepoint.com/books/rails2/archive/, contains each and every line of

example source code that’s printed in this book. If you want to cheat (or save

yourself from carpal tunnel syndrome), go ahead and download the files.

http://www.sitepoint.com/books/rails2/
http://www.sitepoint.com/books/rails2/archive/

xxiii

Updates and Errata
While everyone involved in producing a technical book like this goes to enormous

effort to ensure the accuracy of its content, books tend to have errors. Fortunately,

the Corrections and Typos page located at

http://www.sitepoint.com/books/rails2/errata.php is the most current, comprehens­

ive reference for spelling and code-related errors that observant readers have reported

to us.

The SitePoint Forums
If you have a problem understanding any of the discussion or examples in this book,

try asking your question in the SitePoint Forums, at

http://www.sitepoint.com/forums/. There, the enthusiastic and friendly community

will be able to help you with all things Rails.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters includ­

ing The SitePoint Tribune and The SitePoint Tech Times. In them, you’ll read about

the latest news, product releases, trends, tips, and techniques for all aspects of web

development.

You can count on gaining some useful Rails articles and tips from these resources,

but if you’re interested in learning other technologies, or aspects of web development

and business, you’ll find them especially valuable. Sign up to one or more SitePoint

newsletters at http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find your answer through the forums, or if you wish to contact us for

any other reason, write to books@sitepoint.com. We have a well-staffed email

support system set up to track your inquiries, and if our support staff members are

unable to answer your question, they’ll send it straight to me. Suggestions for im­

provements, as well as notices of any mistakes you may find, are especially welcome.

http://www.sitepoint.com/books/rails2/errata.php
http://www.sitepoint.com/forums/
http://www.sitepoint.com/newsletter/
http:books@sitepoint.com

xxiv

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A perfect summer's day</h1>

<p>It was a lovely day for a walk in the park. The birds

were singing and the kids were all back at school.</p>

If the code may be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she

➥ets-come-of-age/");

xxv

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Acknowledgments
Thanks to the great people at SitePoint for giving me the chance to write this book.

In particular, thanks to Technical Editors Matthew Magain and Andrew Tetlaw for

their crisp, sharp commentary, and Managing Editor Simon Mackie for applying an

appropriate measure of brute force to me and my drafts—dedication that ensured

that this book is in the best shape possible. I am truly grateful for this opportunity.

To the people in the Rails Core team, for making my developer life enjoyable again

by putting together this amazing framework in almost no time, bringing outstanding

improvements to an already great foundation, and laying the base on which this

book could be written, thank you.

Special thanks to the makers of the Red Bull energy drink, without which the

countless nights that went into both the first and second edition of this book wouldn’t

have been as productive as they were. In a related fashion, my sincere thanks to the

rock bands 30 Seconds to Mars, Linkin Park, Fall Out Boy, Placebo, Billy Talent,

and Good Charlotte, among others, for orchestrating the late-night writing sessions.

xxvi

Finally, thanks must go to my family, especially Alice and Gwen, for giving me so

much strength, motivation, and confidence in what I’m doing. Thank you for bearing

the fact that I was rarely seen away from a computer for way too long. Many thanks

to my dad, for the foundation of my professional life and for teaching me so many

things that could fill an entire book on their own. Thank you!

Chapter1
Introducing Ruby on Rails
Since Ruby on Rails was first released, it has become a household name (well, in

developers’ households, anyway). Hundreds of thousands of developers the world

over have adopted—and adored—this new framework. I hope that, through the

course of this book, you’ll come to understand the reasons why. Before we jump

into writing any code, let’s take a stroll down memory lane, as we meet Ruby on

Rails and explore a little of its history.

First, what exactly is Ruby on Rails?

The short—and fairly technical—answer is that Ruby on Rails (often abbreviated

to “Rails”) is a full-stack web application framework, written in Ruby. However,

depending on your previous programming experience (and your mastery of techno-

jargon), that answer might not make a whole lot of sense to you. Besides, the Ruby

on Rails movement—the development principles it represents—really needs to be

viewed in the context of web development in general if it is to be fully appreciated.

So, let’s define a few of the terms mentioned in the definition above, and take in a

brief history lesson along the way. Then we’ll tackle the question of why learning

Rails is one of the smartest moves you can make for your career as a web developer.

2 Simply Rails 2

■	 A web application is a software application that’s accessed using a web browser

over a network. In most cases, that network is the Internet, but it could also be

a corporate intranet. The number of web applications being created has increased

exponentially since Rails was created, due mostly to the increased availability

of broadband Internet access and the proliferation of faster desktop machines in

people’s homes. It can only be assumed that you’re interested in writing such a

web application, given that you’ve bought this book!

■	 A framework can be viewed as the foundation of a web application. It takes care

of many of the low-level details that can become repetitive and boring to code,

allowing the developer to focus on building the application’s functionality.

A framework gives the developer classes that implement common functions

used in every web application, including:

■	 database abstraction (ensuring that queries work regardless of whether the

database is MySQL, Oracle, DB2, SQLite, or [insert your favorite database

here])

■	 templating (reusing presentational code throughout the application)

■	 management of user sessions

■	 generation of clean, search engine-friendly URLs

A framework also defines the architecture of an application; this facility can be

useful for those of us who fret over which file is best stored in which folder.

In a sense, a framework is an application that has been started for you, and a

well-designed application at that. The structure, plus the code that takes care of

the boring stuff, has already been written, and it’s up to you to finish it off!

■	 Full-stack refers to the extent of the functionality that the Rails framework

provides. You see, there are frameworks and then there are frameworks. Some

provide great functionality on the server, but leave you high and dry on the client

side; others are terrific at enhancing the user experience on the client machine,

but don’t extend to the business logic and database interactions on the server.

If you’ve ever used a framework before, chances are that you’re familiar with

the model-view-controller (MVC) architecture (if you’re not, don’t worry—we’ll

Introducing Ruby on Rails 3

discuss it in Chapter 5). Rails covers everything in the MVC paradigm, from

database abstraction to template rendering, and everything in between.

■	 Ruby is an open source, object oriented scripting language invented by Yukihiro

Matsumoto in the early 1990s. We’ll be learning both Ruby and Rails as we

progress through the book (remember, Rails is written in Ruby).

Ruby makes programming flexible and intuitive, and with it, we can write code

that’s readable by both humans and machines. Matsumoto clearly envisioned

Ruby as a programming language that would entail very little mental overhead

for humans, which is why Ruby programmers tend to be happy programmers.

What Does Ruby Look Like?

If you’re experienced in programming with other languages, such as PHP or

Java, you can probably make some sense of the following Ruby code, although

some parts of it may look new:

01-ruby-sample.rb (excerpt)

>> "What does Ruby syntax look like?".reverse
=> "?ekil kool xatnys ybuR seod tahW"
>> 8 * 5
=> 40
>> 3.times { puts "cheer!" }
cheer!
cheer!
cheer!
>> %w(one two three).each { |word| puts word.upcase }
ONE
TWO
THREE

Don’t worry too much about the details of programming in Ruby for now—we’ll

cover all of the Ruby basics in Chapter 3.

4 Simply Rails 2

History

Ruby on Rails originated as an application named Basecamp,1 a hosted project-

management solution created by Danish web developer David Heinemeier Hansson

for former design shop 37signals.2 Due largely to Basecamp’s success, 37signals has

since moved into application development and production, and Heinemeier Hansson

has become a partner in the company.

When I say “originated,” I mean that Rails wasn’t initially created as a stand-alone

framework. It was extracted from a real application that was already in use, so that

it could be used to build other applications that 37signals had in mind.3 Heinemeier

Hansson saw the potential to make his job (and life) easier by extracting common

functionality such as database abstraction and templating into what later became

the first public release of Ruby on Rails.

He decided to release Rails as open source software to “fundamentally remake the

way web sites are built.”4 The first beta version of Rails was initially released in

July 2004, with the 1.0 and 2.0 releases following on December 13, 2005 and

December 07, 2007 respectively. Several hundreds of thousands of copies of Rails

have been downloaded over time, and that number is climbing.

The fact that the Rails framework was extracted from Basecamp is considered by

the lively Rails community to represent one of the framework’s inherent strengths:

Rails was already solving real problems when it was released. Rails wasn’t built in

isolation, so its success wasn’t a result of developers taking the framework, building

applications with it, and then finding—and resolving—its shortcomings. Rails had

already proven itself to be a useful, coherent, and comprehensive framework.

While Heinemeier Hansson pioneered Rails and still leads the Rails-related program­

ming efforts, the framework has benefited greatly from being released as open source

software. Over time, developers working with Rails have submitted thousands of

1 http://www.basecamphq.com/

2 http://www.37signals.com/

3 Highrise [http://www.highrisehq.com/], Backpack [http://www.backpackit.com/], Ta-da List

[http://www.tadalist.com/], Campfire [http://www.campfirenow.com/], and Writeboard

[http://www.writeboard.com/] are other hosted applications written in Rails by 37signals.

4 http://www.wired.com/wired/archive/14.04/start.html?pg=3

http://www.basecamphq.com/
http://www.37signals.com/
http://www.wired.com/wired/archive/14.04/start.html?pg=3
http://www.wired.com/wired/archive/14.04/start.html?pg=3
http://www.highrisehq.com/
http://www.backpackit.com/
http://www.tadalist.com/
http://www.campfirenow.com/
http://www.writeboard.com/
http://www.basecamphq.com/
http://www.37signals.com/
[http://www.highrisehq.com/]
[http://www.backpackit.com/]
[http://www.tadalist.com/]
[http://www.campfirenow.com/]
[http://www.writeboard.com/]
http://www.wired.com/wired/archive/14.04/start.html?pg=3

5 Introducing Ruby on Rails

extensions and bug fixes to the Rails development repository.5 The repository is

closely guarded by the Rails core team, which consists of about six highly skilled

professional developers chosen from the crowd of contributors, led by Heinemeier

Hansson.

So, now you know what Rails is, and how it came about. But why would you invest

your precious time in learning how to use it?

I’m glad you asked.

Development Principles
Rails supports several software principles that make it stand out from other web

development frameworks. Those principles are:

■ convention over configuration
■ don’t repeat yourself
■ agile development

Because of these principles, Ruby on Rails is a framework that really does save de­

velopers time and effort. Let’s look at each of those principles in turn to understand

how.

Convention Over Configuration
The concept of convention over configuration refers to the fact that Rails assumes

a number of defaults for the way one should build a typical web application.

Many other frameworks (such as the Java-based Struts or the Python-based Zope)

require you to step through a lengthy configuration process before you can make a

start with even the simplest of applications. The configuration information is usually

stored in a handful of XML files, and these files can become quite large and cumber­

some to maintain. In many cases, you’re forced to repeat the entire configuration

process whenever you start a new project.

While Rails was originally extracted from an existing application, extensive archi­

tectural work went into the framework later on. Heinemeier Hansson purposely

5 The Rails repository, located at http://dev.rubyonrails.org/, is used to track bugs and enhancement re­

quests.

http://dev.rubyonrails.org/

6 Simply Rails 2

created Rails in such a way that it doesn’t need excessive configuration, as long as

some standard conventions are followed. The result is that no lengthy configuration

files are required. In fact, if you have no need to change these defaults, Rails really

only needs a single (and short) configuration file in order to run your application.

The file is used to establish a database connection: it supplies Rails with the neces­

sary database server type, server name, user name, and password for each environ­

ment, and that’s it. Here is an example of a configuration file (we’ll talk more about

the contents of this configuration file in Chapter 4):

02-database.yml

development:
 adapter: sqlite3
 database: db/development.sqlite3
 timeout: 5000
test:
 adapter: sqlite3
 database: db/test.sqlite3
 timeout: 5000
production:
 adapter: sqlite3
 database: db/production.sqlite3
 timeout: 5000

Other conventions that are prescribed by Rails include the naming of database-related

items, and the process by which controllers find their corresponding models and

views.

Controllers? Models? Views? Huh?

Model-view-controller (MVC) is a software architecture (also referred to as a design

pattern) that separates an application’s data model (model), user interface (view),

and control logic (controller) into three distinct components.

Here’s an example: when your browser requests a web page from an MVC-archi­

tected application, it’s talking exclusively to the controller. The controller gathers

the required data from one or more models and renders the response to your request

through a view. This separation of components means that any change that’s made

to one component has a minimal effect on the other two.

7 Introducing Ruby on Rails

We’ll talk at length about the MVC architecture and the benefits it yields to Rails

applications in Chapter 5.

Rails is also considered to be opinionated software, a term that has been coined to

refer to software that isn’t everything to everyone. Heinemeier Hansson and his core

team ruthlessly reject contributions to the framework that don’t comply with their

vision of where Rails is headed, or aren’t sufficiently applicable to be useful for the

majority of Rails developers. This is a good way to fight a phenomenon known

among software developers as bloat: the tendency for a software package to imple­

ment extraneous features just for the sake of including them.

Don’t Repeat Yourself
Rails supports the principles of DRY (Don’t Repeat Yourself) programming. When

you decide to change the behavior of an application that’s based on the DRY prin­

ciple, you shouldn’t need to modify application code in more than one authoritative

location.

While this might sound complicated, it’s actually quite simple. For example, instead

of copying and pasting code with a similar or even identical functionality, you de­

velop your application in such a way that this functionality is stored once, in a

central location, and is referenced from each portion of the application that needs

to use it. This way, if the original behavior needs to change, you need only make

modifications in one location, rather than in various places throughout your applic­

ation—some of which you could all too easily overlook.

One example of how Rails supports the DRY principle is that, unlike Java, it doesn’t

force you to repeat your database schema definition within your application. A

database schema definition describes how the storage of an application’s data is

structured. Think of it as a number of spreadsheets, each of which contains rows

and columns that define the various pieces of data, and identify where each data

item is stored. Rails considers your database to be the authoritative source of inform­

ation about data storage, and is clever enough to ask the database for any information

it may need to ensure that it treats your data correctly.

Rails also adheres to the DRY principle when it comes to implementing cutting-

edge techniques such as Ajax (Asynchronous JavaScript and XML). Ajax is an ap­

proach that allows your web application to replace content in the user’s browser

8 Simply Rails 2

dynamically, or to exchange form data with the server without reloading the page.

Developers often find themselves duplicating code while creating Ajax applications:

after all, the web site should function in browsers that don’t support Ajax, as well

as those that do, and the code required to display the results to both types of browser

is, for the most part, identical. Rails makes it easy to treat each browser generation

appropriately without duplicating any code.

Agile Development
More traditional approaches to software development (such as iterative development

and the waterfall model) usually attempt to sketch out a long-running and rather

static plan for an application’s goals and needs using predictive methods. These

development models usually approach applications from the bottom up—that is,

by working on the data first.

In contrast, Agile development methods use an adaptive approach. Small teams,

typically consisting of fewer than ten developers, iteratively complete small units

of the project. Before starting an iteration, the team reevaluates the priorities for the

application that’s being built; these priorities may have shifted during the previous

iteration, so they may need adjustment. Agile developers also architect their applic­

ations from the top down, starting with the design, which may be as simple as a

sketch of the interface on a sheet of paper.

When an application is built using Agile methods, it’s less likely to veer out of

control during the development cycle, thanks to the ongoing efforts of the team to

adjust priorities. By spending less time on the creation of functional specifications

and long-running schedules, developers using Agile methodologies can really jump-

start an application’s development.

Here are a few examples that illustrate how Rails lends itself to Agile development

practices:

■	 You can start to work on the layout of your Rails application before making any

decisions about data storage (even though these decisions might change at a later

stage). You don’t have to repeat this layout work when you start adding function­

ality to your screen designs—everything evolves dynamically with your require­

ments.

9 Introducing Ruby on Rails

■	 Unlike code written in C or Java, Rails applications don’t need to go through a

compilation step in order to be executable. Ruby code is interpreted on the fly,

so it doesn’t need any form of binary compilation to make it executable. Changing

code during development provides developers with immediate feedback, which

can significantly boost the speed of application development.

■	 Rails provides a comprehensive framework for the automated testing of applica­

tion code. Developers who make use of this testing framework can be confident

that they’re not causing functionality to break when they change existing code,

even if they weren’t the ones who originally developed it.

■	 Refactoring (rewriting code with an emphasis on optimization) existing Rails

application code to better cope with changed priorities, or to implement new

features for a development project, can be done much more easily when de­

velopers adhere to the DRY principles we discussed above. This is because far

fewer changes are required when a certain functionality is implemented just

once, and is then reused elsewhere as required.

If your head is spinning from trying to digest these principles, don’t worry—they’ll

be reinforced continually throughout this book, as we step through building our

very own web application in Ruby on Rails!

Building the Example Web Application
As you read on, I expect you’ll be itching to put the techniques we discuss into

practice. For this reason, I’ve planned a fully functional web application that we’ll

build together through the ensuing chapters. The key concepts, approaches, and

methodologies we’ll discuss will have a role to play in the sample application, and

we’ll implement them progressively as your skills improve over the course of this

book.

The application we’ll build will be a functional clone of the popular story-sharing

web site, Digg.6 I’ve included all necessary files for this application in this book’s

code archive.

6 http://www.digg.com/

http://www.digg.com/
http://www.digg.com/

10 Simply Rails 2

What Is Digg?
Digg describes itself as follows:7

Digg is a place for people to discover and share content from any­

where on the web. From the biggest online destinations to the most

obscure blog, Digg surfaces the best stuff as voted on by our users.

You won’t find editors at Digg—we’re here to provide a place where

people can collectively determine the value of content and we’re

changing the way people consume information online.

How do we do this? Everything on Digg—from news to videos to

images to podcasts—is submitted by our community (that would

be you). Once something is submitted, other people see it and Digg

what they like best. If your submission rocks and receives enough

Diggs, it is promoted to the front page for the millions of our visitors

to see.

Basically, if you want to tell the world about that interesting article you found on

the Internet—be it a weblog post that’s right up your street, or a news story from a

major publication—you can submit its URL to Digg, along with a short summary of

the item. Your story sits in a queue, waiting for other users to digg it (give your item

a positive vote). As well as voting for a story, users can comment on the story to

create often lively discussions within Digg.

As soon as the number of diggs for a story crosses a certain threshold, it’s automat­

ically promoted to the Digg homepage, where it attracts a far greater number of

readers than the story-queuing area receives. Figure 1.1 shows a snapshot of the

Digg homepage.

7 http://digg.com/about/

http://digg.com/about/
http://digg.com/about/

Introducing Ruby on Rails 11

Figure 1.1. The original digg.com

The Digg Effect

Due to the huge number of visitors that Digg receives, web sites that are listed on

the front page may suffer from what is known as the Digg effect: the servers of

many sites cannot cope with the sudden surge in traffic, and become inaccessible

until the number of simultaneous visitors dies down or the hosting company

boosts the site’s capacity to deal with the increase in traffic.

Digg was launched in December 2004, and has since been listed in the Alexa traffic

rankings as one of the Internet’s top 200 web sites.8

I didn’t decide to show you how to develop your own Digg clone just because the

site is popular with Internet users, though; Digg’s feature set is not particularly

complicated, but it’s sufficient to allow us to gain firsthand experience with the

most important and useful facets of the Ruby on Rails framework.

And while your application might not be able to compete with the original site, re­

using this sample project to share links within your family, company, or college

8 http://www.alexa.com/data/details/traffic_details/digg.com

http://www.alexa.com/data/details/traffic_details/digg.com
http://www.alexa.com/data/details/traffic_details/digg.com

12 Simply Rails 2

class is perfectly conceivable. Also, with any luck you’ll learn enough along the

way to branch out and build other types of applications as well.

Features of the Example Application
As I mentioned, we want our application to accept user-submitted links to stories

on the Web. We also want to allow other users to vote on the submitted items. In

order to meet these objectives, we’ll implement the following features as we work

through this book:

■	 We’ll build a database back end that permanently stores every story, user, vote,

and so on. This way, nothing is lost when you close your browser and shut the

application down.

■	 We’ll build a story submission interface, which is a form that’s available only

to users who have registered and logged in.

■	 We’ll develop a simplistic layout, as is typical for Web 2.0 applications. We’ll

style it with Cascading Style Sheets (CSS) and enhance it with visual effects.

■	 We’ll create clean URLs for all the pages on our site. Clean URLs (also known

as search engine-friendly URLs) are usually brief and easily read when they ap­

pear in the browser status bar. An example of a clean URL is

http://del.icio.us/popular/software, which I’m sure you’ll agree is a lot nicer

than http://www.amazon.com/gp/homepage.html/103-0615814-1415024/.

■	 We’ll create a user registration system that allows users to log in with their

usernames and passwords.

■	 We’ll create two different views for stories: the homepage of our application,

and the story queue containing stories that haven’t yet received enough votes to

appear on the homepage.

■	 We’ll give users the ability to check voting history on per-user and per-story

bases.

■	 We’ll facilitate the tagging of stories, and give users the ability to view only those

stories that relate to programming or food, for example. For a definition of tagging,

see the note below.

http://del.icio.us/popular/software
http://www.amazon.com/gp/homepage.html/103-0615814-1415024/

Introducing Ruby on Rails 13

It’s quite a list, and the result will be one slick web application! Some of the features

rely upon others being in place, and we’ll implement each feature as a practical

example when we look at successive aspects of Rails.

What is Tagging?

Tagging can be thought of as a free-form categorization method. Instead of the

site’s owners creating a fixed content categorization scheme (often represented as

a tree), users are allowed to enter one or more keywords to describe a content

item. Resources that share one or more identical tags can be linked together eas­

ily—the more overlap between tags, the more characteristics the resources are

likely to have in common.

Figure 1.2. Tags on flickr.com

Instead of displaying a hierarchical category tree, the tags used in an application

are commonly displayed as a tag cloud in which each of the tags is represented

in a font size that corresponds to how often that tag has been applied to content

items within the system.

14 Simply Rails 2

Tags are used extensively on sites such as the Flickr photo-sharing web site9

shown in Figure 1.2, the del.icio.us bookmark-sharing site,10 and the Technorati

weblog search engine.11

Summary
We’ve explored a bit of history in this chapter. Along the way, we learned where

both the Ruby language and the Rails framework have come from, and looked in

some detail at the niche that followers of the Ruby on Rails philosophy have carved

out for themselves in the web development world. I also explained the philosophy

behind the Ruby programming language and showed you a snippet of Ruby code.

We’ll cover much more of Ruby’s inner workings in Chapter 3.

We also talked briefly about some of the basic principles that drive Rails develop­

ment, and saw how Rails supports Agile development methods. Now that you’re

aware of the possibilities, perhaps some of these ideas and principles will influence

your own work with Rails.

Finally, we created a brief specification for the web application we’re going to build

throughout this book. We described what our application will do, and identified

the list of features that we’re going to implement. We’ll develop a clone of the story-

sharing web site Digg iteratively, taking advantage of some of the Agile development

practices that Rails supports.

In the next chapter, we’ll install Ruby, Rails, and the SQLite database server software

in order to set up a development environment for the upcoming development tasks.

Are you ready to join in the fun? If so, turn the page …

9 http://flickr.com/
10 http://del.icio.us/
11 http://www.technorati.com/

http://flickr.com/
http://del.icio.us/
http://www.technorati.com/
http://www.technorati.com/
http://flickr.com/
http://del.icio.us/
http://www.technorati.com/

Chapter2
Getting Started
To get started with Ruby on Rails, we first need to install some development software

on our systems. The packages we’ll be installing are:

the Ruby language interpreter

The Ruby interpreter translates our Ruby code (or any Ruby code, for that matter,

including Rails itself) into a form the computer can understand and execute.

At the time of writing, Ruby 1.8.6 is recommended for use with Rails, so that’s

what I’ve used here.

the Ruby on Rails framework

Once we’ve downloaded Ruby, we can install the Rails framework itself. As I

mentioned in Chapter 1, Rails is written in Ruby. At the time of writing, version

2.0.2 was the most recent stable version of the framework.

the SQLite database engine

The SQLite database engine is a self-contained software library which provides

an SQL database without actually running a separate server process. While Rails

supports plenty of other database servers (MySQL, PostgreSQL, Microsoft SQL

Server, and Oracle, to name a few), SQLite is easy to install and does not require

16 Simply Rails 2

any configuration, and is the default database for which a new Rails application

is configured straight out of the box. Oh, and it’s free!

At the time of writing, the most recent stable release of the SQLite database was

version 3.5.4.

Instructions for installing Rails differ ever so slightly between operating systems.

You may also need to install some additional tools as part of the process, depending

on the platform you use. Here, I’ll provide installation instructions for Windows,

Mac OS X, and Linux.

Watch Your Version Numbers!

It’s possible that by the time you read this, a more recent version of Ruby, SQLite,

or one of the other packages mentioned here will have been released. Beware!

Don’t just assume that because a package is newer, it can reliably be used for Rails

development. While, in theory, every version should be compatible and these

instructions should still apply, sometimes the latest is not the greatest.

In fact, the Rails framework itself also has a reputation for experiencing large

changes between releases, such as specific methods or attributes being deprecated.

While every effort has been made to ensure the code in this book is future-proof,

there’s no guarantee that changes included in future major releases of Rails won’t

require this code to be modified in some way for it to work. Such is the fast-paced

world of web development!

Feel free to skip the sections relevant to operating systems other than yours, and to

focus on those that address your specific needs.

What Does All This Cost?
Everything we need is available for download from the Web, and is licensed under

free software licenses. This basically means that everything you’ll be installing is

free for you to use in both personal and commercial applications. If you’re curious

about the differences between each license, you can check out each package’s indi­

vidual license file, which is included in its download.

Getting Started 17

Installing on Windows

For some reason, Windows has the easiest install procedure. A very helpful program­

mer by the name of Curt Hibbs sat down and packaged everything required to develop

Rails applications on a Windows machine. He constructed the package as an easy-

to-install, easy-to-run, single file download called Instant Rails and released version

1.0 in early 2006. When Rails 2.0 was released in late 2007, maintenance of Instant

Rails was taken over by Rob Bazinet, and nowadays consists of the following com­

ponents:

■ the Ruby interpreter
■ the SQLite and MySQL database engines
■ the Apache web server (although we won’t be using it in this book)
■ Ruby on Rails

That’s everything we need in one handy package. How convenient!

To install Instant Rails, download the latest Instant Rails zip archive from the Instant

Rails project file list1 on RubyForge and extract its contents to a folder of your

choice.

Time Flies

The version of Instant Rails used to test the code in this book was 2.0. As discussed

earlier in the chapter, due to the fast-changing nature of the framework, I can’t

guarantee that later versions will work.

Be careful, though; Instant Rails doesn’t support folders with names that contain

spaces; unfortunately, this means that the obvious choice of C:\Program Files\ is not

a good one. I recommend choosing C:\InstantRails\ instead.

After you’ve extracted the .zip file (it has approximately 18,000 items in packaged

documentation, so if you’re using the Windows built-in file compression tool, it

could take quite some time to unzip them all), navigate to the InstantRails folder and

double-click the InstantRails.exe file. You’ll be prompted with a dialog like the one

shown in Figure 2.1; click OK to continue.

1 http://rubyforge.org/frs/?group_id=904

http://rubyforge.org/frs/?group_id=904
http://rubyforge.org/frs/?group_id=904
http://rubyforge.org/frs/?group_id=904

18 Simply Rails 2

Figure 2.1. Configuring Instant Rails doesn’t get much easier …

If you’re on Windows XP Service Pack 2 or later, you’ll also be greeted with the

alert message in Figure 2.2 from the Windows internal firewall (or any additional

personal firewall software that you might have installed). Of course, the Apache

web server isn’t trying to do anything malicious—Instant Rails just fires it up as

part of its initialization process. Go ahead and click Unblock to allow it to start.

Figure 2.2. Allowing Apache to run

You should now see the Instant Rails control panel, which, as Figure 2.3 illustrates,

should report that everything has started up successfully.

Getting Started 19

Figure 2.3. The Instant Rails control panel

Next, you’ll need to update the version of RubyGems that comes with Instant Rails.

Click on the I button in the top-left of the control panel. From the menu that appears,

select Rails Applications > Open Ruby Console Window. Once the console opens, enter

the following command:

C:\InstantRails\rails_apps> gem update --system

The final step is to update Rails. The following command, entered in the Ruby

Console you opened previously, should do the trick:

C:\InstantRail\rails_apps> gem update

That’s it! Everything you need is installed and configured. Feel free to skip the in­

structions for Mac and Linux, and start building your application!

Installing on Mac OS X
Okay, so the Windows guys had it easy. Unfortunately, life isn’t quite so simple for

the rest of us, at least as far as Rails installation is concerned. While Mac OS X isn’t

usually a platform that makes things tricky, installing Rails is just a tad harder than

installing a regular Mac application.

Lose the Locomotive

There was an all-in-one installer available for Mac OS X 10.4 and earlier, called

Locomotive (http://locomotive.raaum.org/). Unfortunately, it’s no longer main­

tained by its creator, Ryan Raaum. For this reason, I don’t recommend that you

use Locomotive to work through this book.

(http://locomotive.raaum.org/)

20 Simply Rails 2

Mac OS X 10.5 (Leopard)
If your Mac is a relatively recent purchase, you may be running OS X version 10.5

(Leopard) or later. If this is the case, you’ve got much less to do, because your ma­

chine comes preinstalled with both Ruby and Rails—congratulations! All you’ll

need to do is update your Rails installation, but we’ll worry about that when we

reach that step in the Rails installation instructions for Mac OS X 10.4—you’ll see

that it’s very easy.

Of course, it wouldn’t do you any harm to read through all of the steps below any­

way, just to make sure that you’re familiar with the software components and con­

cepts that are introduced; for example, the Mac OS X Terminal, the command line

interface, and RubyGems.

Mac OS X 10.4 (Tiger) and Earlier
“But wait!” I hear you cry. “My slightly older Mac comes with Ruby preinstalled!”

Yes, that may indeed be true. However, the version of Ruby that shipped with OS

X prior to version 10.5 is a slimmed-down version that’s incompatible with Rails,

and is therefore unsuited to our needs. While there are packages out there that make

the installation of Ruby easier, such as MacPorts,2 for the sake of completeness, I’ll

show you how to build Ruby on your machine from scratch.3 Don’t worry. It may

sound intimidating, but it’s actually relatively painless—and you’ll only need to

do it once!

Let’s start installing then, shall we?

Installing Xcode
The first step in the process is to make sure we have everything we need for the

installation to go smoothly. The only prerequisite for this process is Xcode, the

Apple Developer Tools that come on a separate CD with Mac OS X. If you haven’t

2 http://www.macports.org/

3 A tip of the hat is in order for Dan Benjamin, who did a lot of the heavy lifting in the early days of

documenting the installation of Rails on OS X. Parts of these installation instructions are heavily influ­

enced by his article “Building Ruby, Rails, Subversion, Mongrel, and MySQL on Mac OS X”.

[http://hivelogic.com/articles/ruby-rails-mongrel-mysql-osx/]

http://www.macports.org/
http://hivelogic.com/articles/ruby-rails-mongrel-mysql-osx/
http://www.macports.org/
[http://hivelogic.com/articles/ruby-rails-mongrel-mysql-osx/]

Getting Started 21

installed the tools yet, and don’t have your installation CD handy, you can download

the Xcode package for free4 (although at more than 900MB, it’s a hefty download!).

To install Xcode, run the packaged installer by clicking on the XcodeTools.mpkg

icon and following the on-screen instructions illustrated in Figure 2.4. The install­

ation tool is a simple wizard that will require you to click Continue a few times,

agree to some fairly standard terms and conditions, and hit the Install button.

Figure 2.4. Installing the Xcode developer tools

Introducing the Command Line
For the next few steps, we’re going to leave the comfort and security of our pretty

graphical user interface and tackle the much geekier UNIX command line. If this is

the first time you’ve used the command line on your Mac, don’t worry—we’ll be

using it often as we work through this book, so you’ll have plenty of practice! Let’s

dive in.

4 http://developer.apple.com/

http://developer.apple.com/
http://developer.apple.com/
http://developer.apple.com/

22 Simply Rails 2

First, open up a UNIX session in OS X using the Terminal utility. Launch Terminal

by selecting Go > Utilities from the Finder menu bar, and double-clicking the Terminal

icon. Your Terminal window should look a lot like Figure 2.5.

Figure 2.5. A Terminal window on Mac OS X

Let’s dissect these crazy command line shenanigans. The collection of characters

to the left of the cursor is called the prompt. By default, it displays:

■ the name of your Mac
■ the current directory
■ the name of the user who’s currently logged in

In my case, this is:

Core:~ scoop$

So, what’s what here?

■ Core is the name of my Mac.
■ scoop is the name of the user who’s currently logged in.

But what on earth is this character: ~? It’s called a tilde, and it’s shorthand notation

for the path to the current user’s home directory. Take another look at Figure 2.5,

and you’ll see I’ve used the pwd command to print the working directory. The result

is /Users/scoop, which just happens to be my home directory. For future command

line instructions, though, I’ll simply display the prompt as: $, to avoid occupying

valuable real estate on the page.

Getting Started 23

Setting the Path
Next, we need to make sure that Mac OS X can locate all the command line tools

that we’ll be using during this installation. The PATH environment variable stores

the list of folders to which OS X has access; we’ll store the changes we make to this

variable in a file in our home directory.

The name of the file we’ll use is .profile. (On UNIX-based systems such as Mac OS

X, files that start with a period are usually hidden files.) If you type out the following

command exactly, your PATH environment variable will be set correctly every time

you open a new Terminal window:

$ echo 'export PATH="/usr/local/bin:/usr/local/sbin:$PATH"' >>

➥ ~/.profile

To activate this change (without having to open and close the Terminal window),

type the following command:

$. ~/.profile

Yes, that’s a single period at the beginning of the line. Note that these commands

don’t produce any feedback, as Figure 2.6 shows, but they’re still taking effect.

Figure 2.6. Setting the correct path

It would be a shame to clutter up this home directory—or our desktop—with a huge

number of files, so let’s go about this installation business in an organized fashion.

24 Simply Rails 2

Staying Organized
The process of extracting, configuring, and compiling the source code for all the

packages that we’ll be downloading will take up a reasonable amount of space on

your hard drive. Let’s keep things organized and operate within a single folder rather

than making a mess of the desktop.

The desktop on your Mac is actually a subfolder of your home directory. Change to

the Desktop folder using the cd command (short for change directory). Once you’re

there, you can use mkdir to make a directory in which to store our downloads and

other assorted files. Let’s call this directory build:

$ cd Desktop

$ mkdir build

$ cd build

The result is that we have on the desktop a new directory, which is now our current

working directory. This is also reflected by our prompt. As Figure 2.7 shows, mine

now reads:

Core:build scoop$

Figure 2.7. Creating a temporary working directory

Now the fun begins!

Getting Started 25

Installing Ruby on a Mac
Before installing Ruby itself, we need to install another library on which Ruby de­

pends: Readline.

Here’s the sequence of slightly convoluted commands for installing the Readline

library. It’s a fairly small library, so the installation shouldn’t take long:

$ curl ftp://ftp.gnu.org/gnu/readline/readline-5.2.tar.gz

➥ | tar xz

$ cd readline-5.2

$./configure --prefix=/usr/local

$ make

$ sudo make install

$ cd ..

With Readline in place, we’re now able to install Ruby itself. This step may test

your patience a bit, as the configuration step could take half an hour or more to

complete, depending on the speed of your system and your network connection.

Type out the following series of commands, exactly as you see them here (it’s not

important that you understand every line, but it is important that you don’t make

any typos):

$ curl ftp://ftp.ruby-lang.org/pub/ruby/1.8/

➥ruby-1.8.6.tar.gz | tar xz

$ cd ruby-1.8.6

$./configure --prefix=/usr/local --enable-pthread

➥ --with-readline-dir=/usr/local

$ make

$ sudo make install

$ sudo make install-doc

$ cd ..

How did you do? It’s wise to run some checks at this point, to determine whether

our installation is on track so far. The simplest and safest way to ascertain whether

our Ruby installation is working is to type the following command into the Terminal

window:

$ ruby -v

ftp://ftp.gnu.org/gnu/readline/readline-5.2.tar.gz
ftp://ftp.ruby-lang.org/pub/ruby/1.8/

26 Simply Rails 2

The version displayed should match that which you downloaded—in my case, ruby

1.8.6 (2007-09-24 patchlevel 111), as shown in Figure 2.8. If anything else is

displayed here (such as ruby 1.8.2 (2004-12-25)), something’s gone wrong. You

should carefully repeat the instructions up to this point.

A Friend in Need’s a Friend Indeed

Remember—if you get really stuck, you can always try asking for help on Site-

Point’s Ruby forum.5

Figure 2.8. Checking the Ruby version

Be a Super User for a Day

sudo is a way for “regular” computer users to perform system-wide installations

that are normally reserved for system administrators. You’ll need to enter your

account password before you’ll be allowed to execute this command. To use sudo,

the user account must have the Allow user to administer this computer setting checked.

This can be changed in the Accounts section of the Apple System Preferences win­

dow.

Next up, we have the installation of RubyGems.

Installing RubyGems on a Mac
“What is this RubyGems?” I hear you ask. RubyGems is a utility for managing the

additions to the Ruby programming language that other people have developed and

5 http://www.sitepoint.com/launch/rubyforum/

http://www.sitepoint.com/launch/rubyforum/
http://www.sitepoint.com/launch/rubyforum/
http://www.sitepoint.com/launch/rubyforum/

Getting Started 27

made available as free downloads. Think of it as prepackaged functionality that you

can install on your machine so you don’t have to reinvent the wheel over and over

again while you’re working on your own projects.6 Rails is released and published

through the RubyGems system.

The following sequence of commands will download and install RubyGems on your

Mac. It should be a relatively quick procedure:

$ curl -L http://rubyforge.org/frs/download.php/29548/

➥rubygems-1.0.1.tgz | tar xz

$ cd rubygems-1.0.1

$ sudo ruby setup.rb

$ cd ..

Are you getting the hang of this command line thing? Good! We now have another

new command at our fingertips: gem. The gem command is used to install and

manage Ruby packages on your machine—enter the following to check that Ruby-

Gems is working properly:

$ gem -v

The output should identify the version of RubyGems that you installed, as Figure 2.9

shows. We’ll use the gem command to install Rails.

Figure 2.9. Confirmation of a successful RubyGems installation

6 The RubyGems web site [http://gems.rubyforge.org/] has additional documentation for the gem command

that we’ll use in this section.

http://gems.rubyforge.org/
http://rubyforge.org/frs/download.php/29548/
[http://gems.rubyforge.org/]

28 Simply Rails 2

Updating RubyGems

RubyGems is constantly being developed and improved, and new versions are

released frequently. If you ever need to update RubyGems—for compatibility

reasons, for example—simply enter the following command into a terminal win­

dow:

$ sudo gem update --system

Installing Rails on a Mac
Whew! After several pages of installation instructions, we’re finally here: the install­

ation of the Rails framework. Don’t underestimate the importance of the work you’ve

already done, though. Plus, you’ll now have an easy upgrade path the next time a

new version of Ruby or Rails is released (which I’ll explain later).

Without further ado, enter this command to install Rails:

$ sudo gem install rails

This command prompts the RubyGems system to download Rails and the packages

on which it depends, before installing the necessary files and documentation. This

process may take ten minutes or more to complete, so it’s a good time to grab

yourself a coffee.

The Secret of Staying Up to Date with Rails

While you’re waiting for Rails to install, I’ll let you in on a little secret: the com­

mand we just entered is the very same one that you can use to stay up to date with

future Rails releases. Whenever you want to upgrade Rails, just enter that command

again, and your system will be updated. Very cool, as I’m sure you’ll agree. In

fact, if you’re running the above command on Mac OS X 10.5, that’s exactly what

you’ll be doing: upgrading your existing Rails installation.

Once the installation has finished, you can verify the version of Rails you just in­

stalled by running the following command in your Terminal window:

$ rails -v

Getting Started 29

Taking this small step should reward you with the version number of Rails, as illus­

trated in Figure 2.10.

Figure 2.10. Installing Rails on Mac OS X via RubyGems

I told you we’d get there in the end. Don’t break out the champagne just yet,

though—we still need a database!

Installing SQLite on a Mac
The last thing we need to do is install the storage container that’s going to house

the data we (or our users) enter through our application’s web interface, the SQLite

database engine.

As mentioned in the introductory paragraph, SQLite is a self-contained, serverless

database engine. As such, there’s not much more to it than the actual download and

compilation steps. You don’t need to mess with startup scripts or configuration

files. It all just works!

30 Simply Rails 2

$ curl http://www.sqlite.org/sqlite-3.5.4.tar.gz | tar zx

$ cd sqlite-3.5.4

$./configure --prefix=/usr/local

$ make

$ sudo make install

After the installation has been completed, enter the following command to make

sure SQLite has been properly installed:

$ sqlite3 --version

This command should come back with the version of SQLite you installed—3.5.4

in my case—as shown in Figure 2.11.

Figure 2.11. Installing SQLite on Mac OS X

Installing the SQLite Database Interface for Ruby
Lastly, we need to install a tiny little module which will allow Ruby to talk to

SQLite databases. We’ll use the RubyGems system we prepared earlier, which means

that the installation boils down to just a single command:

$ sudo gem install sqlite3-ruby

Running this command should yield the result shown in Figure 2.12.

http://www.sqlite.org/sqlite-3.5.4.tar.gz

Getting Started 31

Figure 2.12. Installing the SQLite database interface for Ruby

Congratulations, Mac users, you’re all done!

Installing on Linux
I bet you Linux people smirked when the Mac OS X guys had to use the command

line (possibly for the first time), didn’t you?

Well, if you’re running Linux, I’ll assume that you’re used to the command line, so

I won’t feel bad throwing you an archaic series of commands to install all the soft­

ware you need to be up and running with Rails.

One Size Fits All?

There are literally thousands of different distributions of Linux—more than any

other operating system. Each distribution has its own quirks and pitfalls, its own

package manager, and different permissions settings, and installations are often

tweaked and customized over time. So while I’ve put every effort into ensuring

that these instructions are sound, it would be impossible to offer an absolute

guarantee that they’ll work on any possible installation of Linux without individual

tweaking.

If you do run into any problems installing Rails or its constituents on your machine,

I recommend you ask for assistance on the friendly SitePoint Ruby forum.7 Chances

are that someone else has experienced the same problem, and will be happy to

help you out.

7 http://www.sitepoint.com/launch/rubyforum/

http://www.sitepoint.com/launch/rubyforum/
http://www.sitepoint.com/launch/rubyforum/

32 Simply Rails 2

Using a Package Manager
As I mentioned, many Linux distributions come with their own package managers,

including apt-get , yum, and rpm, among others.

Of course, you’re free to use the package manager that’s bundled with your Linux

distribution to install Ruby, and if you become stuck with the instructions given

here for whatever reason, that may be a good option for you.

Rather than attempt to cover all the different package managers available, I’ll show

you how to install Ruby the manual way.

Prerequisites
The only prerequisite for installing Ruby on Linux is that you have the gcc compiler

installed on your machine. gcc ships with most Linux distributions by default, but

if it’s not on your system, you’ll either need to use your system’s package manage­

ment system to install it (look for “build essential” or “basic compiler”), or to

download a native binary for your system.8

Enter the following instructions at the command line to confirm that your compiler

is in place:

$ gcc -v

If the version number for the compiler is displayed, as shown in Figure 2.13, you’re

ready to install Ruby.

8 http://gcc.gnu.org/install/binaries.html

http://gcc.gnu.org/install/binaries.html
http://gcc.gnu.org/install/binaries.html

Getting Started 33

Figure 2.13. Confirming the gcc compiler is installed

Installing Ruby on Linux
Ruby is available for download from the Ruby ftp site.9 As mentioned at the outset

of this chapter, I recommend the use of version 1.8.6 of the Ruby interpreter.

Build Dependencies

Here’s a quick tip if you’re using a Debian-based Linux distribution—Ubuntu, for

example). Before compiling Ruby, make sure you have all the required packages

by entering the following command:

$ apt-get build-dep ruby1.8

Download the appropriate tar file for Ruby (this will be named something like ruby­

1.8.6.tar.gz), and extract the archive using the gunzip and tar commands:

9 ftp://ftp.ruby-lang.org/pub/ruby/1.8/ruby-1.8.6.tar.gz

ftp://ftp.ruby-lang.org/pub/ruby/1.8/ruby-1.8.6.tar.gz
ftp://ftp.ruby-lang.org/pub/ruby/1.8/ruby-1.8.6.tar.gz

34 Simply Rails 2

$ gunzip ruby-1.8.6.tar.gz

$ tar xvf ruby-1.8.6.tar

$ cd ruby-1.8.6

Then change into the new directory that was created, as illustrated in Figure 2.14.

Figure 2.14. Extracting the Ruby archive on Linux

From this directory, run the following command to compile and install Ruby in

/usr/local:

$./configure && make && sudo make install

This process may take 20 minutes or more, so be patient.

Once it’s completed, you should add /usr/local/bin to your PATH environment variable.

I’ll assume that, being a Linux user, you know how to do that. Once that environment

variable is set, you can enter the following command to check which version of

Ruby you installed:

$ ruby -v

Getting Started 35

The message displayed should confirm that you’re running version 1.8.6, as Fig­

ure 2.15 illustrates.

Figure 2.15. Installing Ruby on Linux

Now, on to the next step: installing RubyGems.

Installing RubyGems on Linux
Next up is the installation of RubyGems, the package manager for Ruby-related

software. RubyGems works much like the package manager that your operating

system uses to manage the various Linux utilities installed on your machine.

RubyGems makes it easy to install all sorts of additional software and extensions

for Ruby.

RubyGems is available for download from http://rubyforge.org/projects/rubygems/.

Once you’ve downloaded and extracted it, change to the rubygems directory and

run the following command:

$ sudo ruby setup.rb

http://rubyforge.org/projects/rubygems/

36 Simply Rails 2

This will set up and install RubyGems for use on your system, and also make the

gem command available for you to use—the gem command is what we’ll use to install

Rails itself. It shouldn’t take long, and once it completes, you can execute the gem

command to confirm that your installation was successful. The output should look

like that shown in Figure 2.16.

Figure 2.16. Installing RubyGems on Linux

We have successfully installed RubyGems. Now we can finally install the Rails

framework!

Updating RubyGems

RubyGems is constantly being developed and improved, and new versions are

released frequently. If you ever need to update RubyGems—for compatibility

reasons, for example—simply enter the following at the command line:

$ sudo gem update --system

Getting Started 37

Installing Rails on Linux
Using RubyGems, the installation of Rails itself is a breeze. To install Rails, type

the following input at the command prompt as the root user (or using sudo if it’s

installed on your system):

$ sudo gem install rails

The process may take ten minutes or so, depending on the speed of your Internet

connection, but that’s all you need to do! And as an added bonus, RubyGems gives

us an easy way to stay up to date with future Rails releases—whenever we want to

upgrade Rails, we just need to type this command!

To confirm that your Rails installation was successful, type the following command

to display the version of Rails that was installed:

$ rails -v

The result that you see should be the same as that shown in Figure 2.17.

Figure 2.17. Installing Rails via RubyGems on Linux

38 Simply Rails 2

All that’s left now is to install a database—then we can get to work!

Installing SQLite on Linux
Most modern Linux distributions may or may not come packaged with a (more or

less) recent version of SQLite and you’re free to use that. It is crucial, however, that

you’re installing SQLite 3.x (as opposed to SQLite 2.x).

In case your Linux distribution doesn’t ship with a prepackaged version of SQLite,

follow the simple installation instructions found below.

SQLite is available for download from http://www.sqlite.org/download.html. The

rest of these instructions assume you download the source tarball. As of this writing,

the most recent version of SQLite available was 3.5.4.

Once you have the file, it’s time to extract and compile it using the following batch

of commands:

$ tar zxvf sqlite-3.5.4.tar.gz

$ cd sqlite-3.5.4

$./configure --prefix=/usr/local

$ make

$ sudo make install

At this point you have successfully installed SQLite on your Linux system. To

confirm that, the following command will print out the version of SQLite that you

downloaded and installed:

$ sqlite3 --version

Assuming that you have the directory /usr/local/bin in your operating system

PATH, Figure 2.18 shows the desired output.

http://www.sqlite.org/download.html

Getting Started 39

Figure 2.18. Confirming the successful installation of SQLite

Installing the SQLite Database Interface for Ruby
Lastly, we need to install a tiny little module that allows Ruby to talk to SQLite

databases. To do so, we’ll use the RubyGems system we’ve installed earlier. Because

of that, the installation boils down to a single command only:

$ sudo gem install sqlite3-ruby

Figure 2.19 shows the desired result.

40 Simply Rails 2

Figure 2.19. Installing the SQLite Ruby interface

Congratulations, now you’re all done!

Building a Foundation
Is everyone prepared? Good! Now that you’ve put your workstation on Rails, let’s

do something with it. In this section, we’ll build the foundations of the application

that we’ll develop throughout the rest of this book.

One Directory Structure to Rule Them All
In Chapter 1, I mentioned that Rails applications follow certain conventions. One

of these conventions is that an application written in Rails always has the same

directory structure—one in which every file has its designated place. By gently

forcing this directory structure upon developers, Rails ensures that your work is

semi-automatically organized the Rails way.

Figure 2.20 shows what the structure looks like. We’ll create this directory structure

for our application in just a moment.

Getting Started 41

Figure 2.20. The default directory structure for a Rails application

As you can see, this standard directory structure consists of quite a few subdirect­

ories (and I’m not even showing their subdirectories yet!). This wealth of subdirect­

ories can be overwhelming at first, but we’ll explore them one by one. A lot of

thought has gone into establishing and naming the folders, and the result is an ap­

plication with a well structured file system.

Before you go and manually create all these directories yourself, let me show you

how to set up that pretty directory structure using just one command—I told you

that Rails allows us to do less typing!

Creating the Standard Directory Structure
It’s easy to generate the default directory structure shown in Figure 2.20 for a new

Rails application using the rails command.

Before we start, I’d like to introduce you to the secret, under-the-hood project name

we’ll give to our digg clone: Shovell. Yes, it’s cheeky, but it’ll work.

Now, let’s go ahead and create the directory structure to hold our application.

A Regular Console Window Just Won’t Do!

If you’re a Windows user, you might be tempted to fire up a regular DOS console

for your command line work. This won’t work at all, I’m afraid.

Instead, launch a Ruby console by starting Instant Rails, then clicking on the I

button at the top-left corner of the control panel. From the menu that appears,

select Rails Applications > Open Ruby Console Window, as pictured in Figure 2.21.

42 Simply Rails 2

Figure 2.21. Launching a console window from Instant Rails

The Ruby console must be used, because Instant Rails doesn’t modify anything

in your regular Windows environment when it installs. Launching a console from

the Instant Rails control panel ensures that your console will be loaded with all

the environment settings that Rails needs. The Windows Ruby console is depicted

in Figure 2.22.

Figure 2.22. The Ruby Console under Windows

The rails command takes a single parameter: the directory where you’d like to

store your application. You can, and are encouraged to, execute it from the parent

directory in which you want your new Rails application to live. I’ll do this right in

my home directory:

$ rails shovell

create

create app/controllers

create app/helpers

Getting Started 43

create app/models

create app/views/layouts

create config/environments

create config/initializers

create db

create doc

create lib

create lib/tasks

create log

⋮ log entries…

Congratulations, your directory structure has been created!

Starting Our Application
Even before we write any code, it’s possible to start up our application environment

to check that our setup is working correctly. This exercise should give us a nice

boost of confidence before we progress any further.

What we’ll do is launch Mongrel, a fast, stand-alone HTTP library and web server

for Ruby. Mongrel is included with the Ruby installation that we stepped through

earlier in this chapter, so it’s installed on our machine and ready to use.

In previous versions of Rails the default built-in web server was WEBrick. WEBrick

is still included with Rails and can be used instead of Mongrel if desired (the

Mongrel output below tells you how). For our purposes, however, Mongrel will do

just fine.

WEBrick or Mongrel?

If you installed Rails on Mac OS X 10.4 or Linux, you may find WEBrick is still

your default web server. This is fine; there’s no pressing reason to use Mongrel.

If you’d like to install it anyway, you can do so via the command: sudo gem

install mongrel.

To start up Mongrel—and the rest of the Rails environment for our application—we

return once again to the command line. Change into the Shovell subdirectory that

was created when we executed the rails command in the previous section. From

the shovell directory, enter the command ruby script/server.

44 Simply Rails 2

This command will fire up the Mongrel web server, which will then begin to listen

for requests on TCP port 3000 of your local machine:

$ cd shovell

$ ruby script/server

ruby script/server

=> Booting Mongrel (use 'script/server webrick' to force WEBrick)

=> Rails application starting on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

** Ruby version is up-to-date; cgi_multipart_eof_fix was not loaded

** Starting Mongrel listening at 0.0.0.0:3000

** Starting Rails with development environment...

** Rails loaded.

** Loading any Rails specific GemPlugins

** Signals ready. TERM => stop. USR2 => restart. INT => stop (no

 restart).

** Rails signals registered. HUP => reload (without restart). It

might not work well.

** Mongrel available at 0.0.0.0:3000

** Use CTRL-C to stop.

Well done: you just started up your application for the first time! Okay, so it’s not

going to be doing a whole lot—we haven’t written any lines of code yet, after all—but

you can now connect to your application by entering http://localhost:3000/ into

your web browser’s address bar; you should see something similar to Figure 2.23.

http://0.0.0.0:3000
http://localhost:3000/

Getting Started 45

Figure 2.23. Welcome aboard: the Rails welcome screen

This welcome screen provides us with quite a few items, including some steps for

getting started with Rails application development. Don’t investigate these just yet;

we’ll deal with that soon enough. You’ll also notice in the sidebar some links to

sites such as the Rails wiki and the mailing list archives, which you can browse

through at your leisure. And there are some links to documentation for Rails and

for Ruby; you’ll find these resources useful once you’ve progressed further with

Rails development.

If you’re interested to see the version numbers of each of the components we’ve

installed, click on the link labeled About your application’s environment. You’ll see a

nicely animated information box, like the one in Figure 2.24. This dialog contains

all the version information you’ll ever likely to need. If you’ve followed the install­

ation instructions in this book, you should have the latest versions of everything.

46 Simply Rails 2

Figure 2.24. Viewing version information

Okay, so you’re finally ready to write some code. But wait! Which text editor will

you be using?

Which Text Editor?
The question of which text editor is best for web development has spawned argu­

ments that border on religious fanaticism. However, while it’s certainly possible to

develop Rails applications using the default text editor that comes bundled with

your operating system, I don’t recommend it—the benefits provided by a specifically

designed programmer’s editor can prevent typing errors and increase your productiv­

ity immeasurably.

In this section, I’ve suggested a couple of alternatives for each operating system,

and I’ll let you make a choice that suits your personal preferences and budget.

Getting Started 47

Windows Text Editors
UltraEdit

The most popular option for editing Rails code on Windows seems to be UltraEd­

it, which is shown in Figure 2.25. UltraEdit is available for download as a free

trial, and may be purchased online for US$49.95.10 It offers syntax highlighting,

code completion, and proper Unicode support (for international characters), as

well as providing the facility to jump quickly between several files. This last is

a huge plus for Rails applications, which usually consist of several dozen files!

Figure 2.25. UltraEdit: a powerful Windows editor

ConTEXT

A free text editor alternative is ConTEXT,11 shown in Figure 2.26, which holds

its own in the features department. ConTEXT also supports syntax highlighting

for Ruby (which is available as a separate download),12 the ability to open

multiple documents in tabs, and a host of other features to make your develop­

ment experience more enjoyable. I especially like the fact that ConTEXT is quite

lightweight, so it loads very quickly. Oh, and that lack of a price tag is rather

attractive, too!

10 http://www.ultraedit.com/

11 http://context.cx/

12 http://www.context.cx/component/option,com_docman/task,cat_view/gid,76/Itemid,48/

http://www.ultraedit.com/
http://context.cx/
http://www.context.cx/component/option,com_docman/task,cat_view/gid,76/Itemid,48/
http://www.ultraedit.com/
http://context.cx/
http://www.context.cx/component/option,com_docman/task,cat_view/gid,76/Itemid,48/

48 Simply Rails 2

Figure 2.26. ConTEXT: a free, feature-rich text editor for Windows

Mac OS X Text Editors
TextMate

For Mac OS X users, the hands-down winner in the Rails code editor popularity

contest is TextMate,13 which is shown in Figure 2.27. TextMate is the editor

you can see in action in numerous screencasts14 available from the Rails web

site. It’s available for download as a free, 30-day trial, and the full version of

the product costs €39.

TextMate boasts terrific project management support, amazing macro record­

ing/code completion functionality, and one of the most complete syntax high­

lighting implementations for Rails code. As you can probably tell, I’m a big fan,

and recommend it heartily. But this is beginning to sound like a television

commercial, so I’ll leave it at that.

13 http://www.macromates.com/
14 http://www.rubyonrails.org/screencasts/

http://www.macromates.com/
http://www.rubyonrails.org/screencasts/
http://www.macromates.com/
http://www.rubyonrails.org/screencasts/

Getting Started 49

Figure 2.27. TextMate running under Mac OS X

TextWrangler

TextWrangler is a free, simple text editor made by BareBones Software. As with

the other editors listed here, TextWrangler tidies up your workspace by allowing

you to have several files open at the same time. The documents are listed in a

pull-out “drawer” to one side of the interface, rather than as tabs.

You can download TextWrangler from the BareBones Software web site.15 Fig­

ure 2.28 shows TextWrangler in action.

15 http://barebones.com/products/textwrangler/

http://barebones.com/products/textwrangler/
http://barebones.com/products/textwrangler/

50 Simply Rails 2

Figure 2.28. TextWrangler, a free text editor for Mac OS X

Linux and Cross-platform Editors
A number of development-centric text editors that run on a variety of platforms are

available for free download. The following editors have loyal followings, and all

run equally well on Linux as on Microsoft Windows and Mac OS X:

■ Emacs, http://www.emacswiki.org/
■ jEdit, http://www.jedit.org/
■ RadRails, http://www.radrails.org/
■ Vim, http://www.vim.org/

A more comprehensive list of text editors can be found in the Rails Wiki.16 This

page also covers potential enhancement modules for other editors.

Summary
In this chapter, I showed you how to install all the software you need to develop a

web application in Ruby on Rails.

We installed Ruby, Rails, and SQLite, and set up the standard directory structure

for our application, which we’ve named “Shovell.” We even launched the application

for the first time, which enabled us to check which versions we were running of

the components involved. And finally, I gave you some options for text editors you

can use to build the application.

16 http://wiki.rubyonrails.org/rails/pages/Editors/

http://wiki.rubyonrails.org/rails/pages/Editors/
http://www.emacswiki.org/
http://www.jedit.org/
http://www.radrails.org/
http://www.vim.org/
http://wiki.rubyonrails.org/rails/pages/Editors/

Getting Started 51

All this work has been completed in preparation for Chapter 4, where we’ll begin

to write our first lines of application code. But first, there’s some theory we have

to tackle. Hold on tight, we’ll start coding soon enough!

Chapter3
Introducing Ruby
While this chapter certainly makes no attempt to constitute a complete guide to the

Ruby language, it will introduce you to some of the basics of Ruby. We’ll power

through a crash course in object oriented programming that covers the more common

features of the language, and leave the more obscure aspects of Ruby for a dedicated

reference guide.1 I’ll also point out some of the advantages that Ruby has over other

languages when it comes to developing applications for the Web.

Some Rails developers suggest that it’s possible to learn and use Rails without

learning the Ruby basics first, but as far as I’m concerned, it’s extremely beneficial

to know even a little Ruby before diving into the guts of Rails. In fact, you’ll auto­

matically become a better Rails programmer.

Ruby Is a Scripting Language
In general, programming languages fall into one of two categories: they’re either

compiled languages or scripting languages. Let’s explore what each of those terms

means, and understand the differences between them.

1 http://www.ruby-doc.org/stdlib/

http://www.ruby-doc.org/stdlib/
http://www.ruby-doc.org/stdlib/
http://www.ruby-doc.org/stdlib/

54 Simply Rails 2

Compiled Languages
The language in which you write an application is not actually something that your

computer understands. Your code needs to be translated into bits and bytes that

can be executed by your computer. This process of translation is called compilation,

and any language that requires compilation is referred to as a compiled language.

Examples of compiled languages include C, C#, and Java.

For a compiled language, the actual compilation is the final step in the development

process. You invoke a compiler—the software program that translates your final

handwritten, human-readable code into machine-readable code—and the compiler

creates an executable file. This final product is then able to execute independently

of the original source code.

Thus, if you make changes to your code, and you want those changes to be incor­

porated into the application, you must stop the running application, recompile it,

then start the application again.

Scripting Languages
On the other hand, a scripting language such as Ruby, PHP, or Python relies upon

an application’s source code all the time. Scripting languages don’t have a compiler

or a compilation phase per se; instead, they use an interpreter—a program that runs

on the web server—to translate handwritten code into machine-executable code on

the fly. The link between the running application and your handcrafted code is

never severed, because that scripting code is translated every time it is invoked; in

other words, for every web page that your application renders.

As you might have gathered from the name, the use of an interpreter rather than a

compiler is the major difference between a scripting language and a compiled lan­

guage.

The Great Performance Debate
If you’ve come from a compiled-language background, you might be concerned by

all this talk of translating code on the fly—how does it affect the application’s per­

formance?

These concerns are valid. Translating code on the web server every time it’s needed

is certainly more expensive, performance-wise, than executing precompiled code,

Introducing Ruby 55

as it requires more effort on the part of your machine’s processor. The good news

is that there are ways to speed up scripted languages, including techniques such as

code caching—caching the output of a script for reuse rather than executing the

script every time—and persistent interpreters—loading the interpreter once and

keeping it running instead of having to load it for every request. However, perform­

ance topics are beyond the scope of this book.

There’s also an upside to scripted languages in terms of performance—namely, your

performance while developing an application.

Imagine that you’ve just compiled a shiny new Java application, and launched it

for the first time … and then you notice an embarrassing typo on the welcome

screen. To fix it, you have to stop your application, go back to the source code, fix

the typo, wait for the code to recompile, and restart your application to confirm

that it is fixed. And if you find another typo, you’ll need to repeat that process again.

Lather, rinse, repeat.

In a scripting language, you can fix the typo and just reload the page in your

browser—no restart, no recompile, no nothing. It’s as simple as that.

Ruby Is an Object Oriented Language
Ruby, from its very beginnings, was built as a programming language that adheres

to the principles of object oriented programming (OOP). Before getting into Ruby

specifics, let’s unpack some fundamental concepts of OOP. The theory can be a bit

dry when you’re itching to start coding, but we’ll cover a lot of ground in this short

section. It will hold you in good stead, so don’t skip it.

OOP is a programming paradigm that first surfaced in the 1960s, but didn’t gain

traction until the 1980s with C++. Its core idea is that programs should be composed

of individual entities, or objects, each of which has the ability to communicate with

other objects around it. Additionally, each object may have the facility to store data

internally, as depicted in Figure 3.1.

56 Simply Rails 2

Figure 3.1. Communication between objects

Objects in an OOP application are often modeled on real-world objects, so even

non-programmers can usually recognize the basic role that an object plays.

And, just like the real world, OOP defines objects with similar characteristics as

belonging to the same class. A class is a construct for defining properties for objects

that are alike, and equipping them with functionality. For example, a class named

Car might define the attributes color and mileage for its objects, and assign them

functionality: actions such as open the trunk, start the engine, and change

gears. These different actions are known as methods, although you’ll often see Rails

enthusiasts refer to the methods of a controller (a kind of object used in Rails, which

you’ll become very familiar with) as “actions”; you can safely consider the two

terms to be interchangeable.

Understanding the relationship between a class and its objects is integral to under­

standing how OOP works. For instance, one object can invoke functionality on an­

other object, and can do so without affecting other objects of the same class. So, if

one car object was instructed to open its trunk, its trunk would open, but the trunk

of other cars would remain closed—think of KITT, the talking car from the television

show Knight Rider, if it helps with the metaphor.2 Similarly, if our high-tech talking

car were instructed to change color to red, it would do so, but other cars would not.

2 Knight Rider [http://en.wikipedia.org/wiki/Knight_Rider] was a popular 1980s series which featured

modern-day cowboy Michael Knight (played by David Hasselhoff) and his opinionated, talking, black

http://en.wikipedia.org/wiki/Knight_Rider
[http://en.wikipedia.org/wiki/Knight_Rider]

Introducing Ruby 57

When we create a new object in OOP, we base it on an existing class. The process

of creating new objects from a class is called instantiation. Figure 3.2 illustrates

this concept.

Figure 3.2. Classes and objects

As I mentioned, objects can communicate with each other and invoke functionality

(methods) on other objects. Invoking an object’s methods can be thought of as asking

the object a question, and getting an answer in return.

Consider the example of our famous talking car again. Let’s say we ask the talking

car object to report its current mileage. This question is not ambiguous: the answer

that the object gives is called a return value, and is shown in Figure 3.3.

Figure 3.3. Asking a simple question

In some cases, the question-and-answer analogy doesn’t quite fit. In these situations,

we might rephrase the analogy to consider the question to be an instruction, and

the answer a status report indicating whether or not the instruction was executed

successfully. This process might look something like the diagram in Figure 3.4.

Pontiac Firebird named KITT. If you missed it in the ’80s, you may be more familiar with the Val Kilmer­

voiced Ford Mustang in the 2008 remake. Don’t worry, having seen the show isn’t a prerequisite to un­

derstanding object oriented programming!

58 Simply Rails 2

Figure 3.4. Sending instructions

Sometimes we need a bit more flexibility with our instructions. For example, if we

wanted to tell our car to change gear, we need to tell it not only to change gear, but

also which gear to change to. The process of asking these kinds of questions is re­

ferred to as passing an argument to the method.

An argument is an input value that’s provided to a method. An argument can be

used in two ways:

■ to influence how a method operates
■ to influence which object a method operates on

An example is shown in Figure 3.5, where the method is “change gear,” and the

number of the gear to which the car must change (two) is the argument.

Figure 3.5. Passing arguments

A more general view of all of these different types of communication between objects

is this: invoking an object’s methods is accomplished by sending messages to it. As

one might expect, the object sending the message is called the sender, and the object

receiving the message is called the receiver.

Armed with this basic knowledge about object oriented programming, let’s look at

some Ruby specifics.

Introducing Ruby 59

Reading and Writing Ruby Code

Learning the syntax of a new language has the potential to induce the occasional

yawn. So, to make things more interesting, I’ll present it to you in a practical way

that lets you play along at home: we’ll use the interactive Ruby shell.

The Interactive Ruby Shell (irb)
You can fire up the interactive Ruby shell by entering irb into a terminal window.

Not the Standard DOS Box!

Windows users, don’t forget to use the Open Ruby Console Window option from the

Instant Rails control panel, to make sure the environment you’re using contains

the right settings.

irb allows you to issue Ruby commands interactively, one line at a time. This

ability is great for playing with the language, and it’s also handy for debugging, as

we’ll see in Chapter 11.

A couple of points about the irb output you’ll see in this chapter:

■	 Lines beginning with the Ruby shell prompt (irb>) are typed in by the user.

■	 Lines beginning with => show the return value of the command that has been

entered.

We’ll start with a really brief example:

irb> 1

=> 1

In this example, I’ve simply thrown the number 1 at the Ruby shell, and received

back what appears to be the very same number.

Looks can be deceiving, though. It’s actually not the very same number. What has

been handed back is in fact a fully featured Ruby object.

Remember our discussion about object oriented programming in the previous section?

Well, in Ruby, absolutely everything is treated as an object with which we can in­

60 Simply Rails 2

teract; each object belongs to a certain class, therefore each object is able to store

data and functionality in the form of methods.

To find the class to which our number belongs, we call the number’s class method:

irb> 1.class

=> Fixnum

We touched on senders and receivers earlier. In this example, we’ve sent the class

message to the 1 object, so the 1 object is the receiver (there’s no sender, as we’re

sending the message from the interactive command line rather than from another

object). The value that’s returned by the method we’ve invoked is Fixnum, which

is the Ruby class that represents integer values.

Since everything in Ruby (including a class) is an object, we can actually send the

very same message to the Fixnum class. The result is different, as we’d expect:

irb> Fixnum.class

=> Class

This time, the return value is Class, which is reassuring—we did invoke it on a

classname, after all.

Note that the method class is all lowercase, yet the return value Class begins with

a capital letter. A method in Ruby is always written in lowercase, whereas the first

letter of a class is always capitalized.

Interacting with Ruby Objects
Becoming accustomed to thinking in terms of objects can take some time. Let’s look

at a few different types of objects, and see how we can interact with them.

Literal Objects
Literal objects are character strings or numbers that appear directly in the code, as

did the number 1 that was returned in the previous section. We’ve seen numbers

in action; next, let’s look at a string literal.

A string literal is an object that contains a string of characters, such as a name, an

address, or an especially witty phrase. In the same way that we created the 1 literal

Introducing Ruby 61

object in the previous example, we can easily create a new string literal object, then

send it a message. A string literal is created by enclosing the characters that make

up the string in single or double quotes, like this:

irb> "The quick brown fox"

=> "The quick brown fox"

First, we’ll confirm that our string literal indeed belongs to class String:

irb> "The quick brown fox".class

=> String

This String object has a wealth of embedded functionality. For example, we can

ascertain the number of characters that our string literal comprises by sending it

the length message:

irb> "The quick brown fox".length

=> 19

Easy stuff, eh?

Variables and Constants
Every application needs a way to store information. Enter our variables and con­

stants! As their names imply, these two data containers have their own unique roles

to play.

A constant is an object that’s assigned a value once, and once only (usually when

the application starts up). Constants are therefore used to store information that

doesn’t need to change within a running application. As an example, a constant

might be used to store the version number for an application. Constants in Ruby

are always written using uppercase letters, as shown below:

irb> CONSTANT = "The quick brown fox in a constant"

=> "The quick brown fox in a constant"

irb> APP_VERSION = 5.04

=> 5.04

62 Simply Rails 2

Variables, in contrast, are objects that are able to change at any time. They can even

be reset to nothing, which frees up the memory space that they previously occupied.

Variables in Ruby always start with a lowercase character:

irb> variable = "The quick brown fox in a variable"

=> "The quick brown fox in a variable"

There’s one more special (and, you might say, evil) side to a variable: its scope. The

scope of a variable is the part of the program to which a variable is visible. If you

try to access a variable from outside its scope (for example, from a part of an applic­

ation to which that variable is not visible), your attempts will generally fail.

The notable exception to the rules defining a variable’s scope are global variables.

As the name implies, a global variable is accessible from any part of the program.

While this might sound convenient at first, usage of global variables is discour­

aged—the fact that they can be written to and read from any part of the program

introduces security concerns.

Let’s return to the string literal example we just saw. Assigning a String to a variable

allows us to invoke on that variable the same methods we invoked on the string

literal earlier:

irb> fox = "The quick brown fox"

=> "The quick brown fox"

irb> fox.class

=> String

irb> fox.length

=> 19

Punctuation in Ruby
The use of punctuation in Ruby code differs greatly from other languages such as

Perl and PHP, so it can seem confusing at first if you’re used to programming in

those languages. However, once you have a few basics under your belt, punctuation

in Ruby begins to feel quite intuitive and can greatly enhance the readability of your

code.

Introducing Ruby 63

Dot Notation
One of the most common punctuation characters in Ruby is the period (.). As we’ve

seen, Ruby uses the period to separate the receiver from the message that’s being

sent to it, in the form Object.receiver.

If you need to comment a line, either for documentation purposes or to temporarily

take a line of code out of the program flow, use a hash mark (#). Comments may

start at the beginning of a line, or they may appear further along, after some Ruby

code:

irb> # This is a comment. It doesn't actually do anything.

irb> 1 # So is this, but this one comes after a statement.

=> 1

irb> fox = "The quick brown fox" # Assign to a variable

=> "The quick brown fox"

irb> fox.class # Display a variable's class

=> String

irb> fox.length # Display a variable's length

=> 19

Chaining Statements Together
Ruby doesn’t require us to use any character to separate commands, unless we want

to chain multiple statements together on a single line. In this case, a semicolon (;)

is used as the separator. However, if you put every statement on its own line (as

we’ve been doing until now), the semicolon is completely optional.

If you chain multiple statements together in the interactive shell, only the output

of the last command that was executed will be displayed to the screen:

irb> fox.class; fox.length; fox.upcase

=> "THE QUICK BROWN FOX"

Use of Parentheses
If you ever delved into the source code of one of the many JavaScript libraries out

there, you might have run screaming from your computer when you saw all the

parentheses that are involved in the passing of arguments to methods.3

3 http://www.sitepoint.com/article/javascript-library/

http://www.sitepoint.com/article/javascript-library/
http://www.sitepoint.com/article/javascript-library/

64 Simply Rails 2

In Ruby, the use of parentheses for method calls is optional in cases in which no

arguments are passed to the method. The following statements are therefore equal:

irb> fox.class()

=> String

irb> fox.class

=> String

It’s common practice to include parentheses for method calls with multiple argu­

ments, such as the insert method of the String class:

irb> "jumps over the lazy dog".insert(0, 'The quick brown fox ')

=> "The quick brown fox jumps over the lazy dog"

This call inserts the second argument passed to the insert object ("The quick

brown fox ") at position 0 of the receiving String object ("jumps over the lazy

dog"). Position 0 refers to the very beginning of the string.

Method Notation
Until now, we’ve looked at cases where Ruby uses less punctuation than its com­

petitors. In fact, Ruby makes heavy use of expressive punctuation when it comes

to the naming of methods.

A regular method name, as we’ve seen, is a simple, alphanumeric string of characters.

If a method has a potentially destructive nature (for example, it directly modifies

the receiving object rather than changing a copy of it), it’s commonly suffixed with

an exclamation mark (!).

The following example uses the upcase method to illustrate this point:

irb> fox.upcase

=> "THE QUICK BROWN FOX"

irb> fox

=> "The quick brown fox"

irb> fox.upcase!

=> "THE QUICK BROWN FOX"

irb> fox

=> "THE QUICK BROWN FOX"

Here, the contents of the fox variable have been modified by the upcase! method.

Introducing Ruby 65

Punctuation is also used in the names of methods that return boolean values. A

boolean value is a value that’s either true or false; these values are commonly

used as return values for methods that ask yes/no questions. Such methods end in

a question mark, which nicely reflects the fact that they have yes/no answers:

irb> fox.empty?

=> false

irb> fox.is_a? String

=> true

These naming conventions make it easy to recognize methods that are destructive,

and those that return boolean values, making your Ruby code more readable.

Object Oriented Programming in Ruby
Let’s build on the theory that we covered at the start of this chapter as we take a

look at Ruby’s implementation of OOP.

As we already know, the structure of an application based on OOP principles is

focused on interaction with objects. These objects are often representations of real-

world objects, like a Car. Interaction with an object occurs when we send it a message

or ask it a question. If we really did have a Car object called kitt (no, we don’t—yet),

starting the car might be as simple as doing this:

irb> kitt.start

This short line of Ruby code sends the message start to the object kitt. Using OOP

terminology, we would say that this code statement calls the start method of the

kitt object.

As I mentioned before, in contrast to other object oriented programming languages

such as Python and PHP, in Ruby, everything is an object. Especially when compared

with PHP, Ruby’s OOP doesn’t feel like a tacked-on afterthought—it was clearly

intended to be a core feature of the language from the beginning, which makes using

the OOP features in Ruby a real pleasure.

As we saw in the previous section, even the simplest of elements in Ruby (like lit­

eral strings and numbers) are objects to which you can send messages.

66 Simply Rails 2

Classes and Objects
As in any other OOP language, in Ruby, each object belongs to a certain class (for

example, pontiac_firebird might be an object of class Car). As we saw in the

discussion at the beginning of this chapter, a class can group objects of a certain

kind, and equip those objects with common functionality. This functionality comes

in the form of methods, and in the object’s ability to store information. For example,

a pontiac_firebird object might need to store its mileage, as might any other object

of the class Car.

In Ruby, the instantiation of a new object that’s based on an existing class is accom­

plished by sending that class the new message. The result is a new object of that

class. The following few lines of code show an extremely basic class definition in

Ruby; the third line is where we create an instance of the class that we just defined:

irb> class Car

irb> end

=> nil

irb> kitt = Car.new

=> #<Car:0x75e54>

Another basic principle in OOP is encapsulation. According to this principle, objects

should be treated as independent entities, each taking care of its own internal data

and functionality. If we need to access an object’s information—its internal variables,

for instance—we make use of the object’s interface, which is the subset of the object’s

methods that are made available for other objects to call.

Ruby provides objects with functionality at two levels—the object level, and class

level—and adheres to the principle of encapsulation while it’s at it! Let’s dig

deeper.

Object-level Functionality
At the object level, data storage is handled by instance variables (a name that’s de­

rived from the instantiation process mentioned above). Think of instance variables

as storage containers that are attached to the object, but to which other objects do

not have direct access.

Introducing Ruby 67

To store or retrieve data from these variables, another object must call an accessor

method on the object. An accessor method has the ability to set (and get) the value

of the object’s instance variables.

Let’s look at how instance variables and accessor methods relate to each other, and

how they’re implemented in Ruby.

Instance Variables
Instance variables are bound to an object, and contain values for that object only.

Revisiting our car example, the mileage values for a number of different Car objects

are likely to differ, as each car will have a different mileage. Therefore, mileage is

held in an instance variable.

An instance variable can be recognized by its prefix: a single “at” sign (@). And

what’s more, instance variables don’t even need to be declared! There’s only one

problem: we don’t have any way to retrieve or change them from outside the object

once they do exist. This is where instance methods come into play.

Instance Methods
Data storage and retrieval is not the only capability that can be bound to a specific

object—functionality, too, can be bound to objects. We achieve this binding through

the use of instance methods, which are specific to an object. Invoking an instance

method (in other words, sending a message that contains the method name to an

object) will invoke that functionality on the receiving object only.

Instance methods are defined using the def keyword, and end with the end keyword.

Enter the following example into a new Ruby shell:

$ irb

irb> class Car

irb> def open_trunk

irb> # code to open trunk goes here

irb> end

irb> end

=> nil

irb> kitt = Car.new

=> #<Car:0x75e54>

68 Simply Rails 2

What you’ve done is define a class called Car, which has an instance method with

the name open_trunk. A Car object instantiated from this class will—possibly using

some fancy robotics connected to our Ruby program—open its trunk when its

open_trunk method is called. Ignore that nil return value for the moment; we’ll

look at nil values in the next section.

Indenting Your Code

While the indentation of code is a key element of the syntax of languages such as

Python, in Ruby, indentation is purely cosmetic—it aids readability, but does not

affect the code in any way. In fact, while we’re experimenting with the Ruby shell,

you needn’t be too worried about indenting any of the code. However, when we’re

saving files that will be edited later, you’ll want the readability benefits that come

from indenting nested lines.

The Ruby community has agreed upon two spaces as being optimum for indenting

blocks of code such as class or method definitions. We’ll adhere to this indentation

scheme throughout this book.

With our class in place, we can make use of this method:

irb> kitt.open_trunk

=> nil

Since we don’t want the trunks of all our cars to open at once, we’ve made this

functionality available as an instance method.

I know, I know: we still haven’t modified any data. We use accessor methods for

this task.

Accessor Methods
An accessor method is a special type of instance method, and is used to read or

write to an instance variable. There are two types: readers (sometimes called “get­

ters”) and writers (or “setters”).

A reader method will look inside the object, fetch the value of an instance variable,

and hand this value back to us. A writer method, on the other hand, will look inside

the object, find an instance variable, and assign the variable the value that it was

passed.

Introducing Ruby 69

Let’s add some methods for getting and setting the @mileage attribute of our Car

objects. Once again, exit from the Ruby shell so that we can create an entirely new

Car class definition. Our class definition is getting a bit longer now, so enter each

line carefully. If you make a typing mistake, exit the shell and start over.

$ irb

irb> class Car

irb> def set_mileage(x)

irb> @mileage = x

irb> end

irb> def get_mileage

irb> @mileage

irb> end

irb> end

=> nil

irb> kitt = Car.new

=> #<Car:0x75e54>

Now, we can finally modify and retrieve the mileage of our Car objects!

irb> kitt.set_mileage(5667)

=> 5667

irb> kitt.get_mileage

=> 5667

This is still a bit awkward. Wouldn’t it be nice if we could give our accessor methods

exactly the same names as the attributes that they read from or write to? Luckily,

Ruby contains shorthand notation for this very task. We can rewrite our class

definition as follows:

$ irb

irb> class Car

irb> def mileage=(x)

irb> @mileage = x

irb> end

irb> def mileage

irb> @mileage

irb> end

irb> end

=> nil

irb> kitt = Car.new

=> #<Car:0x75e54>

70 Simply Rails 2

With these accessor methods in place, we can read to and write from our instance

variable as if it were available from outside the object:

irb> kitt.mileage = 6032

=> 6032

irb> kitt.mileage

=> 6032

These accessor methods form part of the object’s interface.

Class-level Functionality
At the class level, class variables handle data storage. They’re commonly used to

store state information, or as a means of configuring default values for new objects.

Class variables are typically set in the body of a class, and can be recognized by

their prefix: a double “at” sign (@@).

First, enter the following class definition into a new Ruby shell:

$ irb

irb> class Car

irb> @@number_of_cars = 0

irb> def initialize

irb> @@number_of_cars = @@number_of_cars + 1

irb> end

irb> end

=> nil

The class definition for the class Car above has an internal counter for the total

number of Car objects that have been created. Using the special instance method

initialize, which is invoked automatically every time an object is instantiated,

this counter is incremented for each new Car object.

By the way, we have actually already used a class method; I snuck it in there. The

new method is an example of a class method that ships with Ruby and is available

to all classes, whether they’re defined by you or form part of the Ruby Standard

Library.4

4 The Ruby Standard Library is a large collection of classes that’s included with every Ruby installation.

The classes facilitate a wide range of common functionality, such as accessing web sites, date calculations,

file operations, and more.

Introducing Ruby 71

Custom class methods are commonly used to create objects with special properties

(such as a default color for our Car objects), or to gather statistics about the class’s

usage.

Extending the earlier example, we could use a class method called count to return

the value of the @@number_of_cars class variable. Remember that this is a variable

that’s incremented for every new Car object that’s created. Class methods are defined

identically to instance methods: using the def and end keywords. The only difference

is that class method names are prefixed with self. Enter this code into a new Ruby

shell:

$ irb

irb> class Car

irb> @@number_of_cars = 0

irb> def self.count

irb> @@number_of_cars

irb> end

irb> def initialize

irb> @@number_of_cars += 1

irb> end

irb> end

=> nil

The following code instantiates some new Car objects, then makes use of our new

class method:

irb> kitt = Car.new # Michael Knight's talking car

=> #<0xba8c>

irb> herbie = Car.new # The famous VolksWagen love bug!

=> #<0x8cd20>

irb> batmobile = Car.new # Batman's sleek automobile

=> #<0x872e4>

irb> Car.count

=> 3

The method tells us that three instances of the Car class have been created. Note

that we can’t call a class method on an object.5

5 Ruby actually does provide a way to invoke some class methods on an object, using the :: operator,

but we won’t worry about that for now. We’ll see the :: operator in use in Chapter 4.

72 Simply Rails 2

irb> kitt.count

NoMethodError: undefined method 'count' for #<Car:0x89da0>

As implied by the name, the count class method is available only to the Car class,

not to any objects instantiated from that class.

I sneakily introduced something else in there. In many languages, including PHP

and Java, the ++ and -- operators are used to increment a variable by one. Ruby

doesn’t support this notation; instead, when working with Ruby, we need to use

the += operator. Therefore, the shorthand notation for incrementing our counter in

the class definition is:

irb> @@number_of_cars += 1

This code is identical to the following:

irb> @@number_of_cars = @@number of cars + 1

Both of these lines can be read as “my_variable becomes equal to my_variable plus

one.”

Inheritance
If your application deals with more than the flat hierarchy we’ve explored so far,

you may want to construct a scenario whereby some classes inherit from other

classes. Continuing with the car analogy, let’s suppose that we have a green lim­

ousine named Larry (this assignment of names to cars may seem a little strange, but

it’s important for this example, so bear with me). In Ruby, the larry object would

probably descend from a StretchLimo class, which could in turn descend from the

class Car. Let’s implement that class relationship, to see how it works:

$ irb

irb> class Car

irb> WHEELS = 4

irb> end

=> nil

irb> class StretchLimo < Car

irb> WHEELS = 6

irb> def turn_on_television

Introducing Ruby 73

irb> # Invoke code for switching on on-board TV here

irb> end

irb> end

=> nil

Now, if we were to instantiate an object of class StretchLimo, we’d end up with a

different kind of car. Instead of the regular four wheels that standard Car objects

have, this one would have six wheels (stored in the class constant WHEELS). It would

also have extra functionality, made possible by the presence of the extra meth­

od—turn_on_television—which would be available to be called by other objects.

However, if we were to instantiate a regular Car object, the car would have only

four wheels, and there would be no instance method for turning on an on-board

television. Think of inheritance as a way for the functionality of a class to become

more specialized the further we move down the inheritance path.

Don’t worry if you’re struggling to wrap your head around all the aspects of OOP.

You’ll automatically become accustomed to them as you work through this book.

You may find it useful to come back to this section, though, especially if you need

a reminder about a certain term later on.

Return Values
It’s always great to receive feedback. Remember our talk about passing arguments

to methods? Well, regardless of whether or not a method accepts arguments, invoking

a method in Ruby always results in feedback—it comes in the form of a return value,

which is returned either explicitly or implicitly.

To return a value explicitly, use the return statement in the body of a method:

irb> def toot_horn

irb> return "toooot!"

irb> end

=> nil

Calling the toot_horn method in this case would produce the following:

irb> toot_horn

=> "toooot!"

74 Simply Rails 2

However, if no return statement is used, the result of the last statement that was

executed is used as the return value. This behavior is quite unique to Ruby:

irb> def toot_loud_horn

irb> "toooot!".upcase

irb> end

=> nil

Calling the toot_loud_horn method in this case would produce:

irb> toot_loud_horn

=> "TOOOOT!"

Standard Output
When you need to show output to the users of your application, use the print and

puts (“put string”) statements. Both methods will display the arguments passed to

them as Strings; puts also inserts a carriage return at the end of its output. Therefore,

in a Ruby program the following lines:

print "The quick "

print "brown fox"

… would produce this output:

The quick brown fox

However, using puts like so:

puts "jumps over"

puts "the lazy dog"

… would produce this output:

jumps over

the lazy dog

At this stage, you might be wondering why all of the trial-and-error code snippets

that we’ve typed into the Ruby shell actually produced output, given that we haven’t

Introducing Ruby 75

been making use of the print or puts methods. The reason is that irb automatically

writes the return value of the last statement it executes to the screen before displaying

the irb prompt. This means that using a print or puts from within the Ruby shell

might in fact produce two lines of output: the output that you specify should be

displayed, and the return value of the last command that was executed, as in the

following example:

irb> puts "The quick brown fox"

"The quick brown fox"

=> nil

Here, nil is actually the return value of the puts statement. Looking back at previous

examples, you will have encountered nil as the return value for class and method

definitions, and you’ll have received a hexadecimal address, such as

#<Car:0x89da0>, as the return value for object definitions. This hexadecimal value

showed the location in memory that the object we instantiated occupied, but luckily

we won’t need to bother with such geeky details any further.

Having met the print and puts statements, you should be aware that a Rails applic­

ation actually has a completely different approach to displaying output, called

templates. We’ll look at templates in Chapter 4.

Ruby Core Classes
We’ve already talked briefly about the String and Fixnum classes in the previous

sections, but Ruby has a lot more under its hood. Let’s explore!

Arrays
We use Ruby’s Arrays to store collections of objects. Each individual object that’s

stored in an Array has a unique numeric key, which we can use to reference it. As

with many languages, the first element in an Array is stored at position 0 (zero).

To create a new Array, simply instantiate a new object of class Array (using the

Array.new construct). You can also use a shortcut approach, which is to enclose

the objects you want to place inside the Array in square brackets.

For example, an Array containing the mileage at which a car is due for its regular

service might look something like this:

76 Simply Rails 2

irb> service_mileage = [5000, 15000, 30000, 60000, 100000]

=> [5000, 15000, 30000, 60000, 100000]

To retrieve individual elements from an Array, we specify the numeric key in square

brackets:

irb> service_mileage[0]

=> 5000

irb> service_mileage[2]

=> 30000

Ruby has another shortcut, which allows us to create an Array from a list of Strings:

the %w() syntax. Using this shortcut saves us from having to type a lot of double-

quote characters:

irb> available_colors = %w(red green blue black)

=> ["red", "green", "blue", "black"]

irb> available_colors[0]

=> "red"

irb> available_colors[3]

=> "black"

In addition to facilitating simple element retrieval, Arrays come with an extensive

set of class methods and instance methods that ease data management tasks tremend­

ously.

■ empty? returns true if the receiving Array doesn’t contain any elements:

irb> available_colors.empty?

=> false

■ size returns the number of elements in an Array:

irb> available_colors.size

=> 4

Introducing Ruby 77

■ first and last return an Array’s first and last elements, respectively:

irb> available_colors.first

=> "red"

irb> available_colors.last

=> "black"

■ delete removes the named element from the Array and returns it:

irb> available_colors.delete "red"

=> "red"

irb> available_colors

=> ["green", "blue", "black"]

The complete list of class methods and instance methods provided by the Array

class is available via the Ruby reference documentation, which you can access by

entering the ri command into the terminal window (for your operating system, not

the Ruby shell), followed by the class name you’d like to look up:

$ ri Array

Oh, and ri stands for ruby interactive, in case you’re wondering. Don’t confuse it

with irb.

Hashes
A Hash is another kind of data storage container. Hashes are similar, conceptually,

to dictionaries: they map one object (the key: a word, for example) to another object

(the value: a word’s definition, for example) in a one-to-one relationship.

New Hashes can be created either by instantiating a new object of class Hash (using

the Hash.new construct) or by using the curly brace shortcut shown below. When

we define a Hash, we must specify each entry using the key => value syntax.

For example, the following Hash maps car names to a color:

78 Simply Rails 2

irb> car_colors = {

irb> 'kitt' => 'black',

irb> 'herbie' => 'white',

irb> 'batmobile' => 'black',

irb> 'larry' => 'green'

irb> }

=> {"kitt"=>"black", "herbie"=>"white", "batmobile"=>"black",

"larry"=>"green"}

To query this newly built Hash, we pass the key of the entry we want to look up in

square brackets, like so:

irb> car_colors['kitt']

=> "black"

All sorts of useful functionality is built into Hashes, including the following methods:

■	 empty? returns true if the receiving Hash doesn’t contain any elements:

irb> car_colors.empty?

=> false

■	 size returns the number of elements in a Hash:

irb> car_colors.size

=> 4

■	 keys returns all keys of a Hash as an Array:

irb> car_colors.keys

=> ["kitt", "herbie", "batmobile", "larry"]

■	 values returns all values of a Hash as an Array, although care should be taken

with regards to the order of the elements (keys in a Hash are ordered for optimal

storage and retrieval; this order does not necessarily reflect the order in which

they were entered):

Introducing Ruby 79

irb> car_colors.values

=> ["black", "white", "black", "green"]

There are lots more class methods and instance methods provided by the Hash class.

For a complete list, consult the Ruby reference documentation.

Strings
The typical Ruby String object—yep, that very same object we’ve been using in

the past few sections—holds and manipulates sequences of characters. Most of the

time, new String objects are created using string literals that are enclosed in single

or double quotes. The literal can then be stored in a variable for later use:

irb> a_phrase = "The quick brown fox"

=> "The quick brown fox"

irb> a_phrase.class

=> String

If the string literal includes the quote character used to enclose the string itself, it

must be escaped with a backslash character (\):

irb> 'I\'m a quick brown fox'

=> "I'm a quick brown fox"

irb> "Arnie said, \"I'm back!\""

=> "Arnie said, \"I'm back!\""

An easier way to specify string literals that contain quotes is to use the %Q shortcut,

like this:

irb> %Q(Arnie said, "I'm back!")

=> "Arnie said, \"I'm back!\""

String objects also support the substitution of Ruby code into a string literal via

the Ruby expression #{}:

irb> "The current time is: #{Time.now}"

=> "The current time is: Wed Aug 02 21:15:19 CEST 2006"

80 Simply Rails 2

The String class also has rich embedded functionality for modifying String objects.

Here are some of the most useful methods:

■ gsub substitutes a given pattern within a String:

irb> "The quick brown fox".gsub('fox', 'dog')

=> "The quick brown dog"

■ include? returns true if a String contains another specific String:

irb> "The quick brown fox".include?('fox')

=> true

■ length returns the length of a String in characters:

irb> "The quick brown fox".length

=> 19

■ slice returns a portion of a String:

irb> "The quick brown fox".slice(0, 3)

=> "The"

The complete method reference is available using the ri command line tool:

$ ri String

Numerics
Since there are so many different types of numbers, Ruby has a separate class for

each, the popular Float, Fixnum, and Bignum classes among them. In fact, they’re

all subclasses of Numeric, which provides the basic functionality.

Just like Strings, numbers are usually created from literals:

Introducing Ruby 81

irb> 123.class

=> Fixnum

irb> 12.5.class

=> Float

Each of the specific Numeric subclasses comes with features that are relevant to the

type of number it’s designed to deal with. However, the following functionality is

shared between all Numeric subclasses:

■ integer? returns true if the object is a whole integer:

irb> 123.integer?

=> true

irb> 12.5.integer?

=> false

■ round rounds a number to the nearest integer:

irb> 12.3.round

=> 12

irb> 38.8.round

=> 39

■ zero? returns true if the number is equal to zero:

irb> 0.zero?

=> true

irb> 8.zero?

=> false

Additionally, there are ways to convert numbers between the Numeric subclasses.

to_f converts a value to a Float, and to_i converts a value to an Integer:

irb> 12.to_f

=> 12.0

irb> 11.3.to_i

=> 11

82 Simply Rails 2

Symbols
In Ruby, a Symbol is a simple textual identifier. Like a String, a Symbol is created

using literals; the difference is that a Symbol is prefixed with a colon:

irb> :fox

=> :fox

irb> :fox.class

=> Symbol

The main benefit of using a Symbol instead of a String is that a Symbol contains

less functionality. This can be an advantage in certain situations. For example, the

car_colors Hash that we looked at earlier could be rewritten as follows:

car_colors = {

 :kitt => 'black',

 :herbie => 'white',

 :batmobile => 'black',

 :larry => 'green'

}

Objects of class String can be converted to Symbols, and vice versa:

irb> "fox".to_sym

=> :fox

irb> :fox.to_s

=> "fox"

We’ll use Symbols frequently as we deal with Rails functionality in successive

chapters of this book.

nil

I promised earlier that I’d explain nil values—now’s the time!

All programming languages have a value that they can use when they actually mean

nothing. Some use undef; others use NULL. Ruby uses nil. A nil value, like

everything in Ruby, is also an object. It therefore has its own class: NilClass.

Introducing Ruby 83

Basically, if a method doesn’t return anything, it is, in fact, returning the value nil.

And if you assign nil to a variable, you effectively make it empty. nil shows up in

a couple of additional places, but we’ll cross those bridges when we come to them.

Running Ruby Files
For the simple Ruby basics that we’ve experimented with so far, the interactive

Ruby shell (irb) has been our tool of choice. I’m sure you’ll agree that experimenting

in a shell-like environment, where we can see immediate results, is a great way to

learn the language.

However, we’re going to be talking about control structures next, and for tasks of

such complexity, you’ll want to work in a text editor. This environment will allow

you to run a chunk of code many times without having to retype it.

In general, Ruby scripts are simple text files containing Ruby code and have a .rb

extension. These files are passed to the Ruby interpreter, which executes your code,

like this:

$ ruby myscript.rb

To work with the examples that follow, I’d recommend that you open a new text

file in your favorite text editor (which might be one of those I recommended back

in Chapter 2) and type the code out as you go—this really is the best way to learn.

However, I acknowledge that some people aren’t interested in typing everything

out, and just want to cut to the chase. For access to all of these examples, these more

impatient readers can download the code archive for this book.6 You can execute

this code in the Ruby interpreter straight away.

As demonstrated above, to run the files from the command line, you simply need

to type ruby, followed by the filename.

Control Structures
Ruby has a rich set of features for controlling the flow of your application. Condi­

tionals are keywords that are used to decide whether or not certain statements are

executed based on the evaluation of one or more conditions; loops are constructs

6 http://www.sitepoint.com/books/rails2/code.php

http://www.sitepoint.com/books/rails2/code.php
http://www.sitepoint.com/books/rails2/code.php

84 Simply Rails 2

that execute statements more than once; blocks are a means of encapsulating func­

tionality (for example, to be executed in a loop).

To demonstrate these control structures, let’s utilize some of the Car classes that

we defined earlier. Type out the following class definition and save the file (or load

it from the code archive); we’ll build on it in this section as we explore some control

structures:

01-car-classes.rb

class Car
 WHEELS = 4 # class constant
 @@number_of_cars = 0 # class variable
 def initialize
 @@number_of_cars = @@number_of_cars + 1

 end
 def self.count
 @@number_of_cars

 end
 def mileage=(x) # instance variable writer
 @mileage = x
end
 def mileage # instance variable reader
 @mileage

 end
end

class StretchLimo < Car
 WHEELS = 6 # class constant
 @@televisions = 1 # class variable
 def turn_on_television

Invoke code for switching on on-board TV here
 end
end

class PontiacFirebird < Car
end

class VolksWagen < Car
end

Introducing Ruby 85

Conditionals
There are two basic conditional constructs in Ruby: if and unless. Each of these

constructs can be used to execute a group of statements on the basis of a given

condition.

The if Construct
An if construct wraps statements that are to be executed only if a certain condition

is met. The keyword end defines the end of the if construct. The statements that

are contained between the condition and the end keyword are executed only if the

condition is met.

02-if-construct.rb (excerpt)

if Car.count.zero?
 puts "No cars have been produced yet."
end

You can provide a second condition by adding an else block: when the condition

is met, the first block is executed; otherwise, the else block is executed. This kind

of control flow will probably be familiar to you. Here it is in action:

03-if-else-construct.rb (excerpt)

if Car.count.zero?
 puts "No cars have been produced yet."
else
 puts "New cars can still be produced."
end

The most complicated example involves an alternative condition. If the first condi­

tion is not met, a second condition is evaluated. If neither conditions are met, the

else block is executed:

04-if-elsif-else.rb (excerpt)

if Car.count.zero?
 puts "No cars have been produced yet."
elsif Car.count >= 10
 puts "Production capacity has been reached."

86 Simply Rails 2

else

 puts "New cars can still be produced."

end

If the count method returned 5, the code above would produce the following output:

New cars can still be produced.

An alternative to the traditional if condition is the if statement modifier. A state­

ment modifier does just that: it modifies the statement of which it is part. The if

statement modifier works exactly like a regular if condition, but it sits at the end

of the line that’s affected, rather than before a block of code:

05-if-statement-modifier.rb (excerpt)

puts "No cars have been produced yet." if Car.count.zero?

This version of the if condition is often used when the code that’s to be executed

conditionally comprises just a single line. Having the ability to create conditions

like this results in code that’s a lot more like English than other programming lan­

guages with more rigid structures.

The unless Construct
The unless condition is a negative version of the if condition. It’s useful for situ­

ations in which you want to execute a group of statements when a certain condition

is not met.

Let’s create a few instances to work with:7

06-unless-construct.rb (excerpt)

kitt = PontiacFirebird.new
kitt.mileage = 5667

7 Aficionados of comics will notice that I’ve visualized the BatMobile as a Pontiac Firebird—in fact, the

caped crusader’s choice of transport has varied over the years, taking in many of the automobile industry’s

less common innovations, and including everything from a 1966 Lincoln Futura to an amphibious tank.

But we’ll stick with a Pontiac for this example.

Introducing Ruby 87

herbie = VolksWagen.new

herbie.mileage = 33014

batmobile = PontiacFirebird.new

batmobile.mileage = 4623

larry = StretchLimo.new

larry.mileage = 20140

Now if we wanted to find out how many Knight Rider fans KITT could take for a

joyride, we could check which class the kitt object was. As with the if expression,

the end keyword defines the end of the statement:

06-unless-construct.rb (excerpt)

unless kitt.is_a?(StretchLimo)
 puts "This car is only licensed to seat two people."
end

Like the if condition, the unless condition may have an optional else block of

statements, which is executed when the condition is met:

07-unless-else.rb (excerpt)

unless kitt.is_a?(StretchLimo)
 puts "This car only has room for two people."
else
 puts "This car is licensed to carry up to 10 passengers."
end

Since KITT is definitely not a stretch limousine, this code would return:

This car only has room for two people.

Unlike if conditions, unless conditions do not support a second condition. How­

ever, like the if condition, the unless condition is also available as a statement

modifier. The following code shows an example of this. Here, the message will not

display if KITT’s mileage is less than 25,000:

88 Simply Rails 2

08-unless-statement-modifier.rb (excerpt)

puts "Service due!" unless kitt.mileage < 25000

Loops
Ruby provides the while and for constructs for looping through code (that is, ex­

ecuting a group of statements a specified number of times, or until a certain condition

is met). Also, a number of instance methods are available for looping over the ele­

ments of an Array or Hash; we’ll cover these in the next section.

while and until Loops
A while loop executes the statements it encloses repeatedly, as long as the specified

condition is met:

09-while-loop.rb (excerpt)

while Car.count < 10
 Car.new
 puts "A new car instance was created."
end

This simple while loop executes the Car.new statement repeatedly, as long as the

total number of cars is below 10. It exits the loop when the number reaches 10.

Like the relationship between if and unless, the while loop also has a complement:

the until construct. If we use until, the code within the loop is executed until the

condition is met. We could rewrite the loop above using until like so:

10-until-loop.rb (excerpt)

until Car.count == 10
 Car.new
 puts "A new car instance was created."
end

Introducing Ruby 89

The Difference Between = and ==

It’s important to note the difference between the assignment operator (a single

equal sign) and the equation operator (a double equal sign) when using them

within a condition.

If you’re comparing two values, use the equation operator:

if Car.count == 10
⋮

end

If you’re assigning a value to a variable, use the assignment operator:

my_new_car = Car.new

If you confuse the two, you might modify a value that you were hoping only to

inspect, with potentially disastrous consequences!

for Loops
for loops allow us to iterate over the elements of a collection, such as an Array,

and execute a group of statements once for each element. Here’s an example:

11-for-loop.rb (excerpt)

for car in [kitt, herbie, batmobile, larry]
 puts car.mileage
end

The code above would produce the following output:

5667

33014

4623

20140

This simple for loop iterates over an Array of Car objects and outputs the mileage

for each car. For each iteration, the car variable is set to the current element of the

Array. The first iteration has car set to the equivalent of kitt, the second iteration

has it set to herbie, and so forth.

90 Simply Rails 2

In practice, the traditional while and for loops covered here are little used. Instead,

most people tend to use the instance methods provided by the Array and Hash

classes, which we’ll cover next.

Blocks
Blocks are probably the single most attractive feature of Ruby. However, they’re

also one of those things that take a while to drop into place for Ruby newcomers.

Before we dig deeper into creating blocks, let’s take a look at some of the core features

of Ruby that use blocks.

We looked at some loop constructs in the previous section, and this was a useful

way to explore the tools that are available to us. However, you’ll probably never

actually come across many of these constructs in your work with other Ruby scripts,

simply because it’s almost always much easier to use a block to perform the same

task. A block, in conjunction with the each method that is provided by the Array

and Hash classes, is a very powerful way to loop through your data.

Let me illustrate this point with an example. Consider the for loop we used a mo­

ment ago. We could rewrite that code to use the each method, which is an instance

method of the Array class, like so:

12-simple-block.rb (excerpt)

[kitt, herbie, batmobile, larry].each do |car_name|
 puts car_name.mileage
end

Let’s analyze this: the block comprises the code between the do and end keywords.

A block is able to receive parameters, which are placed between vertical bars (|) at

the beginning of the block. Multiple parameters are separated by commas. Therefore,

this code performs an identical operation to the for loop we saw before, but in a

much more succinct manner.

Let’s take another example. To loop through the elements of a Hash, we use the each

method, and pass two parameters to the block: the key (car_name) and the value

(color):

Introducing Ruby 91

13-block-with-params.rb (excerpt)

car_colors = {
 'kitt' => 'black',
 'herbie' => 'white',
 'batmobile' => 'black',
 'larry' => 'green'
}
car_colors.each do |car_name, color|
 puts "#{car_name} is #{color}"
end

This code produces the following output:

kitt is black

herbie is white

batmobile is black

larry is green

The Integer class also sports a number of methods that use blocks. The times

method of an Integer object, for example, executes a block exactly n times, where

n is the value of the object:

14-block-integer.rb (excerpt)

10.times { Car.new }
puts "#{Car.count} cars have been produced."

The code above produces this output:

10 cars have been produced.

One final point to note here is the alternative block syntax of curly braces. Instead

of the do…end keywords that we used in previous examples, curly braces are the

preferred syntax for blocks that are very short, as in the previous example.

Here’s another method of the Integer class; in the spirit of times, the upto method

counts from the value of the object up to the argument passed to the method:

92 Simply Rails 2

15-block-upto.rb

5.upto(7) { |i| puts i }

This code produces the output shown here:

5

6

7

In Ruby parlance, the object i is a parameter of the block. Parameters for blocks are

enclosed in vertical bars, and are usually available only from within the block. If

we have more than one parameter, we separate them using commas, like so:

|parameter1, parameter2|. In the example above, we would no longer have access

to i once the block had finished executing.

As we work through this book, we’ll explore many more uses of blocks in combin­

ation with the Rails core classes.

Summary
Wow, we covered a lot in this chapter! First, we swept through a stack of object

oriented programming theory—probably the equivalent of an introductory computer

science course! This gave us a good grounding for exploring the basics of the Ruby

programming language, and the Interactive Ruby Shell (irb) was a fun way to do

this exploration.

We also investigated many of the Ruby core classes, such as String, Array, and

Hash, from within the Ruby shell. We then moved from the shell to create and save

proper Ruby files, and using these files, we experimented with control structures

such as conditionals, loops, and blocks.

In the next chapter, we’ll look at the major cornerstones that make up the Rails

framework—the integrated testing facilities—as well as the roles played by the de­

velopment, testing, and production environments.

Chapter4
Rails Revealed
As you’ll have gathered from Chapter 1, quite a bit of thought has been put into the

code base that makes up the Rails framework. Over time, many of the internals have

been rewritten, which has improved their speed and efficiency and allowed the

implementation of additional features, but the original architecture remains largely

unchanged. This chapter will shed some light on the inner workings of Rails.

Three Environments
Rails encourages the use of a different environment for each of the stages in an ap­

plication’s life cycle—development, testing, and production. If you’ve been devel­

oping web applications for a while, this is probably how you operate anyway; Rails

just formalizes these environments.

development

In the development environment, changes to an application’s source code are

immediately visible; all we need to do is reload the corresponding page in a

web browser. Speed is not a critical factor in this environment. Instead, the focus

is on providing the developer with as much insight as possible into the compon­

ents responsible for displaying each page. When an error occurs in the develop­

94 Simply Rails 2

ment environment, we are able to tell at a glance which line of code is respons­

ible for the error, and how that particular line was invoked. This capability is

provided by the stack trace (a comprehensive list of all the method calls leading

up to the error), which is displayed when an unexpected error occurs.

test

In testing, we usually refresh the database with a baseline of dummy data each

time a test is repeated: this step ensures that the results of the tests are consistent,

and that behavior is reproducible. Unit and functional testing procedures are

fully automated in Rails.

When we test a Rails application, we don’t view it using a traditional web

browser. Instead, tests are invoked from the command line, and can be run as

background processes. The testing environment provides a dedicated space in

which these processes can operate.

production

By the time your application finally goes live, it should be sufficiently tested

that all—or at least most—of the bugs have been eliminated. As a result, updates

to the code base should be infrequent, which means that the production envir­

onments can be optimized to focus on performance. Tasks such as writing ex­

tensive logs for debugging purposes should be unnecessary at this stage. Besides,

if an error does occur, you don’t want to scare your visitors away with a cryptic

stack trace; that’s best kept for the development environment.

As the requirements of each of the three environments are quite different, Rails

stores the data for each environment in entirely separate databases. So at any given

time, you might have:

■	 live data with which real users are interacting in the production environment

■	 a partial copy of this live data that you’re using to debug an error or develop

new features in the development environment

■	 a set of testing data that’s constantly being reloaded into the testing environment

Let’s look at how we can configure our database for each of these environments.

Rails Revealed 95

Database Configuration

Configuring the database for a Rails application is incredibly easy. All of the critical

information is contained in just one file. We’ll take a close look at this database

configuration file, then create some databases for our application to use.

The Database Configuration File
The separation of environments is reflected in the Rails database configuration file

database.yml. We saw a sample of this file back in Chapter 1, and in fact we created

our very own configuration file in Chapter 2, when we used the rails command.

Go take a look—it lives in the config subdirectory of our Shovell application.

With the comments removed, the file should look like this:

01-database.yml

development:
 adapter: sqlite3
 database: db/development.sqlite3
 timeout: 5000

test:
 adapter: sqlite3
 database: db/test.sqlite3
 timeout: 5000

production:
 adapter: sqlite3
 database: db/production.sqlite3
 timeout: 5000

This file lists the minimum amount of information we need in order to connect to

the database server for each of our environments (development, test, and production).

With the default setup of SQLite that we installed in Chapter 2, every environment

is allocated its own physically separate database file, which calls the db subdirectory

home.

The parameter database sets the name of the database that is to be used in each

environment. As the configuration file suggests, Rails can support multiple databases

(and even different types of database engines, such as MySQL for production and

96 Simply Rails 2

SQLite for development) in parallel. Note that we’re actually talking about different

databases here, not just different tables—each database can host an arbitrary number

of different tables in parallel.

Figure 4.1 shows a graphical representation of this architecture.

Figure 4.1. The database architecture of a Rails application

However, there’s one startling aspect missing from our current configuration: looking

at the db subdirectory, the databases referenced in our configuration file don’t exist

yet! Fear not, Rails will auto-create them as soon as they’re needed. There’s nothing

we need to do as far as they are concerned.

The Model-View-Controller Architecture
The model-view-controller (MVC) architecture that we first encountered in Chapter 1

is not unique to Rails. In fact, it predates both Rails and the Ruby language by many

years. However, Rails really takes the idea of separating an application’s data, user

interface, and control logic to a whole new level.

Let’s take a look at the concepts behind building an application using the MVC ar­

chitecture. Once we have the theory in place, we’ll see how it translates to our Rails

code.

Rails Revealed 97

MVC in Theory
MVC is a pattern for the architecture of a software application. It separates an ap­

plication into the following three components:

models

for handling data and business logic

controllers

for handling the user interface and application logic

views

for handling graphical user interface objects and presentation logic

This separation results in user requests being processed as follows:

1. The browser, on the client, sends a request for a page to the controller on the

server.

2. The controller retrieves the data it needs from the model in order to respond to

the request.

3. The controller hands the retrieved data to the view.

4. The view is rendered and sent back to the client for the browser to display.

This process is illustrated in Figure 4.2.

Figure 4.2. Processing a page request in an MVC architecture

98 Simply Rails 2

Separating a software application into these three distinct components is a good

idea for a number of reasons, including the following:

It improves scalability (the ability for an application to grow).

For example, if your application begins experiencing performance issues because

database access is slow, you can upgrade the hardware running the database

without other components being affected.

It makes maintenance easier.

As the components have a low dependency on each other, making changes to

one (to fix bugs or change functionality) does not affect another.

It promotes reuse.

A model may be reused by multiple views, and vice versa.

If you haven’t quite got your head around the concept of MVC yet, don’t worry. For

now, the important thing is to remember that your Rails application is separated

into three distinct components. Jump back to Figure 4.2 if you need to refer to it

later on.

MVC the Rails Way
Rails promotes the concept that models, views, and controllers should be kept quite

separate by storing the code for each of these elements as separate files in separate

directories.

This is where the Rails directory structure that we created back in Chapter 2 comes

into play. The time has come for us to poke around a bit within that structure. If

you take a look inside the app directory, which is depicted in Figure 4.3, you’ll see

some folders whose names might be starting to sound familiar.

Rails Revealed 99

Figure 4.3. The app subdirectory

As you can see, each component of the model-view-controller architecture has its

place within the app subdirectory—the models, views, and controllers subdirectories,

respectively. (We’ll talk about that helpers directory in Chapter 6.)

This separation continues within the code that comprises the framework itself. The

classes that form the core functionality of Rails reside within the following modules:

ActiveRecord

ActiveRecord is the module for handling business logic and database commu­

nication. It plays the role of model in our MVC architecture.1

ActionController

ActionController is the component that handles browser requests and facilitates

communication between the model and the view. Your controllers will inherit

from this class. It forms part of the ActionPack library, a collection of Rails

components that we’ll explore in depth in Chapter 5.

ActionView

ActionView is the component that handles the presentation of pages returned

to the client. Views inherit from this class, which is also part of the ActionPack

library.

1 While it might seem odd that ActiveRecord doesn’t have the word “model” in its name, there is a

reason for this: Active Record is also the name of a famous design pattern—one that this component

implements in order to perform its role in the MVC world. Besides, if it had been called ActionModel
then it would have sounded more like an overpaid Hollywood star than a software component …

100 Simply Rails 2

Let’s take a closer look at each of these components in turn.

ActiveRecord (the Model)
ActiveRecord is designed to handle all of an application’s tasks that relate to the

database, including:

■ establishing a connection to the database server
■ retrieving data from a table
■ storing new data in the database

ActiveRecord also has a few other neat tricks up its sleeve. Let’s look at some of

them now.

Database Abstraction
ActiveRecord ships with database adapters to connect to SQLite, MySQL, and

PostgreSQL. A large number of adapters are also available for other popular database

server packages, such as Oracle, DB2, and Microsoft SQL Server, via the RubyGems

system.

The ActiveRecord module is based on the concept of database abstraction. As we

mentioned in Chapter 1, database abstraction is a way of coding an application so

that it isn’t dependent upon any one database. Code that’s specific to a particular

database server is hidden safely in ActiveRecord, and invoked as needed. The result

is that a Rails application is not bound to any specific database server software.

Should you need to change the underlying database server at a later time, no changes

to your application code should be required.

Examples of code that differs greatly between vendors, and which ActiveRecord

abstracts, include:

■ the process of logging into the database server
■ date calculations
■ handling of boolean (true/false) data
■ evolution of your database structure

Before I can show you the magic of ActiveRecord in action, though, we need to do

a little housekeeping.

Rails Revealed 101

Database Tables
Tables are the containers within a database that store our data in a structured

manner, and they’re made up of rows and columns. The rows map to individual

objects, and the columns map to the attributes of those objects. The collection of

all the tables in a database, and the relationships between those tables, is called the

database schema.

An example of a table is shown in Figure 4.4.

Figure 4.4. The structure of a typical database table, including rows and columns

In Rails, the naming of Ruby classes and database tables follows an intuitive pattern:

if we have a table called stories which consists of five rows, this table will store

the data for five Story objects. The nicest thing about the mapping between classes

and tables is that you don’t need to write code to achieve it—the mapping just

happens, because ActiveRecord infers the name of the table from the name of the

class.

Note that the name of our class in Ruby is a singular noun (Story), but the name of

the table is plural (stories). This relationship makes sense if you think about it:

when we refer to a Story object in Ruby, we’re dealing with a single story. But the

SQL table holds a multitude of stories, so its name should be plural. While you can

override these conventions—as is sometimes necessary when dealing with legacy

databases—it’s much easier to adhere to them.

The close relationship between tables and objects extends even further: if our

stories table were to have a link column, as our example in Figure 4.4 does, the

data in this column would automatically be mapped to the link attribute in a Story

object. And adding a new column to a table would cause an attribute of the same

name to become available in all of that table’s corresponding objects.

So, let’s create some tables to hold the stories we create.

102 Simply Rails 2

For the time being, we’ll create a table using the old-fashioned approach of entering

SQL into the SQLite console. You could type out the following SQL commands,

although typing out SQL isn’t much fun. Instead, I encourage you to download the

following script from the code archive, and copy and paste it straight into your

SQLite console that you invoked via the following command in the application

directory:

$ sqlite3 db/development.sqlite3

Once your SQLite console is up, paste in the following:

02-create-stories-table.sql

CREATE TABLE stories (
 "id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
 "name" varchar(255) DEFAULT NULL,
 "link" varchar(255) DEFAULT NULL,
 "created_at" datetime DEFAULT NULL,
 "updated_at" datetime DEFAULT NULL
);

You needn’t worry about remembering these SQL commands to use in your own

projects; instead, take heart in knowing that in Chapter 5 we’ll look at migrations.

Migrations are special Ruby classes that we can write to create database tables for

our application without using any SQL at all.

Using the Rails Console
Now that we have our stories table in place, let’s exit the SQLite console (simply

type .quit) and open up a Rails console. A Rails console is just like the interactive

Ruby console (irb) that we used in Chapter 3, but with one key difference. In a

Rails console, you have access to all the environment variables and classes that are

available to your application while it’s running. These are not available from within

a standard irb console.

To enter a Rails console, change to your shovell folder, and enter the command ruby

script/console, as shown below. The >> prompt is ready to accept your commands:

Rails Revealed 103

$ cd shovell

$ ruby script/console

Loading development environment (Rails 2.0.2)

>>

Saving an Object
To start using ActiveRecord, simply define a class that inherits from the

ActiveRecord::Base class. (We touched on the :: operator very briefly in Chapter 3,

where we mentioned that it was a way to invoke class methods on an object. It can

also be used to refer to classes that exist within a module, which is what we’re doing

here.) Flip back to the section on object oriented programming (OOP) in Chapter 3

if you need a refresher on inheritance.

Consider the following code snippet:

class Story < ActiveRecord::Base

end

These two lines of code define a seemingly empty class called Story. However, this

class is far from empty, as we’ll soon see.

From the Rails console, let’s create this Story class, and an instance of the class

called story, by entering these commands:

>> class Story < ActiveRecord::Base; end

=> nil

>> story = Story.new

=> #<Story id: nil, name: nil, url: nil, created_at: nil,

 updated_at: nil>

>> story.class

=> Story(id: integer, name: string, link: string,

 created_at: datetime, updated_at: datetime)

As you can see, the syntax for creating a new ActiveRecord object is identical to

the syntax we used to create other Ruby objects in Chapter 3. At this point, we’ve

created a new Story object. However, this object exists in memory only—we haven’t

stored it in our database yet.

We can confirm the fact that our Story object hasn’t been saved yet by checking

the return value of the new_record? method:

104 Simply Rails 2

>> story.new_record?

=> true

Since the object has not been saved yet, it will be lost when we exit the Rails console.

To save it to the database, we need to invoke the object’s save method:

>> story.save

=> true

Now that we’ve saved our object (a return value of true indicates that the save

method was successful) our story is no longer a new record. It’s even been assigned

a unique ID, as shown below:

>> story.new_record?

=> false

>> story.id

=> 1

Defining Relationships Between Objects
As well as the basic functionality that we’ve just seen, ActiveRecord makes the

process of defining relationships (or associations) between objects as easy as it can

be. Of course, it’s possible with some database servers to define such relationships

entirely within the database schema. However, in order to put ActiveRecord through

its paces, let’s look at the way it defines these relationships within Rails.

Object relationships can be defined in a variety of ways; the main difference between

these relationships is the number of records that are specified in the relationship.

The primary types of database associations are:

■ one-to-one associations
■ one-to-many associations
■ many-to-many associations

Let’s look at some examples of each of these associations. Feel free to type them

into the Rails console if you like, for the sake of practice. Remember that your class

definitions won’t be saved, though—I’ll show you how to define associations in a

file later.

Suppose our application has the following associations:

Rails Revealed 105

■ An Author can have one Weblog:

class Author < ActiveRecord::Base

 has_one :weblog

end

■ An Author can submit many Stories:

class Author < ActiveRecord::Base

 has_many :stories

end

■ A Story belongs to an Author:

class Story < ActiveRecord::Base

 belongs_to :author

end

■ A Story has, and belongs to, many different Topics:

class Story < ActiveRecord::Base

 has_and_belongs_to_many :topics

end

class Topic < ActiveRecord::Base

 has_and_belongs_to_many :stories

end

You’re no doubt growing tired of typing class definitions into a console, only to

have them disappear the moment you exit the console. For this reason, we won’t

go any further with the associations between our objects—we’ll delve into the Rails

ActiveRecord module in more detail in Chapter 5.

The ActionPack Module
ActionPack is the name of the library that contains the view and controller parts

of the MVC architecture. Unlike the ActiveRecord module, these modules are a

little more intuitively named: ActionController and ActionView.

106 Simply Rails 2

Exploring application logic and presentation logic on the command line doesn’t

make a whole lot of sense; views and controllers are designed to interact with a

web browser, after all! Instead, I’ll just give you a brief overview of the ActionPack

components, and we’ll cover the hands-on stuff in Chapter 5.

ActionController (the Controller)
The controller handles the application logic of your program, acting as glue between

the application’s data, the presentation layer, and the web browser. In this role, a

controller performs a number of tasks, including:

■	 deciding how to handle a particular request (for example, whether to render a

full page or just one part of it)

■	 retrieving data from the model to be passed to the view

■	 gathering information from a browser request, and using it to create or update

data in the model

When we introduced the MVC diagram in Figure 4.2 earlier in this chapter, it might

not have occurred to you that a Rails application can consist of a number of different

controllers. Well, it can! Each controller is responsible for a specific part of the ap­

plication.

For our Shovell application, we’ll create:

■	 one controller for displaying story links, which we’ll name StoriesController
■	 another controller for handling user authentication, called SessionsController
■	 a controller to display user pages, named UsersController
■	 and finally a fourth controller to handle story voting, called VotesController

All controllers will inherit from the ActionController::Base class,2 but they’ll

have different functionality, implemented as instance methods. Here’s a sample

class definition for the StoriesController class:

2 There will actually be an intermediate class between this class and the ActionController::Base

class; we’ll cover the creation of the StoriesController class in more detail in Chapter 5. However,

this doesn’t change the fact that ActionController::Base is the base class from which every

controller inherits.

Rails Revealed 107

class StoriesController < ActionController::Base

 def index

 end

 def show

 end

end

This simple class definition sets up our StoriesController with two empty

methods: the index method, and the show method. We’ll expand upon both of these

methods in later chapters.

Each controller resides in its own Ruby file (with a .rb extension), which lives

within the app/controllers directory. The StoriesController class that we just

defined, for example, would inhabit the file app/controllers/stories_controller.rb.

Naming Classes and Files

You’ll have noticed by now that the names of classes and files follow different

conventions:

■ Class names are written in CamelCase (each word beginning with a capital

letter, with no spaces between words).3

■ Filenames are written in lowercase, with underscores separating each word.

This is an important detail! If this convention is not followed, Rails will have a

hard time locating your files. Luckily, you won’t need to name your files manually

very often, if ever, as you’ll see when we look at generated code in Chapter 5.

ActionView (the View)
As we discussed earlier, one of the principles of MVC is that a view should contain

presentation logic only. This principle holds that the code in a view should only

perform actions that relate to displaying pages in the application—none of the code

in a view should perform any complicated application logic, nor should it store or

3 There are actually two variations of CamelCase: one with an uppercase first letter (also known as

PascalCase), and one with a lowercase first letter. The Ruby convention for class names requires

an uppercase first letter.

http:app/controllers/stories_controller.rb

108 Simply Rails 2

retrieve any data from the database. In Rails, everything that is sent to the web

browser is handled by a view.

Predictably, views are stored in the app/views folder of our application.

A view need not actually contain any Ruby code at all—it may be the case that one

of your views is a simple HTML file. However, it’s more likely that your views will

contain a combination of HTML and Ruby code, making the page more dynamic.

The Ruby code is embedded in HTML using embedded Ruby (ERb) syntax.

ERb is similar to PHP or JSP in that it allows server-side code to be scattered

throughout an HTML file by wrapping that code in special tags. For example, in

PHP you may write code like this:

<?php echo 'Hello World from PHP!' ?>

The equivalent code in ERb would be the following:

<%= 'Hello World from Ruby!' %>

There are two forms of the ERb tag pair: one that includes the equal sign, and one

that doesn’t:

<%= … %>

This tag pair is for regular output. The output of a Ruby expression between

these tags will be displayed in the browser.

<% … %>

This tag pair is for code that is not intended to be displayed, such as calculations,

loops, or variable assignments.

An example of each ERb tag is shown below:

<%= 'This line is displayed in the browser' %>

<% 'This line executes silently, without displaying any output' %>

You can place any Ruby code—be it simple or complex—between these tags.

Creating an instance of a view is a little different to that of a model or a controller.

While ActionView::Base (the parent class for all views) is one of the base classes

Rails Revealed 109

for views in Rails, the instantiation of a view is handled completely by the Action-

View module. The only file a Rails developer needs to modify is the template, which

is the file that contains the presentation code for the view. As you might have

guessed, these templates are stored in the app/views folder.

As with everything else Rails, a strict convention applies to the naming and storage

of template files:

■	 A template has a one-to-one mapping to the action (method) of a controller. The

name of the template file matches the name of the action to which it maps.

■	 The folder that stores the template is named after the controller.

■	 The extension of the template file is twofold and varies depending on the tem­

plate’s type and the actual language in which a template is written. By default

there are three types of extensions in Rails:

html.erb

This is the extension for standard HTML templates that are sprinkled with

ERb tags.

xml.builder

This extension is used for templates that output XML (for example, to gener­

ate RSS feeds for your application).

js.rjs

This extension is used for templates that return JavaScript instructions. This

type of template might be used, for example, to modify an existing page (via

Ajax) to update the contents of a <div> tag.

This convention may sound complicated, but it’s actually quite intuitive. For ex­

ample, consider the StoriesController class defined earlier. Invoking the show

method for this controller would, by default, attempt to display the ActionView

template that lived in the app/views/stories directory. Assuming the page was a

standard HTML page (containing some ERb code), the name of this template would

be show.html.erb.

Rails also comes with special templates such as layouts and partials. Layouts are

templates that control the global layout of an application, such as structures that

remain unchanged between pages (the primary navigation menu, for instance).

110 Simply Rails 2

Partials are special subtemplates (the result of a template being split into separate

files, such as a secondary navigation menu or a form) that can be used multiple

times within the application. We’ll cover both layouts and partials in Chapter 7.

Communication between controllers and views occurs via instance variables that

are populated from within the controller’s action. Let’s expand upon our sample

StoriesController class to illustrate this point (there’s no need to type any of this

out just yet):

class StoriesController < ActionController::Base

 def index

@variable = 'Value being passed to a view'

 end

end

As you can see, the instance variable @variable is being assigned a string value

within the controller’s action. Through the magic of ActionView, this variable can

now be referenced directly from the corresponding view, as shown in the code below:

<p>The instance variable @variable contains: <%= @variable %></p>

This approach allows more complex computations to be performed outside the

view—remember, it should only contain presentational logic—and allow the view

to display just the end result of the computation.

Rails also provides access to special containers, such as the params and session

hashes. These contain such information as the current page request and the user’s

session. We’ll make use of these hashes in the chapters that follow.

The REST
When I introduced Rails in Chapter 1 I mentioned quite a few common development

principles and best practices that the Rails team advises you to adopt in your own

projects. One that I kept under my hat until now was RESTful-style development,

or resource-centric development. REST will make much more sense with your fresh

knowledge about models and controllers as the principal building blocks of a Rails

application.

Rails Revealed 111

In Theory
REST stands for Representational State Transfer and originates from the doctoral

dissertation of Roy Fielding,4 one of the co-founders of The Apache Software

Foundation and one of the authors of the HTTP specification.

REST, according to the theory, is not restricted to the World Wide Web. The basis

of the resource-centric approach is derived from the fact that most of the time spent

using network-based applications can be characterized as a client or user interacting

with distinct resources. For example, in an ecommerce application, a book and a

shopping cart are separate resources with which the customer interacts.

Every resource in an application needs to be addressed by a unique and uniform

identifier. In the world of web applications, the unique identifier would be the URL

by which a resource can be accessed. In our Shovell application, each submitted

story will be able to be viewed at a unique URL.

The potential interactions within an application are defined as a set of operations

(or verbs) that can be performed with a given resource. The most common verbs are

create, read, update, and delete, which are often collectively referred to as “CRUD

operations.” If you relate this to our Shovell application you’ll see that it covers

most of the interactions possible with the Shovell stories: a user will create a story,

another user will read the story, the story can also be updated or deleted.

The client and server have to communicate via the same language (or protocol) in

order to implement the REST architecture style successfully. This protocol is also

required to be stateless, cacheable, and layered.

Here, stateless means that each request for information from the client to the server

needs to be completely independent of prior or future requests. Each request needs

to contain everything necessary for the server to understand the request and provide

an appropriate answer.

Cacheable and layered are architectural attributes that improve the communication

between client and server without affecting the communication protocol.

4 http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

112 Simply Rails 2

REST and the Web
As mentioned in the previous section, REST as a design pattern can be used in any

application domain. But the Web is probably the domain that implements REST

most often. Since this is a book that deals with building web applications, we’d

better take a look at the implementation details of RESTful style development in

web applications in particular.

HTTP (Hypertext Transfer Protocol: the communication protocol used on the Web),

as the astute reader will know, also makes heavy use of verbs in its day-to-day op­

erations. When your browser requests a web page from any given web server, it will

issue a so-called GET-request. If you submit a web page form, your browser will do

so using a POST-request (not always, to be honest, but 99% of the time).

In addition to GET and POST, HTTP defines two additional verbs that are less com­

monly used by web browsers. (In fact, none of the browsers in widespread use actu­

ally implement them.) These verbs are PUT and DELETE. If you compare the list of

HTTP verbs with the verbs of CRUD from the previous section, they line up fairly

nicely, as you can see in Table 4.1.

Table 4.1. HTTP Verbs Versus CRUD Verbs

HTTPCRUD

POSTCREATE

GETREAD

PUTUPDATE

DELETEDELETE

The language in which client (the browser) and server (the web server) talk to each

other is obviously HTTP. HTTP is, by definition, stateless. This means that as soon

as a browser has downloaded all of the information the server offered as a reply to

the browser’s request, the connection is closed and the two might never ever talk

again. Or the browser could send another request just milliseconds later, asking for

additional information. Each request contains all the necessary information for the

server to respond appropriately, including potential cookies, the format, and the

language in which the browser expects the server to reply.

Rails Revealed 113

HTTP is also layered and cacheable, both of which are attributes the REST definition

expects of the spoken protocol. Routers, proxy servers, and firewalls are only three

(very common) examples of architectural components that implement layering and

caching on top of HTTP.

REST in Rails
REST and Rails not only both start with the letter R, they have a fairly deep relation­

ship. Rails comes with a generator for resources (see the section called “Code Gen­

eration” for a primer on this topic) and provides all sorts of assistance for easy

construction of the uniform addresses by which resources can be accessed.

Rails’s focus on the MVC architecture (which we’ll be getting our hands on shortly,

in Chapter 5) is also a perfect companion for RESTful style development. Models

resemble the resources themselves, while controllers provide access to the resource

and allow interaction based on the interaction verbs listed above.

I mentioned in the previous section that two verbs aren’t implemented in the majority

of browsers on the market. To support the verbs PUT and DELETE, Rails uses POST

requests with a little tacked-on magic to simulate the PUT and DELETE verbs trans­

parently for both the user and the Rails application developer. Nifty, isn’t it?

We will gradually start implementing and interacting with resources for our Shovell

application over the course of the next hands-on chapters, so let’s now move on

and talk about yet another batch of components that make up the Rails framework.

Code Generation
Rather than having us create all of our application code from scratch, Rails gives

us the facility to generate an application’s basic structure with considerable ease.

In the same way that we created our application’s entire directory structure, we can

create new models, controllers, and views using a single command.

To generate code in Rails, we use the generate script, which lives in the script folder.

Give it a try now: type ruby script/generate without any command parameters.

Rails displays an overview of the available parameters for the command, and lists

the generators from which we can choose, as Figure 4.5 illustrates.

114 Simply Rails 2

Figure 4.5. Sample output from script/generate

Rails can generate code of varying complexity. At its simplest, creating a new con­

troller causes a template file to be placed in the appropriate subdirectory of your

application. The template itself consists of a mainly empty class definition, similar

to the Story and Author classes that we looked at earlier in this chapter.

However, code generation can also be a very powerful tool for automating complex,

repetitive tasks; for instance, you might generate a foundation for handling user

authentication. We’ll launch straight into generating code in Chapter 5, when we

begin to generate our models and controllers.

Rails Revealed 115

Another example is the generation of a basic web-based interface to a model, referred

to as scaffolding. We’ll also look at scaffolding in Chapter 5, as we make a start on

building our views.

ActionMailer

While not strictly part of the Web, email is a big part of our online experience, and

Rails’s integrated support for email is worth a mention. Web applications frequently

make use of email for tasks like sending sign-up confirmations to new users and

resetting a user’s password.

ActionMailer is the Rails component that makes it easy to incorporate the sending

and receiving of email into your application. ActionMailer is structured in a similar

way to ActionPack in that it consists of controllers and actions with templates.

While the creation of emails, and the processing of incoming email, are complex

tasks, ActionMailer hides these complexities and handles the tasks for you. This

means that creating an outgoing email is simply a matter of supplying the subject,

body, and recipients of the email using templates and a little Ruby code. Likewise,

ActionMailer processes incoming email for you, providing you with a Ruby object

that encapsulates the entire message in a way that’s easy to access.

Adding email functionality to a web application is beyond the scope of this book,

but you can read more about ActionMailer on the Ruby on Rails wiki.5

Testing and Debugging
As mentioned in Chapter 1, an automated testing framework is already built into

Ruby on Rails. It also, rather helpfully, supplies a full stack trace for errors to assist

with debugging.

Testing
A number of different types of testing are supported by Rails, including automated

and integration testing.

5 http://wiki.rubyonrails.com/rails/pages/ActionMailer/

http://wiki.rubyonrails.com/rails/pages/ActionMailer/
http://wiki.rubyonrails.com/rails/pages/ActionMailer/

116 Simply Rails 2

Automated Testing
The concept of automated testing isn’t new to the world of traditional software de­

velopment, but it’s fairly uncommon in web application development. While most

Java-based web applications make use of comprehensive testing facilities, a large

number of PHP and Perl web applications go live after only some manual tests have

been performed (and sometimes without any testing at all!). Although performing

automated tests is optional, developers may decide against this option for reasons

ranging from the complexity of the task to time constraints.

We touched on this briefly in Chapter 1, but it’s worth stressing again: the fact that

comprehensive automated testing is built into Rails, and is dead easy to implement,

means there’s no longer a question about whether or not you should test your apps.

Just do it!

The generate command that we introduced a moment ago can automatically create

testing templates that you can use with your controllers, views, and models. (Note

that Rails just assists you in doing your job, it’s not replacing you—yet!)

The extent to which you want to implement automated testing is up to you. It may

suit your needs to wait until something breaks, then write a test that proves the

problem exists. Once you’ve fixed the problem so that the test no longer fails, you’ll

never again get a bug report for that particular problem.

If, on the other hand, you’d like to embrace automated testing completely, you can

even write tests to ensure that a specific HTML tag exists at a precise position

within a page’s hierarchy.6 Yes, automated tests can be that exact.

Integration Testing
Rails’s testing capabilities also include integration testing.

Integration testing refers to the testing of several web site components in succes­

sion—typically, the order of the components resembles the path that a user would

follow when using the application. You could, for example, construct an integration

test that reconstructs the actions of a user clicking on a link, registering for a user

6 The hierarchy referred to here is the Document Object Model (DOM), a W3C standard for describing

the hierarchy of an (X)HTML page.

Rails Revealed 117

account, confirming the registration email you send, and visiting a page that’s re­

stricted to registered users.

We’ll look at both automated testing and integration testing in more detail as we

progress through the development of our application.

Debugging
When you’re fixing problems, the first step is to identify the source of the problem.

Like many languages, Rails assists this process by providing the developer (that’s

you!) with a full stack trace of the code. We mentioned earlier in the section called

“Three Environments” that a stack trace is a list of all of the methods that were

called up to the point at which an exception was raised. The list includes not only

the name of each method, but also the classes those methods belong to, and the

names of the files they reside within.

Using the information contained in the stack trace, you can go back to your code to

determine the problem. There are several ways to tackle this, depending on the

nature of the problem itself:

■	 If you have a rough idea of what the problem may be, and are able to isolate it

to your application’s model (either a particular class or aspect of your data), your

best bet is to use the Rails console that we looked at earlier in this chapter. Type

console from the script directory to launch the console. Once inside, you can load

the particular model that you’re interested in, and poke at it to reproduce and

fix the problem.

■	 If the problem leans more towards something related to the user’s browser or

session, you can add a debugger statement around the spot at which the problem

occurs. With this in place, you can reload the browser and step through your

application’s code using the ruby-debug tool to explore variable content or to

execute Ruby statements manually.

We’ll be covering all the gory details of debugging in Chapter 11.

Summary
In this chapter, we peeled back some of the layers that comprise the Ruby on Rails

framework. By now you should have a good understanding of which parts of Rails

118 Simply Rails 2

perform particular roles in the context of an MVC architecture. We also discussed

how a request that’s made by a web browser is processed by a Rails application.

We looked at the different environments that Rails provides to address the different

stages in the life cycle of an application, and we configured databases to support

these environments. We also provided Rails with the necessary details to connect

to our database.

We also had our first contact with real code, as we looked at the ActiveRecord

models, ActionController controllers, and ActionView templates for our Shovell

application. We explored the topics of the REST style of application architecture,

code generation, testing, as well as debugging.

In the next chapter, we’ll build on all this knowledge as we use the code generation

tools to create actual models, controllers, and views for our Shovell application.

It’s going to be a big one!

Chapter5
Models, Views, and Controllers
In Chapter 4, we introduced the principles behind the model-view-controller archi­

tectural pattern, and saw how each of the components is implemented within the

Rails framework. Now we’ll put this knowledge to good use as we use Rails’s code

generation techniques to create these components for our own Shovell application.

Generating a Model
As our application will be used to share links to stories on the Web, a Story is the

fundamental object around which our application will evolve. Here, we’ll use the

Rails model generator to create a Story model, then build everything else around

it.

The Model Generator
The model generator is actually driven by a command line script that we encountered

back in the section called “Code Generation” in Chapter 4: the generate script. This

lives in the script directory, and makes our generation of a Story model very simple.

120 Simply Rails 2

Running the generate Script
generate can be called from the command line and takes several parameters. The

first parameter is the type of component that’s to be generated. You can probably

guess which value I’m going to suggest you use for this parameter: we’re creating a

model, so the parameter to pass is simply model. Let’s take a look at what happens

when we pass that to the script:

$ cd shovell

$ ruby script/generate model

Figure 5.1 shows the resulting output.

We can deduce from this output that using generate to create a new model for our

application in its simple form won’t actually do very much—some stubs (empty

files) will be created in the appropriate directories, but that’s about all.

The second example in Figure 5.1 shows the slightly more advanced version. To

give our model a jump-start by adding everything necessary to start playing with it

right away, we tell generate the names and types of the attributes the model is going

to have. So let’s go ahead and create the Story model with its attributes (and their

respective types), then examine each of the generated files in turn.

Models, Views, and Controllers 121

Figure 5.1. Sample output from the model generator

From the shovell folder, enter the following:

$ ruby script/generate model Story name:string link:string

122 Simply Rails 2

As you can see, the attributes we want our Storymodel to have are specified simply

as space-separated arguments to the generate script using the notation attribute

name:attribute type. In this case, we specify that our Story model gets two attributes

of type string (Rails defines the string type as up to 255 alphanumeric characters):

one named name which holds the title of our stories, and one named link which

holds, as you might have guessed, a link to the story on the Internet.

The output of this command will list exactly what has been done; it’s shown in

Figure 5.2.

Figure 5.2. Generating a Story model

Let’s take a closer look at what the generate script has done here.

Understanding the Output
To begin with, generate skipped over three folders that already exist. The script

indicates that it’s skipping a folder by displaying the word exists, followed by the

name of the folder. The folders that were skipped in Figure 5.2 were those that were

generated when we ran the rails command back in the section called “Creating

the Standard Directory Structure” in Chapter 2.

Models, Views, and Controllers 123

Next, generate actually created some files (indicated by the word create, followed

by the name of the file that was created) and a folder. Let’s look at each of the files

in turn:

story.rb

This file contains the actual class definition for the Story model. Locate the file

in the app/models folder and examine its contents in your text editor—the class

definition is absolutely identical to the one that we typed out in the section

called “Saving an Object” in Chapter 4:

01-story.rb

class Story < ActiveRecord::Base
end

What happened to the attributes we specified? They’re nowhere to be found!

Don’t panic—Rails has used the information we provided to create the database

table. It turns out Rails doesn’t need you to declare each attribute of a model

explicitly in the model’s class definition. Rails determines a model’s attribute

by reading the columns of the database table that the model is mapped to. This

technique is called introspection, which we’ll meet again later on.

Okay, being able to generate these two lines of code isn’t exactly groundbreaking.

But stay with me here!

test/unit/story_test.rb

This file is much more exciting; it’s an automatically generated unit test for our

model. We’ll look at it in detail in Chapter 6, but, briefly, building up the con­

tents of this file allows us to ensure that all of the code in our model is covered

by a unit test. As we mentioned back in Chapter 1, once we have all our unit

tests in place, we can automate the process of checking that our code behaves

as intended.

test/fixtures/stories.yml

To help with our unit test, a file called stories.yml is created. This file is referred

to as a fixture. Fixtures are files that contain sample data for unit testing pur­

poses—when we run the test suite, Rails will wipe the database belonging to

the testing environment and populate our tables using the fixtures. In this way,

124 Simply Rails 2

fixtures allow us to ensure that every unit test of a given application is run

against a consistent baseline.

The stories.yml fixture file will come prepared with two sample story records

for our stories table, prepopulated with values for each of the attributes we

defined. The .yml extension for that file indicates that it is a YAML file. We’ll

look at what this means next up.

db/migrate/001_create_stories.rb

This file is what’s known as a migration file; we’ll be exploring migrations

shortly.

Understanding YAML
YAML (a tongue-in-cheek recursive acronym that stands for YAML Ain’t a Markup

Language) is a lightweight format for representing data. YAML files have the exten­

sion .yml. As they employ none of the confusing tags that XML uses, YAML files

are much easier for humans to read, and are just as efficiently read by computers.

Rails uses YAML files extensively to specify fixtures. We’ve seen a couple of ex­

amples of YAML files so far: the database.yml file that we used to configure our

database connection was one; the stories.yml file that we just created with the generate

script is another.

Let’s dissect the stories.yml file—open it up in a text editor (you’ll find it in the

test/fixtures directory), and you’ll see the following code:

02-stories.yml

one:
 name: MyString
 link: MyString

two:
 name: MyString
 link: MyString

This YAML file represents two separate records (one, and two). Each record contains

values for the two attributes we defined. These values are obviously made up and

are not exactly descriptive.

Models, Views, and Controllers 125

Let’s expand on each of these records by filling in meaningful values for the name

and link fields. Edit the file so that it looks like this:

03-stories.yml

one:
 name: My shiny weblog
 link: http://poocs.net/

two:
 name: SitePoint Forums
 link: http://www.sitepoint.com/forums/

As you can see, each record in a YAML file begins with a unique name, which is

not indented. This name is not the name of the record, or of any of the fields in the

database; it’s simply used to identify the record within the file. (It’s also utilized in

testing, as we’ll see in Chapter 11.) In our expanded stories.yml file, one and two are

these identifying names.

After the unique name, we see a series of key/value pairs, each of which is indented

by one or more spaces (we’ll use two spaces, to keep consistent with our convention

for Rails code). In each case, the key is separated from its value by a colon.

Now, let’s take a look at the last file that was generated—the migration file. If your

experience with modifying databases has been limited to writing SQL, this next

section is sure to be an eye-opener, so buckle up! This is going to be an exciting

ride.

Modifying the Schema Using Migrations
As we mentioned earlier, the last of the four files that our generate script cre­

ated—001_create_stories.rb—is a migration file. A migration file is a special file that

can be used to adjust the database schema in a variety of ways (each change that’s

defined in the file is referred to as a migration).

Migrations can be a handy way to make alterations to your database as your applic­

ation evolves. Not only do they provide you with a means to change your database

schema in an iterative manner, but they let you do so using Ruby code, rather than

SQL. As you may have gathered by now, I’m not a big fan of writing lots of SQL,

and migrations are a great way to avoid it.

126 Simply Rails 2

Migration files are numbered so that they can be executed sequentially. In our case,

the file for creating stories is the first migration file, so our migration file has the

number 001 in its name.

Like SQL scripts, migrations can be built on top of each other, which reinforces the

need for these files to be executed in order. Sequential execution removes the pos­

sibility of, for example, any attempt to add a new column to a table that doesn’t yet

exist.

Let’s examine the migration file that was generated for us.

Creating a Skeleton Migration File
Open the file 001_create_stories.rb in your text editor—it lives in db/migrate. It should

look like this:

04-001_create_stories.rb

class CreateStories < ActiveRecord::Migration
 def self.up
 create_table :stories do |t|
 t.string :name
 t.string :link

 t.timestamps
 end

 end

 def self.down
 drop_table :stories

 end
end

As you can see, a migration file contains a class definition that inherits from the

ActiveRecord::Migration class. The class that’s defined in the migration file is

assigned a name by the generate script, based on the parameters that are passed to

it. In this case, our migration has been given the name CreateStories, which is a

fairly accurate description of the task that it will perform—we’re generating a new

model (a Story), so the code in the migration file creates a stories table in which

to store our stories.

Models, Views, and Controllers 127

The class contains two class methods:

■	 self.up is called when the migration is applied—when we’re setting up our

schema.

■	 self.down is called when the migration is reversed—when we’re tearing it down.

These methods are complementary: the task performed by the down method in a

migration file should be the exact opposite of that performed by the up method.

Luckily, our down method is complete and needs no tweaking. Its purpose is to undo

the changes that are applied in the up method; all it needs to do to achieve this is

to drop the database table.

What may come as a surprise is that the up method looks mostly complete, too.

Since we took the time to tell the generate script on the command line which

columns the generated model should have, the generator auto-filled the migration

with instructions to create a table including (but not limited to, as we’ll see shortly)

the two attributes to hold the name and the link of a story. But let’s take a few

minutes to walk through the generated code line by line.

Creating the stories Table
In the generated migration code in the self.up method, the first line includes a call

to the create_table method, into which we pass the name of the table we’d like

to create (which is stories) as a symbol (:stories). The method is also being passed

a block (jump back to the section called “Blocks” in Chapter 3 if you need a refresh­

er), used to define the individual columns in the table:

create_table :stories do |t|

⋮ block body…

end

Within the block, we have two lines to define the attributes we specified on the

generate command line as columns in our SQL table. Like an SQL script, each

column in our migration file should have a name and a type of data storage (such

as a string, number, or date):

128 Simply Rails 2

create_table :stories do |t|

t.string :name

t.string :link

⋮ block body…

end

Here, the first line defines the column name as type string and the second line

defines the column link, also of type string. This could even be rewritten, in

shorthand syntax, as you see here:

create_table :stories do |t|

t.string :name, :link

⋮ block body…

end

The third line in the block is a little special. Instead of creating a timestamps column

of questionable value, the timestamps method automatically creates two “magic”

columns in the stories table named created_at and updated_at:

create_table :stories do |t|

⋮ block body…
t.timestamps

end

We’ll take an in-depth look at this functionality in Chapter 9.

In addition to creating completely new tables, migrations can be used to alter existing

tables. If you were to decide tomorrow that your stories table needed to store a

description for each story, it would be a painful task to have to recreate the whole

table just to add the extra column. Once again, good old SQL can be used to perform

this job efficiently, but to use it, you’d have to learn yet another awkward SQL

command. The migrations option, on the other hand, allows you to add this column

to an existing table without losing any of the data that the table contains.

We’ll use migrations to alter the stories table when we get to Chapter 9. For now,

let’s just add one minor parameter to the self.up method, like so:

Models, Views, and Controllers 129

05-001_create_stories.rb (excerpt)

def self.up
 create_table :stories, :force => true do |t|
 t.string :name
 t.string :link

 t.timestamps
 end
end

The :force => true at the beginning of the block isn’t usually required—we’ve

included it in this case to counter the fact that we created a table for this model

back in Chapter 4, using raw SQL. Without it, our create_table call would fail,

because the table already exists. However, leaving :force => true in this migration

will mean that Story records will be wiped with each future migration, so set it

back to false after you’ve performed the migration to prevent this from happening.

In addition to the explicitly named columns we’ve talked about in this section, this

code will also create a column named id which will serve as the primary identifier

for each row in the table.

This approach to schema definitions reflects the “pure” Rails method of creating

and altering database tables that we talked about earlier in this section.

Now that we have a migration file complete with methods for setting up and tearing

down our schema, we just need to make the migration happen. We use the rake

tool to achieve this task.

Using rake to Migrate Our Data
rake is a tool for executing a set of tasks that are specific to your project.

If you’ve ever written or compiled a C program, you’ll have come across the make

tool. Well, rake is to Ruby code as make is to C code. Written by Jim Weirich, the

rake package borrows its naming conventions and basic functionality from make,

but that’s where the similarities end.1

1 Jim maintains a blog about Ruby and Rails at http://onestepback.org/.

http://onestepback.org/

130 Simply Rails 2

You can define the tasks that you want rake to execute in a file named Rakefile,

which is written purely in Ruby code. In fact, Rails itself uses its own Rakefile to

supply you with a number of handy tasks; you’ll find it in your shovell folder. Al­

ternatively, you can access the entire list of tasks available to a Rails application by

typing rake -T from the application’s root folder—in our case, the shovell directory.

Some of those tasks are shown in Figure 5.3.

Figure 5.3. Some of the tasks available using rake

A rake task can also accept a namespace, which is a conceptual container that allows

us to group related tasks together.

Models, Views, and Controllers 131

One example is the db namespace, which groups all tasks that are related to the

database. Namespaces are designated by the use of a colon, so tasks within the db

namespace are addressed using the prefix db:.

Common rake tasks that you might use in your day-to-day Rails work include:

■	 db:migrate, for applying new migrations

■	 db:test:clone_structure, for recreating your test database using the structure

in your development environment

■	 test, for running your test suite

As the last of these examples demonstrates, not every task belongs to a

namespace—some tasks stand alone.

As we saw in Figure 5.3, the default Rakefile for our application comes with a

boatload of predefined tasks, each of which offers unique functionality. For now,

we’re only interested in the db:migrate task (that is, the migrate task from the db

namespace). We’ll explore some other rake tasks as we progress through later

chapters.

The rake command accepts a number of options: type rake --help to see them all.

At its simplest, rake uses the following format:

$ rake namespace:task

For example, to apply the migrations in the migration file that we created earlier,

we’d type the following:

$ rake db:migrate

When executed without any other arguments, this command achieves the following

tasks:

1. It checks the database for the unique number of the migration that was most re­

cently applied.

2. It steps through the migrations that have not yet been applied, one by one.

132 Simply Rails 2

3. For each migration, it executes the up method for that migration class, to bring

the database in line with the structure specified in the migration files.

Go ahead and execute our database migration task from the shovell folder now. Fig­

ure 5.4 shows the output you should receive.

Figure 5.4. Database migration using rake

As the output indicates, running this task has caused the CreateStories migration

that we created to be applied to our database. Assuming it was applied successfully,

you should now (once again) have a stories table within your shovell_development

database.

With this table in place, we can create some data about stories!

Rolling Back Is Easy, Too!

As our database schema evolves, so do the migration files that represent it. Rolling

back to a previous version of the schema is incredibly easy with migrations. Simply

type the following to revert to a previous version of the database (n represents the

version number that you want to restore):

$ rake db:migrate VERSION=n

Models, Views, and Controllers 133

For example, the following command would undo the stories table that we just

created, resulting in the blank database that we began with:

$ rake db:migrate VERSION=0

Managing Data Using the Rails Console
While we’ve developed a solid architecture for our application, and created a table

to store data, we don’t yet have a nice front-end interface for managing that data.

We’ll start to build that interface in Chapter 6, but in the meantime, we need to find

a way to add stories to our table.

That’s right—it’s the Rails console to the rescue once again!

Creating Records
We can use two approaches to create records from the console. Let’s look at the

long-winded approach first. We create the object, then populate each of its attributes

one by one, as follows:

$ ruby script/console

Loading development environment (Rails 2.0.2)

>> s = Story.new

=> #<Story id: nil, name: nil, link: nil, created_at: nil,

updated_at: nil>

>> s.name = 'My shiny weblog'

=> "My shiny weblog"

>> s.link = 'http://poocs.net/'

=> "http://poocs.net/"

>> s.save

=> true

Now let’s step through what we’ve done here.

After loading the Rails console, we created a new Story object. We assigned this

object to a variable named s (the s is for Story—I know, it won’t win any awards

for creativity). We then assigned values to each of the columns that exist on a Story

object. Finally, we called the savemethod, and our Storywas stored in the database.

'http://poocs.net/'
"http://poocs.net/"

134 Simply Rails 2

How can we be sure that the data was written successfully? We could look at the

raw data using a trusty SQL database console, but we’re trying to keep our distance

from SQL. Instead, we can confirm that our story saved correctly by checking its

id (the unique identifier that the database generates automatically when an object

is saved). We can do this from within the Rails console:

>> s.id

=> 1

Our object’s id is not nil, so we know that the save was successful. Of course,

there’s another way to ensure that the data was written successfully, and that is to

use the new_record? method, which you may remember from the section called

“Saving an Object” in Chapter 4:

>> s.new_record?

=> false

Hooray! As this method returns false, we know for certain that the object was

written to the database. Just in case you need even more reassurance, there’s one

more check that we can use: the count class method of the Story class. This method

allows us to query the database for the number of stories it currently contains:

>> Story.count

=> 1

Okay, that makes sense.

Let’s create another Story now, this time using the second technique: this one’s a

shortcut!

>> Story.create(

➥ :name => 'SitePoint Forums',
➥ :link => 'http://www.sitepoint.com/forums/')
=> #<Story id: 2, name: "SitePoint Forums", link:

"http://www.sitepoint.com/forums/", created_at:

"2008-01-22 18:28:11", updated_at: "2008-01-22 18:28:11">

The create class method achieves the same task as the long-winded approach we

just saw, but it only uses one line (not counting word wrapping). This method

'http://www.sitepoint.com/forums/')
"http://www.sitepoint.com/forums/"

Models, Views, and Controllers 135

also—very conveniently—saves the record to the database once the object has been

created. And it allows us to assign values to the columns of the record (in this case,

in the columns name and link) at the same time as the record is created.

Hang on—we forgot to assign the object to a variable! How can we query it for addi­

tional information?

Retrieving Records
It’s all very well to be able to create and save new information, but what good is

that information if we can’t retrieve it? One approach to retrieving a story from our

database would be to guess its id; the ids are auto-incremented, so we could anti­

cipate the number of the record that we’re after. We could then use the find class

method to retrieve a row based on its id:

>> Story.find(2)

=> #<Story id: 2, name: "SitePoint Forums",

link: "http://www.sitepoint.com/forums/",

 created_at: "2008-01-22 18:28:11",

 updated_at: "2008-01-22 18:28:11">

This approach might be fine for our testing setup, but once our application has de­

leted and created more than a handful of records, it won’t work.

Another approach is to retrieve every row in the table. We can do this by passing

:all as the argument to the find method:

>> Story.find(:all)

=> [#<Story id: 1, name: "My shiny weblog", link:

"http://poocs.net/", created_at: "2008-01-22 18:26:02",

updated_at: "2008-01-22 18:26:02">, #<Story id: 2, name:

"SitePoint Forums", link: "http://www.sitepoint.com/forums/",

created_at: "2008-01-22 18:28:11", updated_at:

"2008-01-22 18:28:11">]

This process returns an object of class Array containing all rows of the stories

table.

Arrays also have first and last methods to retrieve (surprise!) the first and last

elements of the array:

"http://www.sitepoint.com/forums/"
"http://poocs.net/"
"http://www.sitepoint.com/forums/"

136 Simply Rails 2

>> Story.find(:all).last

=> #<Story id: 2, name: "SitePoint Forums", …>

Making use of the :all argument and the first and last methods gives us some

additional flexibility, but this approach isn’t exactly resource-friendly—especially

if we’re working with larger sets of data. As its name suggests, using :all has the

effect of transferring all database records from the database into Ruby’s memory.

This may not be the most efficient solution, particularly if your application is only

looking for a single record.

A better approach would be to let the record selection process be handled by the

database itself. To facilitate this goal, we pass two arguments to the find method:

:first

This argument retrieves the first element from the set of retrieved records.

:order

This argument allows us to specify the sort order of the returned objects.

The :order argument should contain a tiny bit of SQL that tells the database how

the records should be ordered. To get the last element, for example, we would assign

:order a value of id DESC, which specifies that the records should be sorted by the

id column in descending order:

>> Story.find(:first, :order => 'id DESC')

=> #<Story id: 2, name: "SitePoint Forums", …>

The object that’s returned is identical to the one we retrieved using :all in conjunc­

tion with our object’s last attribute, but this approach is much more resource-

friendly.

Now, while all of these retrieval techniques have worked for us so far, any approach

that retrieves an object on the basis of its id is fundamentally flawed. It assumes

that no one else is using the database, which certainly will not be a valid assumption

when our social news application goes live!

What we need is a more reliable method of retrieving records—one that retrieves

objects based on a column other than the id. What if we were to retrieve a Story

by its name? Easy:

Models, Views, and Controllers 137

>> Story.find_by_name('My shiny weblog')

=> #<Story id: 1, name: "My shiny weblog", …>

In fact, we can even query the database using the link column, or any other column

in our stories table! Rails automatically creates these dynamic finder methods by

prefixing the column name in question with find_by_. In this case, the Story class

has the dynamic finders find_by_name and find_by_link (find_by_id would be

redundant, as a simple find does the same thing). Cool, huh?

Updating Records
We know how to add stories to our database, but what happens when someone

submits a story riddled with typos or (gasp!) factual errors to our Shovell application?

We need to be able to update existing stories, to ensure the integrity and quality of

the information on Shovell, and the continuation of our site’s glowing reputation.

Before we can update an object, we need to retrieve it. Any of the techniques outlined

in the previous section would suffice, but for this example, we’ll retrieve a Story

from the database using its name:

>> s = Story.find_by_name('My shiny weblog')

=> #<Story id: 1, name: "My shiny weblog", …>

>> s.name

=> "My shiny weblog"

>> s.name = 'A weblog about Ruby on Rails'

=> "A weblog about Ruby on Rails"

As you can see, the task of changing the value of an attribute (name, in this case) is

as straightforward as assigning a new value to it. Of course, this change is not yet

permanent—we’ve simply changed the attribute of an object in memory. To save

the change to the database, we need to call the save method, just as we did when

we learned how to create new objects earlier in this chapter:

>> s.save

=> true

Once again, there’s a shortcut—update_attribute—which allows us to update the

attribute and save the object to the database in one fell swoop:

138 Simply Rails 2

>> s.update_attribute :name, 'A weblog about Ruby on Rails'

=> true

This is straightforward stuff. Just one more command, then we’ll leave the console

for good. (Well, for this chapter, anyway!)

Deleting Records
To destroy a database record, simply call the destroy method of the ActiveRecord

object:

>> s.destroy

=> #<Story id: 1, name: "My shiny weblog", …>

This will remove the record from the database immediately.

If you try to use the find method to locate an object that has been destroyed (or

didn’t exist in the first place), Rails will throw an error:

>> Story.find(1)

=> ActiveRecord::RecordNotFound: Couldn't find Story with ID=1

As you can see, deleting records is a cinch—at least, for Rails developers! In fact,

SQL is doing a good deal of work behind the scenes. Let’s exit the Rails console and

pull back the curtain for a closer look at the SQL statements that result from our

commands.

Where’s the SQL?
In all of the creating, updating, and deleting of records that we’ve done in this sec­

tion, we haven’t seen a lot of SQL.

If you’d like to peek at the SQL statements that Rails has saved you from having to

type, take a look at the log files located in the log folder. In it, you’ll find files named

after each of the environments. We’ve been working in the development environment,

so have a look at development.log. Figure 5.5 shows the contents of the log file on

my computer.

Models, Views, and Controllers 139

Figure 5.5. The log file for the development environment

The contents of the log file vary greatly between environments, and for good reason:

the development log file contains every SQL statement that’s sent to the database

server, including the details of how long it took to process each statement. This in­

formation can be very useful if you’re debugging an error or looking for some addi­

tional insight into what is going on. However, it’s not appropriate in a production

environment—a large number of queries might be executing at any one time, which

would result in an enormous log file.

We’ll revisit these log files in Chapter 6, when we examine the entries written to

them by the ActionController and ActionView modules.

Generating a Controller
Now that we have our model in place, let’s build a controller. In the same way that

we generated a model, we generate a controller by running the script/generate script

from our application’s root folder.

140 Simply Rails 2

Running the generate Script
Run the generate script from the command line again, but this time, pass control­

ler as the first parameter:

$ ruby script/generate controller

The output of this command is depicted in Figure 5.7.

As you may have deduced from the output, calling the generate script to create a

controller requires us to pass the desired name of the controller as a parameter.

Other parameters that we could pass include any actions that we’d like to generate.

Let’s try it out. Type in the following:

$ ruby script/generate controller Stories index

The output of the generate script, shown in Figure 5.6, tells us exactly what it’s

doing. Let’s analyze each of these lines of output.

Figure 5.6. Generating a Story controller

Models, Views, and Controllers 141

Figure 5.7. Sample output from the controller generator

Understanding the Output
The meaning of the messages output by the controller generator should be growing

quite familiar by now.

■	 First, the generate script skipped over the creation of a couple of folders, because

they already exist in our project.

142 Simply Rails 2

■	 Next, the app/views/stories folder was created. As I mentioned when we first

looked at ActionView in the section called “ActionView (the View)” in Chapter 4,

the templates for our newly created StoriesController will be stored in this

folder.

■	 After skipping over one more folder, generate created four new files:

app/controllers/stories_controller.rb

This file houses the actual class definition for our StoriesController. It’s

mostly empty, though; all it comes with is a method definition for the index

action, which, admittedly, is empty as well. Don’t worry—we’ll expand it soon!

06-stories_controller.rb

class StoriesController < ApplicationController
 def index
 end
end

Astute readers will notice that our StoriesController doesn’t inherit from the

ActionController::Base class in the way we’d expect. The

ApplicationController class that we see here is actually an empty class that

inherits directly from ActionController::Base. The class is defined in the

application.rb file, which lives in the app/controllers folder, if you’re curious.

The resulting StoriesController has exactly the same attributes and methods

as if it had inherited directly from ActionController::Base. Using an interme­

diary class like this provides a location for storing variables and pieces of

functionality that are common to all controllers.

test/functional/stories_controller_test.rb

This file contains the functional test for our controller. We’ll skip over it for

now, but we’ll expand the test cases that this file contains in the section called

“Testing the StoriesController” in Chapter 9.

app/helpers/stories_helper.rb

This is the empty helper class for the controller (helpers are chunks of code

that can be reused throughout your application). We’ll look at helpers in more

detail in Chapter 6.

Models, Views, and Controllers 143

app/views/stories/index.html.erb

This file is the template that corresponds to the index action that we passed as

a parameter to the generate script. For the moment, it’s the only one in the

app/views/stories directory, but as we create others, they’ll be stored alongside

index.html.erb and given names that match their actions (for example, the show

action will end up with a template named show.html.erb).

With this knowledge, we’re finally in a position to breathe life into our little Rails

monster, in the true spirit of Frankenstein.

Watch Your Controller Class Names!

You’ll notice the controller class that was created by the generate script is called

StoriesController, though the first parameter that we specified on the com­

mand line was simply Stories. If our parameter had been StoriesController,

we’d have ended up with a class name of StoriesControllerController!

Starting Our Application … Again
It’s time to fire up our application again. While our previous experience with

Mongrel was somewhat uneventful, our application should do a little more this

time.

Start up the web server with the following command:

$ ruby script/server

Once the server has completed its startup sequence, type the following address into

your web browser: http://localhost:3000/stories. If everything goes to plan, you

should be looking at a page similar to the one in Figure 5.8.

http://localhost:3000/stories

144 Simply Rails 2

Figure 5.8. Accessing our StoriesController from a browser

What does this display tell us? Well, this simple (and not especially pretty) page

confirms that:

1. The routing between controllers and views is working correctly—Rails has found

and instantiated our StoriesController class, based on the URL that we asked

it to retrieve.

2. The index action is the default action that’s called when no explicit action is

specified in the URL (all that we specified was a controller name, using the path

/stories). When you consider that most web servers usually load a file called index

by default (index.html, index.php, index.jsp, index.aspx etc.), this seems like a

sensible default.

3. Our controller is able to locate its views—the HTML for the page we see rendered

in the browser is contained in the file that’s mentioned on screen

(app/views/stories/index.html.erb).

If you think about it, this is actually quite an accomplishment, given that we’ve

really only executed two commands for generating code from the command line.

Models, Views, and Controllers 145

So that we can complete the picture, let’s pull some data from our model into our

index action.

Creating a View

We can use two approaches to build views for our Rails application. One is to make

use of scaffolding; the other is to “go it alone.”

We’ll look at scaffolding very briefly, but we won’t be using it much in the develop­

ment of our Shovell application. I’ll introduce just enough of this topic to give you

a taste, then leave it up to you to decide whether or not you find it worthwhile in

your own projects.

After that, we’ll roll up our sleeves and build some views from scratch.

Generating Views with Scaffolding
In the early days of Rails, scaffolding was one of the features that the Rails com­

munity used as a selling point when promoting the framework. Ironically, this feature

also received a considerable amount of criticism, though this was largely due to

critics failing to fully understand the intended uses of scaffolding.

So what is scaffolding, anyway?

Scaffolding is a tool that quickly creates a web interface for interacting with your

model data. The interface lists the existing data in a table, providing an easy way

to add new records and manipulate or delete existing ones.

While there used to be a way to use scaffolding in a temporary fashion (as a one-

line addition to one of your controllers, which would then perform all sorts of be­

hind-the-scenes magic), these days scaffolding is Yet Another Generator invoked

through the script/generate command.

When a scaffold is generated, you end up with a model, a controller with several

actions, and numerous view templates for these actions. The generated code can

then be built on and extended over time as you progress with your application.

Features provided by the template code can then be tweaked or implemented in a

different manner, and code that doesn’t suit your project can be removed.

146 Simply Rails 2

We won’t be generating any permanent scaffolding in this project, but I do encourage

you to experiment with this approach in your own projects, as there may be cases

in which you’ll find it useful. The syntax to generate a model with scaffolding code

is as follows (the inline help is available in Figure 5.9):

$ ruby script/generate scaffold Story name:string link:string

Figure 5.9. The inline help for script/generate scaffold

Models, Views, and Controllers 147

Destroy What You Create!

If you ever mess up a call to script/generate, you may find its alter ego script/destroy

very helpful. This takes exactly the same arguments as script/generate but attempts

to reverse what it did, removing newly generated files and modifications to existing

files. You can think of the two scripts as the up and down methods of a migration.

An example screen from a generated scaffold for our Story model is shown in Fig­

ure 5.10.

Figure 5.10. Example screen from a generated scaffold

Scaffolding Limitations

Please keep in mind that scaffolding is a tool designed for quick interaction with

models, and should only be used as such. It is by no means intended to be a fully

automated tool for generating web applications (or even administration interfaces).

Scaffolding is also not without its limits in providing automated access. For ex­

ample, it can’t cope with ActiveRecord associations such as “a Story belongs

to a User,” which we saw in the section called “ActiveRecord (the Model)” in

Chapter 4. Additionally, since most applications end up requiring a fully fledged

148 Simply Rails 2

administrative interface, you’re often better off just creating the real thing rather

than fiddling around with a dummy interface.

Scaffolding is certainly a powerful feature of Rails, and it’s rewarding to get the in­

stant visual feedback that comes with having some views created for us. However,

it’s now time for us to create some views of our own, which will give us a much

better insight into what each part of the MVC stack does.

Creating Static Pages
Back in the section called “ActionView (the View)” in Chapter 4, we looked briefly

at the ActionView module, but only in theory. Let’s create some custom views that

we can actually view using a web browser.

As a quick refresher, ActionView represents the view part of the model-view-con­

troller architecture. Files that are used to render views are called templates, and

they usually consist of HTML code interspersed with Ruby code. These files are

referred to as ERb templates.

One of these templates (albeit a not so interesting one) has already been created for

us—it’s the index.html.erb file that’s located in app/views/stories:

07-index.html.erb

<h1>Stories#index</h1>
<p>Find me in app/views/stories/index.html.erb</p>

Looks familiar, doesn’t it? This is the HTML code that we viewed in our web browser

earlier in this chapter. As you can see, it’s a static page (meaning that it doesn’t

contain any Ruby code). Dynamic pages (pages that pull in data from a database,

or from some other source) are much more interesting! We’ll have a closer look at

dynamic pages now.

Creating Dynamic Pages
Let’s begin our adventure in building dynamic pages. We’ll add a value—the current

date and time—to the HTML output of our view. Although simple, this value is

considered to be dynamic.

Models, Views, and Controllers 149

Open the template file in your text editor and delete everything that’s there. In its

place add the following line:

08-index.html.erb

<%= Time.now %>

Here, we call the now class method that lives on the Time class, which is part of the

Ruby standard library. This method call is wrapped in ERb tags (beginning with

<%= and ending with %>).

You may remember from the section called “ActionView (the View)” in Chapter 4

that the equal sign attached to the opening ERb tag will cause the return value of

Time.now to be output to the web page, rather than executing silently.

If you refresh your browser now, the page should display the current time, as shown

in Figure 5.11. Just to confirm that this value is indeed dynamic, reload your page

a few times—you’ll notice that the value does indeed change.

Figure 5.11. Our first dynamic page: displaying the current time

150 Simply Rails 2

Passing Data Back and Forth
There’s one fundamental problem with what we’ve done here. Can you spot it?

In order to adhere to the model-view-controller architecture, we want to avoid

performing any hefty calculations from within any of our views—that’s the job of

the controller. Strictly speaking, our call to Time.now is one such calculation, so it

should really occur within the controller. But what good is the result of a calculation

if we can’t display it?

We introduced the concept of passing variables between controllers and views

briefly in the section called “ActionView (the View)” in Chapter 4, but at that point,

we didn’t have any views that we could use to demonstrate it in action. Now’s our

chance!

We learned that any instance variable that’s declared in the controller automatically

becomes available to the view as an instance variable. Let’s take advantage of that

fact now. Edit /app/controllers/stories_controller.rb so that it contains the following

code:

09-stories_controller.rb

class StoriesController < ApplicationController
 def index
 @current_time = Time.now

 end
end

Next, replace the contents of app/views/stories/index.html.erb with the following:

10-index.html.erb

<%= @current_time %>

I’m sure you can guess what’s happened here:

1. We’ve moved the “calculation” of the current time from the view to the controller.

2. The result of the calculation is stored in the instance variable @current_time.

mailto:@current_time

Models, Views, and Controllers 151

3. The contents of this instance variable are then automatically made available to

the view.

The result is that the job of the view has been reduced to simply displaying the

contents of this instance variable, rather than executing the calculation itself.

Voilà! Our application logic and our presentation logic are kept neatly separate.

Pulling in a Model
All we need to do now is pull some data into our view, and we’ll have the entire

MVC stack covered!

In case you deleted all of your model records when we experimented with scaffolding

earlier, make sure you create at least one story. Type the following into a Rails

console:

>> Story.create(

➥ :name => 'SitePoint Forums',
➥ :link => 'http://www.sitepoint.com/forums/')

To display this model data within a view, we need to retrieve it from within the

controller, like so:

11-stories_controller.rb

class StoriesController < ApplicationController
 def index
 @story = Story.find_by_name('SitePoint Forums')

 end
end

We’ll also change our view accordingly:

12-index.html.erb

A random link:
<a href="<%= @story.link %>"><%= @story.name %>

Reload the page to see the result—it should look like Figure 5.12.

'http://www.sitepoint.com/forums/')

152 Simply Rails 2

Figure 5.12. MVC in action: a view displaying model data via the controller

Of course, Rails wouldn’t be doing its job of saving you effort if it required you to

manually create links the way we just did. Instead of typing out the HTML for a

link, you can use the link_to function, which is much easier to remember and

achieves the same result. Try it for yourself:

13-index.html.erb (excerpt)

A random link:
<%= link_to @story.name, @story.link %>

One other point: I’ll be the first to admit that the text on the page is a little mislead­

ing. Our link is not exactly random—it simply retrieves the same link from the

database over and over again.

It’s actually quite easy to make our application retrieve random stories, though.

Simply modify the part of the controller that fetches the story so that it looks like

this:

16-stories_controller.rb (excerpt)

 @story = Story.find(:first, :order => 'RANDOM()')

Models, Views, and Controllers 153

This modification selects a single story, just like before (using the :first parameter).

However, this time the database is being instructed to shuffle its records before

picking one. When you reload your page, random stories should now appear—as­

suming you have more than one story in your database, that is! You might like to

save a few more stories (using Story.create in a Rails console) and see the random

link feature of our Shovell application in action.

There we have it: the beginnings of our story-sharing application. Admittedly, dis­

playing a random story from our database is only a small achievement, but hey—it’s

a start!

Summary
This chapter saw us create some real code for each of the components of an MVC

application. We generated a model with a corresponding migration to handle the

storage of our stories; we generated a controller to handle communication between

the models and the views; and we created a view that dynamically renders content

supplied by our controller.

With the functionality provided by ActiveRecord, we’ve been creating, updating,

and deleting data from our SQL database without resorting to any SQL.

I also introduced you to the rake tool, which can be used to run migrations and

other tasks. And we learned about the YAML data representation language that’s

used to store test fixture data for our application.

In Chapter 6, we’ll add a layout to our application using HTML and CSS; we’ll talk

about associations between models; and we’ll extend the functionality of our applic­

ation.

Let’s get into it!

Chapter6
Helpers, Forms, and Layouts
In Chapter 5, we put in place some basic architecture for our application—a model,

a view, and a controller—and were able to display a link to a random story that was

stored in the database. Though the foundation of our application is sound, users

can’t really interact with it yet.

In this chapter, we’ll use some helpers to implement the basic functionality for our

application: the capability that allows users to submit stories to the site.

We’ll also make a start on building our test suite. In this chapter, we’ll create some

functional tests to confirm that the submission form is working as intended. We’ll

expand on this suite of tests in the coming chapters.

Calling upon Our Trusty Helpers
No, I’m not talking about Santa’s little helpers. Let me explain.

In Chapter 5, we discussed the importance of keeping application logic in a control­

ler, so that our views contain only presentational code. While it hasn’t been apparent

in the simple examples that we’ve looked at so far, extracting code from a view and

156 Simply Rails 2

moving it into a controller often causes clumsy code to be added to an application’s

controllers.

To address this problem, another structural component exists: the helper. A helper

is a chunk of code that can be reused throughout an application, and is stored in a

helper file. A helper usually contains relatively complicated or reusable presentation

logic; since any views that utilize the helper are spared this complexity, the code

in the view is kept simple and easy to read, reflecting our adherence to DRY prin­

ciples. Dozens of helpers are built into Rails, but you can, of course, create your

own to use throughout your application.

An example of a good candidate for a helper is code that renders a screen element

on a page. Repeating this type of code from one view to another violates the DRY

principle, but sticking it all into a controller doesn’t make sense either.

As we saw in the section called “Generating a Controller” in Chapter 5, when we

generate a controller (using the generate script that we’ve come to know and love),

one of the files that’s created is a new helper file called controllername_helper.rb. In

the case of our StoriesController, the helper file associated with this controller

is stories_helper.rb, and lives in app/helpers.

In previous versions of Rails, helpers associated with a particular controller were

available only to the views of that particular controller, except for those defined in

the file app/helpers/application_helper.rb, which were available to any view. In Rails

2 every helper is available to every view, no matter which controller it’s associated

with. This is due to the helper :all statement in the ApplicationController,

generated with every new application.

We’ll be relying on a few of Rails’ built-in helpers for much of the story submission

interface that we’ll build in this chapter.

Enabling Story Submission
In our brief foray into the world of scaffolding in the section called “Generating

Views with Scaffolding” in Chapter 5, we saw that it’s possible in Rails to create a

quick (and dirty) front end for our data, though this approach doesn’t necessarily

constitute best practice.

http:controllername_helper.rb
http:stories_helper.rb
http:app/helpers/application_helper.rb

Helpers, Forms, and Layouts 157

In this section, we’ll build a web interface for submitting stories to our Shovell web

site without relying on any scaffolding. First, we’ll create a view template that

contains the actual submission form, then we’ll add a new method to our

StoriesController to handle the task of saving submitted stories to the database.

We’ll also implement a global layout for our application, and we’ll create some

feedback to present to our users, both when they’re filling out the form and after

they’ve submitted a story.

Creating a Form
The topic of HTML forms is one that even seasoned front-end developers have tra­

ditionally found intimidating. While it would be possible to create our form elements

manually, it’s not necessary—Rails offers a number of helpers and shortcuts that

make the creation of forms a breeze. One of those is the form_for helper, which

we’ll look at now.

Introducing the form_for Helper
Rails offers a few different helper functions for writing forms. form_for is the most

common among these and is recommended for use when generating a form that’s

bound to one type of object. By “bound,” I mean that each field in the form maps

to the corresponding attribute of a single object, rather than to corresponding attrib­

utes of multiple objects. At its most basic, using the form_for helper to bind a

simple form to a Story object would look something like this:

<% form_for @story do |f| %>

 <%= f.text_field :name %>

 <%= f.text_field :link %>

<% end %>

This syntax boasts a few points that are worth highlighting:

■	 The first and last lines use the ERb tags for silent output (<% … %>), while each

line within the form uses the ERb tags that display output to the browser (<%=

… %>).

■	 The parameter that immediately follows form_for is the object to which the

form will be bound (@story).

mailto:(@story)

158 Simply Rails 2

■	 The fields that make up the form live inside a block. As you’ll no doubt remember

from the section called “Blocks” in Chapter 3, a Ruby block is a statement of

Ruby code that appears between the keywords do and end, or between curly

braces. This is the first time we’ve encountered a block within an ERb file, but

the principle is the same.

■	 A new object, which I’ve named f in this case, as shorthand for “form,” must be

passed as a parameter to the block. This object is of type FormBuilder, which is

a class that contains instance methods designed to work with forms. Using these

methods, we can easily create the HTML form input elements such as

text_field, password_field, check_box, and text_area.

We receive a number of benefits in exchange for following this syntax:

■	 The form tags that signify the start and end of our HTML form will be generated

for us.

■	 We gain access to a number of instance methods, via the FormBuilder object,

that we can use to create fields in our form. In the example, we’ve used the

text_field method to create two text fields; these fields will be mapped to our

@story object automatically.

■	 Appropriate name and id attributes will be applied to each of these fields; these

attributes can then be used as hooks for CSS and JavaScript, as we’ll see later in

this chapter.

■	 Rails automatically figures out to which URI this form should be posted to when

submitted by the web browser if our model has been defined as a resource (a

term that you will recall from the section called “The REST” in Chapter 4). More

on this in a moment.

As you can see, using form_for and the FormBuilder object that comes with it is a

powerful way to create comprehensive forms with minimal effort.

Creating the Template
Now that we have a handle on form_for, let’s use it to create the form that site

visitors will use to submit stories to Shovell.

Helpers, Forms, and Layouts 159

A form is a presentational concept, which means that it should be stored as a view.

Our form will allow users to submit new stories to Shovell, so we’ll give this view

the name new. Let’s make a template for it: create a new file called new.html.erb in

the app/views/stories folder. It should contain the following:

01-new.html.erb

<% form_for @story do |f| %>
<p>
 name:

 <%= f.text_field :name %>
</p>
<p>
 link:

 <%= f.text_field :link %>
</p>
<p>
 <%= submit_tag %>
</p>
<% end %>

Let’s break down the ERb code here:

<% form_for @story do |f| %>

As we just discussed, the form_for helper creates a form that’s bound to a specific

object—in this case, it’s bound to the @story instance variable.

<%= f.text_field :name %>

This line creates a text field called name, which is mapped to our @story object. It

will display a text field in which the user can enter the name of the story he or she

is submitting.

<%= f.text_field :link %>

This line creates another text field, this time named link, which is also mapped to

our @story object. It will display a text field in which the user can enter the URL

of the story he or she is submitting.

160 Simply Rails 2

<%= submit_tag %>

This helper generates the HTML code for a Submit button to be displayed in our

form. This is a stand-alone helper—it’s not part of the form_for helper.

Next, make sure that your web server is running (refer to Chapter 2 if you need a

refresher on starting the server). Open your web browser and type the following

URL into the address bar: http://localhost:3000/stories/new. You should

see—yikes!—an error similar to Figure 6.1.

If you see a different error message when you try to open this URL, I recommend

that you monitor the console window from which you launched your web server.

This process is the heart of our application; if it’s not beating, you won’t be able to

access any of the functionality that we’re going to add in this chapter. Any errors

that appear in the console should give you an idea of what went wrong.

Figure 6.1. An error message is shown when trying to access our new form

Now, what happened here? Well, we handed the form_for helper the instance

variable called @story, but we never actually assigned an object to that variable, so

it ended up being nil. Adhering to the MVC principles, we need to turn to the

controller as being responsible for putting a value into @story, which we’ll do in

the next section.

http://localhost:3000/stories/new

Helpers, Forms, and Layouts 161

Modifying the Controller
To create an action that will populate the @story instance variable, edit the file

app/controllers/stories_controller.rb so that it looks as follows (I’ve indicated the

method to be added in bold):

02-stories_controller.rb

class StoriesController < ApplicationController
 def index
 @story = Story.find(:first, :order => 'RANDOM()')

 end
def new
@story = Story.new

end
end

It doesn’t matter whether you place this new method above or below the existing

index method. Some people prefer to sort their methods alphabetically, while others

group their methods by purpose; the decision is entirely up to you and has no impact

on the functionality of your application.

The code that we’ve added to our newmethod simply instantiates a new Story object

and stores it in the @story instance variable. As it’s an instance variable, @story

will now be available to our view and thus to the form_for helper.

Reloading the page in your browser should now yield Figure 6.2 … yet another error!

162 Simply Rails 2

Figure 6.2. Even after implementing the “new” action, we still get an error on our submission form

As I said in the section above, one benefit of using the form_for helper to set up

our form is that it automatically figures out where to submit the form. Now it’s

showing that there’s clearly something missing from our equation here. To be precise,

we haven’t declared Story as a resource anywhere. So let’s do that now.

Resources in Rails
Although the creators of Rails would certainly love to make it so that every model

you generate automatically ends up being declared a resource, we’re not quite there

yet—and, admittedly, it doesn’t make sense to make it so in every case.

Resources in Rails are declared in the file responsible for the Routing Configuration,

config/routes.rb. In Rails, the routing module is responsible for mapping URLs to

controllers and actions. Take the following URL for example:

/stories/new

The routing module maps this URL to the new action of StoriesController. It does

this due to the default routing configuration we generated way back when we first

used the rails command. Here are the contents of the routes.rb file with its com­

ments removed:

http:config/routes.rb

Helpers, Forms, and Layouts 163

ActionController::Routing::Routes.draw do |map|

 map.connect ':controller/:action/:id'

 map.connect ':controller/:action/:id.:format'

end

As outlined above, the first part of the URL is mapped to the controller and the

second part is mapped to the action.

This being the default configuration, mapping resources is a little different. Resources

always consume the second spot in the URL—we’re talking about resource-centric

development, after all. So for any given resource (the first of which we’ll declare in

just a moment), the paths along with their respective HTTP verbs outlined in

Table 6.1 are recognized.

Table 6.1. The Mapping of URLs to Controller Actions

ActionURL

indexGET /stories

newGET /stories/new

createPOST /stories

showGET /stories/1

editGET /stories/1/edit

updatePUT /stories/1

destroyDELETE /stories/1

When you’re looking at the table, the actions can be divided into two groups: actions

that operate on a single story (show, edit, update, and destroy) and those that don’t

(index, new, and create). The actions that do operate on a single, specific story use

the second part of the URL to identify the resource they are operating on with its

numeric id.

That leaves us with seven different ways to interact with stories. But are we supposed

to define all those by hand for every resource our application is going to have? Rails

wouldn’t be Rails if we had to jump through all those hoops. So let’s take a look at

the magic that’s behind map.resources.

164 Simply Rails 2

Mapping a New Resource

We can discuss the theory of resources in Rails until we’re blue in the face, but

nothing gets the brain working like actually doing it for yourself. In the con-

fig/routes.rb file, simply add the following line:

03-routes.rb (excerpt)

ActionController::Routing::Routes.draw do |map|
map.resources :stories

 map.connect ':controller/:action/:id'
 map.connect ':controller/:action/:id.:format'
end

This one line of code will give us all sorts of exciting features. Among them is a

working—albeit unstyled—story submission form we can see upon reloading the

page in the browser. The result is shown in Figure 6.3. We’ll explore the remainder

of those features in the upcoming chapters.

Figure 6.3. Our unstyled story submission form

Analyzing the HTML
The time has come to find out what kind of HTML the Rails helpers have generated.

If you check the HTML for this page (using your browser’s View Source option) you

should see something that looks like this:

Helpers, Forms, and Layouts 165

<form action="/stories" class="new_story" id="new_story"

 method="post"><div style="margin:0;padding:0"><input

name="authenticity_token" type="hidden"

value="ecf4a9e81b187d3a6d70fc065a7e17f93e5b2dec" /></div>

<p>

 name:

 <input id="story_name" name="story[name]" size="30"

 type="text" />

</p>

<p>

 link:

 <input id="story_link" name="story[link]" size="30"

 type="text" />

</p>

<p>

 <input name="commit" type="submit"

 value="Save changes" />

</p>

</form>

This markup is basically what we would expect: two text fields and a Submit button

have been created for us, and everything has been wrapped up in a form element.

Rails has also figured out the correct target URL (the action attribute of the form

element) to create a new Story object according to the RESTful URL mapping out­

lined in the last section. Submission of the form will lead us to the create action

of StoriesController, which we have yet to implement.

What’s also of note is that strange <div> element in the markup, which has an

equally strange hidden <input> element named authenticity_token inside it. This

is one aspect of Rails’ attempt to counteract so-called Cross-Site-Request-Forgery

(CSRF) attacks, ensuring that submitted forms originate at the current web applica­

tion, as opposed to a third party. The content authenticity_token is based on the

user’s session and is verified against a token set for the application (in config/envir­

onment.rb, if you’re curious). If there is a mismatch, an error is raised and the form

submission is discarded.

Okay, so our markup looks fine. But if you were to submit the form in its current

state, you wouldn’t be exactly thrilled with the results: we’d just receive another

error, because the create method in StoriesController does not yet exist. Let’s

add some code to save the story data to the database.

http:onment.rb

166 Simply Rails 2

Saving Data to the Database
We know from when we made Story a resource, implementing the URL mapping,

that the submission of the form will POST the entered form data to the create action

of StoriesController, which we’ll create now. Add a method to the app/control­

lers/stories_controller.rb file like this:

04-stories_controller.rb (excerpt)

def create
 @story = Story.new(params[:story])
 @story.save
end

The params object in the first line of our method is a hash that contains all of the

content that the user submitted; you can revisit hashes in Chapter 3 if you’d like a

refresher.

All of the form data passed to Rails will be added to the params hash. If you look

once more at the HTML source of the submission form, you’ll notice that the input

element name attributes all have a story[] prefix. This prefix groups all of the

submitted form fields for the story we’re creating in params[:story].

We can then reference individual elements within the hash by passing the name of

the attribute (as a symbol) to the hash. For example, the value of the name attribute

could be accessed as params[:story][:name]. You get the idea.

The point of all this is that user data submitted via the form can be assigned to an

object very easily. All we need to do is pass the params[:story] hash to the

Story.new method, and we have ourselves a populated @story object.

Not coincidentally, this is exactly what we’ve done in the first line of our method:

 @story = Story.new(params[:story])

The newly created @story object is then sent the savemethod to store it permanently

into our database.

Helpers, Forms, and Layouts 167

Now, before you go ahead and enter some data into your form and click Save changes,

let’s pause for a second and think about what Rails would do if you did submit the

form. Can you hazard a guess?

If we were to try and submit the form in its current stage, we’d end up with yet an­

other error screen stating that Rails was unable to locate the create.html.erb

template.

After Rails has finished processing the code in the controller action, it will (unless

instructed otherwise) go ahead and try to render a template named after the controller

and action, which, in this case, would be app/views/stories/create.html.erb.

But we don’t actually want to render anything. We have saved the object to the

database and can return to the random story selector that we created in Chapter 5,

located within the index action.

Redirecting with URL helpers
If we don’t want to render a template after an action has finished, preferring to go

somewhere else instead, we need to use the redirect_to method. This method

takes a single argument, namely the destination of the redirection. What is the des­

tination of the redirection? Well, we know we’ve accessed the story randomizer at

http://localhost:3000/stories, so could we simply redirect there with the fol­

lowing command?

redirect_to 'http://localhost:3000/stories'

We certainly could. But since it’s likely that we need to use these kinds of URLs all

over the place, it seems a little tedious to go down that path. And, after all, form_for

was able to figure out paths on its own, why wouldn’t redirect_to, too?

Albeit a lot of magic and mind-reading on the part of Rails, it turns out that we do

need to tell Rails what we want it to do in this case. But to ease our pain, there are

quite a few methods—known as URL helpers—provided free from the map.resources

call in the config/routes.rb file that we used to define our stories as resources.

Table 6.2 shows a list of URL helpers that are being defined for every Story resource.

http://localhost:3000/stories
'http://localhost:3000/stories'

168 Simply Rails 2

Table 6.2. URL Helpers for the Story Resource

/storiesstories_path

/stories/newnew_story_path

/stories/1story_path(@story)

/stories/1/editedit_story_path(@story)

The helpers use singular or plural naming conventions depending on whether

they’re dealing with a specific story (singular) or no specific story (plural).

You may wonder why there’s no such thing as a destroy_story_path(@story) or

create_stories_path. Well, these don’t exist because the actual URL generated

from those would not be any different from story_path(@story) and stories_path,

respectively. Remember that they just differ by the actual HTTP verb used to access

the resource. We’ll learn in the forthcoming chapters how to specify a different

HTTP verb.

Now that we know about the URL helpers available to us, it’s easy to spot the

helper we need to use for our redirect_to call to redirect the browser back to the

story index: stories_path. The new create method should now look as follows:

05-stories_controller.rb (excerpt)

def create
 @story = Story.new(params[:story])
 @story.save
redirect_to stories_path

end

Submitting the form now—after filling in a proper name and story link, of

course!—should store your story submission and redirect you back to the random

story selector. That’s good! However, our application does look a little sparse. Let’s

make it pretty.

Creating a Layout
In Rails, a layout is a specialized form of a view template. Layouts allow page ele­

ments that are repeated globally across a site to be applied to every view. Examples

Helpers, Forms, and Layouts 169

of such elements include HTML headers and footers, CSS files, and JavaScript in­

cludes.

Layouts can also be applied at the controller level. This ability can be useful if, for

example, you want to apply different layouts to a page depending on whether it’s

being viewed by an administrator or a regular user.

We’ll begin our foray into layouts by creating a global layout for the entire applica­

tion.

Establishing Structure
Layouts should be stored in the app/views/layouts folder. A layout template can ba­

sically be given any name, as long as the file ends in .html.erb. If the filename is

application.html.erb, Rails will adopt this as the default layout.

Let’s take advantage of that convention, and create a file named application.html.erb

in the app/views/layouts folder, populating it with this code:

06-application.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en" lang="en">

 <head>
 <meta http-equiv="Content-type"

content="text/html; charset=utf-8" />
 <title>Shovell</title>
<%= stylesheet_link_tag 'style' %>

 </head>
 <body>
 <div id="content">
 <h1>Shovell</h1>
<%= yield %>

 </div>
 </body>
</html>

There’s nothing too radical going on here—we’ve created a regular XHTML docu­

ment, and it includes a proper DOCTYPE declaration. However, a couple of ERb calls

here warrant some explanation.

170 Simply Rails 2

<%= stylesheet_link_tag 'style' %>

This code generates the HTML that includes an external style sheet in the page.

By passing the string style, we ensure that the <link> tag that’s generated will

point to the URL /stylesheets/style.css. We’ll create this style sheet in a minute.

Help at Hand

Rails ships with a number of helpers that are similar to

stylesheet_link_tag, in that they make generating HTML pages easy.

They mostly save tedious typing—and thus potential errors. Similar helpers

include image_tag and javascript_include_tag.

<%= yield %>

This line is the point at which the content for our specific view is displayed.

Now, telling our layout to “yield” might not seem the most intuitive thing to

do here, but it does actually make sense. Let me explain.

Remember that our layout will be used by many different view templates, each

of which is responsible for displaying the output of a specific action. When the

layout receives the command yield, control is handed to the actual view tem­

plate being rendered—that is, the layout yields to the view template. Once that

template has been rendered, control returns to the layout, and rendering is re­

sumed for the rest of the page.

Since we’ve linked a style sheet, we’d better make use of it.

Adding Some Style
We’ll use CSS to make our page look good.

Easy CSS

Don’t worry if CSS is not your forte. All you need to do for this project is type out

the CSS rules exactly as you see them—or, even better, simply copy and paste

them from the code archive. If you’re interested in improving your CSS skills, a

good place to start is with Rachel Andrew and Dan Shafer’s book, HTML Utopia:

Designing Without Tables Using CSS. 1

1 http://www.sitepoint.com/books/css2/

http://www.sitepoint.com/books/css2/
http://www.sitepoint.com/books/css2/
http://www.sitepoint.com/books/css2/

Helpers, Forms, and Layouts 171

To apply a style sheet to your application, create a file called style.css in the pub­

lic/stylesheets folder, and drop in the following code:

06-style.css

body {
 background-color: #666;
 margin: 15px 25px;
 font-family: Helvetica, Arial, sans-serif;
}
#content {
 background-color: #fff;
 border: 10px solid #ccc;
 padding: 10px 10px 20px 10px;
}

Reload the page in your browser. You should see a slightly prettier version of the

form, as shown in Figure 6.4.

Figure 6.4. The new story form with a layout

Excellent! We now have a form that functions correctly, is well structured under

the hood, and looks good on the outside.

172 Simply Rails 2

However, our app doesn’t deliver any feedback to the user to let them know

whether or not a story submission was successful. Enter: the flash!

Enabling User Feedback with the Flash
Yes, you read that correctly: flash.

And no, we’re not going to be switching to Adobe’s Flash technology to provide

submission feedback. “Flash” also happens to be the name for the internal storage

container (actually a kind of hash) that Rails uses for temporary data. In this section,

we’ll use the flash to pass temporary objects between actions. We’ll then apply some

validation to the data that’s entered.

Adding to the Flash
When I say that the flash is used to store temporary items, I’m not talking about

items that exist in memory and aren’t saved to the database. Items stored in the

flash exist for the duration of exactly one action, and then they’re gone.

What good is that? Well, using the flash allows us the convenience of communicating

information between successive actions without having to save information in the

user’s browser or the database. The flash is well positioned to store short status

messages, such as notifications that inform the user whether or not a form submission

or login attempt was successful.

Flash content is usually populated from within a controller action. Using the flash

is very easy: to place a message in the flash, simply pass it an identifying symbol

(the flash area) and a corresponding message. Here’s an example:

 flash[:error] = 'Login unsuccessful.'

In our story-sharing application, we want to put a message into the flash immediately

after the story is saved, to let the user know that the submission was successful.

Add the following line to the create action of your StoriesController:

08-stories_controller.rb (excerpt)

def create
 @story = Story.new(params[:story])
 @story.save

Helpers, Forms, and Layouts 173

flash[:notice] = 'Story submission succeeded'

 redirect_to stories_path

end

Conventions for Flash Areas

In general, Rails applications use flash areas named after common UNIX logging

levels to indicate the level of severity of a message. The common area names are

:notice, :warning, and :error.

In this case, the message is not critical, so we’ve chosen to use :notice. However,

the name of the flash area is entirely up to you.

Retrieving Data from the Flash
To retrieve contents from the flash (usually done in the successive action), just access

the flash from a view in the same way that you would access any other hash in

Rails. You don’t need to explicitly populate it in the controller, nor do you have to

purge the Flash once the view has been rendered—Rails takes care of this for you.

Since flash content is universally applicable, we’ll change our layout file (which is

located at app/views/layouts/application.html.erb) so that it renders a notification box

as long as there is content available to render. Modify your layout file as follows:

09-application.html.erb (excerpt)

<div id="content">
 <h1>Shovell</h1>
<% unless flash[:notice].blank? %>
<div id="notification"><%= flash[:notice] %></div>

<% end %>
 <%= yield %>
</div>

The condition that we’ve added here checks whether the flash[:notice] variable

is blank; if not, the code renders a simple HTML div element to which an id is at­

tached. Rails considers an object to be blank if it’s either nil or an empty string.

Before we switch to the browser to test this addition, let’s add a few rules to our

style sheet to display our notification:

174 Simply Rails 2

09-style.css (excerpt)

#notification {
 border: 5px solid #9c9;
 background-color: #cfc;
 padding: 5px;
 margin: 10px 0;
}

If you submit another story now, you should see a nice green box on the subsequent

page informing you that the submission succeeded, as shown in Figure 6.5. If you’re

curious, reload the landing page to make sure the contents of the flash disappear.

Figure 6.5. Providing feedback after story submission

However, our form submission process is still flawed: it’s possible for a user to

submit stories without entering a name. Or a link. Or both!

Applying Validations
To ensure that all the stories submitted to Shovell contain both a name and a link

before they’re saved, we’ll make use of the ActiveRecord functionality called val­

idations.

Validations come in a variety of flavors: the simplest flavor says, “Check that this

attribute (or form input) is not empty.” A more complex validation, for example,

Helpers, Forms, and Layouts 175

might be, “Make sure this attribute (or form input) matches the following regular

expression.”2 There are varying degrees of complexity in between. A more complex

validation might be used, for example, to validate an email address.

Validations are defined in the model. This ensures that the validation is always

applied, and, therefore, that an object is always valid, before its data is saved to the

database.

Let’s look at a simple validation. To add validations to our Story model, edit the

model class in app/models/story.rb so that it looks like this:

11-story.rb (excerpt)

class Story < ActiveRecord::Base
validates_presence_of :name, :link

end

You’ll notice that the line we’ve added here is fairly verbose, so it’s quite readable

by humans. This line makes sure that the name and link attributes have a value

before the model is saved.

Tweaking the Redirection Logic
We want to ensure that the user will only be redirected to the story list if the model

passes its validation checks. To do so, we need to modify the create action in our

controller as follows:

12-stories_controller.rb (excerpt)

def create
 @story = Story.new(params[:story])
if @story.save
 flash[:notice] = "Story submission succeeded"
 redirect_to stories_path
else

2 A regular expression is a string of characters that can be used to match another string of characters.

The syntax of regular expressions can be confusing, with particularly long expressions looking much

like random characters to a newcomer to the syntax. One of the most common uses of regular expressions

is validating whether or not an email address is in the correct format.

176 Simply Rails 2

render :action => 'new'

end

end

As you can see, we’ve added an if clause so that it checks to see whether @story.save

returns true.

The validations we defined will be called before the save method writes the object

to the database. If the validations fail, this method will return false—the object will

not be saved, and the user will not be redirected.

It’s quite common to use Ruby statements directly within conditions, as we’ve done

with the save method here. In general, many of the methods provided by Rails core

classes return true or false, which makes them an excellent choice for use in condi­

tions.

In the else part we instruct the controller to rerender the template associated with

the new action, which is our story submission form. This enables the user to correct

his or her submission and resubmit without having to reenter the form values. Please

note that the render call does not execute any of the controller code associated with

the new action.

Fantastic! Our logic for processing the form is sound. If you were to try to submit

a blank name or link now, our app would not allow the object to be saved, the redir­

ect would not occur and the form would be rerendered. However, we still need to

give the user some guidance for correcting any errors that result from a failed valid­

ation.

Improving the User Experience
Looking at the generated HTML of the rerendered form gives us a hint as to how

we might implement some additional feedback for the user when a validation error

occurs:

<div class="fieldWithErrors">

 <input id="story_name" name="story[name]" size="30" type="text"

value="" />

</div>

mailto:@story.save

Helpers, Forms, and Layouts 177

As you can see, using the Rails form_for helper has paid off. It has wrapped our

text field in a div element, and assigned it a class called fieldWithErrors. We

could style this div with a red border, for example, to indicate that this field threw

an error. In fact, let’s do just that. Add the following rule to the style.css file:

13-style.css (excerpt)

.fieldWithErrors {
 border: 5px solid #f66;
}

The helper’s other neat trick is that it populates each field with values that the user

entered, as Figure 6.6 shows.

It’s also good practice to tell our users what exactly is wrong with a particular

field—further down the road, we may want to add a validation to our model to ensure

that each URL is submitted only once.

Add the following line to the top of the new.html.erb template:

14-new.html.erb (excerpt)

<%= error_messages_for 'story' %>

Now, if a user submits the form without entering content into every field, the browser

will display:

■ a useful error message that indicates how many fields are blank
■ some textual hints as to the nature of the error for each field
■ a red border that clearly highlights which fields need attention

See Figure 6.6 for an example.

178 Simply Rails 2

Figure 6.6. Story submission form with validation output

A pretty functional form submission process, no? And it doesn’t look too shabby,

either.

However, before we begin loading our application with additional features, we

should add some unit and functional test coverage, to make sure that future modi­

fications don’t break any of our existing functionality.

Testing the Form
Getting into the habit of writing tests for newly added code is more than just a good

idea—it may save your hide in the future!

As I’ve mentioned before, by writing tests for all of your code, you can evolve a

suite of automated testing facilities as your application evolves. This suite can then

be run periodically or on demand to reveal errors in your application.

Helpers, Forms, and Layouts 179

You can take a couple of approaches to creating a test suite for your application.

One of them—the more radical, in fact—is referred to as test-driven development

(TDD). When adhering to TDD principles, you first write a test, make sure it fails,

then fill in the code that causes the test to pass. This approach works best when

you’ve had some experience with the programming language you’re writing your

application in.

The opposite approach is to write the code first, and make sure it passes you (the

human testing engine). Once this preliminary test has been passed, you write some

automated testing code, then run your application against the automated test. We’ll

be using this second approach for the rest of the development of our story-sharing

application.

A Rails test suite can be split into three fundamental parts:

unit tests

Unit tests cover model-level functionality, which generally encompasses an

application’s core business logic. Unit tests can test validations, associations

(which we’ll be covering in Chapter 7), and generic methods that are attached

to models.

functional tests

Functional tests in Rails cover controller-level functionality and the accompa­

nying views. A functional test can be quite specific: ensuring, for example, that

a certain HTML element is present in a view, that a variable is populated

properly, or that the proper redirection takes place after a form has been submit­

ted.

integration tests

Integration testing goes beyond the relatively isolated approaches of functional

and unit testing. An integration test allows you to test complete stages of user

interaction with your application. The registration of a new user, and the story

submission process as a whole, are good candidates for integration testing.

In this chapter, we’ll look at functional and unit testing; we’ll cover integration

testing in Chapter 11.

Generally speaking, test cases in Rails exist as classes that descend from

ActiveSupport::TestCase. However, when we generated our models and controllers

180 Simply Rails 2

in Chapter 5, the generate script created some skeleton files for us. These are located

in the test folder, which is where all of the files that make up our testing suite reside.

Testing the Model
While our Story model doesn’t have a great deal of functionality yet, it does have

some validations, and we should definitely make sure that they operate as expected.

We’ll add them to the skeleton test file, then run the test to confirm that our valida­

tions are behaving themselves!

Analyzing the Skeleton File
The skeleton test file for our Story model is located at test/unit/story_test.rb. When

you open it, you should see the following code:

15-story_test.rb (excerpt)

require File.dirname(__FILE__) + '/../test_helper'

class StoryTest < ActiveSupport::TestCase
 # Replace this with your real tests.
 def test_truth
 assert true

 end
end

That first line aside, what we have here is a basic class definition by the name of

StoryTest. The name of this class, which was created when the file was generated,

suggests that its purpose is for testing our Story model—and so it is.

The require command at the top of the file is a simple example of one file gaining

access to the functionality of another file; the external file in such arrangements is

known as an include file. By including this file, we gain access to a large amount

of testing-related functionality.

Of course, Rails includes other files all the time, but we don’t see dozens of require

commands littered throughout our code. Why not? The Rails conventions allow it

to deduce what is needed, when it is needed, and where it can be found. And this

is another reason why following Rails conventions is so important.

http:test/unit/story_test.rb

Helpers, Forms, and Layouts 181

Using Assertions
Code is tested in Rails using assertions. Assertions are tiny functions that confirm

that something is in a certain state. A simple assertion may just compare two values

to make sure that they’re identical. A more complex assertion may match a value

against a regular expression, or scan an HTML template for the presence of a certain

HTML element. We’ll look at various types of assertions in this section.

Once they have been written, assertions are grouped into tests. A test is an instance

method that is prefixed with test_. An example of a test is the test_truth method

in the previous code listing. These tests are executed one by one via the rake com­

mand that we looked at in Chapter 5. If one of the assertions in a test fails, the test

is immediately aborted and the test suite moves on to the next one.

Now that we know what assertions are, and how they work, let’s write one!

Writing a Unit Test
The test_truth method in our unit test is just a stub that was created by the gener­

ate script. Let’s replace it with a real test:

16-story_test.rb (excerpt)

def test_should_not_be_valid_without_name
 s = Story.create(:name => nil, :link =>

➥ 'http://www.testsubmission.com/')
 assert s.errors.on(:name)
end

We’ve named our method test_should_not_be_valid_without_name. As you may

have guessed, this method will test the validation of the name. Let’s examine each

line within the method:

 s = Story.create(:name => nil, :link =>

➥ 'http://www.testsubmission.com/')

This line creates a new Story object—a task that we might perform in a regular

controller action. Note, however, that this time we’ve purposely left the required

name attribute blank (nil). As the create method will attempt to save the new object

'http://www.testsubmission.com/')

182 Simply Rails 2

immediately, the validations that we defined in the model will be checked at the

same time.

At this point, we can check the result of the validation by reading the errors attrib­

ute of our newly created object.

 assert s.errors.on(:name)

Every model object in Rails has an errors attribute. This attribute contains the

results of any validations that have been applied to it—if the validation failed, errors

will exist “on” that attribute. In this case, we deliberately left the name attribute

empty; passing the symbol :name to errors.on—to test for errors on the name attrib­

ute—should therefore return true, and our assert statement confirms exactly that.

The name attribute is not the only required attribute for our Storymodel, though—the

link attribute must be assigned a value before a story can be saved. We’ve already

added one test, so adding a second should be fairly straightforward. Let’s add a test

that covers the validation of the link attribute:

17-story_test.rb (excerpt)

def test_should_be_valid_without_link
 s = Story.create(:name => 'My test submission', :link => nil)
 assert s.errors.on(:link)
end

Easy, huh?

Lastly, to complete our first batch of tests, we’ll add a test that checks whether or

not a new Story object can be successfully created and saved when being instantiated

with all the required attributes, thereby passing all of our validations:

Helpers, Forms, and Layouts 183

18-story_test.rb (excerpt)

def test_should_create_story
 s = Story.create(
 :name => 'My test submission',
 :link => 'http://www.testsubmission.com/')

 assert s.valid?
end

In this test, a new Story object is created, and all mandatory attributes are assigned

a value. The assertion then confirms that the created object has indeed passed all

validations by calling its valid? method—this method returns true if no validation

errors are present.

Running a Unit Test
With this testing code in place, let’s run our small unit test suite. From the applica­

tions root folder, execute the following command:

$ rake test:units

This command will execute all the test cases located in the test/unit folder one by

one, and alert us to any assertions that fail. The output of a successful test execution

should look something like Figure 6.7.

As you can see, rake gives us a nice summary of our test execution. The results

suggest that a total of three test cases and three assertions were executed, which is

exactly what our test suite contains at the moment.

You’ll notice some dots between the Started and the Finished lines of the test suite

output: one dot for each test passed. Whenever an assertion fails, an uppercase F

will be displayed, and if one of your tests contains an error, an uppercase E will be

displayed, followed by details of the error that occurred.

184 Simply Rails 2

Figure 6.7. Running a successful suite of unit tests

Instead of just boldly assuming that our tests work correctly, let’s change a test so

that we know it’s going to fail. In our test_should_create_story method, modify

the last line so that its output is reversed:

 assert ! s.valid?

Save the file and run the unit testing suite again:

$ rake test:units

Your output should display an F, indicating test failure, as shown in Figure 6.8. A

description of the assertions that may have caused the test to fail is also displayed.

Armed with this information, locating and fixing an error is easy. We’re provided

with the name of the test that failed (test_should_create_story), the test case to

which it belongs (StoryTest), and the line on which it failed (line 7). Thus, the

(admittedly forged) culprit is easily located and fixed.

Helpers, Forms, and Layouts 185

Figure 6.8. Unit testing with a failed test

For now, undo the change you made to the last line of test_should_create_story,

so that the test will again pass:

 assert s.valid?

That’s it—we’ve tested the model. We’ll add more tests in later chapters as we add

more functionality to the model.

Testing the Controller
The functional testing of controllers is, at first glance, not very different from testing

models—it’s just a different part of the MVC stack. However, there is some extra

housekeeping involved in setting up the environment properly.

Analyzing the Skeleton File
Once again, a skeleton functional test was created as a result of our generating the

StoriesController. This skeleton file resides in test/functional/stories_control­

ler_test.rb:

186 Simply Rails 2

19-stories_controller_test.rb (excerpt)

require File.dirname(__FILE__) + '/../test_helper'

class StoriesControllerTest < ActionController::TestCase
 # Replace this with your real tests.
 def test_truth
 assert true

 end
end

On first inspection, this looks similar to the StoryTest class that we saw in the

previous section. We also have a test_truth dummy test, which we’ll overwrite

once again.

Writing a Functional Test
To add the first test for our StoriesController, replace the test_truth method

in the skeleton functional test file with the following code:

20-stories_controller_test.rb (excerpt)

def test_should_show_index
 get :index
 assert_response :success
 assert_template 'index'
 assert_not_nil assigns(:story)
end

Let’s look at each line in this method.

def test_should_show_index

As you may have deduced from the name of the method, what we’re checking here

is that the index action is correctly displayed in the user’s browser when the /index

path is requested.

 get :index

Helpers, Forms, and Layouts 187

This line simulates a user requesting the index action of the StoriesController

class. It uses the HTTP request method GET; similarly, the methods post, put, and

delete exist for testing actions requiring that respective HTTP verb.

 assert_response :success

The assert_response assertion checks that the HTTP response code we receive is

the code that we expect.3

 assert_template 'index'

By invoking assert_template, we ensure that the request we made is actually

rendered with the template that we expect, not a template with a different name.

Shortcuts for Cryptic HTTP Codes

HTTP codes are numeric, so sometimes they’re hard to remember. As a result,

Rails has implemented a few aliases for the more common codes. In this example

we’ve used the :success symbol, which maps internally to the 200 OK response

code that is returned when a page request is successful. Other mappings that can

be used with the assert_response function include :redirect for HTTP re­

direct headers and :missing for the all-too-common “404 Not Found” error

that occurs when a request is made for a file that doesn’t exist.

 assert_not_nil assigns(:story)

This final assertion is not as intuitive as the others, but it’s actually quite straight­

forward. assert_not_nil tests whether or not the instance variable @story is set

to nil (that’s the easy bit). The assigns(variable_name) construct makes available

to the functional test all of the instance variables that have been declared within

the controller’s actions. The @story object is one such variable, so passing the

:story symbol to the test allows the @story variable to be used as part of the test.

We also need some fixtures for this test. As we learned in Chapter 5, fixtures are

dummy model objects that provide a consistent data set against which our tests can

3 A complete list of HTTP response codes can be found at

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

188 Simply Rails 2

run. Fixtures are model based, so there’s a fixture file for every model class in our

application. By default, Rails makes all YAML files stored in test/fixtures/ available

to our tests. This means that we don’t need to specify explicitly which fixtures we

want to load for each test.

Running a Functional Test
Now that we’ve created our test case, we can invoke the functional test suite. Once

again, we turn to the trusty rake tool:

$ rake test:functionals

The output that results from the successful execution of our test suite is shown in

Figure 6.9.

Figure 6.9. Running a successful functional test suite

Writing More Functional Tests
There are two actions for which we haven’t yet written a test: the new and create

actions. We’ll want to create a few different tests for these actions. Let’s do that

now.

Helpers, Forms, and Layouts 189

For the purpose of testing the inner workings of our new action in GET mode, we’ll

use a test case that we’ll name test_should_show_new. Add the following method

below the test_should_show_index test that we created previously:

21-stories_controller_test.rb (excerpt)

def test_should_show_new
 get :new
 assert_response :success
 assert_template 'new'
 assert_not_nil assigns(:story)
end

This is quite straightforward. Apart from a few textual differences, this test is almost

identical to that for test_should_show_index. However, our work isn’t done yet!

There’s a form element in the new template, and we should certainly test that it ap­

pears correctly. Here’s another test to do just that:

22-stories_controller_test.rb (excerpt)

def test_should_show_new_form
 get :new
 assert_select 'form p', :count => 3
end

The assert_select helper function that we’ve used here is a very flexible and

powerful tool for verifying that a certain HTML element is present in the document

that’s returned from a request. assert_select can even verify the hierarchy of the

HTML element, regardless of how deeply it is nested. It can also test the element’s

attributes: for example, the value of its class or id. In fact, it’s so flexible that we

could potentially devote an entire chapter to its features alone.4

But now we’re getting sidetracked. Back to this line! assert_select checks for the

existence of one form element in which three p elements are nested; the count is

supplied using the :count argument. These three paragraphs contain the fields that

comprise our story submission form.

4 An assert_select cheat sheet is available at the web site of Assaf Arkin, the tool’s author:

http://labnotes.org/svn/public/ruby/rails_plugins/assert_select/cheat/assert_select.html

http://labnotes.org/svn/public/ruby/rails_plugins/assert_select/cheat/assert_select.html

190 Simply Rails 2

How do we specify an element in this hierarchy? Easy: by following the simple

rules of CSS selectors.

In this example, we want to reference a paragraph element that resides within a

form element. Now, if we were writing a CSS rule to style these paragraph elements

to be bold, it would look like this:

form p {

 font-weight: bold;

}

In the same way that we reference paragraphs in CSS, the parameter that we use

with assert_select is simply 'form p'. We’ll look at a few more of the CSS selector

features of assert_select in the tests we write in later chapters.

Lastly, to test the posting of a new story, we’ll write a few more short tests for the

create action:

23-stories_controller_test.rb (excerpt)

def test_should_add_story
 post :create, :story => {

 :name => 'test story',
 :link => 'http://www.test.com/'

 }
 assert ! assigns(:story).new_record?
 assert_redirected_to stories_path
 assert_not_nil flash[:notice]
end

Let’s break this test down line by line.

 post :create, :story => {

 :name => 'test story',

 :link => 'http://www.test.com/'

 }

As I mentioned earlier in this chapter, post is another way to invoke an HTTP request

programmatically from a test. post takes a few parameters—in this case, we’re

simulating the submission of a story. To do this, we need to pass a hash that contains

'http://www.test.com/'

Helpers, Forms, and Layouts 191

values for the required attributes of a story: symbols representing the name and link

attributes.

Immediately after our post call has been issued, the following line checks the results:

 assert ! assigns(:story).new_record?

Here, we’re using the new_record? method of the @story instance variable to confirm

that the record has actually been saved to the database. Since we want the assertion

to tell us if it hasn’t been saved at this point, we use the exclamation mark (!) to

reverse the return value of the new_record? call.

When a story submission has been successful, our application issues a redirection.

We can test that this redirection occurs using assert_redirected_to:

 assert_redirected_to stories_path

Lastly, we assert that the contents of the notice flash area is not nil:

 assert_not_nil flash[:notice]

Whew! Our rapidly expanding test suite is evolving to the point where we can be

very confident that the story submission process is functioning correctly.

The final test case we’ll add covers the situation in which posting a new story fails.

We’ll cause the submission to fail by omitting one of the required fields:

24-stories_controller_test.rb (excerpt)

def test_should_reject_missing_story_attribute
 post :create, :story => { :name => 'story without a link' }
 assert assigns(:story).errors.on(:link)
end

In the first line of this code, we attempt to post a story without a link:

 post :new, :story => { :name => 'story without a link' }

192 Simply Rails 2

After this submission attempt, we use the errors attribute to verify that there’s an

error condition on the link attribute, just as we did in the unit test earlier in the

chapter:

 assert assigns(:story).errors.on(:link)

That’s it! We’ve written all the tests we need for the time being. Now, let’s run the

suite.

Running the Complete Test Suite
Now that we have these additional tests in place, we’ll need to run all of our tests

again. However, this time, we’ll use a slightly different approach: instead of invoking

our unit and functional tests separately, we’ll use a rake task to run these test suites

successively:

$ rake test

The output of a successful test run should look like Figure 6.10.

Congratulations! Not only have you created a full test suite, but, on running it,

you’ve found that your application is error-free—a discovery that should earn even

the most seasoned developer a self-pat on the back. To finish up, let’s turn our

thoughts to the application’s performance as we inspect the log files generated by

ActionPack.

Helpers, Forms, and Layouts 193

Figure 6.10. Running the complete test suite

Revisiting the Logs
We took a brief look at the extensive logging functionality that ActiveRecord

provides in the section called “Where’s the SQL?” in Chapter 5—this gave us a

glimpse into the kind of automation, in terms of SQL generation, that happens behind

the scenes in Rails.

If you liked what you saw back then, you’ll be glad to learn that ActionPack is also

a prolific logger. An example of some of the entries that ActionPack wrote to the

development log file are shown in Figure 6.11.

194 Simply Rails 2

Figure 6.11. Contents of the development log file showing ActionPack entries

As you look at these entries, you’ll notice a full record of your activities within the

application has been logged, complete with SQL statements, page redirections, page

requests, templates rendered, and more.

The level of detail in Rails’s log files is of real benefit when you’re hunting down

a problem with your code—the logs provide real insight into what’s actually hap­

pening as a page is requested. The same level of detail is captured for unit and

functional tests in the test log file, which is located in log/test.log.

The timing values that are written to the log file are particularly interesting. Consider

the following snippet:

Completed in 0.00970 (103 reqs/sec) | Rendering: 0.00321 (33%) |

DB: 0.00115 (11%) | 200 OK [http://localhost/stories]

From this log entry, we can conclude that:

[http://localhost/stories]

Helpers, Forms, and Layouts 195

■	 11% of the time it took Rails to pump out this page was spent talking to the

database

■	 only 33% of the total time was spent in actually assembling the page

While 33% might sound like a large portion of the total time—which it is—by

looking at the actual number of seconds involved in the process, we see that render­

ing the page took less than 0.01 seconds.

Rails also provides us with a rough estimate of how many instances of this particular

page could potentially be served per second (in this case, it estimates 103 page re­

quests per second). Note, though, that this is a very rough estimate; we’re running

our app in the development environment, which is certainly not optimized for

speed. The application is also unlikely to be located on the same server as the one

that will be running the application in production. As such, the real numbers for

this statistic may vary greatly.

We won’t dig any deeper into the logs, but be aware that it’s worth keeping an eye

on your log files. Incidentally, this is the same information that has been flying past

in the terminal window you launched your web server from, too. This is another

way that you can check your application’s log entries in real time, although you’ll

probably find using a text editor more practical.

We’ll revisit the log files once more when we reach Chapter 11.

Summary
We certainly increased the functionality of our application in this chapter; we even

made it look a little prettier. We used the Rails form helpers to create a fully func­

tional web interface for submitting stories in a RESTful way, and we added a global

layout to our application, complete with style sheets.

Along the way, we looked briefly at the flash, Rails’s short-term memory container

that can be used to pass messages between successive actions. We also added some

validations to our Story model, to make sure that our story submissions adhere to

our own high standards—or that, at the very least, that each story has a title and a

URL!

196 Simply Rails 2

Finally, we wrote our first unit and functional test cases, which we used to automate

the testing of our models, controllers, and views. We also took a scroll through the

Rails log files to see what kind of logging the ActionPack module performs, and

how those log entries are useful when we debug our application.

In the next chapter, we’ll add the much-anticipated voting feature to our story-

sharing application—and we’ll do it using cutting-edge Ajax technology, spiced up

with some Web 2.0 visual effects. Yes, it’s going to be one good-looking chapter!

On with the show!

Chapter7
Ajax and Web 2.0
The success of a social bookmarking or content-sharing application doesn’t rest

solely on the submission of stories by users; there must also be some way for site

visitors to gain an idea of the value of each content item.

Now, in the world of social bookmarking, popular opinion rules. That’s why, on

our Shovell site, the value of each story will be gauged by its popularity as indicated

by the number of votes the story receives from Shovell users.

In this chapter, we’re going to expand the feature set of our story-sharing application

to include this crucial voting functionality. And there’s no better way to do so than

with the technology behind one of Web 2.0’s biggest buzzwords: Ajax! We’ll cover

Ajax and the JavaScript libraries that come with Rails, Prototype and script.aculo.us,

in the coming pages.

Generating a Vote Model
At the core of our app’s voting functionality lies a data model—a Vote—which we’ll

need to create. Once that’s in place, we’ll create and apply the necessary changes

http:script.aculo.us

198 Simply Rails 2

to our database schema. We learned how to do this using migrations in Chapter 6,

so there’s no reason to return to the old ways now!

Creating the Model
Using the generate script (by now, you should be feeling reasonably at home with

this!), let’s add a new model to our application:

$ ruby script/generate model Vote story_id:integer

Just like the last time we generated a new model, we gave the generate script some

insight into the attributes the new model is going to have, which we’ll explore in a

moment. The result of running the command is shown in Figure 7.1.

Figure 7.1. Generating a Vote model

As you might expect, this command generates a new migration file (among others),

db/migrate/002_create_votes.rb; let’s look at it right now.

Examining the Vote Migration
The migration file that was generated for us contains the basic code to create a votes

table in our database. This is the second migration for our project, so it has been

assigned the number 002. Currently, the self.up method should look like this:

Ajax and Web 2.0 199

01-002_create_votes.rb

def self.up
 create_table :votes do |t|
 t.integer :story_id

 t.timestamps
 end
end

As you can see, to create the schema, we’re following the format we used in

Chapter 5, but this time, the column types are different. Let’s look at them briefly:

 t.integer :story_id

This line creates a story_id column of type integer. It’s going to be used to store

the numerical ID of a story that has received a vote from a user. This column will

be populated using associations, which we’ll talk about in the next section.

Rails has a handful of “magical” column names; two of the most handy are

created_at and updated_at, each of type datetime. Since they’re so useful, Rails

has a shortcut for creating those two columns in a migration. It even includes that

shortcut by default every time we create a new migration:

 t.timestamps

Whenever a new model is saved to the database using the save method, Rails will

automatically populate the column called created_at with the current date and

time.

Its companion, updated_at, operates in a similar manner. It automatically populates

the column with the current date and time of any successive call to the save method,

although we won’t be making use of this column for the Vote model. (A vote, once

cast, is a vote, right?)

As with the last migration we created, the self.down method is fine as is—reversing

this migration simply gets rid of the whole table.

200 Simply Rails 2

Applying the Migration
Our migration is in place, so let’s apply it using the rake tool once more:

$ rake db:migrate

The result of applying the migration is shown in Figure 7.2.

Figure 7.2. Applying the second migration

Excellent! Now, I suggest you sit down before we begin the next topic, because

things could get a little heavy. It’s time for you and me to have an in-depth talk

about relationships.

Introducing Relationships
Contrary to received wisdom, relationships don’t have to be hard work.

No, I’m not talking about human relationships—I’m talking about the relationships

(also commonly referred to as associations) between objects in our model. We

touched on some of this stuff back in Chapter 4 when we talked about the features

of ActiveRecord. Now we finally have a practical use for all that theory.

The Vote model that we just created needs to be associated with our Story model.

After all, what good is a vote if you don’t know which story it’s for?

Ajax and Web 2.0 201

As we saw back in Chapter 4, Rails can cater for a variety of associations between

models. One of the more popular associations is the one-to-many relationship,

which we’ll add to our model now.

Introducing the has_many Clause
A one-to-many relationship exists when a single record of type A is associated with

many records of type B.

In our application, a single story is likely to be associated with many votes. This

relationship is shown in Figure 7.3.

Figure 7.3. The one-to-many relationship between stories and votes

Relationships are usually declared bidirectionally, so that the relationship can be

utilized from both sides. Let’s begin by examining the Story model’s relationship

to a Vote; we’ll look at the reverse relationship later in the chapter.

To define the first aspect of the relationship, edit the Story class, located in

app/models/story.rb, adding the line in bold below:

02-story.rb (excerpt)

class Story < ActiveRecord::Base
 validates_presence_of :name, :link
has_many :votes

end

http:app/models/story.rb

202 Simply Rails 2

The addition of this one line has ignited a flurry of activity behind the scenes—fire

up a Rails console, and I’ll show you what I mean. First, retrieve an existing Story

record from the database:

$ ruby script/console

>> s = Story.find(:first)

=> #<Story id: 2, name: "SitePoint Forums", …>

Next, invoke this object’s newly acquired votes method:

>> s.votes

=> []

The name of this method is derived directly from the has_many :votes relationship

that we defined in our class definition (we’ll talk more about declaring associations

in Chapter 9). Invoking the method grabs all votes for the Story and returns them

in an Array (which, obviously, is empty right now).

So, how would we go about adding some votes to this story?

The easiest way is to call the create method of the object returned by story.votes,

like so:

>> s.votes.create

=> #<Vote id: 1, story_id: 2, …>

This approach instantiates a new Vote object, and saves the object to the database

immediately. It works because we haven’t specified any validations for the Vote

model yet, so there’s nothing to prevent empty fields from being saved. However,

if you assume that the record we just saved to the database is completely empty,

you couldn’t be more off the mark.

Let’s take a look at the number of votes that have been created. Call the size method

for our Story’s associated votes, like so:

>> s.votes.size

=> 1

Ajax and Web 2.0 203

This is another method to which we gained access by defining the has_many rela­

tionship. It instructs Rails to calculate the number of records associated with the

current model object. A result of 1 indicates that the Vote object that we just created

does indeed contain some information, since one Vote is associated with the Story

we retrieved.

To find out more, let’s retrieve the same Vote object independently from the Story

it’s been associated with, and inspect its attributes:

>> v = Vote.find(:first)

=> #<Vote id: 1, story_id: 2, …>

>> v.attributes

=> {"story_id"=>2, "id"=>1, "created_at"=>

 Tue Feb 05 11:04:55 0100 2008, "updated_at"=>

 Tue Feb 05 11:04:55 0100 2008}

As you can see, not only has our Vote object automatically been populated with a

creation and update date (the two start out being the same value), but a value has

been assigned in its story_id field. This value was obtained from the id attribute

of the Story object that was used to create the vote. (In this case, the value is equal

to 2, as that’s the id of the first Story in my database.) Figure 7.4 shows this rela­

tionship.

Figure 7.4. A Story has many Votes

To complete our relationship definition, let’s add its counterpart—the belongs_to

clause—to the Vote model.

204 Simply Rails 2

Introducing the belongs_to Clause
As we learned in the previous section, as in life, there are usually two sides to the

story when it comes to relationships.

Now we’ll add the second part of our one-to-many relationship. First, edit the Vote

model class (in app/models/vote.rb) as follows:

03-vote.rb

class Vote < ActiveRecord::Base
belongs_to :story

end

Now that we’ve defined the relationship within both models that are affected by it,

not only can we access the votes of a Story, we can also access the story of a Vote.

And I’m sure you can guess how we’d do the latter—back to the Rails console!

>> v = Vote.find(:first)

=> #<Vote id: 1, story_id: 2, …>

>> v.story

=> #<Story id: 2, name: "SitePoint Forums", …>

Reloading the Rails Console

If you make a change to your models or controllers while you have a running Rails

console, you’ll find you cannot call any of your new code—your console needs

to reload your models and controllers. Doing this is as simple as issuing the re­

load! console command. You’ll then see the following:

>> reload!
Reloading...
=> true

You’ll also have to recreate any existing instances of your models, because they

will still be using the old class.

With the addition of just one line to our Vote class definition, we’ve gained access

to the associated Story object. As the code listing above shows, access to this object

is possible via a new instance method (story) on the model—this method is available

Ajax and Web 2.0 205

as a direct result of the relationship clause that we put in place, and obtains its

name from the first parameter of the association call (belongs_to :story).

Figure 7.5 shows how this relationship works.

Figure 7.5. A Vote belongs to a Story

How’s Our Schema Looking?
Now that we’ve established both sides of our one-to-many relationship, let’s look

at how the information representing this relationship is stored in the database.

If you recall each of the migrations that we’ve created and applied so far, you’ll

notice that, although the Vote model contains a story_id column, the Story model

doesn’t contain a corresponding vote_id column.

In fact, this column isn’t necessary. There’s no need to store association information

in both models when defining a one-to-many relationship; the information is always

stored on the “many” side of the relationship. With this information in place, Rails

is intelligent enough to query the correct table when we instruct it to find objects

that have an association.

Also note how the terminology used to define the relationship is an accurate reflec­

tion of what’s going on—the Votes belong to the Story (hence the belongs_to call).

And the Vote model represents the “many” side of the relationship, so each Vote

stores its own reference to its associated Story.

Now that we understand the data structures that underlie our voting functionality,

let’s jump into building some user interactivity.

206 Simply Rails 2

Making a Home for Each Story

In terms of viewing stories that have been submitted to Shovell, our users currently

only have access to a page that displays a random story. To address this issue, we’ll

add a new action that displays a single story, along with all of its details, before we

implement the voting actions themselves. The story page will serve as a reference

point for any given story on the Shovell site, as it will contain a range of informa­

tion—voting actions, voting history, and so on—about the story.

Determining Where a Story Lives
The first step in displaying our stories is to find out what the URLs to access a single

Story need to look like and which action we need to teach StoriesController to

handle these requests.

If you flip back to the section about resources in Rails which we’ve talked about in

Chapter 6 and take another look at the table with the mappings of URLs to controller

actions, you’ll find the promising mention of a show action to handle URLs like

/stories/2. This action is exactly what we’re going to implement over the next

few pages.

Before we implement said show method in StoriesController, let’s think for a

moment about what it’s going to do. Our controller action needs to go ahead and

retrieve a story with a specific ID from the database. This ID is contained in the

URL; Rails Routing extracts it from there and makes it available to us as params[:id].

The controller then needs to hand the object it finds to the view, which is in turn

responsible for displaying it.

We’ll start by adding the following method to our StoriesController class. Once

again, the order of the method definitions within the class definition is not important.

04-stories_controller.rb (excerpt)

def show
 @story = Story.find(params[:id])
end

The single line of code in our show method executes a find by passing the value of

params[:id] to it. By doing so, we’re instructing ActiveRecord to retrieve from the

Ajax and Web 2.0 207

database all rows with an id that’s equal to the value in the URL requested by the

user; there should only ever be a single row returned.

The result of that find operation is then assigned to the instance variable @story,

which is automatically made available to the corresponding view internally by

Rails. Speaking of which, let’s create that view now.

Displaying Our Stories
Lastly, we need a template with which to display a story. Create a new template

file at app/views/stories/show.html.erb, and fill it with the following simple HTML

and ERb code:

05-show.html.erb

<h2><%= @story.name %></h2>
<p><%= link_to @story.link, @story.link %></p>

All this does is display the name of the Story, wrapped in <h2> tags. It also adds a

link to the URL that’s stored as part of the story.

Let’s check that this functionality works as expected. Open the following URL in

your browser (if you’ve deleted some of your stories, substitute a higher number at

the end): http://localhost:3000/stories/2.

As you can see in Figure 7.6, our story has its own page that displays its name and

a link to the story content.

Is Your Server Running?

As with our other examples, connecting to your application requires the Rails

web server to be running. If you need a refresher on how to launch it, flip back to

the section called “Starting Our Application” in Chapter 2.

http://localhost:3000/stories/2

208 Simply Rails 2

Figure 7.6. The first version of the show action

Improving the Story Randomizer
While we’re at it, let’s change our front page so that the random link it displays no

longer uses the story’s external URL. Instead, we’ll direct users to the story’s internal

page, to which we’ll add some voting functionality very soon.

Open up the template responsible for the index action of StoriesController (loc­

ated at app/views/stories/index.html.erb) and change the link_to call so that it reads

as follows:

06-index.html.erb (excerpt)

<%= link_to @story.name, story_path(@story) %>

The fact that a story_path function exists for our use is a direct result of the

map.resources :stories call in the route configuration—this is another benefit of using

Rails Resources and following their conventions, which include using the action

show to display a single resource. The story_path function accepts a Story object

that’s used dynamically to generate the URL we’re looking for.

Reload the index page at http://localhost:3000/stories. It should now link to the

internal story page, as demonstrated in Figure 7.7.

http://localhost:3000/stories

Ajax and Web 2.0 209

Figure 7.7. The index page linking to the story page

If you thought that was fairly simple and straightforward a way to generate a link

to a story, it gets even better! The above link_to call can be shortened to just the

following:

<%= link_to @story.name, @story %>

Rails’s link_to helper will automatically invoke the story_path helper behind the

scenes, all because of that simple one-line declaration that made Story into a re­

source in the first place.

Well, this is already fairly functional. But I think we can do better in terms of

readability within the URLs we’re exposing to our users. So let’s take a look at the

concept of a clean URL.

Implementing Clean URLs
The URLs we put to use in the last section are fairly simple. And they’re definitely

simpler than those we’re plagued by on our daily travels through some niches of

the Internet. But we can do better!

To recap, we’ve employed a URL like the following to refer to a single story:

/stories/1

mailto:@story.name

210 Simply Rails 2

This is all well and good, but an id of 1 isn’t exactly meaningful to our users—they’re

more likely to remember the title of a story. Even if the title was slightly modified

(with special characters removed, escaped, or replaced), it would still make for a

more usable URL—and be much friendlier to our search engine friends as well!

So, in referring to a story titled “My Shiny Weblog,” the following URL would be

perfect:

/stories/my-shiny-weblog

The implementation we’re about to commence comes close to the ideal outlined

above. Upon finishing this section, we’ll have our stories shown at URLs such as

this one:

/stories/1-my-shiny-weblog

As you can see, the URL still contains the id of the Story, but in addition to that it

contains a simplified version of the story name. To implement this URL, we’ll pull

a little Ruby trick that’s worth exploring in the console first.

Converting from Strings to Numbers
We’ve already talked about different object classes that are available in Ruby, and

more or less any other programming language on the planet. And there are ways to

convert between them. Of course, there are some conversions that make sense and

others that don’t. In this section we’ll look at the conversion of a String object into

an Integer object, and a neat side effect of that.

First off, why would you want to convert an object to a different class? Well,

everything our web application receives from a user’s browser is treated as a string,

because the HTTP protocol doesn’t specify values with a class. So better to be safe

than sorry, given that String is the most universal choice and able to represent al­

most everything.

With that out of the way, it’s fairly clear that the value 1 we receive in params[:id]

from a URL like /stories/1 is actually not a number, but a string. The difference

is illustrated by the following Rails console output:

Ajax and Web 2.0 211

>> 1.class

=> Fixnum

>> "1".class

=> String

But how do we make a number out of a string representation of a number? To convert

a string into an integer (whole numbers, without a decimal component, which is

what the number 1 can be seen as), every String object ships with a to_i method:

>> "1".to_i

=> 1

The flipside of this is the to_s method provided by the Fixnum class:

>> 1.to_s

=> "1"

Armed with that knowledge, here’s the little trick that will make our permalinks

work with minimal effort:

>> "1-my-shiny-weblog".to_i

=> 1

So how does that work? String’s to_i method simply discards anything after the

first numeric content it encounters, leaving us just with the ID of the story nicely

extracted. Now we just need to get that simplified title into our story URLs, which

is the topic of the next section.

Investigating Link Generation
When Rails’s URL generation helpers need to generate URLs that point to specific

objects such as the Storywe’ve seen above, they actually ask the model being passed

in how it wants to be represented.

The view template we created for the show action originally included a call to the

story_path helper. This is basically a shortcut that Rails gives us for declaring

Story a resource. Okay, I know you’ve come across this point a number of times

now, but it’s really important and well worth repeating.

212 Simply Rails 2

If we weren’t to use resources and needed to do without story_path, we’d have to

use the following code to achieve the same result:

url_for :controller => 'stories', :action => 'show', :id => @story

But even that snippet of code carries a bit of Rails magic. If you pass an ActiveRecord

model to url_for, it will automatically call the to_param method of the model

(@story in the example above). This method, by default, returns the value of the id

attribute.

So the above url_for call is actually equivalent to:

url_for :controller => 'stories', :action => 'show',

➥ :id => @story.to_param

And it’s this to_param method that we can use to our advantage in sneaking our

simplified title into the URL.

I know you’re champing at the bit to reach the next section and make a start with

the nifty Ajax stuff, so quickly throw this method into the Story class definition

(stored in app/models/story.rb):

07-story.rb (excerpt)

class Story < ActiveRecord::Base
 def to_param
 "#{id}-#{name.gsub(/\W/, '-').downcase}"

 end
end

This rather cryptic snippet of code overrides the to_param method defined by the

ActiveRecord::Base class. Now it no longer returns just the id but also includes

a simplified version of the story’s name. It’s this new return value that we’ll use in

URLs pointing to stories.

In the new to_param method, I’m using regular expressions to turn non-alphanu­

meric characters in the story name (basically everything that’s not a number or al­

phabetical character) into a dash and convert everything else to lowercase. This

string is then appended to the original id of the story to generate the new, more

mailto:@story.to_param

Ajax and Web 2.0 213

representative URL. Of course, like a lot of methods in Rails, you’re free to play

with it in the console as well:

>> s = Story.find :first

=> #<Story id: 2, name: "SitePoint Forums", …>

>> s.name

=> "SitePoint Forums"

>> s.to_param

=> "2-sitepoint-forums"

At this point we can let Rails go and do its magic. We don’t need to do anything

else to make our clean URLs work. Give it a try—reload the story index in your

browser (http://localhost:3000/stories) and marvel at your nice new clean URLs!

So right now, we’re ready to start implementing the app’s voting functionality.

However, as we’re going to do this using Ajax techniques, we’ll take another slight

detour to learn a bit about Ajax and see how it’s implemented in Rails.

Ajax and Rails
We mentioned back in Chapter 1 that Rails is a full-stack framework, encompassing

code on the client, the server, and everything in between. Ajax is a technique for

communicating between client and server, so the Rails implementation of Ajax is

therefore one of the key parts that makes up this “full-stack.”

Introducing Ajax
Ajax stands for Asynchronous JavaScript and XML, but represents a technique that

encompasses more than just these specific technologies. You’ve no doubt heard of

the term, which has become one of the prime buzzwords behind the so-called Web

2.0 movement. Strictly speaking, though, Ajax isn’t a new invention—it’s actually

existed for quite some time.

Basically, Ajax enables a web browser to continue to communicate with a web

server without having to completely reload the page it’s showing—a technique that’s

also known as remote scripting. This communication may include the exchange of

form data, or the requesting of additional data to be incorporated into a page that

has already been displayed. The end result is that a web application that uses Ajax

(http://localhost:3000/stories)

214 Simply Rails 2

has the potential to compete with more traditional desktop applications by

providing the user with a more dynamic and responsive experience.

At the heart of Ajax is the XmlHttpRequest object. XmlHttpRequest was originally

invented by Microsoft in the late 1990s for Internet Explorer 5, to improve and en­

hance the user experience of Microsoft’s web-based email interface. It has since

been implemented in all modern browsers. In 2005, a user-experience designer

named Jesse James Garrett invented the term Ajax to describe the approach of using

the XmlHttpRequest object, along with XHTML, CSS, and the Document Object

Model (DOM), to create interactive web sites that feel like desktop applications.1

While compatibility with certain web browsers was lacking when the first applica­

tions that used Ajax hit the Web, this is no longer as much of an issue—all popular

web browsers support the XmlHttpRequest object, including Internet Explorer,

Firefox, Safari, and Opera.

Ajax has been used in many popular web applications, such as Digg, Flickr,2

del.icio.us,3 GMail,4 and the 37signals applications that we talked about in Chapter 1.

As we’ll soon see, implementing Ajax in Rails is as easy as implementing a regular

link.

Remote Scripting with Prototype
Being an early adopter of new technologies usually necessitates diving into other

people’s code—code that usually does not represent best practice—as well as per­

sisting with debugging tools, if such a tool even exists. Not so with Ajax and Rails.

Rails was one of the first—if not the first—frameworks to ship with (and even en­

courage) the use of Ajax in web applications. Rails comes bundled with the Prototype

JavaScript library,5 which is responsible for all of the dynamic interaction between

1 The term Ajax was first mentioned in this essay:

https://www.adaptivepath.com/ideas/essays/archives/000385.php

2 http://flickr.com/

3 http://del.icio.us/

4 http://mail.google.com/

5 Although Prototype is bundled with Rails, it can be downloaded as a stand-alone JavaScript library

from the Prototype web site [http://prototypejs.org/], and used independently.

http://flickr.com/
http://del.icio.us/
http://mail.google.com/
http://prototypejs.org/
https://www.adaptivepath.com/ideas/essays/archives/000385.php
http://flickr.com/
http://del.icio.us/
http://mail.google.com/
[http://prototypejs.org/]

Ajax and Web 2.0 215

browser and application. As it’s so easy to use, many Rails-powered web applications

were Ajax-enabled from day one.

Adding Visual Effects with script.aculo.us
When web developers first embraced Ajax, it introduced a number of new user in­

terface problems. Interaction designers are still searching to find the best solution

for several of these! These challenges arose from the fact that the way in which users

interact with a web application that utilizes Ajax is fundamentally different from

the way they use an app that does not. Back in the Web 1.0 days before Ajax, most

users were able to anticipate when communication was occurring between client

and server, and when it wasn’t. The interaction was very start-stop in nature, because

each back-and-forth transmission resulted in the delivery of a new page to the client.

With Ajax, the web browser might never really stop communicating with the server.

We’re therefore faced with a problem: how do we let the user know that communic­

ation has taken place?

Let me illustrate this point with an example. When users click on an element, such

as a link or a button, on a web page that uses Ajax, they expect a new page to load.

After all, this is what’s happened with every other link that they’ve clicked on the

Web in the past. Instead, a small amount of content on the page is updated, while

everything else stays in place, unchanged. The change that takes place is so minor,

though, that the users don’t notice it. They begin to wonder whether they might

have missed the link when they clicked it, so they try clicking it again. Figure 7.8

shows a hypothetical example of this kind of confusion in action; blink and the

frames appear much the same.

Figure 7.8. An Ajax-powered to-do list without visual feedback

216 Simply Rails 2

In fact, the only thing that’s missing is feedback from the application about what’s

going on. What would be great in this situation is some kind of visual feedback to

let the users know that their click has been processed, so that the results of that

action become more obvious. For this very purpose, Rails core team member Thomas

Fuchs invented the script.aculo.us JavaScript library, which works with the Proto­

type library to provide various visual effects. Rails ships with this library by default,

and we’ll use it to provide feedback to the user.6

While they might look like gratuitous eye candy at first, when used sparingly, the

visual effects provided by script.aculo.us can provide great user feedback for the

Ajax actions handled by Prototype. For example, you can use effects to drop elements

off the bottom of the page when a user deletes them, to highlight specific elements

that have just been updated, or to “shake” the entire login form if a user supplies

an incorrect password.

In addition to these visual effects, script.aculo.us was later expanded to include

some other nifty functionality, such as:

drag-and-drop

These helper functions allow for the easy reordering of lists, but could also be

applied to a drag-and-drop shopping cart, for example.

edit-in-place

This functionality allows a user to edit text that is displayed on the page (a

heading, or a regular paragraph, for example) simply by clicking on it. The text

turns into a text field into which the user can type to change the text; the edits

are saved without the page having to be reloaded. You might already have used

similar functionality on Flickr, for example.

auto-completion of strings

This functionality allows your web application to perform a database lookup

as users type text into a form field. This capability could be used to complete

path names on a remote server or to suggest search terms, an implementation

pioneered by Google Suggest.7

6 While script.aculo.us is bundled with Rails, it can, like Prototype, be downloaded from its own web

site [http://script.aculo.us/].

7 http://labs.google.com/suggest/

http://labs.google.com/suggest/
http://script.aculo.us/
http://script.aculo.us/
[http://script.aculo.us/]
http://labs.google.com/suggest/

Ajax and Web 2.0 217

An additional benefit of using Rails’s built-in helpers to enable Ajax functionality

in your application (compared with writing all of the Ajax code from scratch) is

that they make it easy to provide a fallback option for browsers that don’t support

Ajax—a concept known as graceful degradation. The browsers that fall into this

category include older versions of web browsers, some browsers on newer platforms

such as mobile phones or PDAs, and browsers for which the user has deliberately

disabled JavaScript. Visitors using these browsers will still be able to use your web

application. It won’t be as dynamic as it is for other users, but at least they won’t

be faced with an application that doesn’t work at all—a scenario that’s almost

guaranteed to drive them away from your site.

Armed with this knowledge of Prototype and script.aculo.us, we’ll make use of the

Rails Ajax helpers to implement functionality that allows users to vote on stories

in our Shovell application without waiting for page reloads. We’ll also provide

those users with a nice visual effect to highlight the altered element after their vote

actions are successful.

Making Stories Shove-able
Okay, we’ve walked through the ins and outs of Ajax. We’ve discussed the capabil­

ities of the two JavaScript libraries that are bundled with Rails—Prototype and

script.aculo.us—and explored the role played by each of them. We’re now in a good

position to add voting functionality to our application, and to indicate to users that

their votes have been recorded. We’ll also provide a fallback option for users whose

browsers don’t support Ajax.

Just to be extra-cheeky, we’ll refer to each story’s vote as a shove, rather than a

digg—users can then “shove” stories that they think are worthy of publication on

the site’s homepage.

Controlling Where the Votes Go
Before we can tackle the design details of that funky "shove" button, we need to lay

down the foundation of where the votes go as soon as they’re cast. We need another

controller!

Here’s the script/generate call for generating a new controller (VotesController)

with a single action (create):

http:script.aculo.us

218 Simply Rails 2

$ ruby script/generate controller Votes create

The output of that command is shown in Figure 7.9.

Figure 7.9. Generating a VotesController

Additionally, being RESTful citizens, we’re going to declare a new set of resources

in config/routes.rb. You might be tempted to declare Vote as a stand-alone resource.

But what good is a vote without a story? It turns out, Rails has something in store

to adapt our use of a one-to-many relationship between a story and its votes to the

resource declarations. Change the routing configuration as follows:

08-routes.rb (excerpt)

ActionController::Routing::Routes.draw do |map|
 map.resources :stories, :has_many => :votes
⋮ routes…

end

Now, what did this get us? At this point, it makes sense to introduce a helpful rake

task that simply gives you a list of all the RESTful Routes and their helper names

that Rails generates for you based on the configuration in config/routes.rb:

http:config/routes.rb

Ajax and Web 2.0 219

$ rake routes

Go ahead and run the command for yourself and see if you can spot what the declar­

ation of :has_many => :votes in the routing configuration got us in terms of URL

helpers. The result of the command run locally on my machine can be found in

Figure 7.10.

Figure 7.10. The output of the rake routes command

You’ve guessed right if you’ve pointed at all the routes with a declaration of :con­

troller => "votes" in them. What’s interesting to see here is that the URLs look

like this:

/stories/:story_id/votes

What we’ve created here is a so-called nested route. That is, a vote object is nested

below the story object and cannot be accessed by simply going to a URL like /votes

or /votes/1, but must be accessed with a prefix naming the associated story first,

such as /stories/1/votes.

220 Simply Rails 2

Also of note is the naming of the URL helpers. Instead of employing the standard

votes_path method to refer to the votes index, our nested route has provided us

with the story_votes_path method. Similarly, the helper to access a single vote

would not be vote_path but story_vote_path. We’d receive an error if we tried to

use incorrectly named helpers. Also, we need to specify the parent story of the vote

when generating vote URLs. Confused yet? Let’s see it in practice!

Including the JavaScript Libraries
First, though, we need to perform a quick side-step to enable Ajax functionality in

Shovell.

As both of the helpers that we’re going to use—Prototype, for dealing with the Xml-

HttpRequest object, and script.aculo.us, for displaying visual effects—are imple­

mented in JavaScript, we need to include the appropriate JavaScript files into our

application’s layout. To do so, add the following line to the app/views/layouts/applic­

ation.html.erb file, somewhere in the head section:

09-application.html.erb (excerpt)

<%= javascript_include_tag :defaults %>

This line calls the javascript_include_tag Rails helper, passing it the :default

parameter. It causes a total of five JavaScript files to be added to our application:

prototype.js

This file contains the entire Prototype library, which provides our Ajax func­

tionality.

effects.js

This is the visual effects part of the script.aculo.us library.

dragdrop.js

This file contains the JavaScript methods required for adding drag-and-drop

functionality, also from the script.aculo.us library.

controls.js

The auto-completion methods are contained within this part of the

script.aculo.us library.

http:script.aculo.us

Ajax and Web 2.0 221

application.js

This is an empty file that we can use to store our own custom JavaScript func­

tions. It’s located in the public/javascripts folder of our application.

To confirm that the helper is indeed doing its job, take a look at the source of any

of the pages that exist in our application right now. Remember, since we added

these files to the application’s layout template, this change will be visible on every

page. In the header of the page source, you should find <script> tags that closely

resemble the following:

<script src="/javascripts/prototype.js?1202241846"

 type="text/javascript"></script>

<script src="/javascripts/effects.js?1202241846"

 type="text/javascript"></script>

<script src="/javascripts/dragdrop.js?1202241846"

 type="text/javascript"></script>

<script src="/javascripts/controls.js?1202241846"

 type="text/javascript"></script>

<script src="/javascripts/application.js?1202241846"

 type="text/javascript"></script>

If you’re curious about that weird numerical suffix that follows each of the JavaScript

files, don’t be: this number simply represents the amount of time in seconds between

January 1, 1970 (the “Unix epoch”), and the time at which the file was last modified.

This information is included in order to force browsers to reload the file in question

whenever the file is modified. Normally browsers cache supplementary files such

as style sheets and JavaScript files, so this is a good way to force the browser to

discard the cached version and apply the new file.

It’s Not All or Nothing!

If you like, you can be more selective about what you include in your own applic­

ation, depending on whether you plan to use all of the functionality provided in

the JavaScript files that ship with Rails. This might save some download time for

your users, since their browsers won’t have to load JavaScript files that your app

doesn’t use anyway. Rails also ships with functionality to combine multiple

JavaScript files into a single download when your application moves into its

production environment.

222 Simply Rails 2

Giving Stories a Shove
The next step is to change our existing show view (located at app/views/stor­

ies/show.html.erb) to display the current number of votes that the story has received;

we also need to add a link that allows users to vote on stories. Modify your view

so that it looks like this:

10-show.html.erb

<h2>

Score: <%= @story.votes.size %>

 <%= @story.name %>
</h2>
<p>
 <%= link_to @story.link, @story.link %>
</p>
<div id="vote_form">
<% form_remote_tag :url => story_votes_path(@story) do %>
<%= submit_tag 'shove it' %>

<% end %>
</div>

Let’s take a look at what’s new here:

<h2>

 Score: <%= @story.votes.size %>

 <%= @story.name %>

</h2>

The heading that previously displayed just the name of the story now also contains

a tag that holds its vote score. To calculate this number, we simply use the

size method on the votes association that we saw earlier to add up the number of

votes submitted for that story. We’ve also given the span element a unique id, which

we’ll use later as a hook to update the score when a user casts a vote. We’ll add

some CSS to float this span to the right of the page, too.

We’ve also added the following:

mailto:@story.votes.size
mailto:@story.name

Ajax and Web 2.0 223

<div id="vote_form">

 <% form_remote_tag :url => story_votes_path(@story) do %>

 <%= submit_tag 'shove it' %>

 <% end %>

</div>

This is where the magic happens! The extra div houses a form created by the

form_remote_tag helper. This function generates the bits of HTML and Javascript

that are necessary to invoke the form submission using Ajax, rather than submitting

it as a regular page-loading form.

What we handed to form_remote_tag is a call to one of the nested resource helpers

we’ve talked about earlier (the ones that might have made you feel a little dizzy,

remember?), specifically to the story_votes_path helper. This helper takes @story

as its argument, to specify that we’re dealing with votes associated with that given

story.

Specifically, we’d like to create a new vote for this story, which means we need to

send a POST request to /stories/1/votes, which Rails then routes to the create

action of VotesController (see the output on rake routes for a refresher).

Styling the Scoreboard
Next, let’s expand our CSS (it lives in the file located at public/stylesheets/style.css),

to style and position our new elements:

11-style.css (excerpt)

#vote_score {
 float: right;
 color: #9c9;
}

#vote_form {
 margin: 10px 0;
}

#vote_form input {
 padding: 3px 5px;
 border: 3px solid #393;
 background-color: #cfc;
 text-decoration: none;

224 Simply Rails 2

color: #393;

}

#vote_form input:hover {

background-color: #aea;

}

There’s nothing too mysterious happening here—it’s all cosmetic stuff. But who

said cosmetics weren’t important?

If you access one of your stories through your browser (using the link to a random

story on http://localhost:3000/stories, for example) you should see a page similar to

the one in Figure 7.11. However, clicking the shove it link won’t do much right now

(except that your application may spit out some weird warnings and error messages).

Figure 7.11. Showing a story with voting score and vote link

Storing the Votes
To store the votes that have been submitted, we’ll implement the create method

of our VotesController we generated earlier in this chapter. Here it is:

http://localhost:3000/stories

Ajax and Web 2.0 225

12-votes_controller.rb (excerpt)

class VotesController < ApplicationController

 def create
@story = Story.find(params[:story_id])

 @story.votes.create
 end

end

This new method doesn’t contain anything we haven’t seen before. In the first line

of the method, we find the appropriate story record using the unique ID of Story

for which a vote has been cast. This ID is given to us by Rails in the form of

params[:story_id], since params[:id] is in this case reserved for a potential ID

of a Vote object. You can also see this pattern displayed in the routes list we looked

at earlier (the route syntax looked like this: /stories/:story_id/votes).

The second line creates and saves a new Vote. It only contains auto-generated values,

such as the creation date, and the IDs that receive a value because of the Vote’s as­

sociation with a Story.

If you were to try clicking the shove it link on your story page now, it would store

your vote. But nothing on the page would change yet—we can only perform so much

magic at once, even in Rails-land.

To update the voting score that’s displayed on the page and highlight it with a

visual effect, we’ll use a new kind of Rails template: an RJS template.

Introducing RJS Templates
While the regular .html.erb templates with which we’re so familiar deal with a whole

page (or partial pages, as we’ll see later), templates with an .rjs extension (short for

Rails JavaScript) are used to modify parts of an existing page. When we use RJS

templates, the information that’s transferred to the user’s browser is a series of

JavaScript instructions that modify, extend, and apply visual effects to HTML ele­

ments. In contrast, .html.erb templates transfer HTML elements themselves.

226 Simply Rails 2

You don’t need to add anything special to your controllers or actions in order to

have them use .rjs templates; simply place a template that has the extension .rjs right

alongside all your other regular views, and it will be ready for use.

Let’s create an RJS template for our create action of VotesController now. In fact,

the generator we used to generate the controller template has already created a file

called create.html.erb in app/views/votes for us which we won’t use, so you might

just as well rename its extention from .html.erb to .rjs.

This template will handle the updating of a story’s voting score (the number of

“shoves”), and it’ll highlight the score after the update, using a visual effect. Modify

the template like so:

13-create.rjs

page.replace_html 'vote_score', "Score: #{@story.votes.size}"
page[:vote_score].visual_effect :highlight

That’s all: just two lines of code! Let’s look at what each line does.

First of all, you’ll notice that the window to the world of RJS is the page object. This

object provides us with two different approaches for using RJS templates:

■	 The first approach focuses on what you do to an element on the page: “replace

the content of an HTML element,” for example, or “show this visual effect.” This

approach involves calling a specific instance method on the page object; the

method usually takes as a parameter the HTML element to be modified (refer­

enced by its id attribute).

■	 The second approach revolves around the question of which element you want

to work with first. We can access the HTML element in question—once again

identified by its id attribute (well, a Ruby symbol of the same name as its id,

anyway)—by treating the page object like a hash that contains all the elements

on the page. The actual functionality is then invoked as an instance method on

the element.

The two lines of code I showed above purposely use the two different approaches,

because I wanted to demonstrate each in an example. You could just as easily (and

probably should) choose one approach and use that consistently. We’ll leave our

Ajax and Web 2.0 227

RJS template as is, but as an exercise, you might like to try modifying the code so

that your approach to using RJS templates is consistent.

The first line is responsible for updating the story’s score after a new vote has been

cast:

page.replace_html 'vote_score', "Score: #{@story.votes.size}"

The replace_html method of the page object takes two arguments: the id of the

element whose contents you’d like to replace (vote_score, this time as a string, not

a symbol), and the actual text that you want to assign to the element.

One new thing here is the #{} syntax that we’ve used between the quotes of the last

argument. Using this syntax gives us the ability to add dynamic values to our

strings—in this case, we’re adding the value of @story.votes.size, which, if you

recall, returns the number of votes that the story has received. To use this function­

ality, you must use double quotes instead of single quotes; the #{} syntax does not

work with single quotes.8

In this example, the code between the parentheses is a simple method call. However,

it is possible to put any Ruby code in there. Be mindful, though, not to violate the

MVC terms and conditions by placing any complex calculations within your

views—that stuff really belongs in your controller code.

The second line of our RJS template provides some visual feedback:

page[:vote_score].visual_effect :highlight

This second line of our RJS template uses the second syntax that we discussed for

the page object. It asks for the element with the id of vote_score, and applies the

visual effect highlight to it. By default, this effect will highlight the background

of the element in question with a light yellow, then fade it back to white. The color

of the fade can be customized easily, like most of Rails’ defaults.

After the user clicks the shove it voting link, the score will update, and the element

will be highlighted with the yellow fading background. It’s difficult to show the

8 For performance reasons, it’s generally a good idea to use single quotes whenever you don’t need to

replace values in a string dynamically.

mailto:#{@story.votes.size}"
mailto:@story.votes.size

228 Simply Rails 2

dynamic update and highlighting effect in black-and-white print (I’ve done my best

in Figure 7.12), so you’ll just have to go ahead and try it yourself.

Figure 7.12. The “yellow fade” visual effect

Isn’t it amazing how much you can do with as little code as this?

Ensuring Graceful Degradation
To implement a fallback action for browsers that don’t support Ajax, we actually

just need to take care of the different treatment for browsers with and without

Javascript support on the behalf of the create action of VotesController, since

the HTML generated by the form_remote_tag helper we’ve used to generate our

voting form is already fully compatible with both worlds.

Our plan is to redirect users back to the story page after we’ve processed their votes

with their non-Javascript browsers while users with Ajax-enabled browsers can

watch as the total number of votes is updated and highlighted without a page reload.

To instruct our votes controller to take appropriate action, whether it’s dealing with

Ajax and Web 2.0 229

an Ajax request or a regular HTTP POST request, we need to modify the create action

in our VotesController class like so:

14-votes_controller.rb (excerpt)

class VotesController < ActionController::Base
 def create
 @story = Story.find(params[:story_id])
 @story.votes.create

respond_to do |format|
format.html { redirect_to @story }
format.js

end
 end

The newly added respond_to block acts as the switchboard for the different requests

we need to account for.9 By indicating the action that must be taken for each of the

different requests, our application will do what’s appropriate without duplicating

any of the code that stores the vote.

In the code block that’s passed to the respond_to clause, we list the alternatives

that we intend to support in our modified show action. Note that the alternatives

listed here (format.html and format.js) are not filenames—format is an object

that’s provided to the code block in order to find out “which format the client

wants.” For each supported request type, a corresponding instance method is defined;

each line can be read as “if the client wants this format, do that.” Let’s look at each

of them:

 format.html { redirect_to @story }

If we’re dealing with a regular HTTP POST request, we want to redirect the user

back to the story page. The redirect_to function should be familiar to you from

Chapter 6. It also uses the same shorthand syntax we’ve used for link_to earlier in

this chapter.

9 Rails uses the HTTP Accept header to determine the request type. This header, among others, is supplied

by the user’s web browser when it connects to the server.

230 Simply Rails 2

Our former Ajax-only create action implicitly rendered the only available template

it found (the RJS template) after the vote had been processed. However, since we’ve

introduced a decision into the mix, we need to tell Rails explicitly to support the

rendering of an RJS template, in case we’re dealing with an Ajax request. That in­

struction is delivered by this line:

 format.js

Type Less in Rails

Speaking of shorthand syntax, I’ve got an even shorter version of our gracefully

degraded form for you, in case you were wondering why you suddenly needed

to type in all these characters to get such a, well, simple thing as a form that sim­

ultaneously caters to both traditional and Ajax-enabled browsers, submits to a

nested route, and looks pretty. Turns out you don’t!

<div id="vote_form">
<% form_remote_for [@story, Vote.new] do |f| %>
<%= f.submit 'shove it' %>

<% end %>
</div>

Now we’re using form_remote_for, which is form_remote_tag’s slightly

more specialized cousin. If we hand that helper an array containing the parent

story and a new Vote object, we get exactly the same result as before, only with

a little less typing. You’ve got to love that!

Since inconsistently named files is a pet peeve of mine, we’ll now perform a quick,

mostly cosmetic housekeeping task and rename the RJS template again, this time

from create.rjs to create.js.rjs to match the syntax used in the respond_to block above.

Also, the official naming scheme for a template with two extensions is for the first

to declare the content type (we’ve seen HTML and Javascript so far) and the second

declare the language that the template is written in (we’ve seen ERb and RJS so far).

If you’re as fussy as I am about keeping things nice and tidy, you may now do the

same.

Ajax and Web 2.0 231

Introducing Partials

I’ve mentioned before that templates ending in .html.erb can be used to display

certain pieces of the page independently of the rest of the page. When used in this

way, these files are called partials. Partials can be helpful for dealing with parts of

a page that are constantly being reused (such as a navigation menu), or for retrieving

and formatting the items in a collection (such as a list).

In this section, we’ll use partials to implement a voting history box for our story

page. The history box will show the dates and times at which each vote for a story

was submitted.

Adding Voting History
We’ll implement the voting history as a list, using the HTML elements for an un­

ordered list (ul). Each vote will be represented as a list item (li) that shows the

voting timestamp. The list items themselves will be rendered as partials, so a single

template that contains a single list item will be rendered as often as there are votes

for a given story.

To begin with, we’ll modify the show template located at app/views/stor­

ies/show.html.erb to render an unordered list of the votes a story has received. To

accomplish this, we’ll add to the template code right above the paragraph container

that houses the story link, like so:

15-show.html.erb (excerpt)

<ul id="vote_history">
 <% if @story.votes.empty? %>
 No shoves yet!

 <% else %>
 <%= render :partial => 'votes/vote',

 :collection => @story.votes %>
 <% end %>

<p>
 <%= link_to @story.link, @story.link %>
</p>

232 Simply Rails 2

In this code, we’ve started out with a very straightforward ul element that has a

unique id, and we’ve added a condition using an if … else … end construct. This

causes the message No shoves yet! to be displayed whenever a story that has not re­

ceived any votes is rendered:

 <% if @story.votes.empty? %>

⋮ template code…

 <% else %>

⋮ template code…

 <% end %>

While the if construct is familiar to us from Chapter 3, the votes.empty? part is

new. The empty? method brought to us by declaring the association between votes

and stories will return false if a story has associated votes, and true if not.

It’s in this call to render that we add the partial to our page:

 <%= render :partial => 'votes/vote',

 :collection => @story.votes %>

We instruct Rails to render a template for every Vote that has been added to a story.

The render :partial syntax can be used to render a partial once or many times

(as in this case)—it’s the addition of the :collection argument that indicates we’ll

be rendering the partial multiple times.

The value votes/vote of the :partial option actually asks Rails to look for a vote

partial in the votes/ sub-directory of app/views/, since this is the place where

we’re going to store the new partial.

Creating the Partial
Partials, like regular full-page templates, have a .html.erb extension and are stored

right alongside their full-page cousins in an application’s directory structure. A

partial is identified by an underscore (_) prefix in its filename. Let’s create the new

partial at app/views/votes/_vote.html.erb, and populate it with the following line of

code:

16-_vote.html.erb

<%= vote.created_at.to_formatted_s(:short) %>

mailto:@story.votes.empty?
mailto:@story.votes

Ajax and Web 2.0 233

That’s all there is to it! This line simply wraps the date on which a vote was made

(the value of which is stored in the created_at attribute) in a pair of tags.

Note that we have access to an object named vote. Rails has created this object for

us—it does so for every partial—and the object takes the name of the partial (vote,

in this case). This object is automatically set to the current element of the collection

that’s being rendered.

The upshot of all this is that a partial needn’t concern itself with determining which

Vote it’s currently processing, or where that Vote sits within the larger collection

of votes. The partial simply operates on a single vote object and lets Rails take care

of the rest.

Styling the Voting History
If we printed the date and time exactly as they appear in the database, we’d produce

something rather awkward in appearance:

2008-02-01 11:47:55

To address this issue, we’ve made use of Rails’ date-formatting helper. This helper,

appropriately named to_formatted_s, is available as an instance method for objects

of the classes Date and Time. The helper takes a single argument: one of several pre­

defined symbols representing the format that should be applied to the output. Some

of the formats include :short and :long; for a Time object, these render as 01 Feb

11:47 and February 01, 2008 11:47 respectively.

Again, to make things a little more pleasing to the eye, we’ll add a few CSS rules

to our style sheet to define what our voting history box should look like. These rules

arrange our voting history nicely, but they also introduce some minor CSS quirks

that relate to floated elements. Thankfully, we can rectify these problems easily by

adding a few more lines to our style sheet. The additions are marked in bold below:10

10 The explanation of what’s happening here—and why these cryptic CSS rules are necessary—is well

beyond the scope of this book. However, if you’re interested in learning more, this topic (amongst

myriad others) is explained in Rachel Andrew’s The CSS Anthology: 101 Essential Tips, Tricks & Hacks

[http://www.sitepoint.com/books/cssant1/].

http://www.sitepoint.com/books/cssant1/
[http://www.sitepoint.com/books/cssant1/]

234 Simply Rails 2

17-style.css (excerpt)

#content {
 background-color: #fff;
 border: 10px solid #ccc;
 padding: 10px;
overflow: hidden;

}
* html #content {
 height: 1%;
}
⋮ CSS code…
#vote_history {
 padding: 5px;
 margin: 0;
 list-style: none;
 border: 3px solid #ccc;
 background-color: #eee;
 float: right;
 color: #999;
 font-size: smaller;
}

With all of this code in place, go ahead and reload a story page in your browser—the

result should look similar to Figure 7.13 (depending on how much fun you had

clicking the shove it link earlier).

While the page is looking good, there are a few more details we should add: the

history should be updated whenever the shove it link is clicked, we should really

sort the votes by descending ID (so that the newest is displayed at the top), and we

should limit the number of votes that are displayed.

Ajax and Web 2.0 235

Figure 7.13. Showing a story with voting history

We can achieve the first task easily by adding some code to our RJS template, located

at app/views/votes/create.js.rjs. These additions will deal with the voting actions:

18-create.js.rjs (excerpt)

page.replace_html 'vote_score', "Score: #{@story.votes_count}"
page[:vote_score].visual_effect :highlight
page[:vote_history].replace_html :partial => 'vote',

:collection => @story.votes

Can you see where we’re heading with this? Once again, we’ve used the page object

to gain access to the vote_history HTML element. This element is then replaced

with a new value. The syntax for replacing the element is the same syntax that we

used for the original render call in our show.html.erb template. The name of the

partial is passed using :partial, and the collection of votes (available via

@story.votes) is passed using a symbol called :collection.

When we pass :partial and :collection to the replace_html method of an RJS

template like this, the method will behave just like the regular call to render that

we used in show.html.erb. In this case, it will render exactly the same collection of

partials that our view displays. Using the partial in more than one location is a nice

way to avoid writing duplicate code.

mailto:@story.votes)

236 Simply Rails 2

Tweaking the Voting History
Lastly, we’ll add an instance method to the association between the Vote and the

Story model to return a limited number of votes sorted by descending ID. Why

would we write this as a separate method, and not just retrieve the data from within

the view? Well, for a couple of reasons. For one, MVC principles state that we

shouldn’t be retrieving any data from our view. But the fact that we’ll be calling

this method from a couple of separate places means that moving it to the model

makes even more sense.

Let’s create the method first, then we’ll add the references to it. Edit the Story class

so that it looks like this:

19-story.rb (excerpt)

class Story < ActiveRecord::Base
⋮ story class…

 has_many :votes do
 def latest
 find :all, :order => 'id DESC', :limit => 3

 end
 end
end

This latest method will take advantage of the story’s association with the Vote

model, and will use a regular find call to retrieve the records we want, up to a total

of three records (as specified by the :limit => 3 parameter). The :order => ‘id

DESC’ argument will ensure that they’re ordered so that the newest vote is located

at the top.

When :all Doesn’t Really Mean All

Even though :all is passed as the first argument, this find call will not retrieve

all the votes from the database. It will only fetch votes associated with the current

Story object and the :order and :limit arguments will be used in the database

query, so a maximum of three votes will be returned to our application.

Ajax and Web 2.0 237

Ordering Records in Rails

In case you’re curious, the :order argument is actually a tiny piece of SQL. DESC,

quite obviously, stands for descending; there’s also ASC for ascending, which is

often left off as it’s the default.

The rest of the :order argument constitutes a column name by which the records

will be ordered (or multiple column names separated by commas—if you want

to order by multiple columns—like so: :order => ‘id, created_at’). Rails

itself currently offers no way to specify the ordering of records in pure Ruby.

Having added this new method to the Story class, you can go ahead and replace

the two occurrences of @story.votes that are present in our views with

@story.votes.latest. The first occurrence is the render call in show.html.erb:

20-show.html.erb (excerpt)

<%= render :partial => 'vote',
 :collection => @story.votes.latest %>

The second occurrence is the last line of the RJS template create.js.rjs:

21-create.js.rjs (excerpt)

page[:vote_history].replace_html :partial => 'vote',
 :collection => @story.votes.latest

Excellent. Reloading the story page should produce the expected results, with the

number of votes being limited to three, and the votes ordered by descending ID.

Hitting the shove it link will update the voting history and place the new vote at the

top of the list. Have a look at Figure 7.14 to see how the updated page looks.

mailto:@story.votes
mailto:@story.votes.latest

238 Simply Rails 2

Figure 7.14. The final story page with voting history

Testing the Voting Functionality
In Chapter 6, we mentioned that our plan is to provide test coverage for all of the

functionality in our application. Let’s expand our growing test suite by adding some

unit and functional tests.

Testing the Model
While most of the work in this chapter has been on the controller side, we still made

some changes to the model: we modified our Story model, we added a Vote model,

and we defined an association between the two. We also added an instance method

called latest_votes to retrieve the most recent votes of a given Story. All of these

features can be tested programmatically, so let’s write some unit tests to cover them.

Preparing the Fixtures
Before we write any tests, we’ll add some test data to the fixtures for our Vote

model, which resides in test/fixtures/votes.yml:

Ajax and Web 2.0 239

22-votes.yml

one:
 story: one

two:
 story: one

We generated the original contents of this file using the generate script earlier in

this chapter, but I’ve made some enhancements here. Both story attributes point

to the first Story named one in the stories.yml fixture file, illustrating the point that

one Story can have multiple Votes.

Testing a Story’s Relationship to a Vote
At this stage, we’re ready to add a test that covers the Story’s relationship to the

Vote model. To do this, open the file test/unit/vote_test.rb and change the VoteTest

class to read as follows:

23-vote_test.rb (excerpt)

class VoteTest < ActiveSupport::TestCase
def test_story_association
 assert_equal stories(:one), votes(:one).story

 end
end

The new test_story_association test undertakes the testing of the Story’s rela­

tionship to the Vote model. While the underlying Rails association has very good

internal test coverage, it’s good practice to test all associations that you create as

you test your application’s behavior.

 assert_equal stories(:one), votes(:one).story

The assert_equal assertion, as the name implies, confirms that two expressions

are absolutely equal. In this case, we’re simply comparing the return values of two

methods.

What’s new on this line is the stories(:one) and votes(:one) syntax, which ref­

erences our fixture data by name. Making use of a fixture file in a test doesn’t just

240 Simply Rails 2

load the contents of the file into the database—it also gives us a convenient way to

access each record in the fixture file, without having to resort to manual retrieval

methods (for example, using Vote.find(1) to retrieve the first vote). The records

we defined in the votes.yml fixture file above are named one and two. Simply passing

these identifiers as symbols to the votes method returns the corresponding record.

To give an example, take a look at these two calls—they’d be equal, given the

votes.yml fixture we created earlier:

Vote.find(1)

votes(:one)

Incidentally, a method with a name identical to the name of the fixture file (minus

the .yml extension) is made available for every fixture we include in a test case. As

we’ve created two fixtures so far, we have access to both the votes and stories

methods.

In our assertion line, we compare the Story named one with the Story object that’s

associated with the Vote named one. We know that this assertion should be true,

because we associated both votes in the fixture file with the first story.

Testing a Vote’s Relationship to a Story
To test the complementary part of the relationship between our models, edit the

test/unit/story_test.rb file. To cover the association with a test, we’ll add the following

method just below the existing tests:

24-story_test.rb (excerpt)

class StoryTest < ActiveSupport::TestCase
⋮ unit tests…
def test_should_have_a_votes_association
 assert_equal [votes(:one), votes(:two)],
 stories(:one).votes

 end
end

This assertion confirms that the votes associated with the Story are indeed the votes

that we named one and two. Here, we’re manually assembling an array of votes in

the order in which we expect them to appear, and comparing that array with the

Ajax and Web 2.0 241

votes that are returned by the votes method. If the two arrays match, we know our

code works!

Testing the Voting History Order
To test the functionality provided by the latest_votes method we added, we’ll

add two more tests to the story_test.rb file, below the others:

25-story_test.rb (excerpt)

 def test_should_return_highest_vote_id_first
 assert_equal votes(:two), stories(:one).votes.latest.first

 end

 def test_should_return_3_latest_votes
 10.times { stories(:one).votes.create }
 assert_equal 3, stories(:one).votes.latest.size

 end

Let’s look at these tests line by line.

The test_should_return_highest_vote_id_first test confirms that the :order

part of the latest_votes method is indeed operating correctly.

 assert_equal votes(:two), stories(:one).votes.latest.first

The assertion compares the first element of the array returned by the latest method

with the Vote object to which we expect it to be equal (the fixture with the highest

id attribute).

To test whether the :limit part of our latest method does indeed do its job, we

need to add a few more votes to the database, as our fixture file currently contains

only two votes. However, because it’s unlikely that we’ll be using a large number

of votes in any other test, we’ll create the additional votes right there in the test,

using a simple block of Ruby code:

 10.times { stories(:one).votes.create }

This line programmatically creates ten votes on the fly by calling the create method

on the votes association of the first Story.

242 Simply Rails 2

These dynamically created votes will automatically be wiped from the database

before the next test starts, so they won’t affect any other tests.

The assertion then goes ahead and compares the size of the array returned by latest

with the expected number of three, which is the maximum number of votes that

latest should return.

Running the Unit Tests
At this point, we’re ready to run our unit tests with all of the newly added coverage.

You remember how to do that, right? Use the rake tool:

$ rake test:units

The output should look similar to Figure 7.15.

Figure 7.15. Running unit tests

Testing the Controller
Now that we’ve created tests that cover all the extra functionality we added to our

model in this chapter, we’ll do the same for the new controller actions—show in

StoriesController and create in VotesController—and their accompanying

views.

Ajax and Web 2.0 243

Testing Page Rendering
We’ll add two tests for the show action to test/functional/stories_controller_test.rb; the

first will be a test that deals with the basics of displaying a story. The code for the

first test looks like this:

26-stories_controller_test.rb (excerpt)

 def test_should_show_story
 get :show, :id => stories(:one)
 assert_response :success
 assert_template 'show'
 assert_equal stories(:one), assigns(:story)

 end

This code doesn’t do anything we haven’t seen before—we request a page (the “show

story” page) using HTTP GET, and make sure that the page returns a code indicating

that it displayed successfully. We then check that the template name is correct, and

make sure that the story we’ve requested via its id is indeed the story we expected.

The next test we’ll create will cover the new HTML elements that we added to the

story page—specifically those relating to the voting functionality. The test is as

follows:

27-stories_controller_test.rb (excerpt)

 def test_should_show_story_vote_elements
 get :show, :id => stories(:one)
 assert_select 'h2 span#vote_score'
 assert_select 'ul#vote_history li', :count => 2
 assert_select 'div#vote_form form'

 end

This is quite a a comprehensive test. It checks for the presence of correctly nested

HTML tags on the rendered page, as well as proper element attributes. Let’s examine

it one line at a time:

 assert_select 'h2 span#vote_score'

244 Simply Rails 2

This assertion introduces more of the CSS selector syntax that can be used with

assert_select, which we first encountered in Chapter 6. Just as you would regularly

style an element on a page by referring to its ID, assert_select allows us to test

for the presence of an element with a given ID using the exact same syntax we’d

apply to style an element on the page.

Here, we’re checking for a span tag with an id of vote_score nested within an h2

element. This test actually confirms that we have a proper story header in place,

and that the current voting score appears beneath it.

The next assertion also uses assert_select:

 assert_select 'ul#vote_history li', :count => 2

Here, we check for the presence of a ul element that has a unique id of vote_history

and a specific number of li elements nested within it (these reflect the entries of

the voting history for this particular story).

Our final check confirms the presence of a div element with a unique id of

vote_form with a nested form inside of it:

 assert_select 'div#vote_form form'

We now have a high level of confidence that our pages are displaying everything

we expect them to! Now, let’s add some tests for our voting functionality.

Testing Vote Storage
To test the basics of the vote-casting functionality, add the following test to

test/functional/votes_controller_test.rb. It simply confirms that new votes are stored

correctly:

28-votes_controller_test.rb (excerpt)

class VotesControllerTest < ActionController::TestCase
def test_should_accept_vote
 assert stories(:two).votes.empty?
 post :create, :story_id => stories(:two)
 assert ! assigns(:story).votes.empty?

 end
end

http:test/functional/votes_controller_test.rb

Ajax and Web 2.0 245

The test uses a before-and-after check to confirm that this action, which is supposed

to modify data, is indeed doing its job. Let’s look at each line in turn.

The first line confirms that the story initially has no votes:

 assert stories(:two).votes.empty?

We then submit the vote using HTTP POST:

 post :create, :story_id => stories(:two)

Finally, we confirm that the vote we submitted was stored successfully, and is indeed

associated with our story:

 assert ! assigns(:story).votes.empty?

Okay, we now have a basic test in place for the application’s basic voting function­

ality. But our voting pages aren’t exactly basic—they use that fancy Ajax stuff, re­

member? Can we test that, too? You bet we can!

Testing Ajax Voting
Let’s test an Ajax voting action. Add the following test to your rapidly expanding

collection of functional tests:

29-votes_controller_test.rb (excerpt)

 def test_should_render_rjs_after_vote_with_ajax
 xml_http_request :post, :create, :story_id => stories(:two)
 assert_response :success
 assert_template 'create'

 end

Let’s walk through each line of this test.

The first line is our test’s way of pretending to perform an actual Ajax request:

 xml_http_request :post, :create, :story_id => stories(:two)

246 Simply Rails 2

Obviously, this isn’t really an Ajax request—it doesn’t make use of a browser, and

there’s no XmlHttpRequest object in sight. But, by prefixing the regular post call

with the xml_http_request method, our request receives a header that fools the

application into thinking that this is a real Ajax request.

The next block of statements checks for a proper response, and confirms that the

correct template was rendered:

 assert_response :success

 assert_template 'create'

There’s nothing here that we haven’t seen before, so let’s move on to our last test.

Testing Regular HTTP Voting
We still need to test the process of vote submission using regular HTTP POST (that

is, without Ajax). To do so, we’ll add one more test to the votes_controller_test.rb

file:

30-votes_controller_test.rb (excerpt)

 def test_should_redirect_after_vote_with_http_post
 post :create, :story_id => stories(:two)
 assert_redirected_to story_path(stories(:two))

 end

Let’s examine each line in this test. The first line casts the vote with a simple HTTP

GET:

 post :create, :story_id => stories(:two)

After the vote has been submitted, we just need to check whether the user is properly

redirected to the story page. This is accomplished with an assert_redirected_to

assertion:

 assert_redirected_to story_path(stories(:two))

Excellent! All of our new functionality is covered. Time to run the tests!

Ajax and Web 2.0 247

Running the Full Test Suite
Invoking the full test suite (using the rake test command) will run through a total

of 26 assertions contained in ten tests. The results of a successful test suite execution

should look something like Figure 7.16.

Figure 7.16. Running the full test suite

Summary
In this chapter we’ve equipped Shovell with some fully fledged voting functionality,

and we’ve done it using cutting-edge technologies like Ajax combined with some

good-looking Web 2.0 effects.

Along the way, we covered the principles of the Rails routing helpers, and we added

to our application a page that shows the details of a story that has already been

submitted.

248 Simply Rails 2

We also looked at using RJS templates to modify the contents of pages that have

already been rendered, and discussed how we can use visual effects to enhance the

usability of our application. We even covered partials—mini page templates that

help reduce the amount of template code required to get the job done.

Finally, we established test coverage for all the functionality that we added to our

Shovell application in this chapter, so that we’ll know immediately if any future

change to the application code breaks our existing functionality.

In the next chapter, we’ll implement some protective measures in Shovell with user

authentication—with some additional benefits!

Chapter8
Protective Measures
Over the last few chapters, we’ve spent a good deal of time implementing new fea­

tures for our story-sharing application. However, we’ve yet to put any effort into

preventing those features from being misused.

In this chapter, we’ll implement some user authentication techniques that will allow

us to protect certain actions from use by individuals who have not registered with,

or logged into, the site.

Introducing Sessions and Cookies
Before we write any code, let’s learn a bit more about the technology behind user

logins, including sessions and cookies.

If you already have some experience with sessions and cookies, you may prefer to

skim through this section, or jump forward a few pages to the section called

“Modeling the User”—that’s where we’ll get back into writing the code that will

bring these concepts to life.

250 Simply Rails 2

Identifying Individual Users
Generally speaking, HTTP—the protocol that a web browser uses to talk to an ap­

plication—is a stateless protocol. This means that it doesn’t make any assumptions

about, or rely upon, previous requests between the client and the server.

This is the crucial difference between stateless protocols and other protocols, in­

cluding instant messaging systems such as AIM or ICQ: when you start up an instant

messenger client, it logs in to the instant messaging server, and remains connected

for the time that you use the service. Stateless protocols, such as HTTP, request

only a single item—a web page, an image, a style sheet, or a Flash movie, for ex­

ample—during each connection. Once the item has been requested, the connection

is closed. If the requested item is a web page, it is impossible for the application to

tell what the users are doing—they may still be reading the page, they may have

followed a link to another site, or they may have shut down the machine altogether.

In the world of HTTP, it’s also impossible to tell whether two pages requested in

succession were actually requested by the same user. We can’t rely on the IP address

of the user’s computer,1 as that computer might sit behind a proxy server or firewall,

in which case it’s entirely possible that thousands of other users share the IP address

displayed by that machine.

Obviously, we need to use another technique to identify individual visitors. Without

it, we’d have to force every user to log in to each and every page of our Shovell ap­

plication, and that’s just not cool. This is where sessions and cookies come into

play.

What’s a Cookie?
A cookie is a tiny snippet of information that a web site places on a user’s computer.

The cookie is bound to the web site that placed it there—no other site is able to access

the cookie. You’ve probably encountered cookies when using the Web in the past,

possibly without even knowing it.

A cookie consists of a name/value pair. For example, a cookie with the name color

might have the value green. Additionally, the cookie’s name must be unique—if a

1 An IP address is a number that uniquely identifies a computer connected to the Internet. You’ve no

doubt encountered them before; here’s an example: 123.45.67.123.

Protective Measures 251

cookie is set with the same name as one that already exists, the older cookie will

be overwritten.

All web browsers give users control over the cookies that web sites set on their

machines (although some make cookie management easier than others). Firefox, for

example, provides a handy tool for inspecting—and removing—the cookies that

have been set on a machine. To display the Firefox cookie manager shown in Fig­

ure 8.1, select Tools > Options (Firefox > Preferences on a Mac), click Privacy, select

the Cookies tab, and click View Cookies. Go take a look—chances are that many of

the sites you have visited have left a cookie, without even telling you about it!

Figure 8.1. The Firefox cookie manager

Cookies usually have an expiration date; a browser will delete a cookie automatically

once its expiration date has passed. It makes sense for sites to set expiration dates

on cookies, because they occupy space on the user’s computer. Also, once a cookie

is set, it can’t be modified by the application that set it, so a cookie that had no ex­

piration date could wind up sitting on the user’s hard disk forever.

252 Simply Rails 2

A site can set the expiration date of a cookie in two ways:

■ by setting an explicit date (for example, December 31, 2008)
■ by setting the cookie to expire when the user closes the browser

The latter is the default behavior for Rails’ session cookies … which brings us to

the next topic: sessions.

What’s a Session?
Sessions are just what we need to identify returning visitors. A session is like a

small container that’s stored on the server for each user; it can be used as a temporary

storage location for everything that needs to be remembered between successive

page views made by the user. Though a session is a less permanent storage solution,

the data stored in the session shouldn’t be treated any differently from data stored

in the application’s database.

As an added bonus, the processes of creating sessions and retrieving information

from them occurs without us having to write any code, or provide specific instruc­

tions.

For our Shovell application, we’ll use a session to store information about where a

user has come from; we’ll use that information when the user attempts to access

pages or functionality, to determine whether we should allow the user access, or

redirect him or her to the login form. Sessions can also be used to store shopping

cart content, custom user preferences, and other information that allows us to en­

hance and customize users’ experiences of a site.

Rails uses a session cookie to identify the session of a returning visitor. A session

cookie, by default, will contain the actual session content in a safely encrypted

fashion, although it’s possible to store the session content on the server or in the

database if you so desire later on.

In fact, if you’ve been following the code in this book, you may notice that a session

cookie has been set by our application already—check your browser’s cookie manager

for a cookie set by localhost or localhost.local, with the name _shovell_session.

This is a cookie that Rails sets for us automatically, to provide us with a session

that we can use within our application.

Protective Measures 253

Sessions in Rails
In Rails, a session is automatically created for each of your application’s users, and

can be used to store and retrieve data without requiring any special code.

The session container for a user is accessed just like any other hash. To add a new

value to the session, simply assign the value that you wish to store to a hash key

that doesn’t yet exist in the session, like so:

session[:page] = 'Index page'

The result of this assignment is that a cookie will be written to the user’s machine

as shown in Figure 8.2 (in this case, the cookie name is _shovell_session). This

cookie contains an encrypyted representation of what you stored in the session

previously. With the cookie in place, any data stored in the session becomes available

for all successive pages that this user visits.

Figure 8.2. A cookie set by our Rails application

254 Simply Rails 2

The retrieval of session values is equally simple. To access the value we stored in

the previous code snippet, and display it in a view, we’d use the following syntax:

<%= session[:page] %>

It’s actually possible to store data other than strings in a session container—you can

use a session to store any type of data you like. The only prerequisite for the storage

of such objects is that your application has access to the class definition of the object

that’s stored. However, in practice, sessions should only be used to store simple

objects, such as String and Fixnum objects. And since anything you store in the

session will be stored in the user’s browser, the objects you store had better be small!

The Physical Location of a Session

As I mentioned, we can store the contents of a session on the server or in different

types of databases, as well as the default location of the session cookie itself.

While this solution is fine for local development, it may not work quite so well

in a production environment. This procedure lacks some control, not least by its

inability to purge data from the user’s session and thus prevent data from becoming

stale (out of sync with data in our database).

Although an in-depth discussion on the different session storage options is beyond

the scope of this book, we’ll briefly explore some of the alternatives in Chapter 12.

Modeling the User
Right! Now that we’ve stepped through the theory, let’s get back to the topic at hand:

protective measures. In this section, we’re going to lay an architectural foundation

for providing user authentication in Shovell.

The first step is to generate a new model named User. Since we’ve covered the

generation of models before, I’m not going to dwell on this step for long. Let’s do

it!

Generating a User Model
From the shovell folder, run the generate script shown below to generate the base

class of the User model, along with its migration files, unit tests, and fixtures:

Protective Measures 255

$ ruby script/generate model User login:string

➥ password:string name:string email:string

The output of this script is shown in Figure 8.3.

Figure 8.3. Generating the User model

To create the database table for this model, modify the generated migration file

located at db/migrate/003_create_users.rb to look like this:

01-003_create_users.rb

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table :users do |t|
 t.string :login
 t.string :password
 t.string :name
 t.string :email

 t.timestamps
 end

add_column :stories, :user_id, :integer
add_column :votes, :user_id, :integer

 end
 def self.down
 drop_table :users

256 Simply Rails 2

remove_column :stories, :user_id

remove_column :votes, :user_id

 end

end

We’ll use this migration to create a brand-new users table. The four columns defined

above will hold users’ personal information: usernames, passwords, names, and

email addresses. Actually, the table has seven columns if you include the automat­

ically created id column as well as the created_at and updated_at columns that

are a result from the t.timestamps call above.

In addition to creating this new table, we’ll insert a new column into each of the

existing stories and votes tables, which will store the id of the user who created

a particular story or vote, respectively.

While we would normally split migrations into the components that handle small,

isolated changes, in this case it makes sense to group the creation of the users table

with the modification of the two other tables. We’ll keep our schema changes together

as one migration, as they’re so closely related. We use the good old rake tool to

apply the migration we’ve just written:

$ rake db:migrate

Figure 8.4 shows the result of a successful migration. We now have in place the

database structure necessary to begin writing some code for our User model.

Adding Relationships for the User Class
As you’ve probably gathered from our past endeavors with ActiveRecord, a model

doesn’t require a whole lot of code in order to be functional.

The User class is no exception; the only changes we’ll make to it now are to specify

the relationship between it and our two other models. This will help us keep track

of which user submitted a particular story or vote.

Protective Measures 257

Figure 8.4. Applying the migration

Open the User class definition, located at app/models/user.rb, and modify it as fol­

lows:

02-user.rb

class User < ActiveRecord::Base
has_many :stories
has_many :votes

end

This code sets up a one-to-many relationship between the User class and each of

the Story and Vote classes.

As you already know, relationships can (and should) be defined for both of the

participating models. So our next step is to add complementary relationship

definitions to the Story and Vote classes (located at app/models/story.rb and

app/models/vote.rb respectively):

03-story.rb (excerpt)

class Story < ActiveRecord::Base
belongs_to :user
⋮ class definition…

end

http:app/models/user.rb

258 Simply Rails 2

04-vote.rb (excerpt)

class Vote < ActiveRecord::Base
belongs_to :user
⋮ class definition…

end

These bidirectional relationship definitions allow us to retrieve not only the Vote

and Story objects associated with a particular User, but also the User object associ­

ated with a particular Story or Vote.

All right, enough of the architectural building blocks—let’s create a user. Then we

can start to protect some of our actions from users who haven’t logged in.

Creating a User
Creating a User object is no different from creating any other ActiveRecord object.

It’s easily accomplished from the Rails console (feel free to create an account for

yourself, rather than using my name!):

>> u = User.new

=> #<User id:nil, …>

>> u.name = 'Patrick Lenz'

=> "Patrick Lenz"

>> u.login = 'patrick'

=> "patrick"

>> u.password = 'sekrit'

=> "sekrit"

>> u.email = 'patrick@limited-overload.de'

=> "patrick@limited-overload.de"

>> u.save

=> true

Implementing Hashed Password Storage

Yes, we are using plaintext passwords here. Storing passwords as plaintext is a

big security risk—all your users’ accounts are accessible if someone with evil in­

tentions manages to get access to your database. To improve the security of your

application, only store cryptographic hashes of the passwords (with a unique

random string called a salt prepended to it). That way, if your database is accessed

the passwords will not be readable and your users protected.

mailto:'patrick@limited-overload.de'
mailto:"patrick@limited-overload.de"

Protective Measures 259

Be sure to implement hashed password storage for yourself before you launch

your application to the world; the Digestmodule2 that comes bundled with Ruby

has the tools for the job.

Developing Login Functionality
In order to handle login and logout actions (and cater for new user registrations

down the track), we’ll need another controller to complement our existing controllers

StoriesController and VotesController. Once that’s in place, we can create some

functionality to let users log in and out. It’s exciting stuff!

Creating the Controller
We’ll name this new controller SessionsController (since it’s not dealing with

the creation and deletion of users, but rather with the creation and deletion of their

sessions), and generate it using the generate script, as usual:

$ ruby script/generate controller Sessions new create destroy

Passing the additional new, create, and destroy parameters as arguments to the

generate script will automatically create blank new, create and destroy actions

in our new SessionsController, which saves us a few lines of typing. It will also

create empty ActionView templates in the app/views/sessions/ folder, with the names

new.html.erb, create.html.erb, and destroy.html.erb. Since we don’t need a template

for the create action (this action is destined to just redirect elsewhere after it per­

forms its job), you’re free to remove create.html.erb. Figure 8.5 shows the output of

the above generate call.

2 http://www.ruby-doc.org/stdlib/libdoc/digest/rdoc/

http://www.ruby-doc.org/stdlib/libdoc/digest/rdoc/
http://www.ruby-doc.org/stdlib/libdoc/digest/rdoc/

260 Simply Rails 2

Figure 8.5. Generating a SessionsController class

Before closing off this section, we need to revisit our routing configuration (stored

in config/routes.rb), since we want to build our SessionsController in a RESTful

way. Add the following line to make sure Rails knows our intentions and provides

the appropriate helpers to generate RESTful URLs for the session that’s about to

begin:

05-routes.rb (excerpt)

ActionController::Routing::Routes.draw do |map|
⋮ more routes…
map.resource :session

end

Please note that we’ve used the singular form of map.resource instead of the plural

form (map.resources) that we’ve been using for stories. When using the singular

form, Rails knows we’re talking about a singleton resource, which means that only

one of it ever exists at a time. This is true here in the context of a User object, which

is only ever going to have a single session at a time. As such, all the RESTful URLs

for sessions will take the singular form, rather than the plural form, of the model

name we’ve seen so far. For example, the URL that creates a new session will be:

/session/new.

All right, let’s go ahead and create some forms.

Protective Measures 261

Creating the View
To better understand what happens when we use extra parameters to generate

ActionView templates, type http://localhost:3000/session/new into your web

browser.

The result you see should be similar to Figure 8.6—it’s basically a friendly message

to let us know where we can find the template that’s being displayed in the browser.

Figure 8.6. The generated login template

Remember to Start Your Server!

As always, to use our Shovell application, you must have the web server running.

Flip back to Chapter 2 if you need a refresher on this.

Let’s modify this template and turn it into an actual login form. As Rails indicates

in the browser, the template’s located at app/views/sessions/new.html.erb:

06-new.html.erb

<% form_tag session_path do %>
 <p>Please log in.</p>
 <p>
 <label>Username:</label>
 <%= text_field_tag 'login' %>

http://localhost:3000/session/new

262 Simply Rails 2

</p>

 <p>

 <label>Password:</label>

 <%= password_field_tag 'password' %>

 </p>

 <p><%= submit_tag 'login' %></p>

<% end %>

Once again, we’ve created a form using simple HTML markup and a few of the Rails

form helpers. This time, our form doesn’t deal with a specific model object, so we

can’t use the form_for helper that we used back in Chapter 6. Instead, we use the

standard form_tag helper that defines the surrounding form with a do and end

block:

<% form_tag session_path do %>

⋮ login form…

<% end %>

This generates the all-important <form> and </form> HTML tags. It uses the

sessions_path URL helper that we got by telling the Rails Routing configuration

that we want RESTful handling of the session’s URLs in the last section. To check

that they’re being created correctly, reload the modified page in your browser and

view the source of the page.

The text_field_tag and password_field_tag helpers generate HTML input ele­

ments with the type attribute set to text and password, respectively:

 <p>

 <label>Username:</label>

<%= text_field_tag 'login' %>

 </p>

 <p>

 <label>Password:</label>

<%= password_field_tag 'password' %>

 </p>

These elements will render the text fields into which our visitors will enter their

usernames and passwords. The login and password parameters that we’re passing

to each of these helpers assigns a name to the HTML tag that’s generated; it also

Protective Measures 263

causes this value to show up in the params hash, which, as we’ll see later on, will

prove to be very useful.

Now that we’ve put our form in place, we can establish some functionality behind

it.

Adding Functionality to the Controller
We’re ready to implement the actual login functionality within the create controller

action. You’ll find the controller class in the file app/controllers/sessions_controller.rb.

Add the following code to the create method of this class:

07-sessions_controller.rb

class SessionsController < ApplicationController
⋮ controller code…

 def create
@current_user = User.find_by_login_and_password(
 params[:login], params[:password])

 if @current_user
 session[:user_id] = @current_user.id
 redirect_to stories_path

 else
 render :action => 'new'

 end
 end

⋮ controller code…
end

As Figure 8.7 shows, we’ve expanded the previously empty create action to handle

the submission of the login form. We attempt to fetch a user using the login and

password values that the visitor provided. Notice that we use one of the

ActiveRecord dynamic finder methods to do this:

 @current_user = User.find_by_login_and_password(

 params[:login], params[:password])

http:app/controllers/sessions_controller.rb

264 Simply Rails 2

Figure 8.7. The completed login form

If we’re able to locate a user whose record matches the visitor-entered username

and password combination (which means @current_user is not nil, which is a true

condition for the if clause), we store within the current visitor’s session the id of

the User object that was retrieved. The user is then redirected to the story index,

which Rails gave us the shorthand stories_path for:

 if @current_user

session[:user_id] = @current_user.id

 redirect_to stories_path

 else

⋮
 end

If we don’t find a corresponding user in the database, we’d like to rerender the login

form. Maybe the user mistyped the password or forgot the username, in which case

we’d like to enable him or her to try again:

mailto:@current_user.id

Protective Measures 265

if @current_user

⋮

 else

render :action => 'new'

 end

ActiveRecord Objects and the Session Container

Be careful when you’re storing ActiveRecord objects in the session container.

ActiveRecord objects may change at any time, but the session container won’t

necessarily be updated to reflect the changes. For example, in our Shovell applic­

ation, a story object might be viewed by one user, and modified by a second user

immediately afterwards. If the entire story was stored in the session container,

the first user’s session would contain a version of the story that was out of date

(and out of sync with the database).

To ensure that this scenario doesn’t eventuate, it’s best to store only the primary

key of the record in question—the value of the id column—in the session contain­

er. Here’s an example:

session[:user_id] = myCurrentUser.id

On successive page loads, we retrieve the ActiveRecord object using the regular

Model.find method, and pass in the key that was stored in the session container:

current_user = User.find session[:user_id]

This is all well and good, and if you were to try logging in at

http://localhost:3000/session/new using the initial user that we created a few pages

back, you would indeed be redirected to the story page. Go on, try it out—it works!

However, there’s still something missing.

Since we’ve stored only the user’s id in the session container, we need to make

sure that we fetch the User object for that user before we hand execution control to

another controller action. If we failed to fetch the rest of the user’s details, we

wouldn’t be able to display the username of the currently logged-in user—which

we aim to do on every page in our application.

http://localhost:3000/session/new

266 Simply Rails 2

So, before we proceed too much further, let’s look at some of the theory behind one

of the features of Rails that allows us to execute code globally: filters.

Introducing Filters
A filter is a function that defines code to be run either before or after a controller’s

action is executed. Using a filter, we can ensure that a specific chunk of code is run

no matter which page the user’s looking at.

Once we’ve discussed how filters work, I’ll show you how to use one to fetch a User

object from the database when a user logs in. We’ll use another filter to redirect to

the login page any anonymous visitors who attempt to access a protected page.

Before Filters
The first type of filter we’ll look at is the before filter. As you might expect, a before

filter executes before the code in the controller action is executed.

Like all filters, a before filter is defined in the head of the controller class that calls

it. Calling a before filter is as simple as invoking the before_filter method and

passing it a symbol that represents the method to be executed. The filter can also

accept as a parameter a snippet of Ruby code; this code is used as the filter code.

However, this practice is discouraged, as it makes for code that’s difficult to maintain.

Here’s a hypothetical example in which a controller method is called using a symbol:

class FoosController < ApplicationController

 before_filter :fetch_password

 def fetch_password

⋮ method body…
 end

end

After Filters
Like a before filter, an after filter is defined in the controller class from which it is

called. The method to use is appropriately named after_filter and, not surpris­

ingly, these filters are executed after the controller’s action code has been executed.

Here’s an example:

Protective Measures 267

class FoosController < ApplicationController

 after_filter :gzip_compression

 def gzip_compression

⋮ method body…
 end

end

Around Filters
A combination of before and after filters, the around filter executes both before and

after the controller’s action code.

In a nutshell, around filters are separate objects that have before and aftermethods.

These methods are automatically called by the filter framework. Despite being a

combination of its simpler siblings, the around filter is significantly more advanced;

therefore, we won’t cover it in this book.

A Word on Filter Methods
As we’ve learned, filters take as a parameter a symbol that represents the controller

method to be executed. Consider the hypothetical example of our FoosController

once more:

class FoosController < ApplicationController

 before_filter :fetch_password

 def fetch_password

⋮ method body…
 end

end

This all seems fine, until you realize that every method that you implement in a

controller can actually be executed directly by a user, using a web browser. For

example, in the code listing above, a user would be able to execute the

fetch_password method of FoosController simply by visiting

http://localhost:3000/foos/fetch_password.

Wait a minute—that’s not what we want! The security implications of such an im­

plementation are potentially disastrous, so we definitely want to hide these kinds

of methods from the general public.

http://localhost:3000/foos/fetch_password

268 Simply Rails 2

When we discussed object oriented programming back in the section called “Ruby

Is an Object Oriented Language” in Chapter 3, we talked about the interface that an

object provides to the outside world—the interface with which other objects can

interact. All of the class and instance methods that an object shares this way are

called public methods, and this is, in fact, the only type of method we’ve used up

to this point.

However, Ruby has two types of methods that are not public: private methods and

protected methods.

private methods

Private methods are available only from within the classes in which they’re

stored, period. These methods cannot be accessed in any way from another ob­

ject. In the following example, the keyword private signals that all methods

that follow it are implemented as private methods:

class Formula1Car

 private

 def secret_tuning_option

⋮ method body…

 end

end

protected methods

Like private methods, protected methods are unavailable to the outside world.

However, a protected method remains available to classes that inherit from the

class in which the protected method is defined. For example, in the following

code listing, objects of class FerrariF1 would have access to the protected

method launch_control, which is defined in the parent class Formula1Car:

class Formula1Car

 protected

 def launch_control

⋮ method body…

 end

end

class FerrariF1 < Formula1Car

end

Protective Measures 269

The point of all this is that you should always implement filter methods as non-

public methods, in order to protect them from being executed independently from

the filtering role for which they were intended. This is exactly what we’ll do now.

Managing User Logins
Okay, we’ve covered filter theory, so let’s modify our application to fetch the cur­

rently logged-in User from our database. Once we’ve done that, we’ll display the

user’s name on the page, and provide the ability for the user to log out again.

Retrieving the Current User
We’re going to use filters to fetch the current user for each and every page of the

Shovell site. That phrase—“each and every page”—should give you a hint as to

where we’ll apply the filter. Filters can be inherited from parent classes and, as we

don’t want to write numerous filter declarations, we’ll stick our filter in the parent

class for all of our controllers: ApplicationController.

Methods and filters that are defined in this class are available to all classes that in­

herit from ApplicationController (located at app/controllers/application.rb),

which is just what we want:

07-application.rb

class ApplicationController < ActionController::Base
⋮ controller code…
before_filter :fetch_logged_in_user

 protected

 def fetch_logged_in_user
 return unless session[:user_id]
 @current_user = User.find_by_id(session[:user_id])

 end
end

Let’s take a look at each of the lines that make up the fetch_logged_in_user

method:

 return unless session[:user_id]

270 Simply Rails 2

This line is fairly straightforward. There’s no point retrieving a User object if the

user hasn’t logged in yet (in which case there’s no user_id stored in the session)—we

can simply exit the filter method without executing the rest of the code.

The next line tries to fetch from the database a User object with an id that’s equal

to the id stored in the visitor’s session container:

 @current_user = User.find_by_id session[:user_id]

The fetched object will be assigned to the instance variable @current_user, which

will then become available to actions in our controller as well as our views.

We’ve purposely used the find_by_id method here, rather than find, even though

on the surface it appears that the two would produce the same results. In fact, find

displays an error if it can’t retrieve a record that matches the id that’s passed to it,

while find_by_id exits more gracefully. It’s conceivable that a user may revisit our

site after his or her account has been deleted (perhaps because the user submitted

the same boring stories over and over again), so we need to make sure the application

will handle these cases in a user-friendly manner. Spitting out a bunch of technical-

looking errors is not the solution we’re looking for, hence our use of find_by_id.

Session Security Revisited

As we saw earlier, the value of session[:user_id] is, albeit stored in the user’s

web browser, stored in an encrypted fashion. This means that a user can’t, for

example, impersonate another user by simply changing the contents of his or her

session.

The only way that a user could circumvent the security measures that we’ve put

in place so far would be either to guess the session ID, or to identify it using a

brute force attack3 … that is, apart from grabbing another user’s laptop while he’s

in the bathroom!

As Rails uses a randomized string of 128 hexadecimal characters for the session

ID as well as a secret key set in the Rails application itself (that is never exposed

to the site’s users) to verify the data integrity of the session container contents,

3 A brute force attack involves looping through a list of every possible combination of alphanumeric

characters (or sometimes a list of dictionary-based passwords) until a matching phrase is found.

Protective Measures 271

it’s highly unlikely that a malicious user could gain another user’s id using either

of these approaches.

Our next task will be to display the name of the current user in the global application

layout.

Displaying the Name of the Current User
Since we require that our users log in just once to access the entire application, let’s

add to our global application layout (the file located at app/views/layouts/applica­

tion.html.erb) some code that will display the name of the currently logged-in user.

Make the following changes to this file:

09-application.html.erb (excerpt)

 <div id="content">
<div id="login_logout">
 <% if @current_user %>
 Logged in as:
 <%= @current_user.login %>
 <%= link_to "(Logout)", session_path,

:method => :delete %>
 <% else %>
 Not logged in.
 <%= link_to 'Login', new_session_path %>

 <% end %>
 </div>
 <h1>Shovell</h1>
⋮ page body…

 <div>

Let’s step through these changes. Using a simple if condition, we display a link to

the action that’s most appropriate, based on the user’s login status:

 <% if @current_user %>

The condition checks whether the instance variable @current_user evaluates to

nil.

Once we’ve made sure that the user is actually logged in, we display the user’s name

along with a link to log out again, which we’ll implement in the SessionsController

272 Simply Rails 2

in a moment. We indicate that we want the link to use the HTTP DELETE request

type by passing the :method => :delete argument to the link_to method. We

wrap the link in an tag to make it stand out a little:

 Logged in as:

 <%= @current_user.login %>

 <%= link_to "(Logout)", session_path,

:method => :delete %>

If a visitor is not logged in, we display a link that the user can follow to the login

form:

 <%= link_to 'Login', new_session_path %>

As you can see, our sessions are REST all over. We’ve been using the bare

session_path to handle both the login action (at POST /session) and the logout

action (the code of which is still missing, but it’ll live at DELETE /session) and

new_session_path for the actual login form (living at GET /session/new).

To make the page look a little nicer, let’s add a snippet of CSS to the global style

sheet that’s located at public/stylesheets/style.css:

10-style.css (excerpt)

#login_logout {
 float: right;
 color: #999;
 font-size: smaller;
}

This code dims the text colors a little, floats the container to the right, and makes

the font size a little smaller. If you reload the page after logging in, you should see

the results shown in Figure 8.8. That’s much better!

mailto:@current_user.login

Protective Measures 273

Figure 8.8. Displaying the current user

Next, we’ll implement the logout functionality.

Allowing Users to Log Out
Providing our users with a manual logout function is much more user-friendly than

forcing them to close their browsers to log out. We’ll implement this method in our

SessionsController class, located in app/controllers/sessions_controller.rb:

11-sessions_controller.rb (excerpt)

class SessionsController < ApplicationController
⋮ controller code…
def destroy
 session[:user_id] = @current_user = nil

 end
end

Logging a user out of the application is a matter of setting two variables to nil:

■ the user_id that’s stored in the user’s session
■ the instance variable that holds the current user

Both of those tasks are completed with one line of code:

 session[:user_id] = @current_user = nil

274 Simply Rails 2

This line of code prevents our before filter (the fetch_logged_in_user method)

from retrieving anything from the database. As we’re setting both the current user

and the user id stored in the session to nil, no more User objects for this user remain

in memory. The user has therefore been logged out of the system.

I’ve taken this opportunity to introduce another piece of shorthand syntax that’s

used often in Ruby code: we’ve assigned nil to two variables at once. Strictly

speaking, we’re assigning the result of the statement @current_user = nil (which

happens to be nil) to session[:user_id].

With that code in place, adding a simple message to app/views/sessions/des­

troy.html.erb will confirm for the user that the logout was successful:

12-destroy.html.erb

<h2>Logout successful</h2>
<%= link_to 'Back to the story index', stories_path %>

Let’s check that this all works as we expect. Click that (Logout) link in the top right-

hand corner of the page. If everything goes to plan, you should be logged out of the

application and presented with a page like the one shown in Figure 8.9. Additionally,

the username that was previously displayed in the upper right-hand corner should

not be present on any successive page that you visit—you should see a Login link

instead.

Figure 8.9. Successfully logging out of the application

Protective Measures 275

Now that users are able to log in and out of the application, we’re in a position to

make certain actions available only to logged in users. However, before we begin

to make these additions, let’s add to our site an element that has been sorely lacking

so far: navigation.

Adding a Navigation Menu
You’re probably growing a little tired of typing http://localhost:3000/stories/new

over and over again. Let’s create a diminutive navigation menu at the bottom of

every page, so that we can move easily between the different pages we’ve created.

To do so, modify the file app/views/layouts/application.html.erb. Right above the

closing </body> tag at the bottom of the file, place the following unordered list,

which contains our navigation menu:

13-application.html.erb (excerpt)

<body>
⋮ page body…
<ul id="navigation">
 <%= link_to 'Front page stories', stories_path %>
 <%= link_to 'Submit a new story!', new_story_path %>

</body>

We’ve got two links in our menu at this point:

■ a link to the story index (which currently displays a random story from the pool)
■ a link to the story submission form

As usual, we’ll also expand our style sheet to make the menu look pretty; the result

is shown in Figure 8.10:

14-style.css (excerpt)

#navigation {
 list-style: none;
 padding: 5px 0;
 margin: 0;
 text-align: center;
}

http://localhost:3000/stories/new

276 Simply Rails 2

#navigation li {

 display: inline;

 padding: 0 5px;

}

#navigation li a {

 color: #fff;

}

Figure 8.10. Story index with navigation

That’s much better. With the navigation in place, moving around within our applic­

ation becomes a lot easier.

Restricting the Application
All this login functionality would be wasted if a guest to our site had access to the

same feature set enjoyed by our registered users—what would be the point of logging

in?

Now that our login functionality is working, we can restrict certain parts of the ap­

plication from use by anonymous guests and users who have not logged in.

Protecting the Form
The first action that will benefit from protection is the submission of stories. While

we’re adding this protection, we’ll also check that when a new story is submitted,

Protective Measures 277

the application correctly saves the reference to the User who submitted it (as we

defined in the relationship between a User and a Story).

The first step we need to take is to figure out how to intercept a request that comes

from a user who’s not currently logged in to our application. Once we’ve achieved

this, we can direct the visitor to a login form instead of the story submission form.

This sounds like a perfect job for a before filter, doesn’t it?

We’ll add our new filter code to the global ApplicationController class so that

all of our controllers can benefit from this addition, since the filter is available to

any of the controllers in our application.

The filter will be called login_required, which is suitably descriptive. As we’re

going to check from a few different places in our application whether or not a user

is logged in, we’ll extract this code into a separate controller method before we

create our new filter. (Writing @current_user isn’t exactly the most declarative

thing in the world, anyway.)

Abstracting Code Using helper_method
The reason we’re placing this functionality into a controller method (rather than

creating a regular helper for it) is that the functionality it provides is useful to both

controllers and views. However, regular helpers are available only to views, and

controller methods are available only to controllers. We need some sort of magic

bridge to make this controller method available to our views.

This magic bridge happens to be the helper_method statement, which makes regular

controller methods available to views as if they were regular helper methods. We’ll

add this snippet to the protected area of our ApplicationController (in

app/controllers/application.rb):

15-application.rb (excerpt)

class ApplicationController < ActionController::Base
⋮ controller code…

 protected

 def fetch_logged_in_user
⋮ method body…

 end
def logged_in?

278 Simply Rails 2

! @current_user.nil?

 end

 helper_method :logged_in?

end

Here, we’ve pulled our check of the current user’s login status into a new method

called logged_in?. Let’s pause to examine something interesting about the single-

line method body:

! @current_user.nil?

The exclamation mark reverses the actual result of the nil? statement. If the

@current_user variable is nil (nil? returns true) our visitor is actually not logged

in, so logged_in? needs to return false. With the additional call to helper_method,

we can now use logged_in? throughout our application to replace any usage of if

@current_user.

Requiring Users to Log In
While we’re looking at our ApplicationController, let’s add the login_required

filter to it—this marks the first use of our new logged_in? helper method:

16-application.rb (excerpt)

 def login_required
 return true if logged_in?
 session[:return_to] = request.request_uri
 redirect_to new_session_path and return false

 end

Let’s break this code down. The first line of the filter exits the method with the

value true if the user is already logged in:

 return true if logged_in?

However, if the logged_in? helper method returns false, we need to:

1. Prepare to redirect the user to a location at which he or she can log in.

mailto:@current_user.nil?
mailto:@current_user.nil?
mailto:@current_user

Protective Measures 279

2. Remember where the user came from, so we can send the person back to that

page once the login is complete.

To store the current URL, we grab it from the request object and add it to the user’s

session, so that we can retrieve it later:

 session[:return_to] = request.request_uri

Next, we redirect the user to the new_session_path, which is the new action of

SessionsController, and return false:

 redirect_to new_session_path and return false

Readable Code Equals Maintainable Code

The and keyword that’s used here is in fact optional: the logic of this method

would be identical if the return was placed on its own line. However, using and

in this case adds to the readability of our code—and code that is more readable

is more maintainable.

A return value of false is crucial here, because a filter that returns false halts the

processing of any subsequent filters and exits the current controller method.

Right! Now we’re armed with the protection facility, it’s time to restrict access to

the application’s story submission capabilities to users who are logged in.

Restricting Access to Story Submission
While we don’t want to let anonymous visitors submit new stories to our site, we

want them to be able to view stories. This situation—restricting user access to certain

specific actions—presents the perfect opportunity to use a filter condition.

Introducing Filter Conditions
A filter condition is simply a parameter that’s passed to a filter, and specifies how

the filter is applied. The parameter can control whether the filter is applied to either:

■ every method except those listed
■ only the actions listed

280 Simply Rails 2

In this case, the :only parameter is the best way for us to limit the filter to a pair

of actions, new and create. Both of these actions are needed to log in a user—new

to display the actual form, and create being the action to which the form is submit­

ted.

Let’s apply the login_required filter to the top of our StoriesController class,

which is located at app/controllers/stories_controller.rb. The :only parameter accepts

a symbol (or array of symbols) that represents the methods to which it should be

applied.

17-stories_controller.rb (excerpt)

class StoriesController < ApplicationController
before_filter :login_required, :only => [:new, :create]
⋮ controller code…

end

There, that was easy! However, we’ve yet to make use of that :return_to URL that

we stored in the user’s session on the previous page. Let’s put it to work next.

Redirecting the User
The part of our application that redirects users after they’ve successfully logged in

is the create method of the SessionsController class, which is located in

app/controllers/sessions_controller.rb.

Let’s modify the redirection code to specify the location to which a user is redirected

based on whether or not the user’s session actually contains a :return_to URL.

The changes that you’ll need to make are listed in bold:

18-sessions_controller.rb (excerpt)

 def create
 @current_user = User.find_by_login_and_password(
 params[:login], params[:password])

 if @current_user
 session[:user_id] = @current_user.id
if session[:return_to]
 redirect_to session[:return_to]
 session[:return_to] = nil

http:app/controllers/stories_controller.rb
http:app/controllers/sessions_controller.rb

Protective Measures 281

else

 redirect_to stories_path

end

 else

 render :action => 'new'

 end

 end

The aspect of this code that’s really worth a mention is the fact that we reset the

:return_to URL to nil after a successful redirect—there’s no point in carrying

around old baggage.

Now, fire up your web browser and execute the following steps to test out this new

feature:

1.	 Log out of the application, if you’re currently logged in.

2.	 Click the Submit a new story! link, and confirm in your browser’s address bar

that you’re redirected to /session/new.

3.	 Log in using the login form, and verify that you’re redirected back to the story

submission form.

All good? Great!

Associating Stories with Users
The last enhancement that we’ll add in this chapter is to associate a story with the

ID of the user who submitted it. This will give us a record of who submitted what

to Shovell.

Storing the Submitter
As we established the association between stories and user ids at the beginning of

this chapter, we simply need to tell Rails what we want to store. Change the first

line of the create action of the StoriesController, located at app/controllers/stor­

ies_controller.rb:

282 Simply Rails 2

19-stories_controller.rb (excerpt)

 def create
@story = @current_user.stories.build params[:story]
⋮

 end

Storing the submitter is as simple as that! We know that the currently logged-in

user is stored in @current_user, because we set it using the fetch_logged_in_user

before filter. We’re using the declared stories association (or, more specifically,

its buildmethod) to get us a Story object that comes preset with the id of the current

user.

To illustrate, here’s another example of this in action, performed straight in the

Rails console (ruby script/console):

$ ruby script/console

>> u = User.find(:first)

=> #<User id: 1, …>

>> s = u.stories.build

=> #<Story id: nil, …>

>> s.user_id

=> 1

As you can see, the story that is built using the build method is completely unsaved.

Yet it has a value set for its user_id attribute that is identical to the id of the User

object that we created.

But of what use is storing information if we’re not going to display it somewhere?

You guessed it—displaying the submitter’s details is our final task.

Displaying the Submitter
Lastly, we’ll modify each story’s display page to show the name of the user who

submitted it. This page corresponds to the show action of our StoriesController

class, the template for which is located at app/views/stories/show.html.erb:

Protective Measures 283

20-show.html.erb (excerpt)

 <ul id="vote_history">
⋮ vote history list items…

<p class="submitted_by">
 Submitted by:
<%= @story.user.login %>

 </p>
 <p>
 <%= link_to @story.link, @story.link %>

 </p>

Here we’re using @story.user to fetch the user object that’s associated with the

currently displayed story. We then display the value of the user’s login attribute

to produce the result shown in Figure 8.11.

Figure 8.11. The name of a story’s submitter displays with the story

Data Integrity in Development

One of the downsides of using an iterative approach to development is that our

data is not necessarily complete at each stage of the development process. For

example, unless you’ve specifically added user_id values to every Story object

mailto:@story.user

284 Simply Rails 2

in your database, you’re probably seeing the odd page error. You could use either

of these approaches to rectify this issue:

1. Manually add the missing values to your objects from the Rails console, remem­

bering to use the save method so that the value is stored permanently.

2. Delete all data in your database (via the Rails console), and begin to add your

data from scratch via the application.

We need only two or three objects at this stage of development, so neither of these

options should be too onerous for you.

We’ve accomplished quite a lot in this chapter, both in theory and in code. Being

professional Rails coders, our next step is to add tests for all of these cool features.

Testing User Authentication
To develop our testing suite, we’ll create unit tests to cover changes to the applica­

tion’s model, followed by functional tests for each of our controllers.

Testing the Model
We haven’t extended our models much in this chapter, so our unit tests will be

fairly straightforward. Basically, all we’ve done is:

■ create a new model (User)
■ add a relationship between the User and Story model
■ add a relationship between the User and Vote model

Before we can write any tests, though, we need to make sure that our test data is up

to date.

Preparing the Fixtures
The User model didn’t come with very meaningful fixture data, so let’s address that

now. Replace the contents of the model’s fixture file (located at test/fixtures/users.yml)

with the following data:

Protective Measures 285

21-users.yml

patrick:
 login: patrick
 password: sekrit
 name: Patrick Lenz
 email: patrick@limited-overload.de
john:
 login: john
 password: gh752px
 name: John Doe
 email: john@doe.com

To test the associations between the three models properly, we’ll also need to

modify the fixtures for both our Story and Vote models. Only a small change is

required: the addition of some data for the user_id attribute that we inserted at the

start of this chapter.

Make the following changes in test/fixtures/stories.yml:

22-stories.yml (excerpt)

one:
⋮ YAML data…
user: patrick

two:
⋮ YAML data…
user: patrick

And make these alterations in test/fixtures/votes.yml:

23-votes.yml (excerpt)

one:
⋮ YAML data…
user: patrick

two:
⋮ YAML data…
user: john

Now that our fixtures contain appropriate data, we can start writing some unit tests.

286 Simply Rails 2

Testing a User’s Relationship to a Story
The unit tests for our User belong in test/unit/user_test.rb. First, we’ll test the rela­

tionship between a User and a Story. Make the following changes to this file:

24-user_test.rb (excerpt)

class UserTest < ActiveSupport::TestCase
def test_should_have_a_stories_association
 assert_equal 2, users(:patrick).stories.size
 assert_equal stories(:one), users(:patrick).stories.first

 end
end

We use two assertions to test the association between the Story and User models.

The first assertion confirms that the total number of Story objects associated with

the user patrick is indeed 2:

 assert_equal 2, users(:patrick).stories.size

The second assertion identifies whether or not the first Story associated with

patrick is the first Story object in our fixture file:

 assert_equal stories(:one), users(:patrick).stories.first

With this test in place, let’s add a test for the inverse of this relationship.

Testing a Story’s Relationship to a User
By now, you’re no doubt very familiar with the directory and file naming conventions

we’re using. The complementary unit test for the relationship between a User and

a Story tests the Story’s relationship to a User, and belongs in test/unit/story_test.rb.

Make the following changes to this file:

25-story_test.rb (excerpt)

class StoryTest < ActiveSupport::TestCase
⋮ test methods…
def test_should_be_associated_with_user

http:test/unit/user_test.rb
http:test/unit/story_test.rb

Protective Measures 287

assert_equal users(:patrick), stories(:one).user

 end

end

The assertion we’ve written here simply confirms that the user associated with the

first story is the user we expect, based on our fixture data (that is, patrick):

 assert_equal users(:patrick), stories(:one).user

Let’s add some similar tests for the other relationship that our User model has: its

relationship with a Vote.

Testing a User’s Relationship to a Vote
While we haven’t yet added anything to our application’s user interface to store or

display the details of users associated with votes, we’ve put the infrastructure in

place to do so. For this reason, we can test the relationship between a User and a

Vote using a very similar approach to that we took with the unit tests we created

for the relationship between a Story and a User.

To test a User’s relationship to a Vote, add the following test to test/unit/user_test.rb:

26-user_test.rb (excerpt)

 def test_should_have_a_votes_association
 assert_equal 1, users(:patrick).votes.size
 assert_equal votes(:two), users(:john).votes.first

 end

The first assertion compares the number of Vote objects associated with a test user

with the number of votes that the same user was assigned in our fixture data:

 assert_equal 1, users(:patrick).votes.size

The second assertion makes sure that the first Vote object associated with the user

john matches our fixture data:

 assert_equal votes(:two), users(:john).votes.first

288 Simply Rails 2

Excellent! Only one more unit test to write: a test for the inverse of this relationship.

Testing a Vote’s Relationship to a User
The test that confirms a Vote’s relationship to a User belongs in test/unit/vote_test.rb.

Add the following test to this file:

27-vote_test.rb (excerpt)

class VoteTest < ActiveSupport::TestCase
⋮ test methods…
def test_should_be_associated_with_user
 assert_equal users(:john), votes(:two).user

 end
end

This last test confirms that the user associated with the second vote of a story is

indeed the second user who voted for the story, as defined by our fixture data.

Keeping the Test Schema Up to Date

You may be wondering how migrations are applied to the test database on which

we’re running our tests—as you’ll recall, this database is quite separate from the

development database to which our migrations are applied.

Rails is smart enough to figure out that testing should occur on a database with a

structure that’s identical to the one used for development. So Rails clones the

structure of your development database, and applies it to the test database every

time you execute your unit or functional tests.

Should you ever need to complete this cloning process manually, use this rake

task:

$ rake db:test:clone_structure

Running the Unit Tests
We can now run our updated suite of unit tests using the following code, the results

of which are shown in Figure 8.12:

http:test/unit/vote_test.rb

Protective Measures 289

$ rake test:units

Figure 8.12. Results expected from execution of the unit tests

Testing the Controllers
The majority of the functional code that we wrote in this chapter was in the

SessionsController, although we also made a few changes to the

StoriesController. Consequently, we have quite a few tests to write to ensure that

all of this new functionality is covered.

Testing the Display of the Login Form
The first test we’ll add to our functional test file (test/functional/sessions_control­

ler_test.rb) is a simple HTTP GET operation that looks for the display of our login

form:

28-sessions_controller_test.rb (excerpt)

class SessionsControllerTest < ActionController::TestCase
def test_should_show_login_form
 get :new
 assert_response :success
 assert_template 'new'
assert_select 'form p', 4

 end
end

290 Simply Rails 2

There’s not too much here that we haven’t encountered before. The test asserts that:

■ The page request was successful.
■ The page is rendered with the template we expect.
■ A form tag is contained in the result, with four <p> tags nested below it.

Testing a Successful Login
The following test, to be added to the same file, will attempt an actual login:

29-sessions_controller_test.rb (excerpt)

 def test_should_perform_user_login
 post :create, :login => 'patrick', :password => 'sekrit'
 assert_redirected_to stories_path
 assert_equal users(:patrick).id, session[:user_id]
 assert_equal users(:patrick), assigns(:current_user)

 end

Let’s look at each line of this test in more detail.

As was the case when we tested the submission of stories, here we need to pass

additional arguments to the create action—values for the login and password

parameters:

 post :create, :login => 'patrick', :password => 'sekrit'

The values we’ve used here match the values in our users.yml fixture file; if you

added your own user to that file, you’ll need to change this test accordingly.

If you think about how our create method works, you’ll recall that we redirect

users after they’ve logged in successfully. However, the URL to which a user is re­

directed varies depending on whether or not the user’s session contains a URL. In

this test, the user’s session is empty, so we expect the user to be sent to the /stories

page. The assert_redirected_to method comes in handy here:

 assert_redirected_to stories_path

Lastly, a successful login means that:

Protective Measures 291

■ The id of the user will be stored in the user’s session.
■ The instance variable @current_user will be set.

Within the test, we have access to the session of the hypothetical user who just

logged in, so we can compare both the session value and the instance variable with

the corresponding details that we set for the user in our fixture data:

 assert_equal users(:patrick).id, session[:user_id]

 assert_equal users(:patrick), assigns(:current_user)

In a perfect world, this would be the last of the tests that we need to write. However,

in the real world, not every login attempt is successful.

Testing a Failed Login
Login attempts fail for various reasons—users may type their passwords incorrectly,

or try to guess someone else’s login details. When a login attempt fails, the applica­

tion should not reveal any content that’s intended for users who have logged in. As

such, login failures need to be tested too!

Here’s the test:

30-sessions_controller_test.rb (excerpt)

 def test_should_fail_user_login
 post :create, :login => 'no such', :password => 'user'
 assert_response :success
 assert_template 'new'
 assert_nil session[:user_id]

 end

If a user tries to log in to our application using a non-existent user name, the login

form should redisplay. Our first assertion confirms that the page loads correctly,

while the second assertion verifies that the page uses the new template:

 assert_response :success

 assert_template 'new'

The last assertion checks the user_id value that’s stored in the user’s session, to

make sure it’s nil:

http:users(:patrick).id

292 Simply Rails 2

assert_nil session[:user_id]

Okay, we’ve tested all our code that relates to our login procedures. But what hap­

pens after a user logs in?

Testing Redirection After Login
To trial the redirection of a user who logs in to his or her original destination, we’ll

add a test that populates the return_to value within the user’s session before he

or she logs in:

31-sessions_controller_test.rb (excerpt)

 def test_should_redirect_after_login_with_return_url
 post :create, { :login => 'patrick', :password => 'sekrit' },

 :return_to => '/stories/new'
 assert_redirected_to '/stories/new'

 end

This test is identical to the regular login test that we wrote earlier in the section

called “Testing a Successful Login”—aside from the fact that we explicitly test for

redirection to the story submission URL.

Testing a Logout
The last part of the SessionsController that we need to test is the destroy action.

To emulate a user logging out, we actually need to create something that resembles

an integration test. Why? Because before we can log out, we need to log in:

32-sessions_controller_test.rb (excerpt)

 def test_should_logout_and_clear_session
 post :create, :login => 'patrick', :password => 'sekrit'
 assert_not_nil assigns(:current_user)
 assert_not_nil session[:user_id]

 delete :destroy
 assert_response :success
 assert_template 'destroy'
 assert_select 'h2', 'Logout successful'

Protective Measures 293

assert_nil assigns(:current_user)

 assert_nil session[:user_id]

 end

This test is longer than most of our previous tests, but with the number of tests that

you have under your belt at this stage, you should be able to comprehend each line

without much trouble.

First, we ensure that variables such as the @current_user instance variable and the

user_id stored in the session are populated before the user logs out:

 assert_not_nil assigns(:current_user)

 assert_not_nil session[:user_id]

If we don’t take this step, we can’t guarantee that the destroy action is really doing

its job.

The crux of this test lies in its last two lines:

 assert_nil session[:user_id]

 assert_nil assigns(:current_user)

Here we’re confirming that the all-important variables that we populated when the

user logged in are set to nil once the user has logged out.

Whew, that was quite a number of tests! We’re not done with functional testing just

yet, though. You may like to fortify yourself with a strong coffee before tackling the

rest of the functional tests, in which we’ll be testing the changes we’ve made to our

StoriesController and ApplicationController classes.

Testing the Display of the Story Submitter
The following test checks that the name of the user who submitted a story is dis­

played correctly on a story’s page. Add it to test/functional/stories_controller_test.rb:

294 Simply Rails 2

33-stories_controller_test.rb (excerpt)

class StoriesControllerTest < ActionController::TestCase
⋮ test methods…
def test_should_show_story_submitter
 get :show, :id => stories(:one)
 assert_select 'p.submitted_by span', 'patrick'

 end
end

We’ve seen all this before—confirming that an element that contains our submitter’s

name is present is simply a matter of scanning the HTML code for a p element of

class submitted_by, which contains the name of the submitter inside a span.

Testing the Display of Global Elements
To test the global elements that we added to the application.html.erb layout file, we’ll

add two tests. For the sake of convenience, both tests will utilize the index action

of our StoriesController:

34-stories_controller_test.rb (excerpt)

 def test_should_indicate_not_logged_in
 get :index
 assert_select 'div#login_logout em', 'Not logged in.'

 end

 def test_should_show_navigation_menu
 get :index
 assert_select 'ul#navigation li', 2

 end

We’ve covered these assert_select statements several times already, so I won’t

bore you by going through them again. Instead, let’s move on to test that our Shovell

application displays the name of the logged-in user at the top of every page.

Testing Display of the Username
The div element in the top-right corner of the browser window displays the name

of the user who’s currently logged in. We’ve checked the contents of this element

Protective Measures 295

when a user hasn’t logged in; we still need to add a test to check whether the login

has been successful.

Before we do so, though, let’s add two methods that will make the authoring of this

test (and others related to it) a whole lot easier. Since it’s likely that we need access

to this functionality in more than one place, we’ll put these new methods inside

the file test/test_helper.rb. This file is to tests what ApplicationController is to

our controllers; every method added to that file is available to all of our test cases.

35-test_helper.rb (excerpt)

class Test::Unit::TestCase
⋮ class body…
def get_with_user(action, parameters = nil, session = nil,

 flash = nil)
 get action, parameters, :user_id => users(:patrick).id

 end
 def post_with_user(action, parameters = nil, session = nil,

 flash = nil)
 post action, parameters, :user_id => users(:patrick).id

 end
end

As you can see above, the utility methods wrap get or post calls with a session

container that contains the id of a logged-in user. Using this approach, we can test

an action that was previously only available to users who were logged in, just by

calling get_with_user or post_with_user. Using these methods will eliminate the

need to worry about parameters each time we call get or post.

These utility methods take the same arguments as the original get and postmethods

provided by Rails, so they replace our original methods seamlessly. It is, of course,

possible to make these utilities much more sophisticated than we’ve done here as

well as add methods to cover the additional put and delete methods, but they’ll

serve us well for now.

Let’s see them in action! Before that little detour, we were on the way to writing a

test that confirms the contents of the login_logout div. These contents should in­

clude a (Logout) link as well as the user’s name, which is set by our before filter,

fetch_logged_in_user:

http:test/test_helper.rb

296 Simply Rails 2

36-stories_controller_test.rb (excerpt)

 def test_should_indicate_logged_in_user
 get_with_user :index
 assert_equal users(:patrick), assigns(:current_user)
 assert_select 'div#login_logout em a', '(Logout)'
end

By making use of our new utility method get_with_user to simulate a logged-in

user, requesting the index action of our StoriesController class is a no-brainer:

 get_with_user :index

Once we’ve gained access to the index page, it’s easy to use some assertions (in

which we’re now absolutely proficient!) to confirm that the contents of the div are

as we expect.

Testing Redirection After Logout
Our next few tests will cover the changes that we made to the new action of our

StoriesController.

First, we’ll check that a user who isn’t logged in is correctly redirected to the login

page if he or she tries to access our story submission form:

37-stories_controller_test.rb (excerpt)

 def test_should_redirect_if_not_logged_in
 get :new
 assert_response :redirect
 assert_redirected_to new_session_path

 end

Protective Measures 297

This is a fairly straightforward test—the get statement tries to request the story

submission form without logging in first:

 get :new

The remainder of the test confirms that the request results in the user being redirected

to the new action of our SessionsController:

 assert_response :redirect

 assert_redirected_to new_session_path

Our test suite is certainly expanding. We have just two more tests to write in this

chapter!

Testing Story Submission
If you’ve been particularly eager, and tried executing your functional test suite

prematurely, you’ll have noticed that a few tests that worked previously now fail.

These failures occur because we modified our story submission form; it requires

that a user_id is present in the session before a page request can be successful. Our

old tests didn’t account for this change, so they now fail.

We need to modify the four tests that are affected, so that each of them includes a

user id in the session. At this point, it should become obvious that it was well worth

the effort for us to create the get_with_user and post_with_user utility methods:

38-stories_controller_test.rb (excerpt)

class StoriesControllerTest < ActionController::TestCase
⋮ class methods…

 def test_should_show_new
get_with_user :new
⋮ method body…

 end

 def test_should_show_new_form
get_with_user :new
⋮ method body…

 end

 def test_should_add_story
post_with_user :create, :story => {

298 Simply Rails 2

⋮ story attributes…
 }

⋮ method body…

 end

 def test_should_reject_missing_story_attribute

post_with_user :create, :story => {

⋮ story attributes…

 }

⋮ method body…

 end

⋮ class methods…

end

As you can see, the changes are very small—the method that performs the request

in each of the tests is modified from get and post to get_with_user and

post_with_user, respectively.

Testing Storage of the Submitter
The last test we’ll add checks that the user who’s currently logged in is correctly

associated with any stories that he or she submits:

39-stories_controller_test.rb (excerpt)

 def test_should_store_user_with_story
 post_with_user :create, :story => {
 :name => 'story with user',
 :link => 'http://www.story-with-user.com/'

 }
 assert_equal users(:patrick), assigns(:story).user

 end

Excellent. If you’ve made it this far, you’re probably itching to see the results of

executing our rapidly expanding test suite.

Running the Full Test Suite
Run the full test suite with our trusty rake tool. If everything has gone well, you

should see results similar to Figure 8.13:

$ rake test

Protective Measures 299

Figure 8.13. Running the test suite

If any of your tests failed, the error message that’s displayed should help you to

determine where things went wrong. The error will direct you to the location of the

erroneous class and method, and the exact line number within that method. And

before you start pulling your hair out, remember that you can double-check your

code against the code archive for this book—it went through considerable testing

before release, so you can count on the code in it to work!

Even more rewarding than seeing the number of tests and assertions that our test

suite now covers is to take a look at the output of the stats task. This command

displays a number of statistics relating to the architecture of our application, includ­

ing the ratio of lines of application code to lines of test code. We’ve been extremely

busy writing tests in this chapter, so let’s see the results:

$ rake stats

My application reports a ratio of 1:1.8, as Figure 8.14 indicates.

300 Simply Rails 2

Figure 8.14. The current test-to-code ratio

Wow! That means we’ve written almost twice the amount of code to test our applic­

ation than we’ve written for Shovell itself. This is a good thing: it means that we

can be confident that our application is of high quality!

Summary
In this chapter, we explored an approach for sectioning off the parts of a Rails ap­

plication, so that some features are available to everyone and others are available

only to users who have logged in.

First, we discussed some theory about sessions and cookies. We then created a new

model—the User—and built a login form that allows users to log in to Shovell. We

stored the login functionality in a new SessionsController class, which made

extensive use of the session container. The end result was that we were able to re­

strict access to the story submission form to users who were logged in, and direct

other visitors to the login form. And to top it all off, we verified that the changes to

our code are free of bugs by writing a number of tests.

Protective Measures 301

The next chapter, in which we’ll add the last of the features to our Shovell applica­

tion, will cover more complex ActiveRecord associations. Though we’re moving

into more advanced territory, we’ll keep moving through each task step by step, so

don’t be nervous. Let’s add the finishing touches to Shovell!

Chapter9
Advanced Topics
As we enter the final section of this book, we’ll implement the last of the features

that we listed back in Chapter 1, in preparation for Shovell’s much-anticipated first

release.

Along the way, we’ll cover some of the more advanced topics that are involved in

developing web applications with Ruby on Rails, such as writing your own helpers,

using callbacks, and creating complex associations.

Promoting Popular Stories
To start this chapter, we’ll make a change to the way our users view our application.

We’ll separate the display of our stories into two pages: one for stories with a score

above a certain threshold, and one for stories with a score below that threshold.

This will encourage readers to “shove” stories to the front page by voting for them.

This functionality will replace the story randomizer that currently appears on the

index page of our StoriesController—it’s getting a little boring and doesn’t really

meet the needs of our application.

304 Simply Rails 2

However, before we can start hacking away at these new pages, we need to refine

our existing models. In particular, we need an easy way to select stories on the basis

of their voting scores.

Using a Counter Cache
We’ve already seen how we can count the number of votes associated with a given

story by calling the size method on the associated Vote object:

>> Story.find(:first).votes.size

=> 3

Behind the scenes, this snippet performs two separate SQL queries. The first query

fetches the first story from the stories table; the second query counts the number

of Votes whose story_id attributes are equal to the id of the Story object in question.

This approach to counting records isn’t usually a problem in small applications

that deal with only a handful of records. However, when an application needs to

deal with several thousand records or more, these double queries can significantly

impede the application’s performance.

One option for tackling this issue is to use some more advanced SQL commands,

such as JOIN and GROUP BY. However, like you, I don’t really enjoy writing SQL

queries. Instead, I’ll introduce you to another funky Rails feature: the counter cache.

Introducing the Counter Cache
The counter cache is an optional feature of ActiveRecord associations, and it makes

counting records fast and easy. The use of the word “counter” here is as in “bean

counter,” not as in “counter-terrorism.” The name “counter cache” is intended to

reflect the caching of a value which counts records. You can enable the counter

cache by including the parameter :counter_cache => true when defining a be­

longs_to association.

From a performance point of view, the counter cache is superior to an SQL-based

solution. When we’re using SQL, the number of records for an object associated

with the current object needs to be computed by the database every time that object

is requested. The counter cache, on the other hand, stores the number of records of

each associated object in its own column in the database. This value can be retrieved

Advanced Topics 305

as often as is needed, without requiring potentially expensive computation to take

place.

The Counter Cache Doesn’t Count!

The counter cache doesn’t actually go through the database to calculate the

number of associated records every time an object is added or removed, effective

from the point at which it was turned on. Instead, it increases the counter for

every object that’s added to the association, and decreases it for every object that’s

removed from the association, from the point at which it’s enabled.

As the counter cache needs to be stored somewhere, we’ll create room for it in our

Story model with the help of a migration.

Making Room for the Cache
We’ll generate a new migration template using the generate script:

$ ruby script/generate migration AddCounterCacheToStories
➥ votes_count:integer

Figure 9.1 shows the results of this task.

Figure 9.1. Generating a migration to add the counter cache

As expected, our new migration template is stored in the file db/mi­

grate/004_add_counter_cache_to_stories.rb. This migration will be used to add a new

column to the stories table; the column will store a value that represents the

number of Vote objects associated with each Story. The name of the column should

http:grate/004_add_counter_cache_to_stories.rb

306 Simply Rails 2

match the method that we would normally call to retrieve the object count, so we’ll

call it votes_count. Modify the migration file so it looks like this:

01-004_add_counter_cache_to_stories.rb

class AddCounterCacheToStories < ActiveRecord::Migration
 def self.up
 add_column :stories, :votes_count, :integer, :default => 0
Story.find(:all).each do |s|
 s.update_attribute :votes_count, s.votes.length

 end
 end
 def self.down
 remove_column :stories, :votes_count

 end
end

Let me explain what’s going on here. Columns which store the counter cache need

a default value of 0 in order to operate properly. This default value can be provided

to add_column using the :default argument, as we’ve done in the first line of our

self.up method:

 add_column :stories, :votes_count, :integer, :default => 0

In the past, we’ve used migrations to make schema changes, but migrations can also

be used to migrate data. As I mentioned earlier in this chapter, the number of objects

associated with the model using the counter cache is never actually calculated by

Rails—values are just incremented and decremented as records are modified. Con­

sequently, the next line in our migration loops through the Story objects in the

database, and manually calculates each Story’s initial voting score:

 Story.find(:all).each do |s|

 s.update_attribute :votes_count, s.votes.length

 end

Story.find(:all) returns an array of all stories in the database. We then use the

each method to pass each of the Story objects, one after another, to the block of

Ruby code that follows. The block calculates the voting score for the current story

(which is held in the variable s) by calling the length method on the votes associ­

ation. In effect, this is the same as counting all of the Vote objects associated with

Advanced Topics 307

the current Story. The result of the votes.length calculation is then stored in the

newly added votes_count attribute of the current Story, using the update_attrib­

ute method.

As usual, we reverse the changes that we made in self.up in the self.down method:

 def self.down

 remove_column :stories, :votes_count

 end

Right, let’s make use of this migration.

Applying the Migration
Go ahead and apply this migration using the rake tool:

$ rake db:migrate

Once that’s completed, there’s just one more small change we need to make to ensure

that our association between a Vote and a Story uses the counter cache we’ve just

set up. Change the belongs_to association in app/models/vote.rb to the following:

02-vote.rb (excerpt)

 belongs_to :story, :counter_cache => true

It should be noted that Rails will, from this point forward, automatically refer to

the value stored in the votes_count column, even if we actually call votes.size.

Because of this behavior, none of our existing code in our project needs to change.

Excellent. Let’s get that new front page happening!

Updating the RJS Template
One side-effect of using a counter cache is that the cached values are not refreshed

when a new object is created in a collection—for example, when we create new

Vote objects via Ajax and then immediately access the cached value in votes_count

(indirectly, via the votes.size call). This is easily rectified by forcing a reload of

the object between casting the vote and displaying the vote count. Modify the first

line of the app/views/votes/create.js.rjs template file like so:

308 Simply Rails 2

03-create.js.rjs (excerpt)

page.replace_html ‘vote_score',
 "Score: #{@story.reload.votes.size}

Implementing the Front Page
The core concept of social news sites like Digg is that they’re user-moderated.

Stories that have yet to receive a certain number of votes don’t appear on the site’s

front page—instead, they reside in a “voting area,” where they can be viewed and

voted upon by the site’s users.

The story promotion system that Digg uses is actually rather complicated. It takes

into account a range of factors other than the number of votes a story receives, in­

cluding the amount of activity the site was experiencing at the time the vote was

cast, and the rate at which a story receives votes. However, we’ll implement a much

simpler algorithm for Shovell: stories with a voting score above a certain threshold

will appear on the front page, while stories with a score below that threshold will

be displayed on the voting page, ready to be “shoved.”

First, we’ll make all the changes required to get our front page running smoothly,

utilizing standard templates and partials. We can then make use of these templates

to implement our voting bin.

Modifying the Controller
The first change that we’ll make is to our StoriesController. We need to replace

the current index action (which displays a random story) with one that retrieves

the list of stories which have received enough votes to appear on the front page.

Modify the index method of the StoriesController class located in app/control­

lers/stories_controller.rb so that it looks like this:

04-stories_controller.rb (excerpt)

 def index
 @stories = Story.find :all,

 :order => 'id DESC',
 :conditions => 'votes_count >= 5'

 end

Advanced Topics 309

Let’s take a look at this code.

Story.find :all, as you already know, fetches from the database all stories that

match an optional criterion. We’re specifying that our records be ordered by des­

cending id here, which will ensure that the newest stories appear at the top of the

results, and older ones show at the bottom.

To implement the voting threshold, we’ve specified a condition that the total

votes_count must be greater than or equal to five, using the counter cache that we

created in the previous section. The result of the find operation will then be stored

in the @stories instance variable.

Modifying the View
Now that we’ve retired the story randomizer, we also have to rip apart the in­

dex.html.erb template, which was formerly responsible for rendering a single story

link. Our new template will render a collection of stories, each displaying its current

voting score and the name of the user who submitted it.

Modify the corresponding index template (located at app/views/stories/index.html.erb)

so that it looks like this:

05-index.html.erb

<h2>
 <%= "Showing #{ pluralize(@stories.size, 'story') }" %>
</h2>
<%= render :partial => 'story', :collection => @stories %>

The first line of ERb code outputs the number of stories being displayed:

 <%= "Showing #{ pluralize(@stories.size, 'story') }" %>

To display this value, we’re making use of the pluralize helper provided by Rails.

pluralize displays the noun which is passed in as an argument, either in singular

or in plural form. If there’s only one story to show, the header will read Showing 1

story; in all other cases it will read Showing x stories, where x is the number of stories

available.

mailto:pluralize(@stories.size

310 Simply Rails 2

Most of the time, Rails is smart enough to correctly pluralize the most common

English nouns automatically. If this doesn’t work for some reason, you have the

option of passing both singular and plural forms, like so:1

 <%= "Showing #{ pluralize(@stories.size, 'story', 'stories') } %>

To render each story in the collection we retrieved, we’re using a partial—something

we first encountered when displaying voting history back in Chapter 7:

<%= render :partial => 'story', :collection => @stories %>

As this is the advanced topics chapter, here’s another tip. The above line can be

abbreviated as follows:

<%= render :partial => @stories %>

How would this work? Given a call like this, Rails looks at the type of object you

pass in by checking the class of the first object in the array, which happens to be a

Story object. It then assumes a straight mapping between models and controllers

and looks for a partial template in app/views/stories/_story.html.erb. Had we passed

in a collection of votes, as we did back in the section called “Adding Voting History”

in Chapter 7, Rails would look for a template in app/views/votes/_vote.html.erb. See

the pattern?

The next item on our list is the creation of the partial.

Creating the Partial
Create the file app/views/stories/_story.html.erb, and edit it to appear as follows:

06-_story.html.erb (excerpt)

<% div_for(story) do %>
 <h3><%= link_to story.name, story %></h3>
 <p>
 Submitted by: <%= story.user.login %> |

1 If you need to “train” Rails to correctly pluralize a noun in more than one spot, it may be worth adding

your own pluralization rules to the Rails Inflector. See the config/initializers/inflections.rb for an example.

mailto:pluralize(@stories.size

Advanced Topics 311

Score: <%= story.votes_count %>

 </p>

<% end %>

This partial is responsible for displaying the core facts of a story in the listings on

the application’s front page (and, as you’ll see later, in the voting bin). It’s a fairly

straightforward template that you should have no trouble understanding. The only

new thing is the use of the div_for helper, which nicely wraps our story in <div>

tags and automatically assigns a class of story and an element id of story_id.

Both values are directly derived from the object being passed to the helper. For ex­

ample, passing in an object of class Story and an id of 2, div_for would provide

us with a tag as follows:

<div id="story_2" class="story>

⋮ HTML…

</div>

Apart from the <div> tag, the title of the story is displayed in an h3 element, which

links directly to the story page using the link_to helper, and the original submitter

of the story and current voting score are displayed underneath.

We’ll now use the assigned element class of story to apply some CSS styling.

Styling the Front Page
Now that we have some new elements on the front page, let’s add style rules for

those elements to our style sheet, which is located at public/stylesheets/style.css:

07-style.css (excerpt)

.story {
 float: left;
 width: 50%;
}

.story h3 { margin-bottom: 0; }

.story p { color: #666; }

312 Simply Rails 2

While we’re giving our front page an overhaul, let’s also get rid of the default Rails

welcome page that’s displayed when a user accesses http://localhost:3000/, and

make our new front page the default page instead.

Setting the Default Page
To set the default page, we once again need to alter Rails’s routing configuration,

which is located in the file config/routes.rb. If you look closely, you’ll notice a

commented line like this (if you deleted it earlier, don’t worry—you can just type

out the line you need in a moment):

map.root :controller => "welcome"

By removing the # character and making a slight change to the route, we can set the

destination for requests for the address http://localhost:3000/ to be the index action

for our StoriesController:

08-routes.rb (excerpt)

map.root :controller => "stories"

Before you jump into your browser to test this new route, you should be aware of

one small caveat: the default Rails welcome page is a simple HTML page (it contains

no ERb code at all). It lives at public/index.html, and when present, it will be displayed

in favor of any other action configured in the Rails routing configuration file. So,

in order to display our story index, this file has to be removed—go ahead and delete

it now.

Okay, let’s take a peek at our new front page (after making sure our web server is

running); mine’s shown in Figure 9.2. Depending on how many votes you’ve given

your stories, you may or may not see any stories listed.

http://localhost:3000/
http:config/routes.rb
http://localhost:3000/

Advanced Topics 313

Figure 9.2. The all new (but empty) front page

If, like me, your front page is looking rather empty, you’re probably keen to get

voting! Let’s quickly cover the implementation of the voting bin, so you can use it

to start voting on stories in the queue.

Implementing the Voting Bin
To create a voting bin, create a new method called bin in the file /app/controllers/stor­

ies_controller.rb, like so:

09-stories_controller.rb (excerpt)

class StoriesController < ApplicationController
⋮ controller code…
def bin
 @stories = Story.find :all,

 :order => 'id DESC',
 :conditions => 'votes_count < 5'

 render :action => 'index'
 end
end

Most of that code probably looks straightforward enough—but what about that

render call that’s hiding in there?

http:ies_controller.rb

314 Simply Rails 2

Well, before I explain that line of code, let me point something out to you, in case

you haven’t spotted it already: this code is almost identical to the code we wrote

for our index action—it just applies a different condition to the collection of stories.

That fact should trigger the realization that this is a good opportunity to reuse some

code. Let’s extract most of the code that’s used in these two controller methods

(index and bin) and place it in a protected controller method called fetch_stories,

which we’ll then use from both locations within our code.

As we discussed earlier, protected methods are only accessible from within a class

and its subclasses; they’re not accessible from anywhere outside the class. If we

were to make fetch_stories a publicly accessible method, it would be exposed

via the URL http://localhost:3000/stories/fetch_stories, which is certainly not what

we want!

Here’s that extracted method:

 def fetch_stories(conditions)

 @stories = Story.find :all,

 :order => 'id DESC',

 :conditions => conditions

 end

As the only part that differs between the index and bin actions is the condition,

we’ll allow the condition to be passed to the new protected method as an argument.

Our StoriesController should now look a bit like this (only the code relevant to

this section is shown):

10-stories_controller.rb (excerpt)

class StoriesController < ApplicationController
⋮ controller code…
def index
 fetch_stories 'votes_count >= 5'

 end

def bin
 fetch_stories 'votes_count < 5'
 render :action => 'index'

 end

http://localhost:3000/stories/fetch_stories

Advanced Topics 315

⋮ controller code…
protected

 def fetch_stories(conditions)

 @stories = Story.find :all,

 :order => 'id DESC',

 :conditions => conditions

 end

end

Now, back to that peculiar render call in the bin action:

 render :action => 'index'

I mentioned earlier that the two actions we have for listing stories (index and bin)

are almost identical; well, another thing that they have in common is the template

that they use. The above line of code makes sure of that. It specifies that the view

template for the index action should also be used by the bin action. As such, we’re

rendering the exact same template for a slightly different set of stories.

Before we go ahead and give our two pages sufficient visual distinction—they need

headings that read something like Showing 3 upcoming stories or Showing 7 front-page

stories so our users won’t have a difficult time determining which page of the applic­

ation they’re looking at—let’s quickly digress to add yet another little bit to our

routing configuration to make it easy to refer to our voting bin when we want to

link to it.

Adding Custom Actions to RESTful Routes
RESTful routes, as you may remember from the section called “Mapping a New

Resource” in Chapter 6, gives us a defined set of routes and route generation helpers

to refer to these routes (or URLs). In the last section, we implemented a new control­

ler action that isn’t contained in that set of default routes, so we have to tell Rails

a little about what we’d like to do with this new action, how users will reach it, and

how we want to refer to it.

Back in config/routes.rb, here’s the line that gives us all the RESTful goodness for

doing regular operations on stories as well as its votes:

map.resources :stories, :has_many => :votes

http:config/routes.rb

316 Simply Rails 2

You may be able to tell from our use of helpers like stories_path and story_path

in the past couple of chapters that there are routes which operate on the stories in

general (without referring to a specific one by id, such as stories_path, for instance)

and those that operate specifically on a story (for example, story_path), which

need an actual story object to be passed in to operate properly.

We need to talk about this distinction in order to be able to add a custom action to

our set of defined routes at the right spot. Since our index and bin actions are so

similar in function, we can safely presume that bin would be another action that

will operate on the entire collection of stories, since it displays an arbitrary set of

stories based on their votes count.

To include a new custom route which operates on a collection of objects, add the

following to the routing configuration file:

11-routes.rb (excerpt)

map.resources :stories, :has_many => :votes, :collection =>
➥ { :bin => :get }

In addition to the name of the custom action, Rails wants us to tell it the actual

HTTP method used to talk to this action, which in this case is GET. By changing

our routing configuration in this way, we obtain a newly defined helper method:

bin_stories_path, which refers to the stories in our submission bin. We’ll use this

helper in a moment, when we modify the site navigation menu to include a link to

this bin.

Next up, though, we’ll deal with the missing distinction between our two story-

listing pages by adding distinct headings to the index.html.erb template with a

little assistance from some ActionView helpers.

Abstracting Presentation Logic
In this section, we’ll look at a way to abstract any presentation logic that you find

yourself adding to your view templates. First, let’s discuss why we need to bother

extracting Ruby code from our views even though view templates may appear to be

the easiest place to implement presentation logic.

Advanced Topics 317

Avoiding Presentation Logic Spaghetti
Recall that our intention is to display in the index template a heading that’s appro­

priate, depending on whether the list of stories being displayed contains front-page

stories or upcoming stories.

Of course, we could implement this functionality by adding the logic directly to

the app/views/stories/index.html.erb template (don’t do this just yet!):

<h2>

<% if controller.action_name == 'index' %>

 <%= "Showing #{ pluralize(@stories.size,

'front page story') }"%>

<% else %>

 <%= "Showing #{ pluralize(@stories.size, 'upcoming story') }" %>

 <% end %>

</h2>

However, you’ll notice that this solution entails a fair amount of duplication—all

we’re changing in the else block is a single word! Additionally, the fact that in

view templates Ruby code is always wrapped in ERb tags (<% %> and <%= %>) means

that these templates can sometimes begin to look like a dish of spaghetti, containing

chained method calls, nested levels of parentheses, if clauses, and other complex­

ities.

When your own code starts to look like spaghetti, it may be time to consider extract­

ing some of that code into an ActionView helper.

Introducing ActionView Helpers
As you’ve heard countless times now, a view should contain presentational code

only. In order to adhere to the MVC paradigm as strictly as possible, you should

aim to place all logic outside the views: in a controller (for application logic) or a

model (for business logic). There’s a third option for any presentation-related logic

that doesn’t quite belong in a controller or a model: the ActionView helper.

We talked about making helper methods available to views in the section called

“Protecting the Form” in Chapter 8, when we implemented the logged_in? method.

However, back then, we implemented this functionality as a protected controller

method, which was then made available to our views using the helper_method

statement.

mailto:pluralize(@stories.size
mailto:pluralize(@stories.size

318 Simply Rails 2

Native ActionView helpers differ from protected helper methods in that they’re not

available to controllers—hence the name. An ActionView helper is a function that

helps to reduce the clutter in your view templates.

Writing an ActionView Helper
ActionView helpers are available in two basic forms.

The first is the global helper, which is stored in the file app/helpers/application_help­

er.rb. You can think of a global ActionView helper as being the “view” equivalent

to the ApplicationController class in the “controller” world. Any helper that you

add to this file will be available from every view of every controller.

The second form of ActionView helper is one that’s specific to the views of a partic­

ular controller. We’ll use this approach for our ActionView helper—we’ll create a

new helper method for our StoriesController in the file app/helpers/stories_help­

er.rb. That way, it will be clear that it’s related to StoriesController.

By default, Rails’ ApplicationController contains the line helper :all, which

makes available all helper methods to all the controllers, all the time. But even if

it doesn’t make a difference, access-wise, whether you place a helper method into

application_helper.rb or stories_helper.rb, you’d end up with a really cluttered global

helper file very quickly. Instead, stick to the habit of grouping our helpers by the

area they affect. In this case, we’re talking about a headline for the story listings, so

it really belongs in the stories_helper.rb file.

Here’s the helper method you’ll need to add:

12-stories_helper.rb

module StoriesHelper
def story_list_heading
 story_type = case controller.action_name

 when 'index': 'front-page story'
 when 'bin': 'upcoming story'

 end
 "Showing #{ pluralize(@stories.size, story_type) }"
end

end

http:stories_helper.rb

Advanced Topics 319

Let’s step through this code. The first thing it does is populate a variable story_type

using a Ruby case statement:

 story_type = case controller.action_name

 when 'index': 'front-page story'

 when 'bin': 'upcoming story'

 end

This statement compares the value of controller.action_name (which contains

the text value of the controller action that’s being executed, exactly as it appears in

the URL) with a couple of predefined values (namely, the values 'index' and 'bin').

Next, we display the same Showing … string with the pluralize helper that we used

in our previous attempt at writing this view:

 "Showing #{ pluralize(@stories.size, story_type) }"

However, this time, we’re passing story_type as the part of the string that’s being

pluralized. This string is either set to front-page story or upcoming story. 2 While

this isn’t necessarily a shorter solution than the previous one, it certainly removes

a lot of clutter from our view, which we can now reduce to a single line!

13-index.html.erb

<h2><%= story_list_heading %></h2>
<%= render :partial => @stories %>

Now we just need to add our voting bin page to the navigation menu in the footer

of each page, and we’re done!

Expanding the Navigation Menu
To add a link to our navigation menu, we simply add another list item to the un­

ordered list at the bottom of the application layout. The layout is stored in

app/views/layouts/application.html.erb:

2 If we wanted to be extra-pedantic about reducing code duplication, we could even extract the word

“story” from that string, and simply set the story_type variable to “front page” or “upcoming.” But

you have to draw the line somewhere!

mailto:pluralize(@stories.size

320 Simply Rails 2

14-application.html.erb (excerpt)

<ul id="navigation">
 <%= link_to 'Front page stories', stories_path %>
<%= link_to 'Upcoming stories', bin_stories_path %>

 <%= link_to 'Submit a new story!', new_story_path %>

Excellent! Now we can finally give our changes a whirl. Point your browser to ht­

tp://localhost:3000/ and click the Upcoming stories link at the bottom of the page.

The resulting page, an example of which is depicted in Figure 9.3, should contain

all the stories in your database that have a voting score below 5.

Figure 9.3. The story voting bin

Before you use this unique opportunity to promote the first story to Shovell’s front

page, we’ll go ahead and require users to be logged in before they can vote. This

will give us the ability to check a user’s voting history later on.

Our application is looking much more like a story-sharing site. On to the next feature!

Advanced Topics 321

Requiring a Login to Vote
The next enhancement we’ll make will ensure that users log in before they’re able

to vote. First, we need to modify VotesController so that the create method re­

sponds only to users who are logged in. We then need to store the id of the current

user as part of the new vote.

The first step is to add a new before_filter in app/controllers/votes_controller.rb,

like so:

15-votes_controller.rb (excerpt)

class VotesController < ApplicationController
before_filter :login_required
⋮ controller code…

end

Since the VotesController only contains a single action right now, we don’t need

to limit the before_filter by using the :except or :only options.

Now, it doesn’t make much sense to display a feature to visitors if they can’t make

use of it. Let’s add a little login teaser to the story page, to suggest that visitors can

choose to log in if they want to vote for stories. Make the following changes to

app/views/stories/show.html.erb:

16-show.html.erb (excerpt)

<% if logged_in? %>
<div id="vote_form">
 <% form_remote_for [@story, Vote.new] do |f| %>
 <%= f.submit 'shove it' %>

 <% end %>
</div>
<% else %>
 <p>

 You would be able to vote for this story if you were
 <%= link_to 'logged in', new_session_path %>!

 </p>
<% end %>

http:app/controllers/votes_controller.rb

322 Simply Rails 2

This if clause decides whether or not to display the shove it link to the visitor, de­

pending on his or her login status. If the user isn’t logged in, that person is presented

with a teaser and a link to log in, as shown in Figure 9.4.

Figure 9.4. Hiding the voting link from visitors

To complete this feature addition, we need to modify the create action of our

VotesController so that it stores the current user with each vote:

17-votes_controller.rb (excerpt)

class VotesController < ApplicationController
⋮ controller code…

 def create
 @story = Story.find(params[:id])
 @story.votes.create(:user => @current_user)
⋮ method body…

 end
end

This new line saves the reference to the current user with each vote.

Excellent! Now it’s time to create some additional stories and start submitting some

votes, if you haven’t done so already.

Advanced Topics 323

Visit the voting bin by selecting the Upcoming stories link from the navigation menu,

and click on a story’s title to visit the story page. From there, you can click the shove

it link a few times until the story has five or more votes. Visit the front page, and

you should see your story appear! The result of my serial voting is shown in Fig­

ure 9.5.

Figure 9.5. Viewing stories on the front page

That’s another feature crossed off the list. Next!

Auto-voting for Newly Submitted Stories
The next step we’ll take is to hop into the Story model and remedy a piece of

functionality that will indisputably aid in the promotion of your stories to the front

page. New stories will be automatically voted for by yourself as soon as you submit

them. To implement this feature, I’ll introduce you to a feature of Rails models that

we haven’t touched on yet: callbacks. Callbacks are little snippets of code that are

triggered by model events—for example, they’re triggered when a model is created,

updated, or destroyed.

324 Simply Rails 2

Introducing Model Callbacks
Callbacks in models can be called before or after certain actions, such as the creating,

updating, or destroying of a model. The concept of a callback may sound similar to

the filters we applied to our controllers in the section called “Introducing Filters”

in Chapter 8—that’s because they certainly are similar.

In fact, we’ve already encountered a callback in our application—it was used to

apply the validation we implemented in the section called “Applying Validations”

in Chapter 6. Internally, ActiveRecord calls validation methods before calling the

save method that writes a model to the database. If the callback result allows the

request to continue—meaning that the request has passed the defined valida­

tions—the save operation is executed.

The names of the available callback methods are fairly intuitive: before_create,

before_save, and before_delete are called before the model in question is created,

saved, and deleted, respectively. There are also a number of after_ callbacks that,

as expected, are called after the operation.

Like filters in controllers, callbacks in models are usually defined as protected

methods. The callback resides in a model class, and is referred to by the class

method via a symbol. Here’s an example:

class Story < ActiveRecord::Base

 after_create :create_initial_vote

⋮ model code…

 protected

 def create_initial_vote

⋮ callback method…
 end

end

We’ll use after_create, because we’d like to create votes for newly submitted

stories only, and not for every update of an existing story (which would require the

use of the after_save callback).

Advanced Topics 325

An Alternative Callback Syntax

In your experimentation with Rails, you may come across the following syntax

for model callbacks. In this syntax, the code that’s to be executed when an event

occurs is defined as an instance method named after the callback:

class MyModel < ActiveRecord::Base
 def after_save
⋮ callback method…

 end
end

While this approach is technically correct, I prefer to define my callbacks using

descriptive method names, and to refer to them using the after_save

:my_method syntax instead.3 This way, it’s much easier to see what’s going on,

because you can glance at the header of the model class in which the callbacks

are declared, then look at each of the callback methods separately.

The reason we’re using after_create instead of before_create should be obvious:

if we were to create the vote before the model itself had been saved to the database,

we’d risk the model’s failure to pass the validation checks and we’d have created

a vote for an invalid record!

Adding a Callback
Let’s add a callback to our Story model. Add the following code to the file

app/models/story.rb:

18-story.rb (excerpt)

class Story < ActiveRecord::Base
after_create :create_initial_vote
⋮ model code…
protected
 def create_initial_vote
 votes.create :user => user

 end
end

3 The after_find callback actually needs to be defined using this alternative syntax, due to

performance implications associated with defining it using the preferred syntax.

326 Simply Rails 2

Once again, just one line of Ruby code is sufficient to accomplish the task at hand.

Let’s dissect what this line actually does.

First, you’ll notice that we’re able to directly use two of the attributes of the story:

the votes association and the user attribute. As long as a method doesn’t carry

variables of the same name, executing votes or user will refer to the methods of

the story object. We know the submitter of the story is stored in user, so we can

directly refer to that attribute in order to create the initial vote:

votes.create :user => user

Before we try out our newly implemented callback that creates the initial vote, let’s

add something that’s been missing from our stories.

Adding a Description to Stories
In the next enhancement to our application, we’ll add an extra attribute to our Story

model: a description column which allows users to write a few paragraphs about

their submissions.

Adding a Model Attribute
Since we’re talking about adding an attribute, you may be assuming that there’s a

new migration ahead—and indeed there is. Let’s generate the migration file which

will store the code we’ll use to add the description column:

$ ruby script/generate migration AddDescriptionToStories

➥ description:text

The contents of this migration (stored in db/migrate/005_add_description_to_stories.rb)

are very straightforward, so they won’t need a great deal of explanation:

19-005_add_description_to_stories.rb (excerpt)

class AddDescriptionToStories < ActiveRecord::Migration
 def self.up
 add_column :stories, :description, :text

 end

 def self.down

Advanced Topics 327

remove_column :stories, :description

 end

end

As you can see, we’re adding a single column to the stories table. We’ve specified

that the new description column must be of type text, because a column of type

string can only store up to 255 characters, and it’s possible that story descriptions

will exceed this limit.

The final step is to apply this migration using the rake task:

$ rake db:migrate

The output of this migration is shown in Figure 9.6.

Figure 9.6. Adding and applying our fifth migration

Expanding the Submission Form
One last change we’ll make before we test our initial vote creation code is to add

another field to the story submission form (in the file app/views/stories/new.html.erb).

This field will accept the description column that we just added:

328 Simply Rails 2

20-new.html.erb (excerpt)

<% form_for @story do |f| %>
⋮ form HTML…

<p>
 description:

 <%= f.text_area :description %>
</p>
<p><%= submit_tag %></p>
<% end %>

Figure 9.7 shows the form after we apply this change.

Figure 9.7. Allowing users to add a story description

Advanced Topics 329

To accommodate a larger story description—remember, we’ve given our users plenty

of room by making the description column of type text—we’re using a textarea

instead of a one-line input field:

 <%= f.text_area :description %>

We also need to display the story’s description on the story’s page, just above the

submitted_by paragraph in the file /app/views/stories/show.html.erb:

21-show.html.erb (excerpt)

<ul id="vote_history">
⋮ vote history…

<p>
 <%= @story.description %>
</p>
<p class="submitted_by">
⋮ submitted by…
</p>

Right! Let’s hop over to our browser and submit a new story to see whether the

automated submission of the first vote works as expected. And, sure enough, it

does—as Figure 9.8 shows!

330 Simply Rails 2

Figure 9.8. A story with an auto-generated permalink

Adding User Pages
In order to track the history of our site’s usage on a per-user basis, we’ll need to

create a place where this information can be displayed.

We’ll add a user page, which will list the six stories most recently submitted by the

logged-in user and the six stories for which that person most recently voted. To select

the most recently voted-for stories, we’ll make use of another type of relationship:

the join model.

Introducing the Join Model Relationship
A join model relationship is a relationship between two models, which relies upon

a third—otherwise there’s no direct relationship between the two models that are

being linked.

In our Shovell application, an association only exists between our Story and User

models when we’re talking about who submitted each story—we don’t currently

have the ability to find out who voted for each story. This is where the join model

comes into play: the Vote model is already associated with both the User and the

Story models; with the addition of the has_many :through statement, the Vote can

Advanced Topics 331

serve as the connecting element in this new relationship. This relationship is illus­

trated in Figure 9.9.

Figure 9.9. A join model relationship

The Vote model is the join model because it joins the User and the Story models.

Introducing the has_many :through Association
The code that implements a join model relationship is the line has_many :through.

Let’s use it to add a join model relationship to our User model. Open the file

app/models/user.rb and make the changes in bold below:

22-user.rb (excerpt)

class User < ActiveRecord::Base
 has_many :stories
 has_many :votes
has_many :stories_voted_on,

 :through => :votes,
 :source => :story

end

Normally, Rails is smart enough to figure out associated class names on its own, so

long as the associations are given a name that matches the plural form of the class

name (for instance, :stories). However, because our User model already has a

has_many relationship (has_many :stories), we need to assign this new association

a different name (:stories_voted_on). We also need to specify the model with

which we’re associating the users, which is exactly what the :source => :story

argument does.

332 Simply Rails 2

The code that defines this relationship as a join model relationship is the :through

=> :votes argument, which can be read as: “a User has many Stories through the

Vote model.”

With this association in place, we find that several new instance methods are

available to every User object:

>> u = User.find(:first)

=> #<User id: 1, …>

>> u.stories_voted_on.size

=> 1

>> u.stories_voted_on.first

=> #<Story id: …>

As you can see, this association behaves like a regular has_many association, and if

you were none the wiser, you’d never actually know that three models were involved

in retrieving the associated data.

Adding Another Controller
Before we implement our user page, we need to generate another controller, since

we haven’t dealt with User objects so far.

By now, you should be ever so familiar with the procedure to generate a controller

with the script/generate command, so I’ll spare you the details. Enter the following

command to create a new UsersController:

$ ruby script/generate controller Users show

Additionally, we’ll add a resource declaration to the routing configuration stored

in config/routes.rb, like so:

23-routes.rb (excerpt)

map.resources :users

The actual implementation of the show action in UsersController is as follows:

http:config/routes.rb

Advanced Topics 333

24-users_controller.rb (excerpt)

class UsersController < ApplicationController
 def show

@user = User.find(params[:id])
 @stories_submitted = @user.stories.find(:all,

 :limit => 6, :order => 'stories.id DESC')
 @stories_voted_on = @user.stories_voted_on.find(:all,

 :limit => 6, :order => 'votes.id DESC')
 end
end

Let’s look at this code. Remember that the params hash stores the various parts of

the current URL, as defined in the application’s routing configuration. To retrieve

the requested user from the database, we’re using the find method:

 @user = User.find(params[:id])

The data we’re going to display on the user page is fetched by the associations that

are available via the User object. We then populate a couple of instance variables

using find calls with two options—first to sort the items in the desired order, and

again to limit the number of items retrieved:

 @stories_submitted = @user.stories.find(:all,

 :limit => 6, :order => 'stories.id DESC')

 @stories_voted_on = @user.stories_voted_on.find(:all,

 :limit => 6, :order => 'votes.id DESC')

Since multiple tables are involved in retrieving the data we’re interested in, we

have to be a little more explicit with our ordering instructions. Here, we’re using

stories.id and votes.id in the order clause, respectively. The part before the

period actually specifies the table that contains the id column to sort by. Since most

(if not all) of our tables actually have an id column, this is a necessary evil.

The next task on our list is to create the view template for this page!

Creating the View
The view template for our user page has been generated (with fairly non-spectacular

content) in app/views/users/show.html.erb. This template will use the instance vari­

mailto:@user.stories.find(:all
mailto:@user.stories_voted_on.find(:all

334 Simply Rails 2

ables that we created in our controller to display the recently submitted stories and

votes. It does so by rendering a collection of partials:

25-show.html.erb

<h2>Stories submitted by <%= @user.name %></h2>
<div id="stories_submitted">
 <%= render :partial => @stories_submitted %>
</div>
<h2>Stories voted for by <%= @user.name %></h2>
<div id="stories_voted_on">
 <%= render :partial => @stories_voted_on %>
</div>

The partial we’re rendering with this code already exists. We’re reusing the story

partial from StoriesController, which Rails will figure out to use because we’re

passing in a collection of Story objects using the shorthand notation of the render

call:

<%= render :partial => @stories_submitted) %>

Next, we’ll add a link to the user page by linking the name of the submitter as it’s

displayed on the story page (/app/views/stories/show.html.erb), like so:

26-show.html.erb (excerpt)

 <p class="submitted_by">
 Submitted by:
 <%= link_to @story.user.login, @story.user %>

 </p>

Advanced Topics 335

Now we’ll make a small addition to our style sheet for the sake of some visually

pleasing cosmetic treatment:

27-style.css (excerpt)

.story p {
 color: #666;
font-size: 0.8em;

}
h2 {
 clear: both;
 margin: 0;
 padding: 10px 0;
}

Lastly, we’ll add the login of the user in question to the links generated for the user

page by overriding the to_param method of User, just like we did with the Story

class:

28-user.rb (excerpt)

class User < ActiveRecord::Base
⋮ model code…

 def to_param
 "#{id}-#{login}"

 end
end

In practice, you should probably ensure that the login attribute doesn’t contain

non-alphanumeric characters. You can accomplish this little exercise with some

help from the validates_format_of validation.

There we go! As Figure 9.10 shows, we now have a user page which makes use of

our newly added has_many :through association to list both the stories that were

submitted by a given user and the stories for which that person recently voted.

336 Simply Rails 2

Figure 9.10. Example of a user page

Testing the New Functionality
As usual, we’ll add test coverage by writing unit tests, then adding functional tests,

for all of the enhancements we’ve made.

Testing the Model
We made a number of changes to our model in this chapter, including utilizing the

counter cache and introducing the join model relationship. Let’s write some unit

tests for those changes now.

Testing Additions to the Counter Cache
The first change we made in this chapter was to modify the Story model so that it

uses the counter cache to track the number of votes associated with any given Story.

To test this feature, we have to pull a few tricks out of the box, as there are numerous

conditions to take into account.

Advanced Topics 337

To begin with, let’s add a test to the test case for the scenario in which a vote is cast.

The test case is located in test/unit/story_test.rb:

29-story_test.rb (excerpt)

class StoryTest < ActiveSupport::TestCase
⋮ test methods…
def test_should_increment_votes_counter_cache
 stories(:two).votes.create
 stories(:two).reload
 assert_equal 1, stories(:two).attributes['votes_count']

 end
end

There’s a couple of methods we haven’t encountered before, so let’s dissect this

code.

The purpose of this test is to verify that the cached votes count is properly incre­

mented when a new vote is added. Therefore, the first step we need to take is to

create a new vote:

 stories(:two).votes.create

The second line is where things get interesting—we’re forcibly reloading the model

from the database.

 stories(:two).reload

We do this because once a new vote has been added, the number of stories that are

cached in each model’s attributes is suddenly out of sync with the database.

If we were to check the log file when we come to run our tests later on, we’d find

lines like the following:

UPDATE stories SET votes_count = votes_count + 1 WHERE (id = 2)

This is the SQL statement that Rails generates to update the counter cache. You’ll

notice that the statement doesn’t bother to check the current value of votes_count—it

just tells the database to increment votes_count by one. And with good reason!

338 Simply Rails 2

You see, in a live application, many users may be using the site at the same time,

and some of them might even be casting votes in parallel. The value of votes_count

would be totally negated if the SQL for each vote submission relied upon its own

copy of votes_count at the time the statement was executed.

As such, you need to reload the model if you ever require access to the current

number of votes immediately after a new vote is added, just as we did in the RJS

template earlier in this chapter. This situation isn’t likely to occur very often; nor­

mally you’d redirect your user to a new page anyway. But when we’re writing tests

that simulate user behavior, it’s important to be mindful of this issue.

There’s also something special about the assertion in this test: instead of comparing

the return value of the votes_count instance method, we access the “raw” attribute

as it comes out of the database:

 assert_equal 1, stories(:two).attributes['votes_count']

If we had used the instance method, we wouldn’t have had to enable counter

caching at all in order for our test to pass—votes_count would simply have issued

a second database query to count the votes. By using the attribute itself, we’re as­

serting that the counter cache is doing its job.

Testing Deletions from the Counter Cache
With that first test out the way, this second test, which covers the deletion of votes,

should be fairly straightforward. Our application doesn’t yet allow users to delete

votes, but we’ll include this test anyway, for the sake of completeness:

30-story_test.rb (excerpt)

class StoryTest < ActiveSupport::TestCase
⋮ test methods…
def test_should_decrement_votes_counter_cache
 stories(:one).votes.first.destroy
 stories(:one).reload
 assert_equal 1, stories(:one).attributes['votes_count']

 end
end

Advanced Topics 339

This test is basically the opposite of the previous one. First, we destroy the first

vote from the first story and then reload the model to reflect this change:

 stories(:one).votes.first.destroy

 stories(:one).reload

Finally, we compare the cached votes_count value to the value we expect it to

have:

 assert_equal 1, stories(:one).attributes['votes_count']

Preparing the Fixtures
As if those tests didn’t already contain enough workarounds, we also need to set

the initial votes_count value for each story in our fixture file. Like the “magical”

auto-populating column names we first encountered in Chapter 7, the counter cache

is not properly populated when fixtures are transferred to the database. Add the

following values into the fixture file at test/fixtures/stories.yml to reflect the way in

which the vote fixtures are associated with the story fixtures; while we’re changing

this file, we’ll add an all-new story to our fixture data. We’ll make use of this in the

functional tests that we’ll write later on:

31-stories.yml (excerpt)

one:
⋮ YAML data…
votes_count: 2

two:
⋮ YAML data…
votes_count: 0

promoted:
 name: What is a Debugger?
 link: http://en.wikipedia.org/wiki/Debugger/
 user: john
 votes_count: 5

Testing the Creation of the Initial Vote
The next test covers the new functionality that we added to our model for the

automatic creation of a vote when you submit a story:

340 Simply Rails 2

32-story_test.rb (excerpt)

class StoryTest < ActiveSupport::TestCase
⋮ test methods…
def test_should_cast_vote_after_creating_story
 s = Story.create(

 :name => 'The 2008 Elections',
 :link => 'http://elections.com/',
 :user => users(:patrick)

)
 assert_equal users(:patrick), s.votes.first.user

 end
end

You should be able to follow the twists and turns of this test quite easily. To test

the creation of a vote after a story has been saved to the database, a new story is

created (don’t forget to pass in a user!):

 s = Story.create(

 :name => 'The 2008 Elections',

 :link => 'http://elections.com/',

 :user => users(:patrick)

)

The assertion of this test confirms that the user of the first vote attached to the newly

created story is indeed the user we passed in when we created the story in the first

place:

 assert_equal users(:patrick), s.votes.first.user

This confirms that there is at least a single vote and that the user has been properly

inherited from the story.

Testing the Join Model Relationship
Lastly, we need to add a test to deal with the new has_many :through association

that we added to our User model. Expand the test cases (located in

test/unit/user_test.rb) as follows:

'http://elections.com/'

Advanced Topics 341

33-user_test.rb (excerpt)

class UserTest < ActiveSupport::TestCase
⋮ test methods…
def test_stories_voted_on_association
 assert_equal [stories(:one)],

users(:patrick).stories_voted_on
 end
end

This test relies on fixture data. Therefore, we can assert immediately that the list

of stories for which our test user voted is equal to the list that we expect:

 assert_equal [stories(:one)],

 users(:patrick).stories_voted_on

Next, we’ve got some functional tests to write.

Testing the StoriesController
In this chapter, we’ve added to StoriesController quite a bit of functionality that

needs testing. This is a little more complicated than in previous chapters, so the

corresponding tests will also be more complex. Additionally, we’ve added a new

UsersContoller with a relatively simple action, that also needs testing.

Testing the Rendering of Templates
We’ll start by changing an existing test (test_should_show_index) and add one

more basic tests to cover correct template rendering:

34-stories_controller_test.rb (excerpt)

class StoriesControllerTest < ActionController::TestCase
⋮ test methods…

 def test_should_show_index
 get :index
 assert_response :success
 assert_template 'index'
 assert_not_nil assigns(:stories)

 end

def test_should_show_bin

342 Simply Rails 2

get :bin

 assert_response :success

 assert_template 'index'

 assert_not_nil assigns(:stories)

 end

⋮ test methods…

end

Both tests are very similar in nature and neither exposes any new functionality.

Each calls its respective action, checks that the request was responded to success­

fully, and confirms that the proper template is rendered (remember, we’re using

exactly the same template for both the index and bin actions). It also ensures the

@stories instance variable doesn’t wind up being nil.

Testing the Story Index Pages
As a next step, we’re confirming that each of the story-listing actions (index and

bin) picks the proper records from the database. One list shows only “promoted”

stories, which have a voting score of at least 5; the other shows the remaining stories:

35-stories_controller_test.rb (excerpt)

 def test_should_only_list_promoted_on_index
 get :index
 assert_equal [stories(:promoted)], assigns(:stories)

 end

 def test_should_only_list_unpromoted_in_bin
 get :bin
 assert_equal [stories(:two), stories(:one)],
 assigns(:stories)

 end

In both of these tests, we compare the value that’s assigned to the @stories instance

variable (which is accessed by the assigns(:stories) construct) with our fixture

data.

Testing the Routing Configuration
We also altered the routing configuration in this chapter; let’s add a test to confirm

that our changes are working properly:

Advanced Topics 343

36-stories_controller_test.rb (excerpt)

 def test_should_use_story_index_as_default
 assert_recognizes({ :controller => 'stories',

:action => 'index' }, '/')
 end

The assert_recognizes assertion confirms that a given request is translated into

an expected set of parameters, mostly consisting of a controller and an action name:

 assert_recognizes({ :controller => 'stories', :action => 'index' }, '/')

Our assertion here confirms that a request for “/” (the front page of our domain) is

indeed routed to the index action of StoriesController.

Testing Page Headings
The next pair of tests deals with the view side of the index and bin actions and

confirms that the header tag contains a proper heading, complete with the expected

number of stories:

37-stories_controller_test.rb (excerpt)

 def test_should_show_story_on_index
 get :index
 assert_select 'h2', 'Showing 1 front-page story'
 assert_select 'div#content div.story', :count => 1

 end

 def test_should_show_stories_in_bin
 get :bin
 assert_select 'h2', 'Showing 2 upcoming stories'
 assert_select 'div#content div.story', :count => 2

 end

The second assert_select assertion tests for an appropriate number of div elements

with a class attribute of story. These divs come out of the _story.html.erb partial

and, as such, we’re looking for one div per story. Each story div is contained in the

all-encompassing div that has an id of content.

344 Simply Rails 2

Testing the Story Submission Form
We also added to the story submission form a new field that allows users to submit

story descriptions. To test this functionality, change the existing

test_should_show_new_form test to match the following:

38-stories_controller_test.rb (excerpt)

 def test_should_show_new_form
 get_with_user :new
 assert_select 'form p', :count => 4

 end

In this test, the assert_select call counts the number of p elements below the

<form> tag, and checks the total against our expected number of 4—three form fields

plus a Submit button.

Testing the Story Display Page
Since users who are not logged in no longer see the shove it button, we need to revise

an existing test and add a new one:

39-stories_controller_test.rb (excerpt)

 def test_should_show_story_vote_elements
get_with_user :show, :id => stories(:one)
⋮ method body…

 end

def test_should_not_show_vote_button_if_not_logged_in
 get :show, :id => stories(:one)
 assert_select 'div#vote_link', false

 end

We pass false to assert_select to confirm that there are no elements on the page

that match the given CSS selector.

Testing the Navigation Menu
We added an item to our navigation menu, so we need to increase the number of

list items that we check for in the following test from two to three:

Advanced Topics 345

40-stories_controller_test.rb (excerpt)

 def test_should_show_navigation_menu
 get :index
 assert_select 'ul#navigation li', 3

 end

Testing the Story Submitter Link Text
Lastly, let’s change our existing test for the story submitter on the story page

(test_should_show_story_submitter) to make sure that it now links to the story

submitter’s user page:

41-stories_controller_test.rb (excerpt)

 def test_should_show_story_submitter
 get :show, :id => stories(:one)
 assert_select 'p.submitted_by a', 'patrick'

 end

Whew! That was quite a litany of tests. Let’s now turn our attention to the tests of

the other controllers that were affected by all the goings-on in this chapter.

Testing the VotesController
Since we’ve modified the voting procedure so as to be available for logged-in users

only, we have to modify some existing tests as well as add a new one to cover storage

of the user for every cast vote.

Testing Restricted Functionality
As we’ve made the vote action available only to users who have logged in, we need

to revise those tests that request the create action of VotesController to log in to

the application first. These revisions mostly involve modifying the get and post

calls:

42-votes_controller_test.rb (excerpt)

class VotesControllerTest < ActionController::TestCase
⋮ test methods…

 def test_should_accept_vote

346 Simply Rails 2

⋮ method body…
post_with_user :create, :story_id => stories(:two)

 assert ! assigns(:story).reload.votes.empty?

 end

 def test_should_render_rjs_after_vote_with_ajax

xml_http_request :post_with_user, :create,

 :story_id => stories(:two)

⋮ method body…

 end

 def test_should_redirect_after_vote_with_http_post

post_with_user :create, :story_id => stories(:two)

⋮ method body…

 end

⋮ test methods…

end

Testing User Voting History
Additionally, we’ll add a test to confirm that the vote action indeed stores the current

user with the submitted vote:

43-votes_controller_test.rb (excerpt)

 def test_should_store_user_with_vote
 post_with_user :create, :story_id => stories(:two)
 assert_equal users(:patrick), assigns(:story).votes.last.user

 end

Testing the UsersController
Without further ado, we’ll add three tests to cover the functionality encapsulated

within the user page we added to UsersController:

44-users_controller_test.rb (excerpt)

class UsersControllerTest < ActionController::TestCase
def test_should_show_user
 get :show, :id => users(:patrick)
 assert_response :success
 assert_template 'show'

Advanced Topics 347

assert_equal users(:patrick), assigns(:user)

 end

def test_should_show_submitted_stories

 get :show, :id => users(:patrick)

 assert_select 'div#stories_submitted div.story', :count => 2

 end

def test_should_show_stories_voted_on

 get :show, :id => users(:patrick)

 assert_select 'div#stories_voted_on div.story', :count => 1

 end

end

All three tests use basic assertions to confirm that the proper user is found by the

show action, and that that user’s story submissions and story votes are displayed

properly on the page.

Running the Complete Test Suite
We’ve made a massive number of additions to our suite of tests in this chapter, so

it should be especially rewarding to run the full suite now, using:

$ rake test

Figure 9.11 shows the results of all of our tests.

348 Simply Rails 2

Figure 9.11. Running the test suite

Summary
Wow, what a journey! In this chapter, we’ve added a stack of features to Shovell,

such as the display of popular story listings on the front page and the implementation

of a voting bin containing stories that people can vote on.

Along the way, we learned that the counter cache offers an easy way to store the

number of records associated with any given model, and we used ActiveRecord

callbacks as a means to hook into certain events occurring on our models. We used

a after_create callback to cast an initial vote for submitted stories, and we also

tackled ActionView helpers to reduce clutter in our shared view.

Lastly, we covered an additional type of association: the join model relationship.

It was used to implement a user page to show the story submissions and voting

history of each registered user.

Advanced Topics 349

After numerous tests and assertions, we can attest that Shovell is in very good shape

indeed. Of course, there are countless enhancements that we could make to our

little application; some of the functionality that comes to mind includes:

■ creating a form that allows new users to register
■ sending an email to new users to inform them of their passwords
■ encrypting user passwords in the database
■ allowing users to comment on stories
■ restricting users to vote for each story only once

I’m sure your mind is racing with ideas for a number of spectacular features that

could set your application apart from the pack! While the addition of all of these

features is more than we could possibly cover in this book, I’ve given you a solid

grounding—both in theory and in practice—that you can build on to further develop

Shovell on your own. Don’t forget to keep expanding your test suite to include all

the cool new features that you add!

In the next chapter, we’ll take a quick look at the Rails plugin architecture, and use

one of the existing plugins to expand Shovell’s feature set—implementing tagging

functionality for our story submissions.

Chapter10
Rails Plugins
While this book is unable to cover all of the built-in functionality that ships with

Rails—and there’s plenty of functionality for you to discover and experiment with

once you’re beyond the last chapter—the plugins architecture of Rails warrants our

attention.

What Is a Plugin?
A plugin is a component that you can add to your application to extend its function­

ality. While you can certainly write your own plugins,1 we’ll limit our discussion

here to using existing plugins. Plugins have been developed for various parts of the

Rails framework, and add functionality in a range of areas, including:

■ extensions to ActiveRecord functionality
■ helper methods
■ new template engines (for coding a view using an alternate templating language)

1 http://wiki.rubyonrails.com/rails/pages/HowTosPlugins/

http://wiki.rubyonrails.com/rails/pages/HowTosPlugins/
http://wiki.rubyonrails.com/rails/pages/HowTosPlugins/

352 Simply Rails 2

The original list of plugins is located in the Rails wiki; each entry simply links to

the plugin code that various people have contributed and published.2 Other useful

plugin directories can be found at RailsLodge3 and Agile Web Development.4

Plugins are installed using a command line script that’s available in the script sub­

directory of every Rails application. By default, this script will only install the

plugins contained in the official Rails repository. To install a plugin from a different

location, you must know the exact URL from which the plugin is available—inform­

ation that’s usually provided by the plugin developer.

Let’s explore what the plugin script can do for us.

Invoke the script from the command line, without arguments, so that we can view

its usage instructions:

$ ruby script/plugin

You should be presented with a set of usage instructions that numbers several pages,

and even includes examples. An excerpt of this output can be seen in Figure 10.1.

Using the plugin script, plugins can be installed, removed, and even updated,

should a newer version than the one you originally installed become available. The

other commands listed in Figure 10.1 relate to adding, listing, and removing addi­

tional plugin repositories; we won’t cover them in this book.

Plugins you’ve installed for your application usually reside in the vendor/plugins

folder within your application’s root folder. Each plugin resides in its own subdir­

ectory, where it will be automatically found and loaded by Rails. The upshot of this

is that you don’t need to instruct Rails to “load plugin A from location B.”

Every Rails plugin ships with a README file that contains instructions for using the

plugin. Many plugins also ship with test cases that assert their proper functioning.

Okay, enough theory! Let’s go ahead and install our first plugin.

2 http://wiki.rubyonrails.org/rails/pages/Plugins
3 http://www.railslodge.com/
4 http://agilewebdevelopment.com/plugins/

http://wiki.rubyonrails.org/rails/pages/Plugins
http://www.railslodge.com/
http://agilewebdevelopment.com/plugins/
http://wiki.rubyonrails.org/rails/pages/Plugins
http://www.railslodge.com/
http://agilewebdevelopment.com/plugins/

Rails Plugins 353

Figure 10.1. Usage instructions for script/plugin

Adding Tagging to Shovell
The Web 2.0 ideal not only encourages the (mindful) use of Ajax functionality, it

almost dictates that a web application must have “tagging” to be classified as a Web

2.0 application. And Shovell is no exception!

Tagging is the process by which content creators attach simple, textual labels to

their data, be it a photo, a link, a story, or a restaurant review. These tags vary widely

in their nature—they may be location-related, content-related, and so on. The result

is that everyone seems to have a unique system for tagging data.

Tags are definitely more flexible than a simple category tree—they allow you to

assign as many or as few tags as you like to any item of data. The convention that

has evolved around this functionality is for the user to enter tags for a content item

into a text field. Multiple tags should be separated by a space or a comma.

354 Simply Rails 2

Introducing the acts_as_taggable_on_steroids
Plugin
Instead of reinventing the wheel and implementing our own tagging system for

Shovell, we’ll use one of the available Rails plugins for this job: acts_as_tag­

gable_on_steroids. You may be wondering what kind of name the developer ori­

ginally chose for his plugin. At some point David Heinemeier Hansson himself ac­

tually developed a plugin named acts_as_taggable as a proof of concept for some

then-new features for Rails. It wasn’t really intended for production use and has

since been deprecated. But, tagging being such an essential component of today’s

web sites with user-generated content, Jonathan Viney, a Rails core contributor and

all-round guru, picked up where Heinemeier Hansson left off and created his work

under the name of acts_as_taggable_on_steroids. With that bit of family history

out of the way, let’s have a look at what this plugin can do for us.

What acts_as_taggable_on_steroids Does
As this isn’t the most obvious name for a plugin, allow me to explain a little bit

about the background of the acts_as_* naming convention.

In Rails’ own plugin repository can be found a number of acts, which are functional

extensions to an ActiveRecord model. These acts equip models with certain func­

tionality that usually can be enabled using a single line of code.

As this functionality typically enables models to “act as something else,” the con­

vention of calling these functional additions “acts” arose, and the code that enables

the functionality acts_as_something shortly followed.

At the time of writing, three related acts are available from Rails’ own plugin repos­

itory: acts_as_list, acts_as_tree, and acts_as_nested_set. While some are

more complex than others, each of these acts applies a hierarchy to a set of model

objects. In the case of acts_as_list, objects are positioned in a flat list; with

acts_as_nested_set, the resulting hierarchy is a sophisticated tree system, such

as that used in a threaded forum, for example.

But what about acts_as_taggable_on_steroids? As the name suggests, this plugin

provides a simple yet effective means by which you can make your models taggable.

It ships with its own ActiveRecord model class called Tag, as well as functionality

for parsing a list of tags divided by spaces into separate model objects of class Tag.

Rails Plugins 355

Of course, before we can play with this plugin, we’ll need to install it.

Installing the acts_as_taggable_on_steroids Plugin
To install the plugin, change directory to the application root folder, and, on one

line, execute the following command:

$ ruby script/plugin install http://svn.viney.net.nz/

➥things/rails/plugins/acts_as_taggable_on_steroids/

You’ll see all the files that were added to your vendor/plugins/ directory in the output

of the plugin script. The files that make up the acts_as_taggable_on_steroids

plugin are placed in a folder which has the same name as the plugin, as Figure 10.2

shows.

As I mentioned, you don’t have to load this plugin explicitly, so here’s where the

installation instructions end!

http://svn.viney.net.nz/

356 Simply Rails 2

Figure 10.2. Installing the acts_as_taggable_on_steroids plugin

Creating a Migration for the Plugin
Our plan is to allow users of our application to add tags to stories submitted to

Shovell, so we’ll need to make our Story model taggable. Both the tags themselves

and the relationships between tags and stories need to be stored somewhere; you

guessed it, we need to use a migration to create new tables. And while this plugin

makes use of a new model (the Tag model provided by the acts_as_tag­

gable_on_steroids plugin), the model wasn’t created by the generate script, so

we don’t yet have a migration to go with it. Luckily, the plugin does come with a

convenient generator method to create a fitting migration:

$ ruby script/generate acts_as_taggable_migration

Rails Plugins 357

The acts_as_taggable_on_steroids plugin uses two tables:

■	 The tags table stores the Tag model, which is just a regular ActiveRecord

model. This table contains one entry for each tag. So, for example, if you tagged

two or more Story models with the tag ruby, only one Tag object (ruby) would

be stored in the database. This approach makes it easy for our application’s users

to find content: if a user was interested in finding stories about Ruby, he or she

could browse through all of the stories to which the ruby tag was applied.

■	 The taggings table stores the actual mappings between the Tagmodel and those

models that make use of the acts_as_taggable_on_steroids functionality.

Following is the migration code that was generated for us. It is actually ready to use

as is, and is stored in db/migrate/006_acts_as_taggable_migration.rb file:

01-006_acts_as_taggable_migration.rb

class ActsAsTaggableMigration < ActiveRecord::Migration
 def self.up
 create_table :tags do |t|
 t.column :name, :string

 end

 create_table :taggings do |t|
 t.column :tag_id, :integer
 t.column :taggable_id, :integer

 # You should make sure that the column created is
 # long enough to store the required class names.
 t.column :taggable_type, :string

 t.column :created_at, :datetime
 end

 add_index :taggings, :tag_id
 add_index :taggings, [:taggable_id, :taggable_type]

 end

 def self.down
 drop_table :taggings
 drop_table :tags

 end
end

358 Simply Rails 2

The above migration starts out simply enough. It creates the tags table that contains

just one column: name (in addition to the id column belonging to every table).

While it may appear simple on the surface, the taggings table is a little more

complex than a mere list of objects and their tags. As I mentioned, it’s possible to

make more than one model in your application taggable. However, the mappings

between the Tag model and those models to which tagging functionality has been

added use a single table.

acts_as_taggable_on_steroids uses each of the columns created in the taggable

table as follows:

■	 tag_id stores the id of the Tag model.

■	 taggable_id stores the id of the object that is being tagged (for example, the id

of a Story).

■	 taggable_type stores the class of the object that is being tagged (for example,

Story).

Before we can give our Story model a little acts_as_taggable_on_steroids

goodness, we need to apply the migration that we just generated:

$ rake db:migrate

Figure 10.3 shows the outputs that result when this migration is created, and then

applied.

Rails Plugins 359

Figure 10.3. Adding and applying the acts_as_taggable_on_steroids migration

Great! Now we can make our Storymodel taggable. But what’s really going on here?

Understanding Polymorphic Associations
We’ve looked at the underlying tables utilized by the acts_as_taggable_on_ster­

oids plugin, and we know which columns are used to store what. But what kind

of association is this?

It’s not a one-to-many relationship, because one tag may be applied to many items

and one item may have many tags. It’s a kind of bidirectional, one-to-many relation­

ship. While Rails developers have always used the has_and_belongs_to_many

(sometimes abbreviated to “habtm”) relationship to express this kind of functionality,

Rails features a type of relationship that’s better suited for this situation. This rela­

tionship is called a polymorphic association.

In a polymorphic association, a model is associated with objects of more than one

model class, as Figure 10.4 illustrates. In order to store this relationship in the

database accurately, the object’s class name and its ID need to be stored. Take a

peek at the migration that we just created, and you’ll see that this is exactly what’s

achieved by the schema it creates.

360 Simply Rails 2

Figure 10.4. Two models are assigned the same tag

If the schema didn’t save both the class name and ID of the object, we could poten­

tially be faced with a situation in which a tag was applied to both a User object with

an id of 1 and a Story object that also had an id of 1. What chaos would result!

Fortunately, Rails handles most of the details that implement this relationship

automatically and transparently for you.

Making a Model Taggable
To use acts_as_taggable_on_steroids, modify the Story class definition located

in app/models/story.rb as follows:

02-story.rb (excerpt)

class Story < ActiveRecord::Base
acts_as_taggable
⋮ Story model…

end

Yes, that is it! With the plugin in place, it takes just 16 characters to make a model

taggable. Please note that the function name is still acts_as_taggable as opposed

to the plugin name, which is acts_as_taggable_on_steroids.

Next, we’ll hop into the Rails console to play with our Story model’s new function­

ality. The acts_as_taggable_on_steroids plugin has added a variety of extra

methods to our model. Let’s take a look at some of them.

First, retrieve a story from the database:

Rails Plugins 361

>> s = Story.find(:first)

=> #<Story id: 2, name: "SitePoint Forums", …>

We can look at the tags already assigned to this story by using the tag_list instance

method:

>> s.tag_list

=> []

By simply assigning a new value to the tag_list attribute, we have the ability to

tag an object. In its simplest form, this value can be a comma-separated list of tags

to apply:

>> s.tag_list = 'sitepoint, forum, community'

=> "sitepoint, forum, community"

When the model is then saved to the database, we can use the tag_list method

again to fetch an array of tags assigned to the model:

>> s.save

=> true

>> s.tag_list

=> ["sitepoint", "forum", "community"]

The tag_list method is in fact a shortcut to the association data, which is available

through the tags instance method. This method provides access to an array of the

Tag objects with which this particular story is associated:

>> s.tags.size

=> 3

As I mentioned earlier in the chapter, we can also use methods of the Tag class to

retrieve a list of stories that are tagged with a particular word. Below, we load up

an existing tag (which we’ve just created through the assignment of a comma-separ­

ated list of tags to the tag_list attribute of the Story model) using a standard

ActiveRecord dynamic finder method:

>> t = Tag.find_by_name("sitepoint")

=> #<Tag id: 1, name: "sitepoint">

362 Simply Rails 2

Each Tag instance collects a list of all the objects to which it has been assigned—in­

formation that’s available through the taggings instance method. Let’s request the

size of the array:

>> t.taggings.size

=> 1

Based on the value returned by the size method, we can hazard a guess that the

object available in this array is the Story object that we tagged earlier. Let’s use the

first method to be sure:

>> t.taggings.first

=> #<Tagging id: 1, tag_id: 1, taggable_id: 2,

taggable_type: "Story", …>

Yes, we were right!

The objects contained in this taggings array are the fully functional model objects

of class Tagging. This is sort of the intermediate model between the Tag and the

object being tagged, such as a Story object. If we want to access the actual tagged

model, we have to go through yet another association that the acts_as_tag­

gable_on_steroids plugin defined for us: taggable.

>> t.taggings.first.taggable

=> #<Story id: 2, name: "SitePoint Forums", …>

This property retrieved for us the actual story object we applied the tag to. We’re

now free to invoke the same methods and access the same attributes that we would

when dealing straight with a Story object. Let’s request the name of the story that

we’ve tagged with the sitepoint tag:

>> t.taggings.first.taggable.name

=> "SitePoint Forums"

Straightforward stuff, no? Although I’ve got to admit that that’s a lot of chained

method calls there. Didn’t we learn about a new type of association that connects

a model through another model in the last chapter? Feel free to implement that on

your own!

Rails Plugins 363

One last thing—because it’s conceivable that a tag may be applied to more than one

type of model, each model is equipped with a new dynamic finder which fetches

only objects of that object’s class that have been assigned a certain tag. That dynamic

finder is find_tagged_with:

>> s = Story.find_tagged_with("sitepoint")

=> [#<Story id: 2, name: "SitePoint Forums", …>]

>> s.size

=> 1

>> s.first.name

=> "SitePoint Forums"

Okay, enough with the console! Let’s give users the ability to tag stories through

our application’s web interface.

Enabling Tag Submission
Before we get all fancy about displaying tags all over our site, we need to add a way

for users to submit tags with a new story. Let’s add a new form field to the story

submission form.

Modifying the View
To add the form field, modify the submission form that’s located in the file

app/views/stories/new.html.erb:

03-new.html.erb (excerpt)

<% form_for @story do |f| %>
⋮ form HTML…
<p>
 tags:

 <%= f.text_field :tag_list %>

 </p>
 <p><%= submit_tag %></p>
<% end %>

Users will be separating each tag with a comma, so a simple text field for tag entry

will do the job nicely:

 <%= f.text_field :tag_list %>

364 Simply Rails 2

The only mind-bending thing about this line is the use of a regular text_field

method. This would have us believe that our Story object somehow gained a data­

base column for tag_list, which it most certainly did not. In fact, this is exactly

why the acts_as_taggable_on_steroids uses a pragmatic approach for the imple­

mentation of tagging for specific objects. It simply provides the tag_list and

tag_list= methods for objects of classes which have been tag-enabled with

acts_as_taggable that closely resemble what ActiveRecord provides us with for

regular, database-backed attributes. Behind the scenes, the plugin intercepts what’s

being set for this attribute and transparently handles creation of new Tag objects

and Taggings relationships. Cool, huh?

Modifying the Controller
To assign the submitted tags to the new story, you probably expected to have to

modify the create action of the StoriesController class. Well, it turns out you

don’t! As outlined in the previous section, tag_list is being treated as yet another

attribute. And we didn’t have to modify any controller code when we added the

description attribute back in the last chapter.

Right, our users can submit tags with their stories! Let’s display them then, shall

we?

Enabling Tag Display
We want our tags to appear in a few places. First of all, they need to be visible on

the story page itself. It would also be nice to see them in the story listings on the

front page, and on the page showing stories in the voting bin.

Modifying the View
To display the assigned tags on the story page, modify the show template, located

at app/views/stories/show.html.erb. Add the following code between the containers

of the story link and the voting form (vote_form):

04-show.html.erb (excerpt)

<% unless @story.tag_list.empty? %>
 <p class="tags">
 Tags:

Rails Plugins 365

<%= @story.tag_list %>

 </p>

<% end %>

Once again, if a story has an empty list of tags, we don’t bother to list them, so we

wrap the logic in an unless clause:

<% unless @story.tag_list.empty? %>

⋮ tag HTML…

<% end %>

If tags are associated with a story, we go ahead and simply render the list of tags

for now:

 <%= @story.tag_list %>

Updating the story Partial
Last of all, we display tags for each story that appears in the story listings on the

front page and in the voting bin. To add this information to the display, we’ll

modify the app/views/stories/_story.html.erb partial like so:

05-_story.html.erb (excerpt)

<% div_for(story) do %>
 <h3><%= link_to story.name, story %></h3>
 <p>
 Submitted by: <%= story.user.login %> |
 Score: <%= story.votes_count %>

 Tags: <%= story.tag_list %>

 </p>
<% end %>

This code also prints a simple, comma-separated list of the tags assigned to a story

using the tag_list instance method.

Assigning Our First Tags
With a solid foundation in place for the assignment and display of tags in the ap­

plication, you can now start experimenting with this exciting new piece of function­

mailto:@story.tag_list
mailto:@story.tag_list.empty?
mailto:@story.tag_list

366 Simply Rails 2

ality. Submit a new story from your browser using the story submission form, and

this time include a few tags, as I’ve done in Figure 10.5. If your web server is still

running from the previous chapter, you may need to restart it before it will recognize

the new plugin.

Figure 10.5. Submitting a story with tags

When you view the front page, the upcoming page, or the individual story listings,

you should see the tags that you submitted display nicely below your story, as in

Figure 10.6.

Rails Plugins 367

Figure 10.6. Tags displaying for the new story

Everything looks good! However, we’d like to link those tags to a page showing all

stories that have this tag in common. Let’s do this next.

Viewing Stories by Tag
At this stage, we’re taxing ourselves with having to create a separate controller to

implement the view-by-tag feature, since that will work nicely with the RESTful

approach we’re taking to Shovell’s development. However, as you’ve made it to the

final third of the book, creating a new controller shouldn’t impose too much on

your Rails development skills.

Creating the Controller
Our new controller is supposed to deal with objects of class Tag, so TagsController

seems to be an excellent fit. Create it as follows:

$ ruby script/generate controller Tags show

The result of this operation should look similar to Figure 10.7.

368 Simply Rails 2

Figure 10.7. Generating the TagsController

To actually make our new controller adhere to RESTful principles, we need another

entry in config/routes.rb:

06-routes.rb (excerpt)

ActionController::Routing::Routes.draw do |map|
map.resources :tags
⋮ other routes…

end

Now go ahead and open app/controllers/tags_controller.rb, and adjust the show action

to look like this:

07-tags_controller.rb (excerpt)

class TagsController < ApplicationController
def show
 @stories = Story.find_tagged_with(params[:id])

 end
end

http:app/controllers/tags_controller.rb

Rails Plugins 369

There’s nothing too fancy here; we simply retrieve all of the stories that are tagged

with a particular tag using a method that we played with in the console script

earlier in this chapter—find_tagged_with:

 @stories = Story.find_tagged_with(params[:id])

The last task this page requires of us is the creation of an appropriate heading to

distinguish it from our other story lists.

Filling in the View Template
The view template for the show action is really very simple. In fact, we could almost

reuse the app/views/stories/index.html.erb template, but it is kind of awkward to reuse

action templates between two separate controllers, so we’ll decide against it. What

we will do, however, is reuse the partial to render a list of stories.

To do so, open app/views/tags/show.html.erb and adjust it as follows:

08-show.html.erb (excerpt)

<h2>Stories tagged with <%= params[:id] %></h2>
<%= render :partial => @stories %>

This ends up being similar to the aforementioned index template, but still retains

the flexibility to drag in additional models that we can equip with tagging function­

ality in the future.

Displaying Tagged Stories
Although we know what kind of tag we’ve used in our story submissions and thus

could simply construct a URL to a tag page on our own, we want to enable our users

to click on each of the tags displayed in the story listings to reach the respective

page listing all stories with that tag.

To do this, we’ll change the app/views/stories/show.html.erb template slightly to

render a partial instead:

370 Simply Rails 2

09-show.html.erb (excerpt)

<% unless @story.tag_list.empty? %>
 <p class="tags">
 Tags:
<%= render :partial => @story.tags %>

 </p>
<% end %>

If you recall the shorthand syntax we first met a couple of chapters ago, this render

call will actually go to search for a partial in app/views/tags/_tag.html.erb, so let’s

create that partial now.

Creating a tag Partial
To render a collection of tags assigned to a story, we need a tag partial. Create the

file app/views/tags/_tag.html.erb, and edit the contents to contain the following single

line:

10-_tag.html.erb (excerpt)

 <%= link_to tag, tag_path(:id => tag.name) %>

This link_to call departs slightly from the oh-so-comfortable, convention-laden

form that we’ve grown to love. The reason is that we actually want the URL for our

tag pages to look like this:

http://localhost:3000/tags/sitepoint

While we could certainly go ahead and modify the to_param method of the Tag

class, this would require changing the contents of the acts_as_taggable_on_ster­

oids plugin. Although this is certainly possible, it’s best discouraged—a future

update to the plugin could break our changes. This is the reason why I opted to

construct the URL by explicitly assigning the name value of the tag to the id part of

the URL.

Updating the Style Sheet
To give our tag links a little room to breathe on the page, let’s add the following

snippet of CSS to our style sheet, located at public/stylesheets/style.css:

http://localhost:3000/tags/sitepoint

Rails Plugins 371

11-style.css (excerpt)

.tags a { padding: 0 3px; }

Excellent. Let’s see how it’s all looking now, shall we? Loading up a page of a story

that has tags assigned should look similar to Figure 10.8.

Figure 10.8. A tagged story with links

Clicking on any of the provided tags should reveal a list of stories that share this

tag, an example of which can be found in Figure 10.9. Lovely!

372 Simply Rails 2

Figure 10.9. Listing all stories tagged with “rails”

Testing the Tagging Functionality
Some plugins come bundled with complete test coverage; others do not. The original

acts_as_taggable was quite bare bones in that regard. The makeover, however, is

indeed on steroids with its extensive test coverage. Still, it’s good practice to add

tests to your test suite to ensure that you’re testing your usage of the plugin, which

definitely isn’t covered by the standard test suite for the plugin.

Testing the Model
To test the tagging functionality that our Story model has inherited, we’re going to

add two more unit tests to the StoryTest test case.

Testing the Assignment of Tags
The first test we’ll add to the /test/unit/story_test.rb file is as follows:

12-story_test.rb (excerpt)

class StoryTest < ActiveSupport::TestCase
⋮ test methods…
def test_should_act_as_taggable

Rails Plugins 373

stories(:one).tag_list = 'blog, ruby'

 stories(:one).save

 assert_equal 2, stories(:one).tags.size

 assert_equal ['blog', 'ruby'], stories(:one).tag_list

 end

end

This test uses the tag_list attribute accessor to apply two tags to one of the stories

in our fixture data:

 stories(:one).tag_list = 'blog, ruby'

To reflect the newly added tags, we need to save the object in question:

 stories(:one).save

The two assertions in this test confirm that the number of tags assigned to the story

meets expectations, and that the list of tags returned by the tag_list method con­

tains the correct tags, in the form of an array:

 assert_equal 2, stories(:one).tags.size

 assert_equal ['blog', 'ruby'], stories(:one).tag_list

Testing the Finding of a Story by Tag
The next unit test we need to add for our Story model is as follows:

13-story_test.rb (excerpt)

 def test_should_find_tagged_with
 stories(:one).tag_list = 'blog, ruby'
 stories(:one).save
 assert_equal [stories(:one)],
 Story.find_tagged_with('blog')

 end

This test confirms that the functionality for finding stories by tag works as expected.

After tagging a story, the test uses the find_tagged_with class method to retrieve

374 Simply Rails 2

a list of stories with the blog tag, and compares it with the list of stories that we

expect to be returned.

Great, we’re done! Let’s go do some functional testing.

Testing the Controller
We need to add a few tests to our StoriesControllerTest to confirm that our tagging

feature works correctly from a controller perspective.

Testing the Submission of a New Story with Tags
The first test confirms that the process of adding a new story with tags works:

14-stories_controller_test.rb (excerpt)

class StoriesControllerTest < ActionController::TestCase
⋮ test methods…
def test_should_add_story_with_tags
 post_with_user :create, :story => {
 :name => 'story with tags',
 :link => 'http://www.story-with-tags.com/',
 :tag_list => 'rails, blog'

 }
 assert_equal ['rails', 'blog'], assigns(:story).tag_list

 end
end

In this test, we need to specify the tags as part of the :story hash. Remember, tags

are submitted just like any other attribute in the story submission form:

 post_with_user :create, :story => {

 :name => 'story with tags',

 :link => 'http://www.story-with-tags.com/',

 :tag_list => 'rails, blog'

 }

The assertion then ensures the tag_list method of the newly added Story returns

the tags that we submitted:

 assert_equal ['rails', 'blog'], assigns(:story).tag_list

'http://www.story-with-tags.com/'

Rails Plugins 375

Testing the Display of Tags on a Story Page
The next test checks whether a story’s individual page displays its tags properly:

15-stories_controller_test.rb (excerpt)

class StoriesControllerTest < ActionController::TestCase
⋮ test methods…
def test_should_show_story_with_tags
 stories(:promoted).tag_list = 'apple, music'
 stories(:promoted).save
 get :show, :id => stories(:promoted).id
 assert_select 'p.tags a', 2

 end
end

In this test, we confirm that the container element on the story page contains an

appropriate number of elements. We do this by counting the number of links within

the p element that has a class of tags:

 assert_select 'p.tags a', 2

Testing the Display of the Story Submission Form
As we added a new field to the story submission form, we have to edit our

StoriesControllerTest class so that the test_should_show_new_form test counts

an additional paragraph element:

16-stories_controller_test.rb (excerpt)

class StoriesControllerTest < ActionController::TestCase
⋮ test methods…

 def test_should_show_new_form
 get_with_user :new
 assert_select 'form p', :count => 5

 end
end

Now, let’s move on and write some tests for our TagsController.

376 Simply Rails 2

Testing the show Action of TagsController
To test our newly created TagsController, add the following test to the

TagsControllerTest test case stored in test/functional/tags_controller_test.rb:

17-tags_controller_test.rb (excerpt)

class TagsControllerTest < ActionController::TestCase

def test_should_find_tagged_stories
 stories(:one).tag_list = 'blog, ruby'
 stories(:one).save
 get :show, :id => 'blog'
 assert_equal [stories(:one)], assigns(:stories)

 end

end

We start this test by assigning some tags to one of our stories, then call the show

method of the controller to find all stories tagged with blog:

 stories(:one).tag_list = 'blog, ruby'

 stories(:one).save

 get :show, :id => 'blog'

The assertion then confirms that the @stories instance variable actually contains

all the stories we expect it to:

 assert_equal [stories(:one)], assigns(:stories)

Testing the Display of Stories by Tag
The next test we need to add to our TagsControllerTest is the following:

18-tags_controller_test.rb (excerpt)

 def test_should_render_tagged_stories
 stories(:one).tag_list = 'blog, ruby'
 stories(:one).save
 get :show, :id => 'ruby'
 assert_response :success

Rails Plugins 377

assert_template 'show'

 assert_select 'div#content div.story', :count => 1

end

In this test, we put the template code through its paces. The assert_select call

confirms that the resulting page contains the expected number of div elements with

a class of story:

 assert_select 'div#content div.story', :count => 1

And that, dear reader, is the last test I’ll make you write! Well, for this chapter,

anyway.

Running the Test Suite ... Again!
To assure ourselves that all of these new tests (and our existing ones) pass, we’ll

run the whole suite again using rake, as illustrated in Figure 10.10.

Figure 10.10. Running the test suite

378 Simply Rails 2

$ rake test

If all of your tests passed, give yourself a congratulatory pat on the back for a job

well done! And if there are any errors or failures, double-check your code against

the code in the book and the book’s code archive to see where you might have gone

wrong. The error messages displayed in your console will help, of course. And if

you get truly stuck, you could jump ahead to Chapter 11 to read about debugging

your Rails application.

Summary
In this chapter, we had a brief look at using an existing Rails plugin to extend our

application’s functionality without reinventing the wheel. After installing the plugin

and applying the necessary migration, we only had to add a single line of code to

make use of the rich functionality provided by the plugin. When we’d ascertained

how the plugin worked, we expanded the story submission form to take a comma-

separated list of tags, and expanded several views to display the tag data.

Our work is not done yet, though—we still have a bit to learn about debugging our

application, running integration tests, and configuring our environment for produc­

tion; these topics will be the focus of the coming chapters.

Chapter11
Debugging, Testing, and Benchmarking
Welcome to a chapter devoted to the very topics nobody likes to talk about: errors,

bugs, flaws, and exceptions. These topics, however dismaying, are de rigeur for any

comprehensive, hands-on technical guide—let’s not pretend that development is

perennially easy and always results in perfect, error-free code!

Once you begin developing applications on your own, the first lesson you’ll

learn—probably the hard way—is that bugs arise all the time, regardless of how

proficient you are as a developer. It’s your job to find and fix them, so you’d better

be good at it!

Of course, the fun doesn’t stop at bugs and errors. It may be that your finished ap­

plication is not as speedy as you’d like. If this is the case, you’ll need tools on hand

to profile your application, so you can locate the bottlenecks responsible for slowing

things down.

In this chapter, we’ll explore all three topics.

380 Simply Rails 2

Debugging Your Application

When you’re building a web application, there are times you know exactly and

immediately the cause of a problem and how to fix it. For example, if you notice a

broken image on your web site, you’ll instantly realize that you’ve forgotten to upload

it, or that the path to the image is incorrect. With other bugs, however, you may not

have the merest ghost of an idea what’s happened. It’s at times like these that

knowing how to debug your code comes in very handy.

There are various approaches to debugging. The simplest involves printing out the

values of some of the variables that your application uses while it runs, to gain a

better idea of what’s going on at each step in your code. A more complex approach

involves complicated but powerful techniques—setting breakpoints, hooking into

the running application, and executing code in the context in which you suspect

it’s misbehaving.

We’ll begin our discussion with something simple: we’ll look at the debug statement

that’s available for use within ActionView templates. Over the course of the next

two sections, we’ll work to squash a real, live bug in our Shovell application; I’ve

gone against the developer grain and deliberately introduced problems into our

existing, perfectly working application code so that we can get our hands dirty with

a practical application. As you follow along, try to think of the potential causes for

the problems we encounter.

Are you ready? Let’s try our hands at a little debugging.

Debugging within Templates
I’ve deliberately broken our application by changing a specific line of code (obvi­

ously, I won’t tell you which—that’s the whole point of this section!). The result of

this code change is that the story page for a newly submitted story throws an excep­

tion and no longer displays the story. Figure 11.1 shows how this bug appears in

the browser.

Debugging, Testing, and Benchmarking 381

Figure 11.1. A mystery bug causing an error to display when we view a story

To complete this exercise, you’ll first need to follow these steps to set up the pur­

posefully buggy version of Shovell:

1. Copy the folder named shovell-debug-01 from the code archive, and place it

alongside your existing shovell application folder.

2. Start up your broken version of the Shovell application using the now familiar

ruby script/server command.

3. Log in and add a new story to Shovell; I’ve given my story the name All About

Debuggers.

4. Once you’ve submitted your new story, point your browser to

http://localhost:3000/stories/1-all-about-debuggers.

When your browser has finished loading the page, you should see something very

similar to Figure 11.1. Don’t worry if the line number doesn’t match exactly; as long

as the error is the same, everything’s working as expected.

Where do we go from here? How should we approach such an error? Let’s begin by

taking a closer look at the error message:

http://localhost:3000/stories/1-all-about-debuggers

382 Simply Rails 2

Showing stories/show.html.erb where line #20 raised:

You have a nil object when you didn't expect it!

The error occurred while evaluating nil.login

The obvious deduction here is that our application tried to call the login method

on a nil object in our show.html.erb template. Understandably, Rails could not

perform such an action, as the object nil certainly doesn’t have a login method.

The error message also includes an excerpt of the code that Rails believes was re­

sponsible for the exception:

Extracted source (around line #20):

17: </p>

18: <p class="submitted_by">

19: Submitted by:

20: <%= link_to @story.user.login, @story.user %>

21: </p>

22: <p>

23: <%= link_to @story.link, @story.link %>

The error message directs us to line 20 of the template, which is where the link_to

helper tries to assemble a link to the user page associated with the user who origin­

ally submitted the story. This line also contains the call to the login method that

raised the exception. We’re calling the login method on the user object associated

with the story that’s currently being viewed:

20: <%= link_to @story.user.login, @story.user %>

Rereading the error message, we get the impression that @story.user must actually

must be nil. But what good are impressions in web application programming? No

good at all. We need cold, hard facts!

Let’s put two tasks on our to-do list:

■ Confirm that @story.user is indeed nil.
■ Find out why it is nil.

mailto:@story.user.login
mailto:@story.user
mailto:@story.link
mailto:@story.link
mailto:@story.user.login
mailto:@story.user
mailto:@story.user
mailto:@story.user

Debugging, Testing, and Benchmarking 383

To tackle the first item on our list, let’s change the parts of the template that raised

the exception, in order to inspect the contents of @story.user. To do so, open the

app/views/stories/show.html.erb template and change the following sections:

01-show.html.erb (excerpt)

<p class="submitted_by">
 Submitted by:
<%= @story.user.class %>

 <%# link_to @story.user.login, @story.user %>
</p>

I made two changes to the template. First, I added a statement to print the class of

the @story.user variable to our browser. Then, I used the <%# %> syntax to comment

out the link_to statement. If we don’t do this, the application will continue to raise

an exception when we reload the page, and we won’t receive the output of the line

we added. This line is now considered a comment, rather than a part of the working

code, and as such it won’t be executed.

When we reload the page, we see that @story.user is indeed nil, which explains

the exception we’re seeing. Figure 11.2 shows the results of our work. The first item

on our to-do list is done!

mailto:@story.user
mailto:@story.user
mailto:@story.user

384 Simply Rails 2

Figure 11.2. @story.user visible in the rendered template

To find out why @story.user is nil, we’ll need to follow the steps that lead to the

user assignment when submitting new stories. Before we proceed, though, we should

revert the changes that we just made to the show.html.erb template. Remove the

statement that prints the class name, and make the link_to statement active again:

02-show.html.erb (excerpt)

<p class="submitted_by">
 Submitted by:
 <%= link_to @story.user.login, @story.user %>
</p>

When we implemented user authentication in Chapter 8, we started to populate

this variable with the currently logged-in user available in the @current_user in­

stance variable. Let’s check the contents of this variable using the debug helper.

Add the following statement to the template that’s being rendered for the new ac­

tion—it’s located in app/views/stories/new.html.erb:

mailto:@story.user
mailto:@story.user

Debugging, Testing, and Benchmarking 385

03-new.html.erb (excerpt)

<%= error_messages_for 'story' %>
<%= debug @current_user %>
<% form_for :story do |f| %>

⋮ form HTML…
<% end %>

The code I added between the error_messages_for and form_for statements is the

debug helper provided by Rails:

<%= debug @current_user %>

The debug statement instructs Rails to output a YAML representation of the object

that we pass as a parameter. In this case, because we’re working from a view tem­

plate, this output will be sent directly to the browser. Load the story submission

form (http://localhost:3000/stories/new) in your browser with this debugging code

in place, and you should see something that resembles Figure 11.3.

The output should remind you of our test fixtures—it’s formatted in YAML, after

all. The debugging content that’s shown in addition to our regular template output

is a representation of @current_user that contains the currently logged-in user.

The debug helper automatically wraps its output in a pre element. By default, the

contents of a pre element are displayed by the browser as preformatted text in a

monospace font.

(http://localhost:3000/stories/new)

386 Simply Rails 2

Figure 11.3. Looking at a YAML representation of @story

Within the YAML representation, you tell that what we’re being shown is indeed

a fully fledged user object which is appropriately stored in the referenced instance

variable. (You can even spot the password, but don’t tell anyone!) This means that

the part of our code that fetches the user from the database via the ID that’s stored

in the session is indeed working fine.

Now the last place we can check is the place that is actually meant to make use of

@current_user and the association between the User and Story classes to instantiate

Story object with a prepopulated user_id: The create action of our

StoriesController.

At this point, it’s time for me to come clean about what causes our application bug:

here’s what the aforementioned controller action looks like:

shovell-debug-01/app/controllers/stories_controller.rb (excerpt)

def create
@story = Story.new params[:story]
@story = @current_user.stories.build params[:story]
⋮ method body…

end

Debugging, Testing, and Benchmarking 387

As you can see, the line that instantiates the new Story object has been replaced

by one that uses the Story class directly instead of going through the association

available via the @current_user object. As a result, no user will be assigned to the

newly submitted story.

“But wait!” you might be thinking. “Wouldn’t a test have caught this problem?”

Of course it would have.

Running the functional tests (using rake test:functionals) with the modified

controller action in place, as it is above, would reveal a test failure, as Figure 11.4

shows.

The test that fails is the one that verifies that the submission of a new story stores

the current user—obviously, it doesn’t. The error message from the test even tells

us that it expected a User object with a login of patrick; instead, it got a nil object.

Figure 11.4. Functional tests failing and revealing the broken code

What lesson can we take from this exercise? Well, if you equip your code with

proper test coverage from the beginning, you’ll have an easy and efficient way to

spot an error in your code later.

388 Simply Rails 2

If you’ve been following along (you have been following along, right?), you’ll need

to either remove the story with the broken user association, or fix the user association

through the console by changing its user_id to 1.

Debugging using ruby-debug
In the next example, we’ll take a look at another problem that I’ve secretly introduced

to our existing code. If you take a look at Figure 11.5, you’ll notice that although

we’ve provided a description for the new story we submitted, it doesn’t show up

on the final story page.

Figure 11.5. Story description missing from a newly submitted story

If you’d like to follow along with this example, copy the shovell-debug-02 folder from

the code archive, and set it up using the steps we used to set up shovell-debug-01

(I’ll even wait for you!).

“Ha!” I hear you laugh. “I learned in the last section that I just need to run the test

suite and it’ll tell me what’s wrong!”

While that’s a great idea, the reality is that when we run the full test suite with rake

test from the application root, every single test passes, as if nothing were wrong;

Figure 11.6 shows the results of running the test suite.

Debugging, Testing, and Benchmarking 389

Figure 11.6. Running the test suite without errors

What happened here? We’ll need to find out, but while we used statements to in­

vestigate specific objects and attributes in the previous example, in this case, we

don’t really know where to begin.

Meeting ruby-debug
When this book was first published, it included instructions on how to debug a

Rails application using the Breakpointer client, which belongs to the third-party

Breakpoint library. However, Breakpointer isn’t compatible with the latest version

of the Ruby programming language. Fortunately, a better alternative has since

evolved: Rails core contributor and professional developer, Kent Sibilev has de­

veloped a tool that has been adopted as the official Rails 2 debugger with the

blessing of the Rails Core Team, ruby-debug.1

ruby-debug is a worthy successor to the Breakpoint library, and is compatible with

all the most recent releases of the Ruby language interpreter. Better yet, ruby-debug

comes packed with many welcome shortcuts and powerful navigation commands

1 http://rubyforge.org/projects/ruby-debug/

http://rubyforge.org/projects/ruby-debug/
http://rubyforge.org/projects/ruby-debug/

390 Simply Rails 2

that make debugging Ruby scripts and Rails applications a joyful and rewarding

experience.

While it would be beyond the scope of this chapter for me to explain how ruby-

debug works its magic, it suffices to say that ruby-debug uses a natively compiled

Ruby extension that’s written in C. The result is that it performs amazingly well,

even with very large Ruby scripts. For further reading on ruby-debug and many

helpful articles and links to Ruby resources, I thoroughly recommend that you

subscribe to Kent Sibilev’s weblog.2

Unlike Breakpointer, which worked from a simple irb prompt, ruby-debug provides

you with a more advanced shell, similar to that provided by GDB, the GNU debugger

for the C programming language.3

In this shell you can:

■	 Step forward and backward in your code.

■	 Execute and skip lines of code, without copying and pasting them from your

code editor window.

■	 List the actual source context at which you’ve stopped your application.

■	 Step into irb mode and make use of the same shell that’s used by Breakpointer

(if you’re someone who finds old habits difficult to shake).

Installing ruby-debug
The following steps will configure your system for debugging with ruby-debug.

First of all, we need to install the ruby-debug library. Since it’s distributed as a

RubyGems package,4 the installation is as easy as typing the following command

(if you’re on a Linux or Mac system, don’t forget to add the prefix sudo):

$ gem install ruby-debug

2 http://www.datanoise.com/ruby-debug/
3 http://sourceware.org/gdb/
4 http://rubyforge.org/frs/?group_id=126

http://www.datanoise.com/ruby-debug/
http://sourceware.org/gdb/
http://sourceware.org/gdb/
http://rubyforge.org/frs/?group_id=126
http://www.datanoise.com/ruby-debug/
http://sourceware.org/gdb/
http://rubyforge.org/frs/?group_id=126

Debugging, Testing, and Benchmarking 391

The installation process should produce an output that looks similar to the one

shown in Figure 11.7.

Figure 11.7. Installing ruby-debug

Now that we’ve successfully installed ruby-debug, we can place some hooks in our

Rails application.

Adding ruby-debug to Your Application
Making a Rails application aware of ruby-debug is as simple as adding a command-

line switch when starting up the application server (Mongrel or WEBrick) from your

Rails application’s root folder:

$ ruby script/server --debugger

At first glance, the console output won’t look much different from what we’re used

to seeing when we run this command. However, keep a close eye on this window

as we progress through this exercise.

392 Simply Rails 2

Debugging an Application
So, let’s crack the ruby-debug whip at this problem. First, add the debugger keyword

to the new action in app/controllers/stories_controller.rb, like so:

04-stories_controller.rb (excerpt)

def create
 @story = @current_user.stories.build params[:story]
 if @story.save

debugger
 flash[:notice] = 'Story submission succeeded'
 redirect_to stories_path

 else
 render :action => 'new'

 end
end

If you go ahead and try to submit a new story now, you’ll experience “hanging

browser syndrome,” which indicates that your debugger statement has kicked in

and you’re ready to debug.

Instead of firing up a separate client to connect to the inner workings of your applic­

ation, ruby-debug has opened this debugger shell right inside the terminal window

in which you’ve fired up your application server, as Figure 11.8 indicates.

Figure 11.8. The ruby-debug interactive prompt appears within the server console

http:app/controllers/stories_controller.rb

Debugging, Testing, and Benchmarking 393

From this prompt, you can use a variety of commands to explore your application

while it’s paused mid-execution. Throughout this example, I’ll indicate the ruby-

debug shell prompt using the characters (rdb), and commands typed at this prompt

will appear in bold, as follows:

(rdb) list

The ruby-debug Commands
What follows is a quick rundown of the most important ruby-debug commands,

along with a brief description of what they do. Don’t worry too much about remem­

bering every last detail—the built-in help command will list all the available com­

mands for you. You can also type help <commandname> to get help with a specific

command.

backtrace

Displays a trace of the execution stack, similar to that which is displayed when

your application raises an exception.

info break/break/delete

Displays a list of breakpoints that have been set in your application. break is

used to set new breakpoints, and delete is used to remove existing breakpoints,

from within the ruby-debug shell.

cont

Leaves the current debugger shell and resumes execution of the application

until the next breakpoint is encountered.

irb

Invokes an interactive Ruby interpreter—similar to the shell used by the

breakpoint library—at the current point of execution.

list

Displays the code fragments surrounding the current point of execution. (We’ll

make use of this command in a moment.)

method/method instance

Explores the available class methods and instance methods, respectively.

394 Simply Rails 2

next/step

Continues execution one step at a time—a huge improvement over the capabil­

ities of the Breakpoint library.

p/pp

Short for “print” and “pretty print” respectively, these commands can be used

to evaluate Ruby expressions and display the value of variables to the console.

quit

Exits the debugger. Note that this command will also exit the application server

if it was invoked from the command line, as demonstrated above. To just exit

the current debugging session, use cont.

reload

Reloads the Ruby source files from disk. This command can be useful if you’ve

changed class definitions and want to reload them dynamically without leaving

the current debugging session.

For a list of all available commands and options, use the help command.

Moving Around in the Shell
Now that we’ve been dropped into a shell, it’s time to make use of some of the

commands we just discussed to get to the root of our problem—which, if you remem­

ber, is that our stories are displaying without descriptions.

First of all, let’s find out exactly which point we’re at in the execution of our story

submission. This is the job of the list command, as shown in Figure 11.9.

Debugging, Testing, and Benchmarking 395

Figure 11.9. The list command displaying the current location in a paused application

As you can see, the list command displays a source code listing with an arrow

pointing to the line of code that’s next to be executed.

At this point, we can examine parts of the working environment, such as the @story

instance variable or the params hash, from the irb shell. Type irb at the prompt,

and let’s investigate the description attribute of the Story object that’s stored in

our @story variable:

(rdb) irb

irb> @story.description

=> nil

The output that results from our inspection of this variable is shown in Figure 11.10.

mailto:@story.description

396 Simply Rails 2

Figure 11.10. Using irb from within ruby-debug to inspect a variable

As you can see, even though we’ve entered a beautifully phrased story description

into the form, the relevant description attribute of the new Story object is nil, or

empty. But hang on a minute! Isn’t there a command in ruby-debug that allows us

to evaluate Ruby expressions and inspect variables without going through the hassle

of using irb?

There sure is! Let’s exit the irb shell (using the exit command) and continue poking

around from outside the shell.

Back in the native ruby-debug shell, we can use the pp (pretty print) command to

display the value of our story’s description once it’s populated through the web

form:

(rdb) pp params[:story][:description]

If you type this into your ruby-debug shell, you’ll see that it also returns nil: an

empty object. So, as a last resort, let’s take a peek at the full params hash, which

contains the values of all the form fields that have been submitted, no matter which

scope they reside in:

(rdb) pp params

The output of this command is shown in Figure 11.11.

Debugging, Testing, and Benchmarking 397

Figure 11.11. Using the pp command to inspect variables

As you can see, pp actually formats the output for us, making it more readable than

the output we’re used to seeing in the standard irb shell—hence the name “pretty.”

While this feature isn’t exclusive to ruby-debug—the pp library can be loaded outside

of ruby-debug as well—it’s certainly convenient that ruby-debug makes use of it

automatically.

The section I’ve highlighted in Figure 11.11 is the root of the problem. As you can

see, the description is indeed present in the params hash, but it’s not part of our

story. While the Story’s name and link attributes are sitting nicely together in the

params[:story] hash, the description is sitting separately in

params[:description].

Now, how did that happen? If we take a look at our form template (located at

app/views/stories/new.html.erb), you’ll see that I’ve “accidentally” used the wrong

form field helper:

shovell-debug-02/app/views/stories/new.html.erb

Wrong:
<p>
 description:

 <%= text_area_tag :description %>
</p>

398 Simply Rails 2

Instead of going through the FormBuilder object that the form_for helper provides

and using the text_area helper, my code was calling text_area_tag. As a result,

the description was ending up as a separate entry in the params hash, and our story

was never receiving its value. This is what it should look like:

Right:

<p>

 description:

 <%= f.text_area :description %>

</p>

Discovering All the Fancy Tools in ruby-debug
Admittedly, we haven’t had to use any of ruby-debug’s more advanced features to

debug this example problem. But when we’re forced to debug more complicated

code, ruby-debug’s advanced features become really handy.

Let’s first take a look at the stepping methods. To do so, we’ll need to move our

debugger statement into a method which contains a little more code than the previ­

ous example so that we can actually step through each line. The best candidate for

this task is the create action of our VotesController found in shovell-debug­

02/app/controllers/votes_controller.rb; here’s a version of this method to which I've

added the debugger statement (don’t forget to remove it from our

StoriesController):

05-votes_controller.rb (excerpt)

def create
debugger

 @story = Story.find(params[:story_id])
 @story.votes.create(:user => @current_user)
 respond_to do |format|
 format.html { redirect_to @story }
 format.js

 end
end

To invoke the debugger in this new location, exit your current debugging session

using the cont command. This will resurrect your stalled browser and allow you

Debugging, Testing, and Benchmarking 399

to continue browsing the Shovell application. Now, select a story from the Upcoming

Stories queue and click the shove it button to engage the debugger once more.

Previously, we saw that the list command could be used to give us an indication

of where in the source code our application was currently paused. When it’s paused,

we can use the next command to advance to the next line of code. Typing next will

display the regular Rails log output for the following line, then return you to the

ruby-debug prompt. From here, you can once again use list to check your new

location in the application, as I’ve done in Figure 11.12.

Figure 11.12. Using next to advance one line of code

To explore the methods provided by an object that you’re curious about, you can

use the method command. When executed with the optional i argument it will

produce a list of the instance methods provided by the object you pass to it, sorted

alphabetically:

400 Simply Rails 2

(rdb) method i @story

An example using the @story object is shown in Figure 11.13.

Figure 11.13. Using the method command to display an object’s instance methods

The method command can be used to list class methods, too. The following command

will produce an alphabetically sorted list of class methods provided by the Story

class, as shown in Figure 11.14:

(rdb) method Story

Debugging, Testing, and Benchmarking 401

Figure 11.14. Listing the class methods for the Story class

Setting Breakpoints Mid-execution
While using the next command can be useful if you know exactly where to go

poking around in your application, it can be less useful in a Rails application. The

level at which the stepping occurs can in some circumstances be far too granular,

and can result in your stepping through multiple lines of core library files instead

of your own code.

To gain a little more control over where the debugger halts execution, you can

manually set breakpoints at the locations you desire, without having to edit any

files or stop the server. Breakpoints can be set by specifying either:

■ a combination of filename and line number
■ a class name and the name of an instance method or class method

As a practical example of setting manual breakpoints, we’re going to move the halt

point from its current location (inside the create action of VotesController) to

the RJS template that’s rendered when that same action is requested to render a

JavaScript response—the result of our Ajax powered voting feature. We’ll do all of

this without ever opening a text editor, or stepping over every line between the

current point of execution and the code of the RJS template.

The RJS template at app/views/votes/create.js.rjs reads:

402 Simply Rails 2

/shovell-debug-02/app/views/votes/create.js.rjs (excerpt)

page.replace_html 'vote_score', "Score: #{@story.reload.votes.size}"
page[:vote_score].visual_effect :highlight
page[:vote_history].replace_html :partial => 'vote',

 :collection => @story.votes.latest

We can set a breakpoint at an arbitrary line of every file. For the sake of illustration,

we’ll set it at the third line here. So, execute the following command in the ruby-

debug shell:

(rdb) break app/views/votes/create.js.rjs:3

You can now let go of the current breakpoint by typing the cont command in the

ruby-debug shell. Execution will resume until the third line of the create.js.rjs

template is executed, at which point the application will pause again.

To verify that we’re paused exactly where we expect to be, type list. Figure 11.15

confirms that I’ve stopped my application at the beginning of the replace_html

call dealing with the vote_history element.

Figure 11.15. Stopping at a breakpoint that was set by specifying class and method name

Debugging, Testing, and Benchmarking 403

A list of active breakpoints can always be obtained via the info break command.

Reloading Source Code
A Rails application, when run in development mode, automatically adopts all

changes that are made to the source files without requiring you to restart the applic­

ation server. ruby-debug includes a similar feature to avoid stale code passages from

being displayed in the stack traces and listings output by the list command. To

enable this feature type the following at the ruby-debug prompt:

(rdb) set autoreload

With this setting, ruby-debug will automatically reload your Ruby scripts from disk

whenever necessary. There is a large performance cost, however. If this appears to

slow down your development progress significantly, you can instead periodically

invoke the reload command whenever you think you’re getting stale representations

of your code.

TextMate Integration
Those developers who develop their Rails applications on a Mac using the TextMate

editor will be pleased to know that the author of ruby-debug is also a fan of Text-

Mate.5 Fortunately, ruby-debug ships with some nice hooks which you can use to

integrate the debugger with the editor.

First of all, you can open the file in which your application is currently paused

using the tmate command. This eases the round trips between your terminal window

and your editor quite a lot.

I’d also recommend that you install the Ruby Debug Bundle for TextMate.6 This

package gives you ultimate control over setting breakpoints from within TextMate

itself.

Once you’ve installed the bundle, you’ll need to launch your application a little

differently. Here’s how to start your application server to take advantage of ruby-

debug’s remote debugging facilities (the $ indicates that we’re typing this command

from a terminal window):

5 http://macromates.com/
6 http://datanoise.com/assets/2007/1/27/Ruby_Debug.zip

http://macromates.com/
http://macromates.com/
http://datanoise.com/assets/2007/1/27/Ruby_Debug.zip
http://macromates.com/
http://datanoise.com/assets/2007/1/27/Ruby_Debug.zip

404 Simply Rails 2

$ rdebug --server script/server

Unlike the local debugging facility that we’ve been using thus far, you can safely

minimize the terminal window in which you started your application server. We

need to fire up a separate debugging client from a new terminal window to enable

communication between TextMate and ruby-debug. Open a new terminal window

and type the following command:

$ rdebug -c

You should see the “Connected” message shown in Figure 11.16. You’ll need to

leave this window open and accessible, as this will be the window that displays

the ruby-debug console output once a breakpoint is encountered.

Figure 11.16. Using the TextMate Ruby bundle to connect to ruby-debug’s remote debugging tool

As soon as that’s accomplished, you can use the bundle’s only keyboard shortcut,

Cmd+Shift+B, to open up a menu of all the available commands, shown in Fig­

ure 11.17.

Debugging, Testing, and Benchmarking 405

Figure 11.17. Displaying the TextMate Ruby Debug Bundle’s menu options

You can use this menu to set a breakpoint at the position of the cursor in the current

TextMate editing window. You can also show or delete all the breakpoints that have

been set, or even interrupt or quit the debugging shell right from the convenience

of your text editing window.

Using the Rails Logging Tool
Rails comes with an internal logging tool for writing custom event-triggered entries

to your application’s log file.

While logging events can certainly be useful for debugging purposes—especially in

a production environment, where you don’t want to scare your users with the output

of debugging code—event logging can also be of general interest. For instance, log

entries can reveal usage patterns for your application, such as the times at which

maintenance jobs start and end, or the frequency with which external services are

accessed.

We’ll use the Rails logging tool to implement an access log for our application: a

log of the pages requested by users who are logged in. While web server logs allow

for comprehensive analysis, they don’t contain any details of the specific user that

requested the page; this information can be particularly useful, either to the market­

ing department (for their mysterious purposes), or when you’re trying to diagnose

a problem that was reported by a particular user.

To implement the access log, we need to:

1. Create a call to the Rails internal logging system.

406 Simply Rails 2

2. Place this call in an appropriate location in our application code so that it’s ex­

ecuted for every page. This location must allow the code to determine whether

or not a user is logged in.

We have a location that meets both of these requirements: the fetch_logged_in_user

before filter, which lives in the ApplicationController class.

To document the page requests of our users, we use the logger object, which is

available at any point in a Rails application. logger is used to write a new entry to

the environment-specific log file. By default, we operate in the development envir­

onment, so the logger object will write new entries to the bottom of the log file

log/development.log.

Like logging functionality in Java or other platforms, Rails logging can deal with a

variety of severity levels. When you log an entry, it’s up to you to decide how severe

the event you’re logging really is. The most common severity levels are debug, info,

warn, and error.

Each of the Rails environments has different default settings for the severity levels

that are written to the log file. In the production environment, which we’ll cover

in depth in Chapter 12, the default is the info level; in the development and testing

environments, events of every level of severity are logged.

Here’s the fetch_logged_in_user action in app/controllers/application.rb with an

added logger statement:

06-application.rb (excerpt)

def fetch_logged_in_user
 return unless session[:user_id]
 @current_user = User.find_by_id(session[:user_id])
logger.info "#{@current_user.login} requested
 #{request.request_uri} on #{Time.now}"

end

As you can see in the logger call above, we’re using the info severity level to log

these statements in all environments, including production. Specifying the severity

level is simply a matter of calling the appropriately named instance method of the

logger object.

Debugging, Testing, and Benchmarking 407

The string that’s written to the log file is actually a composite of three Ruby state­

ments. First, we’re logging the value of the login attribute for the current user:

logger.info "#{@current_user.login} requested

#{request.request_uri} on #{Time.now}"

Then, we add the URL that the user requested (without the host and port; you’ll see

an example in a second), which is available from the request object that Rails

provides:

logger.info "#{@current_user.login} requested

#{request.request_uri} on #{Time.now}"

Lastly, the current date and time are added to the string:

logger.info "#{@current_user.login} requested

#{request.request_uri} on #{Time.now}"

With these details in place, every page in our application will make an entry to the

application log file. Here’s a sample session, with all the clutter from the develop­

ment log removed:

patrick requested /stories/new on Sat Mar 15 23:46:50 CEST 2008

patrick requested / on Sat Mar 15 23:47:24 CEST 2008

patrick requested /stories/bin on Sat Mar 15 23:47:26 CEST 2008

patrick requested /stories/1-my-shiny-weblog on Sat Mar 15

23:47:29 CEST 2008

patrick requested /stories/1-my-shiny-weblog/votes on Sat

 Mar 15 23:47:38 CEST 2008

The fetch_logged_in_user method exits immediately if the current user hasn’t

logged in, so our log file displays only log entries from pages requested by users

who were logged in when they used Shovell. Of course, you can customize log

output to your heart’s content, if this format doesn’t suit your needs. For example,

you could modify it to be more readable for humans, or more easily parsed by a

Ruby script.

mailto:"#{@current_user.login}
mailto:"#{@current_user.login}
mailto:"#{@current_user.login}

408 Simply Rails 2

Overcoming Problems in Debugging
While we’ve added a considerable number of tests to our application code so far,

we certainly haven’t covered every aspect of the application.

Whenever you fix a problem during the development of your application, take a

moment to add a test to your test suite that verifies that the problem has been

fixed—just like we did in the last section. Following this approach will ensure that

you never receive another bug report for the same problem.

Another approach is to write a test to verify the problem before you attempt to fix

it. This way, you can be sure that as long as your test fails, the problem still exists.

It’s entirely up to you to determine your own approach to the task of debugging,

but try to not move on from any problem without having added a new test for it to

your test suite.

Testing Your Application
The test code that we’ve written so far for Shovell has dealt mostly with the isolated

testing of controller actions and model functionality. To test scenarios which involve

multiple controllers and multiple models, Rails also comes with a more thorough

testing feature called integration testing.

Integration Tests
An integration test verifies the behavior of a number of controllers and models as

a user interacts with the application. Integration tests tell a story about a fictitious

user of our application—the user’s login process, the links that person follows, and

the actions that he or she takes.

When to Use an Integration Test
Some example scenarios that are ideally suited to testing via an integration test in­

clude:

■	 A visitor wants to submit a story, so he tries to access the story submission form.

He is redirected to the login form because he hasn’t logged in yet. After logging

in using the login form, he’s sent back to the submission form and submits a

story.

Debugging, Testing, and Benchmarking 409

■	 A given user is the fifth user to vote for a particular story. She knows that the

threshold for stories to appear on the front page is five votes, so once she’s voted,

she visits the front page to check that the story she voted for appears there.

■	 A user submits a new story with a number of tags. After sending in her submis­

sion, she proceeds to the tag page for one of the tags she used on her submission,

and checks that the story does indeed appear in the list.

As you can see, integration tests can be quite specific and detailed; writing Ruby

test code to match the level of detail specified by the above scenarios is perfectly

achievable.

Integration tests are highly dependent upon an application’s business logic, so Rails

doesn’t offer a facility to automatically generate test templates like those we created

for unit and functional tests. Let’s begin writing our first integration test from scratch.

Creating Our First Integration Test
Returning to our rocking Shovell application, the first step we’ll take is create a new

file in which to store the test. Then, we’ll set up a test case to implement the first

of the scenarios that we just discussed: a user who is not logged in tries to submit

a story. This scenario will be translated into Ruby code.

Every integration test class is stored in the shovell/test/integration/ directory. Create

a new file named stories_test.rb in this directory, and edit it to appear as follows:

07-stories_test.rb

require "#{File.dirname(__FILE__)}/../test_helper"

class StoriesTest < ActionController::IntegrationTest

 def test_story_submission_with_login
 get '/stories/new'
 assert_response :redirect
 follow_redirect!
 assert_response :success
 assert_template 'sessions/new'
 post '/session', :login => 'patrick',

 :password => 'sekrit'
 assert_response :redirect
 follow_redirect!

410 Simply Rails 2

assert_response :success

 assert_template 'stories/new'

post '/stories', :story => {

 :name => 'Submission from Integration Test',

 :link => 'http://test.com/'

 }

 assert_response :redirect

follow_redirect!

 assert_response :success

 assert_template 'stories/index'

 end

end

On the surface, this test resembles a regular functional test: the test performs an

action, then asserts that the results of that action are as expected. In this case, the

first action is to request a page; the test then verifies that the response code and the

template used to render the page are as expected; it then continues with the rest of

its actions.

However, instead of the get and post calls being based on specific controllers and

their respective actions, page requests in an integration test take standard URLs

(from which the domain is omitted). Why? Well, an integration test doesn’t test a

controller in complete isolation from its environment—it views the application as

a whole, so other elements of the application, such as routing and the handover of

control from one controller to another, are tested as well. So the first step of our test

is to request the new Story form by using the appropriate URL and testing the re­

sponse:

 get '/stories/new'

 assert_response :redirect

 follow_redirect!

At this point, the test assumes that a redirect was issued after the last get call, which

we’re asserting using assert_response. It also assumes that the URL to which a

user is redirected—the story submission page—is followed in the test. This intro­

duces another new tidbit in this test code: the follow_redirect! statement.

'http://test.com/'

Debugging, Testing, and Benchmarking 411

Additionally, when we’re verifying that an action renders the view template we

expected, we must specify the path relative to the app/views/ directory. Remember,

we’re not testing in isolation, so there’s no “default” view directory:

 assert_template 'sessions/new'

Other than that, the test consists of plain old functional test code.

Running an Integration Test
Let’s run this test to make sure it passes as we expect. Like unit and functional tests,

integration tests are run with a rake command:

$ rake test:integration

Integration tests are executed along with your unit and functional tests when running

the rake test command. Figure 11.18 shows the outcome of our test.

Figure 11.18. Running the integration tests

As you can see from this basic example, an integration test gives you the assurance

that your application behaves independently of your functional and unit tests, and

412 Simply Rails 2

that all of your application’s components are put through their paces in an automated

manner.

Using Breakpoints in a Test
Just as we used ruby-debug to jump into the running application at a predefined

point, we can also jump into the application from within a test. This technique can

be useful for determining why a test is failing, or for gaining insight into the resources

available when we’re writing tests.

Using breakpoints in tests is equally as straightforward as using them in regular

development mode: place the debugger statement at the point at which you want

execution to halt. Just like it did in development, when you’re using breakpoints

in tests, ruby-debug presents you with the Rails console as soon as a debugger

statement is encountered.

Here’s an example of a breakpoint in action. I added a breakpoint to the integration

test that we built in the previous section (as a reminder, this integration test is stored

in test/integration/stories_test.rb):

08-stories_test.rb (excerpt)

class StoriesTest < ActionController::IntegrationTest

 def test_story_submission_with_login
 get '/stories/new'
debugger
⋮ test method body…

 end
end

To make use of this in our testing environment, we need to make our test environ­

ment “ruby-debug aware.” We do so by adding the following line to the config/en­

vironments/test.rb file:

09-test.rb (excerpt)

require 'ruby-debug'

Debugging, Testing, and Benchmarking 413

Let’s run our suite of integration tests using the command rake test:integration.

We’re presented with the Rails console immediately after the new session has been

created—just after the test requests the submission form for the first time. At this

point, we’re free to explore the environment; below are examples of the character­

istics of our code that can be revealed using the console.

Let’s open an irb prompt:

(rdb) irb

irb>

First, let’s look at the cookies that have been set for the user that the test is imper­

sonating:

irb> cookies

=> {"_shovell_session"=>["session id…"]}

At the point at which the debugger appears, the user has not yet logged in, so no

user_id value has been stored in the user’s session:

irb> session[:user_id]

=> nil

We can log in using the same statement that our test uses a few lines down—the

return value shown here is the numeric HTTP response code for a redirect (which

happens to be 302). Enter this all on one line:

irb> post '/session', :login => 'patrick',

➥ :password => 'sekrit'
=> 302

The user’s session now contains a user_id value, as this code and Figure 11.19

show:

irb> session[:user_id]

=> 885306178

414 Simply Rails 2

Figure 11.19. A breakpoint used in a test

Once again, ruby-debug can be a great timesaver if you need to explore the environ­

ment surrounding an action in order to write better and more comprehensive tests.

Without using breakpoints, exploring the environment would only be possible in

a limited fashion—for example, by placing lots of puts statements in your tests to

output debugging messages and rerunning them countless times to get the informa­

tion you need. Yes, it is every bit as laborious as it sounds.

With the breakpoints provided by ruby-debug, however, you can interact with your

models as your application is being run, without modifying huge chunks of code.

This process couldn’t be easier, which means the barriers to writing tests are reduced

even further.

Revisiting the Rails Console
We’ve used the console script frequently in previous chapters, mainly to explore

features as they were being introduced.

The console can also be used to play with your application in headless mode, in

which you can interact with your application from the console just as a browser

would interact with it. In conjunction with breakpoints in tests, which we talked

about in the last section, this technique can be a good way to play around with your

Debugging, Testing, and Benchmarking 415

application in anticipation of creating a new integration test once you’ve worked

out exactly what you want to do.

When integration tests were introduced to Rails, with it came a new object that’s

available by default in the console script: the app object. This object can be thought

of as providing you access to an empty integration test. You’re able to get and post

to URLs, you have access to the session and cookies containers, routing helpers,

and so on—just like a regular integration test.

Let’s have a go at using the app object from the console script. You should recognize

a lot of the methods that we’re using here from the integration test that we built

earlier in this chapter.

Go ahead and open the Rails console ($ ruby script/console). Initially, we’re

interested to know what kind of object app really is:

>> app.class

=> ActionController::Integration::Session

Next, let’s fetch the front page of our application using the get action:

>> app.get '/'

=> 200

The return value is the HTTP response code that indicates a successful page request.

We’ve been using the :success symbol in its place in most of our tests until now.

Next, we’ll use the assigns action to check the instance variable assignments that

are made in the action we requested. In this case, we’re looking at the number of

elements in the @stories array:

>> app.assigns(:stories).size

=> 1

If we try to fetch the story submission form, we receive a redirect (HTTP code 302),

as we’re not yet logged in:

>> app.get '/stories/new'

=> 302

416 Simply Rails 2

When we receive the redirect, we can look at the URL that the redirect is pointing

to by use of the following construct:

>> app.response.redirect_url

=> "http://www.example.com/session/new"

It’s easy to follow the redirect that was just issued using the follow_redirect!

method:

>> app.follow_redirect!

=> 200

We can also use the post method to log in with a username and password, and

follow the resulting redirect. However, Rails imposes security-related restrictions

on who can talk to your application, even in the development environment. For

that reason we need to explicitly switch off a feature called “request forgery protec­

tion,” in order to allow the statement that follows to succeed:7

>> ApplicationController.allow_forgery_protection = false

=> false

Now it’s time to log ourselves in:

>> app.post '/session', :login => 'patrick',

➥ :password => 'sekrit'
=> 302

>> app.follow_redirect!

=> 200

Note that we didn’t look at the app.response.redirect_url before we accepted the re­

direction. Here’s how you can check the last URL you requested:

>> app.request.request_uri

=> "/stories/new"

As it is, after all, an integration test, headless mode also provides you with access

to the session and cookies variables:

7 See http://en.wikipedia.org/wiki/Cross-site_request_forgery for more information about this security

issue.

"http://www.example.com/session/new"
http://en.wikipedia.org/wiki/Cross-site_request_forgery

Debugging, Testing, and Benchmarking 417

>> app.cookies

=> {"_shovell_session"=>"session id…"}

>> app.session[:user_id]

=> 1

Figure 11.20 shows a sample session in which the console is used in headless mode.

Figure 11.20. The console in headless mode

As you can see, headless mode is a great tool for checking out the possible ways in

which you might develop an integration test. Once you’re satisfied with your find­

ings, you can open up your text editor and transform your console results into an

automated test. Easy!

Benchmarking Your Application
As software developers, it’s our job to know which part of our application is doing

what. When an error arises, we can jump right in and fix it. However, knowing how

418 Simply Rails 2

long each part of our application is taking to perform its job is a completely different

story.

Benchmarking, in software terms, is the process of measuring an application’s

performance, and taking steps to improve it based on that initial measurement. The

benchmarking process usually involves profiling the application—monitoring it to

determine where bottlenecks are occurring—before any changes are made to improve

the application’s performance.

While I won’t cover the profiling and benchmarking of a Rails application in every

gory detail (it’s a topic to which an entire book could easily be devoted), I’ll give

you an introduction to the tools that are available for the job. Keep in mind that

your first Rails application is unlikely to have performance problems in its early

stages—the objective with your first application (or at least the first version of your

application) should be to get the functionality right the first time; then you can

worry about making it fast.

Taking Benchmarks from Log Files
When it’s running in development and testing modes, Rails provides a variety of

benchmarking information in its log files, as we saw briefly in the section called

“Revisiting the Logs” in Chapter 6. For each request that’s served by the application,

Rails notes all of the templates rendered, database queries performed, and the total

time taken to serve the request.

Let’s examine a sample request to understand what each of the log entries means.

This example deals with a request for the Shovell homepage:

Processing StoriesController#index (for 127.0.0.1 at 2008-03-16

01:04:42) [GET]

This line represents the start of the block of logging for a single page request. It in­

cludes:

■	 the names of the controller and action

■	 the IP address of the client requesting the page (127.0.0.1 being the equivalent

of localhost)

■	 the time the request came in

Debugging, Testing, and Benchmarking 419

■ the request method that was used (GET in this case)

Rails also logs the session ID of the request, as well as the parameters that the user’s

browser provided with the request:

Session ID: session id…

Parameters: {"action"=>"index", "controller"=>"stories"}

Each of the next three entries in our sample log file corresponds to a database query

issued by the application. Each entry lists the time (in seconds) that the application

took to execute the query:

Story Load (0.000660) SELECT * FROM stories WHERE (votes_count >=

5) ORDER BY id DESC

Tag Load (0.000219) SELECT tags.* FROM tags INNER JOIN taggings ON

tags.id = taggings.tag_id WHERE ((taggings.taggable_type = 'Story')

AND (taggings.taggable_id = 6))

User Load (0.000244) SELECT * FROM users WHERE (users."id" = 1)

LIMIT 1

In the first of these log entries, Rails has asked the database for stories to display

on the front page. The second query represents a request made by the

acts_as_taggable_on_steroids plugin, to retrieve all tags for a particular story.

The final line is a simple query fetching a particular User.

Each of the following lines corresponds to a rendered template; when Rails renders

a layout template, it explicitly says so by logging Rendering within:

Rendering template within layouts/application

Rendering stories/index

A summary entry appears at the end of each page request:

Completed in 0.02248 (44 reqs/sec) | Rendering: 0.01632 (72%) |

 DB: 0.00091 (4%) | 200 OK [http://www.example.com/]

This summary contains totals for the time spent by each of the areas of the applica­

tion that were responsible for serving the request. The total time taken to serve the

request is mentioned along with the potential number of requests to this particular

action that your application might be able to handle per second:

[http://www.example.com/]

420 Simply Rails 2

Completed in 0.02248 (44 reqs/sec) | Rendering: 0.01632 (72%) |

 DB: 0.00091 (4%) | 200 OK [http://www.example.com/]

This value should be taken with a grain of salt, however—in reality, calculating an

accurate estimate of the number of requests that an application can handle in parallel

involves more than simply dividing one second by the time it takes to serve a single

request.

Additionally, Rails tells us the amount of time that was spent rendering templates

and talking to the database—these figures are listed both in seconds, and as percent­

ages of the total time that was spent completing the task:

Completed in 0.02248 (44 reqs/sec) | Rendering: 0.01632 (72%) |

DB: 0.00091 (4%) | 200 OK [http://www.example.com/]

You don’t need to be a mathematician to figure out that a whopping 24% is missing

from these numbers! One of the reasons for this difference is that serving the request

took only a couple of milliseconds. These numbers come from my version of

Shovell, which is quite a small application, and the benchmark calculation gets a

little wacky when it calculates time information using such small numbers. In the

meantime, Figure 11.21 shows the log file from a complete page request.

For all the comfort and speed that Rails provides developers, it does have its

drawbacks. The framework certainly requires a large amount of CPU time in order

to do its job of making your life easy, which is another explanation for the missing

milliseconds in the timing calculation above. However, the overhead used by the

framework won’t necessarily increase greatly as your code becomes more complic­

ated, so with a larger application, these numbers become more accurate.

[http://www.example.com/]
[http://www.example.com/]

Debugging, Testing, and Benchmarking 421

Figure 11.21. Benchmarking information in the log file

In any case, it’s important to take a look at your log files every now and then to get

an idea of your application’s performance. As I said, take these numbers with a

grain of salt—learn to interpret them by changing your code and comparing the new

numbers with previous incarnations of the code. This will help you develop a feel

for how your changes affect the speed of your application. You should not, however,

use them as absolute measures.

Manual Benchmarking
While the default information presented by the Rails log files is great for providing

an overview of how long a certain action takes, the log files can’t provide timing

information for a specific group of code statements. For this purpose, Rails provides

the benchmark class method, which you can wrap around any block of code that

you’d like to benchmark.

As an example, let’s add benchmarking information for the story fetcher implemented

in the fetch_stories method of our StoriesController, which is located in

app/controllers/stories_controller.rb:

422 Simply Rails 2

10-stories_controller.rb (excerpt)

class StoriesController < ApplicationController
⋮ class methods…

 def fetch_stories(conditions)
self.class.benchmark('Fetching stories') do
 @stories = Story.find :all,
 :order => 'id DESC',
 :conditions => conditions

end
 end
end

As you can see, the benchmark class method simply wraps around the Story.find

statement. As benchmark is a class method, rather than an instance method, we have

to call it with a prefix of self.class:

self.class.benchmark('Fetching stories') do

⋮ code being benchmarked…

 end

The textual argument provided to benchmark is the text that Rails writes to the log

file, along with the timing information:

 self.class.benchmark('Fetching stories') do

⋮ code being benchmarked…

 end

When you request Shovell’s front page or upcoming stories queue now (both pages

make use of the fetch_stories method we just modified), you should find that the

corresponding benchmark entries are added to the log file at log/development.log.

The sample log file in Figure 11.22 shows how this looks—without all the other log

clutter, of course.

Debugging, Testing, and Benchmarking 423

Figure 11.22. The output from manual benchmarking

Using manual benchmarks in this way can give you a feel for the amount of time

required to execute certain parts of your code. Additionally, benchmark logs events

with a severity of debug by default—as production mode does not log statements

that have a severity of debug, benchmark statements in your code will not be calcu­

lated and won’t slow your production application down.

Summary
In this chapter, we’ve dealt with some of the less glamorous—but very helpful—as­

pects of software development. We used debug statements to inspect certain objects

in our views, we used the log files written by Rails to document certain occurrences

in Shovell, and we looked at how the ruby-debug tool can be used to set breakpoints

and explore our application at run-time.

We also covered the topic of integration tests—broad, scenario-based tests that have

the ability to go beyond the isolated testing of models and controllers.

Finally, we talked briefly about the benchmarks that Rails provides by default, and

explored a manual approach to benchmarking a specific group of statements.

In the next and final chapter, we’ll take Shovell into production mode and discuss

the options available for deploying a Rails application for the whole world to use!

Chapter12
Deployment and Production Use

When Rails applications start to fledge, you, as their guardian, have to take extra

care to make sure they can fly … although, admittedly, the term “roll” would be a

little more correct in the Rails context!

In this final chapter, we’ll review the variety of components involved in the process

of deploying a Rails application to a production system. Following that, we’ll look

at fine-tuning an application’s deployment so that it’s able to cope with a moderate

amount of traffic.

The Implications of “Production”
Back in Chapter 4, when we discussed the different environments Rails provides

for each stage of an application’s life cycle, we barely scratched the surface of what

it means to flip the switch between the development and production environments.

In a nutshell, moving to the production environment results in four major changes

to the way in which our application is run:

426 Simply Rails 2

The Ruby classes that make up your application are no longer reloaded on each

request.

Ruby’s reloading of each class on each request is a nice feature of the develop­

ment environment, because it allows you to make rapid changes to your applic­

ation code and see the effects immediately. However, when your application’s

in production mode, the primary requirement is that it’s fast, which isn’t a goal

that can be accomplished by reloading Ruby classes over and over again. To

gain the effects of any changes you make to code while the application’s in

production mode, you’ll need to restart the application.

The production environment doesn’t log every single database communication

that’s executed by your application.

This restriction was put in place for performance reasons, and to save you from

buying new hard drives just to store your log files. In the production environ­

ment, Rails logs items with a severity level of info or higher by default (skipping

those with a severity of debug). While it may make sense to skip items with a

severity of info later on, when our application first enters production we’re

still at a point at which the inner workings of our application are of interest, so

we’ll leave the default level of reporting unchanged for now.

Your application’s users receive short, helpful error messages; they’re not

presented with the stack trace.

Obviously, the beautifully detailed stack trace that you investigate when you

find an error in your code is not something you want users of your application

to see. Fear not! Rails never throws stack traces at users while it’s in production

mode. Instead, you can use the Exception Notification plugin to dispatch an

email to the administrators of the system to notify them of a potential problem

in the code.1 The email includes the same detailed stack trace you’d see in your

browser if you were still in development, as Figure 12.1 illustrates. With the

error notification taken care of, you can simply use a generic error page within

your application to let users know that an error has occurred and the adminis­

trators have been notified.

1 http://dev.rubyonrails.org/browser/plugins/exception_notification

http://dev.rubyonrails.org/browser/plugins/exception_notification
http://dev.rubyonrails.org/browser/plugins/exception_notification
http://dev.rubyonrails.org/browser/plugins/exception_notification

Deployment and Production Use 427

Figure 12.1. An example email resulting from the Exception Notification plugin

Caching is available for pages, actions, and page fragments.

To improve the performance of your application, you can cache its pages, actions,

and even fragments of pages. This means that the fully rendered page (or frag­

ment) is written to the file system as well as being displayed in the user’s

browser. The next request that’s responded to by this page, action, or fragment

is served without the data that it contains needing to be recalculated. Rails’s

caching features are especially useful in situations in which your pages don’t

contain user-specific content, and everyone sees the same pages.

In the following sections, we’ll talk about the server software components that are

well suited for production use and take a look at what we can do to make Shovell

happy and healthy in a production environment.

Choosing a Production Environment
Common production setups comprise two parts: a “front-end” web server that’s best

suited to serving static content (such as CSS files, JavaScript, and images), and a

separate “back-end” component that handles the dynamic pages generated by the

Rails application. This process is depicted in Figure 12.2.

Figure 12.2. Architecture of a Rails application

428 Simply Rails 2

I used those quotes around the terms front-end and back-end because on the Web

these terms usually refer to the client and server respectively. However, in this case

we’re talking about two members of a web server team: the front-end server performs

load balancing as well as serving static files, and the back-end component serves

dynamic pages. Note that the back-end component is a persistent Ruby interpreter

process—it never quits. As soon as the interpreter finishes servicing one request, it

waits for the next.

The differences in the available back-end components can be described in terms of

the protocol (or dialect) that the front-end web server has to speak in order to com­

municate with the Ruby process. We’ll explore the back-end options in a moment,

after we consider the available web servers.

Web Server Options
Back in the days when the World Wide Web wasn’t dynamic at all—when everyone

edited their web pages with a text editor and uploaded HTML files to a server con­

nected to the Internet—web server software didn’t have much else to do besides

serving static content. For this reason, web servers are still very good at performing

that task today.

Some things have changed, though. For instance, it’s now much easier to make web

servers communicate with the components that deliver dynamically generated

pages, such as those created by web applications written in Perl, PHP, Python, and

Ruby.

Let’s take a look at three web server software packages that are available to use with

Rails applications under the terms of various free software licenses.2 Several com­

mercial web servers which support Rails applications are also available, but for the

sake of simplicity and relevance, we’ll only look at open source options.

Apache
With more than 50% market share, the free Apache web server written and main­

tained by the Apache Software Foundation is certainly the de facto standard on the

web server software market.3 Apache is a good all-purpose, cross-platform web

2 When we say “free software,” we’re referring to free software as defined by the Free Software Foundation

[http://www.fsf.org/licensing/essays/free-sw.html].

3 http://httpd.apache.org/

http://httpd.apache.org/
http://www.fsf.org/licensing/essays/free-sw.html
[http://www.fsf.org/licensing/essays/free-sw.html]
http://httpd.apache.org/

Deployment and Production Use 429

server. It’s used by most web hosting providers, and therefore will be the server

we’ll use in the hands-on part of this chapter.

Apache has many strengths, one of which is the huge number of extensions that are

available to expand its feature set. It also has a robust interface for back-end services,

a useful URL rewriter, and extensive logging capabilities. It’s available as free soft­

ware under the Apache license.4

lighttpd
Often abbreviated to “lighty” since it’s such a tongue twister, lighttpd is one of the

more recent arrivals in the ever-expanding web server software market.5 It was first

created in 2003 by Jan Kneschke as a proof-of-concept that web servers could be

secure and fast while treating kindly the resources of the hosting server. Since then,

lighttpd has become a very popular choice among Rails developers who run it on

their own servers; hosting companies, on the other hand, haven’t yet embraced it

for use in shared hosting environments.

lighttpd is free software under the BSD (Berkeley Software Distribution) license.6

Apart from needing very little memory and CPU to do its job, lighttpd has excellent

support for SSL, a flexible configuration file, and virtual-hosting capabilities.

nginx
Another relatively new player in this market is nginx (pronounced “engine x”), a

high-performance HTTP and proxy server that was originally developed by Igor

Sysoev to power several high-traffic sites in Russia.7 Due to the fact that it only re­

cently appeared on the radar outside of Russia, English documentation is sparse at

the time of writing. However, many translation efforts have commenced.

Recent performance evaluations have revealed that nginx is indeed the leader of

the pack in terms of raw speed, with Apache and lighttpd scoring second and third

place, respectively. However, due to the lack of English documentation, many de­

velopers and hosting companies may not consider a switch to nginx for some time

to come.

4 http://www.apache.org/licenses/
5 http://www.lighttpd.net/
6 http://www.opensource.org/licenses/bsd-license.php
7 http://nginx.net/

http://www.apache.org/licenses/
http://www.lighttpd.net/
http://www.opensource.org/licenses/bsd-license.php
http://nginx.net/
http://www.apache.org/licenses/
http://www.lighttpd.net/
http://www.opensource.org/licenses/bsd-license.php
http://nginx.net/

430 Simply Rails 2

Apart from outstanding performance, nginx also offers excellent proxy and caching

capabilities, SSL support, and flexible configuration options. nginx is also available

under the BSD license.

Back-end Options
As we’ve already discussed, regular web servers excel at serving static files. However,

in order to interface with our Rails application and handle dynamically generated

pages, they need a server software component that’s specifically designed for the

task. This may be a software module that’s shipped with the web server, or it may

be one that’s available as a third-party extension. Here’s a list of the back-end

component options that are currently available for Rails applications.

The mod_ruby Extension
Exclusively available for use on the Apache web server, the mod_ruby extension

provides an embedded Ruby interpreter that executes Ruby (and Rails) scripts,

which, in turn, serve dynamically generated content to the outside world.8

mod_ruby has never really been used as a production-quality back end for Rails

applications because its architecture entails some major drawbacks which prevent

multiple Rails applications from being run on the same server. This makes it an

especially poor choice for shared hosting environments.

The SCGI Protocol
An abbreviation for Simple Common Gateway Interface, the SCGI protocol is com­

monly used to serve dynamic content provided by Python web applications.9 It can

also be used to serve content provided by Rails applications, but hasn’t been widely

adopted for this purpose.

Implementations of SCGI are available as a third-party extension for the Apache

web server and support for the protocol is built into the lighttpd web server.

8 http://www.modruby.net/
9 http://python.ca/nas/scgi/

http://www.modruby.net/
http://python.ca/nas/scgi/
http://www.modruby.net/
http://python.ca/nas/scgi/

Deployment and Production Use 431

The FastCGI Protocol
When Rails became popular, FastCGI was the de facto standard for deploying Rails

applications.10 FastCGI, a variation of the Common Gateway Interface (CGI), operates

by starting one or more persistent processes of the language interpreter (in our case,

Ruby) when the application in question is started up. The web server then commu­

nicates with these processes through the FastCGI protocol to serve dynamic pages.

FastCGI is often used when the machine the web server is running on is separate

from the machines running the application. The FastCGI processes are started on

the application servers, and the web server is instructed to connect to those processes

using TCP/IP.

Support for FastCGI is provided by third-party extensions for the Apache web

server and is built into the lighttpd and nginx web servers, among others. Due to

limitations that are present in the Apache extensions, FastCGI and Apache don’t

get along very well at times. Despite its excellent performance, FastCGI has been

the victim of a number of stability problems, and is definitely a configuration

headache.

Mongrel
One back-end component that uses a different approach to interface with the web

server is Mongrel, created by Zed A. Shaw.11 Unlike options such as SCGI and

FastCGI, both of which use a rather complex communication protocol, Mongrel

uses plain HTTP.

Due to Mongrel’s pure-HTTP nature, it has replaced WEBrick as the default devel­

opment server for Rails. While its performance isn’t quite on par with that of FastCGI,

it definitely outperforms WEBrick, boasts production-level robustness, and is really

easy to use for Rails deployment.

Mongrel is compatible with every web server that’s equipped with a proxy module

to pass incoming HTTP requests on to other services. Apache, lighttpd, and nginx

all have this capability.

10 http://www.fastcgi.com/
11 http://mongrel.rubyforge.org/

http://www.fastcgi.com/
http://www.fastcgi.com/
http://mongrel.rubyforge.org/
http://www.fastcgi.com/
http://mongrel.rubyforge.org/

432 Simply Rails 2

Because Mongrel already comes installed with Rails on most platforms, is so easy

to use, and doesn’t require complex protocols to interface with your preferred web

server, it’s an ideal choice for the hands-on part of this chapter. So, let’s learn how

to deploy Shovell using Apache and Mongrel!

Deploying Shovell
As you’ve seen, Rails applications can be deployed using various combinations of

web servers and back-end services. Since most hosting providers use the Apache

web server, and Mongrel is the simplest solution with decent performance (it defin­

itely has the best speed to complexity ratio, bar none), we’ll use this combination

to deploy the Shovell application.

The hands-on part of this chapter will consist of a process that contains many steps.

Our first task will be to configure Apache as a proxy to Mongrel to serve our applic­

ation in production mode. This setup will be sufficient to handle a moderate amount

of traffic to our application.

Moving to the Production System
The time has come to leave our development machine and switch to the machine

that will provide a home to Shovell in production mode. Don’t worry if you haven’t

found a hosting provider to host your Rails applications yet—you can just keep this

section in mind for later reference.

Due to the fact that there are countless variations of server setups, we’ll have to as­

sume a few basics for the sake of this walk-through introduction:

■	 The operating system of the server is Linux.

■	 You either have superuser privileges (root) on the system, or know someone

who does, even if that’s your hosting provider’s technical support team.

■	 Ruby and Rails have been installed on the server using a similar process to that

outlined in the Linux section of the section called “Installing on Linux” in

Chapter 2.

■	 Mongrel has been installed using the gem install mongrel command—see the

note below.

Deployment and Production Use 433

■	 SQLite or MySQL has been installed and your databases (at least, the one con­

figured for the production environment in config/database.yml) have been created.

■	 Apache Version 2.2 is installed and running.12

■	 The Apache configuration is stored in the directory /etc/httpd/ (if it’s located

elsewhere, you’ll need to adapt the pathnames I mention).

■	 The Apache installation has the following extension modules available and en­

abled: mod_proxy, mod_proxy_balancer, mod_deflate, and mod_rewrite.

■	 You have access to the production system through a remote shell, preferably

Secure Shell (SSH).

■	 You have the ability to upload files to the production system through either FTP

or SSH.

■	 You have an available Internet domain name or a subdomain on which to host

your application.13

Installing Mongrel

If you’re a Windows or Mac OS X 10.5 user, you’ve been using Mongrel since the

beginning this book, and if you’re a Linux or MAC OS X 10.4 user you may have

installed it using the RubyGems system as we mentioned previously in the section

called “Starting Our Application” in Chapter 2.

However, it will also need to be installed on the production system if it’s not

already available. Execute the following command to install the Mongrel gem. It

downloads the gem from the RubyForge servers, then installs it on your system

along with its dependencies:

$ sudo gem install mongrel

If you don’t have the required privileges to carry this out, you may need to seek

help from the technical support department of your hosting provider.

12 Versions 1.3 and 2.0 should work to a certain extent. However, the proxy_balance extension is only

available in Version 2.2. Even the Apache Foundation recommends Version 2.2 as the best you can get,

so why bother with anything else?

13 Assuming domain.com is your domain name, shovell.domain.com would be a subdomain.

434 Simply Rails 2

Okay, now that we have our assumptions clear, we can begin.

As we’re starting out with a totally empty database on the production system, we

need to recreate the database structure we’ve established on our development ma­

chine; you’ll find it in the file db/schema.rb. Just to be sure that this file is up to

date, run the following rake task on your development machine before you start to

copy the files:

$ rake db:schema:dump

Assuming you see no errors when executing this command, your schema.rb file

should now be up to date.

At this point, we need to transfer our application code to the production system.

As I mentioned, we can achieve this task in a variety of ways. I’ll use the file

transfer capabilities provided by the SSH protocol to transfer the files; another

common option involves the use of FTP.

In any case, you need to copy the full directory structure that houses Shovell to the

production system (minus the files from the log and tmp subdirectories, which

contain output from the application in development mode; that output isn’t required

to run the application in production mode). Where you place the application’s dir­

ectory structure doesn’t really matter, either. I’ve put mine into the subdirectory

rails in my user account’s home directory, as depicted in Figure 12.3, so the full

path to my application is /home/scoop/rails/shovell.

Once we’ve finished transferring the application code, we need to set up the database

structure on the production system. Again, this can be accomplished with a rake

task. However, this time, we need to prepare the production part of the environment,

instead of the development and test parts.

http:db/schema.rb

Deployment and Production Use 435

Figure 12.3. Transferring Shovell to the production system

All Rails scripts (in the script subdirectory) and all available rake tasks in your ap­

plication will check whether an environment has been specified; if it hasn’t, these

scripts and tasks will assume you’re using the development environment. To

identify explicitly the environment you’d like to work in, you must declare the

RAILS_ENV environment variable, as illustrated in Figure 12.4.

Let’s set up the database structure in the production database (which is db/produc­

tion.sqlite3, as configured in config/database.yml). Log into the production system

through a remote shell like SSH, change directory to the application root

(/home/scoop/rails/shovell, in my case), and execute the following command:

$ rake db:schema:load RAILS_ENV=production

436 Simply Rails 2

Figure 12.4. Creating the database structure

Why Not Use rake db:migrate ?

But, I hear you cry, why aren’t we using the rake db:migrate command that

we used during development to bring our database up to date? The simple reason

is that once the total number of migrations becomes sizeable, iterating over every

one to initially deploy an application can take quite a long time!

By specifying RAILS_ENV=production on the rake command line, we’re instructing

rake to operate on the production database (and environment) instead of the devel­

opment equivalents.

This environment variable is an application-wide, but slightly tedious, method of

specifying the desired environment. A few of the common Rails commands—for

example, ruby script/console—also take the environment name as a direct argu­

ment. Let’s use the Rails console now to create an initial user for the production

version of Shovell:

$ ruby script/console production

Deployment and Production Use 437

The message Loading production environment, which displays when we execute

this command, indicates that the console session is connecting to the production

database. Next, let’s create a new User object; the results of this command are shown

in Figure 12.5:

>> User.create :login => 'patrick', :password => 'sekrit'

=> #<User id: 1, login: "patrick", password: "sekrit", …>

Figure 12.5. Creating a first production user

Armed with a ready-made production database, we can now launch Mongrel simil­

arly to the way we have been launching it on our development machine. This

command will ensure that both Mongrel and the application behind it are working

on the production system. Execute the following command (if you’re still in the

Rails console, exit that first with the exit command):

$ script/server -e production

Yes, the -e argument is yet another syntax for specifying the environment we want

to be in!

Mongrel will fire up and wait for requests on port 3000, just as it did on the devel­

opment machine. However, our application is now running in the production envir­

onment, and will be quite a bit faster than it was in the development environment.

Depending on the firewall configurations employed by your hosting provider, you

may or may not be able to connect to this port from the Internet. On a shared host,

you may not even be able to start Mongrel on port 3000—it may be reserved for

438 Simply Rails 2

another user. In this case, you’ll need to ask your web host’s technical support team

for a port number on which you can run your Rails application, then pass this port

number to Mongrel using the -p argument:

$ script/server -e production -p 3333

Let’s see how your application looks in production mode. Fire up a web browser

and open http://hostname:3000/, where hostname is the fully qualified domain

name of the production system. In my case, I’ll connect to http://poocs.net:3000/.

You should see the Shovell front page pictured in Figure 12.6. No stories are listed

as yet, because we left them in the development database on the development ma­

chine. However, you should be able to log in with the credentials of the user that

you just created using the console. Excellent!

Figure 12.6. Shovell served by Mongrel

Setting up Apache
Although Shovell is now being served successfully by a single Mongrel process in

production mode, a scenario in which our users have to type in an explicit port

number in order to access the Shovell application is far from ideal.

http://hostname:3000/
http://poocs.net:3000/

Deployment and Production Use 439

Our next goal is therefore to set up Apache as a web server for Mongrel, so that

Apache can pass incoming requests to the Mongrel process—technically referred

to as a proxy through. This setup makes it possible to run multiple Rails applications

(whether they be our own applications, or those of other users on the same system)

on a single IP address: based on the configuration we give it, Apache decides which

requests to forward to each application.

To set this up, we’ll add the following configuration directives to the end of our

Apache configuration file, /etc/httpd/httpd.conf:

<VirtualHost *:80>

 ServerName shovell.poocs.net

 ProxyRequests Off

 <Proxy *>

 Order deny,allow

 Allow from all

 </Proxy>

 ProxyPass / http://localhost:3000/

 ProxyPassReverse / http://localhost:3000/

</VirtualHost>

This is the simplest of all possible proxy configurations. Assuming that we’re using

the shovell subdomain of poocs.net, we instruct Apache to forward every request

that comes in directly to the Mongrel process running on port 3000.

Shared Hosting Configuration

Typically, the Apache configuration is split into many smaller files. However, in

shared hosting setups, each user usually has his or her own configuration file,

which is used for specific configuration directives concerning that user’s own

web sites and applications. In such cases, you should obviously put the directives

mentioned in this section into the appropriate configuration file, rather than using

the global one.

Don’t be confused by the ProxyRequests Off directive. Apache’s proxy module

can be used as a forward and as a reverse proxy. A forwarding proxy acts as a

middleman for your web browser when it connects to sites on the Internet, something

typically used in a corporate environment. The proxy answers only those requests

that originate from a known group of browsers (usually identified by their IP ad­

dresses) and forwards them on to an arbitrary number of web servers. A reverse

http://localhost:3000/
http://localhost:3000/
http:poocs.net

440 Simply Rails 2

proxy, on the other hand, serves as a front end to a known service, such as our

Mongrel process. It handles incoming requests from an arbitrary number of browsers

that may be scattered all over the planet.

The ProxyRequests Off directive turns off the forwarding proxy capabilities, while

the ProxyPass and ProxyPassReverse directives turn the reverse proxy capabilities

on.

To activate these configuration changes, we need to instruct Apache to reload its

configuration file, which we usually achieve using the command apachectl reload.

For this setup to work flawlessly, we need to make sure the Mongrel process contin­

ues to run at all times, without us having to keep the terminal window open. Before

the Linux and Unix folks scream “Use screen!,” let me tell you that we can run

Mongrel as a background process. We owe this ability to a helper script that was

included when we originally installed Mongrel, the mongrel_rails command; now

we can invoke the very same script/server command with the -d argument, like

so:

$ mongrel_rails start -d -e production

You’ll notice that you receive a short message about your Ruby version, and then

the command exits and returns to the command prompt, looking as if nothing has

occurred. Don’t worry; now that this command has been executed, Mongrel is

happily sitting in the background, waiting for requests. If you need to stop or restart

your Mongrel process (don’t forget, restarting is especially useful if you made changes

to the application code, as a Rails application in production mode can’t reload them

on the fly), we just need to provide mongrel_rails with the appropriate argument:

$ mongrel_rails stop

$ mongrel_rails restart

Sure enough, using your browser to connect to your host URL—mine being

http://shovell.poocs.net/—displays the Shovell front page shown in Figure 12.7.

http://shovell.poocs.net/�displays

Deployment and Production Use 441

Figure 12.7. Shovell proxied through Apache

Well done: you’ve successfully deployed your application!

Alternatives for Session Storage
When you start thinking about performance and load distribution, the next logical

step is to consider the performance of the session container.

As we discussed in Chapter 9, Rails creates a new session for every visitor, logged

in or not, by default. Each session is stored in a cookie by default, contained in the

user’s browser.

However, the situation becomes awkward when you either want to store additional

information in the session (or the flash) or when you need to create more advanced

features like user online statistics or server-side session expiration, which is outright

impossible with cookie-based sessions.

For this reason, Rails supports alternative session storage containers, two of which

we’ll look at in this section.

The ActiveRecord Store Session Container
The most popular option after the cookie-based default, the ActiveRecord Store

session container stores all session data safely within a table in your database. While

442 Simply Rails 2

this is not as fast as other options, using ActiveRecord Store allows sessions to

be accessed from multiple machines—an essential feature for applications that are

large enough to require multiple servers. It’s also very straightforward to configure.

These abilities make ActiveRecord Store the preferred option for applications that

attract low-to-medium levels of traffic, so let’s configure Shovell to use it now.

First, we need to make room in our database for the session data. Rails provides a

shortcut for this job in the form of a rake task, and in so doing removes any need

for manual table creation. As we’re still on the production system, we need to include

the production environment option explicitly:

$ rake db:sessions:create RAILS_ENV=production

This command will create a new migration file that contains the Ruby code necessary

to create an appropriate sessions table which will hold our session data. The mi­

gration can then be applied using the regular rake task db:migrate:

$ rake db:migrate RAILS_ENV=production

Figure 12.8 shows the output of these migrations being applied.

Next, we need to let Rails know that we want to use the ActiveRecord Store instead

of the default file-based session container. We can tell it the good news via the

config/environment.rb file; simply remove the comment mark in front of the following

line:

config.action_controller.session_store = :active_record_store

You then need to open the app/controllers/application.rb file and remove the comment

before the protect_from_forgery :secret value:

protect_from_forgery :secret => 'random string…'

Deployment and Production Use 443

Figure 12.8. Creating the sessions table

As soon as you restart the application (using mongrel_rails restart), sessions

will be stored in the SQL database.

Be aware that the changes you make to config/environment.rb will have global effects.

If you want to limit this configuration change to a specific environment (for example,

you want it to affect the production environment only), add the line above to the

environment-specific configuration file located at config/environments/production.rb.

If you make the change on your development machine (or copy the application code

back and forth between it and your production server), be sure to run the migration

in order to add the sessions table to your development database.

The MemCached Store Session Container
Another popular option for session storage is the MemCached Store session storage

container.14 With MemCached, a piece of software originally developed by Danga

Interactive for the LiveJournal blog-hosting service, sessions are stored in the

available memory on your server—nothing is ever written to disk.

14 http://www.danga.com/memcached/

http://www.danga.com/memcached/
http://www.danga.com/memcached/
http:config/environments/production.rb
http://www.danga.com/memcached/

444 Simply Rails 2

This approach is obviously a lot faster than writing each session to the hard disk

or to a database (which will eventually be written to a hard disk as well). However,

the setup instructions for MemCached are slightly more complicated than the Act­

iveRecord Store option we saw above, and the software provides little extra value

for an application the size of Shovell. I’ll leave you to review the setup instructions

on the Ruby on Rails Wiki.15

Further Reading
We’ve done it! Our application is ready for initial public consumption, and the

hands-on parts of this book have come to an end. However, I’d like to alert you to

a few additional Rails features and extensions that may come in handy in your future

encounters with Rails applications.

Caching
Depending on the project budget and the availability of hardware, every Rails ap­

plication can only serve so many dynamic pages at any given time. If your app

happens to receive traffic numbers that exceed these limits, you’ll have to consider

your options for tackling this problem.

Rails’ built-in caching options vary in their levels of granularity. The simplest of

all possibilities is to cache whole pages in the form of HTML files. What Rails does

in such cases is to take the output that’s sent to the browser, and store it in a file on

the server’s hard disk. This file can then be served directly by Apache without even

bothering Mongrel, provided your setup is configured appropriately. This saves

Rails from regenerating page content over and over again even though the content

may not have changed between successive requests for the same page. Another option

allows you to cache the outputs of single actions and even fragments of views (a

sidebar, for example).

Caching can do wonders to improve your application’s performance. However, take

care to ensure that the relevant sections of the cache are flushed when pages change,

otherwise your users will receive outdated content. Additionally, using cached

pages may not be feasible if your application depends on a lot of user-specific con­

15 http://wiki.rubyonrails.com/rails/pages/HowtoChangeSessionStore

http://wiki.rubyonrails.com/rails/pages/HowtoChangeSessionStore
http://wiki.rubyonrails.com/rails/pages/HowtoChangeSessionStore

Deployment and Production Use 445

tent—for instance, in an application whose page content changes depending on

who’s using it.

The Rails documentation for the caching feature is available online.16

Version Control and Deployment Management
Software development projects usually progress at a rapid pace—a truth that’s even

more relevant in the case of web applications. There are no strict version numbers;

new features are continuously being implemented while, at the same time, bugs are

fixed. Updated source code must be deployed easily and quickly. Developer resources

typically need to be distributed across projects in a flexible manner.

And developers make mistakes. Not on purpose, of course—but we’re all human.

Version control and deployment systems have been developed to address these is­

sues; popular options include Subversion17 and Capistrano.18

Subversion
Subversion is a general-purpose version control (or source control) system that’s

available for free under an open source license. This package is highly recommended

for use in any software development project.

Using Subversion, you can access the project code at any point in time and you can

view any code revision that was made to your project. All changes are tracked, and

no modification is irreversible or destructive. Subversion also allows for the easy

updating of a given copy of the project's code (for example, the copy that resides

on the production system) with changes that were made elsewhere (on your devel­

opment machine, perhaps).

Capistrano
Capistrano is a deployment and management system that was written in Ruby by

Jamis Buck, one of the Rails core members. Capistrano can be used only with projects

that are version controlled through a system such as Subversion.

16 http://ap.rubyonrails.com/classes/ActionController/Caching.html

17 http://subversion.tigris.org/

18 http://www.capify.org/

http://ap.rubyonrails.com/classes/ActionController/Caching.html
http://subversion.tigris.org/
http://www.capify.org/
http://ap.rubyonrails.com/classes/ActionController/Caching.html
http://subversion.tigris.org/
http://www.capify.org/

446 Simply Rails 2

Capistrano is designed to assist you in a number of ways:

■	 It facilitates the deployment of application code to your production server, along

with the necessary maintenance tasks (such as restarting the Mongrel processes

after the code has been updated).

■	 It provides a means by which you can revert to the last “known good” code base

if errors appear, or put up a maintenance banner when you need to perform

database repairs.

■	 It supports the deployment of application code to multiple servers simultan­

eously.

Errors by Email
We’ve talked briefly about the fact that Rails will never annoy your users with ex­

tensive stack traces if an error occurs in your application. Instead, it will display a

polite message to inform the user that the request couldn’t be processed successfully.

The default templates for these messages can be found in public/404.html and

public/500.html.

But what if you want to fix such errors instead of silently ignoring them? You could

certainly comb through your log files every day, checking for unusual activity.

Better yet, you could install the exception_notification plugin, which hooks into

your application and sends you an email whenever something unusual happens.

The plugin can be installed using the script/plugin utility. Documentation that

explains how to customize its behavior is available online.19

Summary
In this final chapter, we’ve plowed through the variety of options available for de­

ploying Rails applications to production systems.

We opted to use the combination of Apache and Mongrel to deploy Shovell. We

took the Shovell application code to the production system, initialized the produc­

tion database, and started serving requests with a single Mongrel process. It doesn’t

get much easier than that!

19 http://dev.rubyonrails.org/svn/rails/plugins/exception_notification/README

http://dev.rubyonrails.org/svn/rails/plugins/exception_notification/README
http://dev.rubyonrails.org/svn/rails/plugins/exception_notification/README

Deployment and Production Use 447

Once Shovell was running happily in its new environment, we looked at some al­

ternative session storage containers and found that the ActiveRecord Store suited

our needs by storing session data in our SQL database.

Finally, I provided a few pointers to more advanced information on some particularly

relevant aspects of Rails application development and deployment.

I hope you’ve found value in the time you’ve spent with this book, and that you’re

now able to go forth and build upon what you’ve learned. Now’s the time to get out

there and use your knowledge to build an application that changes the Internet!

Index

A
access log, 405

accessor methods

about, 68–70

defined, 67

types of, 68

action (see method)

ActionController module, 106

defined, 99

function, 106

ActionController::Base class, 106, 142

ActionMailer, 115

ActionPack library, 99

ActionPack module

log files, 193–195

MVC architecture, 105–113

ActionView helpers

about, 317

writing, 318–319

ActionView module, 99, 107–110, 148

ActionView templates, 261

ActionView::Base, 108

ActiveRecord dynamic finder method,

361

ActiveRecord module, 100–105

applications, 100

counter cache, 304

database abstraction, 100

database tables, 101–102, 206

defined, 99

defining relationships between ob­

jects, 104

logging functionality, 193

saving an object, 103–104

validations, 174

ActiveRecord object

creating, 258

storing in session container, 265

syntax for creating, 103

ActiveRecord prefixes, 324

ActiveRecord Store session container,

441–443

ActiveRecord::Base class, 103

acts, 354

acts_as_list, 354

acts_as_nested_set, 354

acts_as_taggable_on_steroids plugin,

354–363

columns in taggable table, 358

creating a migration for, 356–359

installing, 355

making a model taggable, 360–363

polymorphic associations, 359–360

tables, 357

what it does, 354

acts_as_tree, 354

add_column function, 306

after filters, 266

after_ callbacks, 324

after_create, 325

after_filter method, 266

Agile development methods, 8

Agile development practices, 8

Ajax

about, 7

and Rails, 214

applications, 214

function, 213

450

what is it?, 213

XmlHttpRequest object, 214

Ajax-powered to-do list without visual

feedback, 215

Ajax voting

testing, 245–246

:all argument, 136

Apache web server

about, 428

installing on Windows, 17, 18

mod_ruby extension, 430

moving to the production system, 433

proxy module, 439

setting up for Mongrel, 438–441

apachect1 reload, 440

app object, 415–417

app subdirectory, 99

application.js (file), 221

ApplicationController class, 142, 277,

278, 406

application’s performance

monitoring by checking log files, 418–

421

architecture of Rails application, 427

argument, 58

around filters, 267

Array (class), 75–77

creating from a list of Strings, 76

creating new, shortcut, 75

first element in, 75

retrieving elements from, 76

retrieving records, 135

use in data management, 76

use with blocks, 90

use with for loops, 89

assert_equal assertion, 239, 286, 287, 340

assert_nil assertion, 292, 293

assert_not_nil assertion, 187, 293

assert_redirected_to assertion, 246

assert_redirected_to method, 290, 297

assert_response assertion, 187, 291, 297

assert_routing assertion, 343

assert_select assertion, 189, 190, 244,

343, 344, 377

assert_template assertion, 187, 291

assertions, 181

assigning our first tags, 365–367

assignment operator (=), 89

associating stories with users, 281–284

displaying the submitter, 282–284

storing the submitter, 281

associations

class names, 331

defined, 200

has_many :through, 331–332

join model relationship, 330

associations between objects, 104

@ sign, 67

attributes

adding to stories, 326–327

changing the value of, 137

auto-completion of strings, 216

automated testing, 116

auto-voting, 323–326

B
back-end component options, 428, 430–

432

backslash character (\), 79

Basecamp, 4

before-and-after check, 245

before filters, 266, 274, 282, 406

before_create, 324, 325

before_delete, 324

451

before_filter method, 266, 321

before_save, 324

belongs_to clause, 204–205

benchmark class method, 421, 422

benchmarking, 417–423

definition, 418

information from log files, 418–421

manual, 421–423

Bignum (class), 80

bin action, 314, 315, 343

bloat, 7

blocks, 90–92

defined, 84

parameters for, 90, 92

boolean values, 65

Breakpoint library

ruby-debug tool, 389

breakpoint statements (see ruby-debug

tool)

building a foundation, 40

creating the standard directory struc­

ture, 41–43

standard directory structure, 40

building the example web application,

9–14

C
caching, 444

available for pages, actions and page

fragments, 427

callback methods, 324

callbacks

adding, 325–326

alternative syntax, 325

defined, 323

in models, 324–325

CamelCase, 107

Capistrano (deployment and manage­

ment system), 445

cd command (change directory), 24

chaining statements together, 63

class definition, 123, 126, 142

class method, 60, 70

class names, 107

class variables, 70

classes

(see also Ruby classes)

and objects, 56, 57

naming, 107

class-level functionality, 70–72

clean URLs, 12

code generation, 113–115

:collection, 235

colon (:)

use before Symbols, 82

columns

adding to stories table, 327

comments in line of code, 63

compiled languages

about, 54

performance against scripting lan­

guages, 54

conditionals, 85–88

defined, 83

if construct, 85–86

unless construct, 86–88

configuration files, 6, 95–96

console script, 414

constants, 61

ConTEXT (text editor), 47

control structures, 83–92

blocks, 84, 90–92

conditionals, 83, 85–88

loops, 83, 88–90

452

controller class names, 143

controller generator, 139–145

running the generate Script, 140

starting our application again, 143–

145

understanding the output, 141–143

controllers

(see also ActionController module)

adding functionality to, 263–266

communication with views via in­

stance variables, 110

for login functionality, 259

models and views, 6

modifying, 161, 308–309, 332–333,

364, 367

MVC, 97

testing, 185–192

tagging functionality, 374–375

user authentication, 289–300

voting functionality, 242–246

controls.js (file), 220

convention over configuration, 5–7

cookies

expiration date, 251

session, 252

setting expiration date, 252

in testing, 413

what are they?, 250–252

cost of software, 16

count (class method), 71, 72

counter cache

applying the migration, 307

function, 304

making room for the cache, 305–307

testing additions to, 336–338

testing deletions from, 338–339

udating the RJS template, 307–308

counting votes

using counter cache, 304–307

create (files), 123

create class method, 134

create method, 241

create stories file (example), 124, 126,

134

migration using rake, 132

:created_at, 199

creating a layout, 168–172

creating dynamic pages, 148–149

creating partials, 232

creating records, 133–135

creating static pages, 148

creating the database structure (produc­

tion environment), 436

creating views, 145–153

CRUD Verbs versus HTTP verbs, 112

current test-to-code ratio, 300

current user,

displaying name of, 271–273

retrieving, 269–271

custom class methods, 71

D
data integrity in development, 283

data management

using Arrays, 76

database abstraction (ActiveRecord), 100

database architecture of a Rails applica­

tion, 96

database associations, 104

database configuration files, 95–96

database migrations (see migrations)

database relationships, 200–205

database schema, 101

database schema definition, 7

453

database structure

creating (production environment),

436

database tables, 101–102

creating for user model, 255

naming, 101

typical structure, 101

date-formatting helper, 233

db namespace, 131

debugging, 380–408

(see also ruby-debug tool)

about, 117

overcoming problems in, 408

using Rails logging tool, 405

within templates, 380–388

Debugging, 388

declaring

resources, 162

def keyword, 67

:default argument, 306

default directory structure

conventions, 40

creating, 41–43

default page, 312–313

default Rails welcome page, 312

degradation

fallback action for browsers, 228–230

delete

use with Arrays, 77

deleting records, 138

deploying Shovell, 432–441

moving to the production system,

432–438

setting up Apache, 438–441

deployment management systems, 445

description column, 326

destroy method, 138

development environment

SQL statements, 138

development environment (Rails), 93

digg

Shovell project, 41

what is it?, 10–12

digg effect, 11

digg homepage, 10

do keyword, 90

don’t repeat yourself (see DRY program­

ming)

dot notation, 63

down method, 127

drag-and-drop, 216

dragdrop.js (file), 220

DRY programming, 7

dynamic finder methods, 137

dynamic pages

creating, 148–149

defined, 148

E
each method, 90, 306

edit-in-place, 216

effects.js (file), 220

else block, 85, 87

 tag, 272

Emacs (text editor), 50

email

for error notification, 426, 446

handled via ActionMailer, 115

resulting from Exception Notification

plugin, 427

embedded Ruby (see ERb)

empty?

use in Arrays, 76

use with Hash, 78

454

encapsulation, 66

end keyword, 67, 85, 90

equation operator (==), 89

ERb syntax, 108

ERb tags, 108, 149, 157, 317

ERb templates, 148

error messages

by email, 426, 446

code excerpts in, 382

seen in production environment, 426

errors attribute, 182, 192

example web application

building, 9–14

features, 12–14

using digg, 10–12

Exception Notification plugin, 426, 446

exists (folders), 122

F
failed login, 291

fallback action

for browsers, 228–230

FastCGI protocol, 431

fetch_logged_in_user method, 269, 274,

282, 295, 406, 407

fetch_stories method, 314, 421

files

naming, 107

filter conditions, 279

filter methods, 267–269

filters, 266–269

after filters, 266

around filters, 267

before filters, 266

find (class method), 135

find calls, 333

find operation, 309

find_by_, 137

find_by_id method, 270

find_by_link, 137

find_by_name, 137

find_tagged_with class method, 363, 373

Firefox cookie manager, 251

firewall, 18

first

use with Arrays, 77

:first argument, 136, 153

first method, 136

first tags

assigning, 365–367

Fixnum (class), 60, 80

fixtures

defined, 123

in functional tests, 187

preparing, 238–239, 339

user model, 284–285

flash

adding to, 172–173

retrieving data from, 173–174

flash areas

functional tests, 191

naming conventions, 173

passing messages, 172

flash content, 172, 173

nil or blank, 173

Float (class), 80, 81

follow_redirect! statement, 410, 416

for loop, 89

form creation, 157–165

analyzing the HTML, 164–165

modifying the controller, 161

using form_for helper, 157–158

form element, 189

form tags, 158

455

form_for helper, 157–158, 159, 177, 262

syntax, 157

form_tag helper, 262

FormBuilder object, 158

framework

applications, 2

definition, 2

free software licenses, 16

front-end server platform, 428

front page, 308–313

modifying the controller, 308–309

modifying the partial, 310

modifying the view, 309–310

setting the default page, 312–313

styling, 311

full-stack

definition, 2

functional tests

comparison to integration tests, 410

defined, 179

for the new action, 188–192

revealing test failures, 387

running, 188

G
gcc compiler

confirming installation, 33

gem command, 27, 36

generate command, 113, 116

generate Script

code generation, 113

creating the model, 198

generating a user model, 254

running, 120–122, 140

sample output, 114

generating a controller, 139–145

generating a model, 119–139

managing data using the Rails Con­

sole, 133–138

model generator, 119–125

modifying the schema using migra­

tions, 125–133

SQL statements, 138–139

generating a user model, 254–256

generating a vote model, 197–200

generating views with scaffolding, 145–

148

GET, 187, 229, 243, 246, 289, 415

get_with_user, 295, 296, 297

getters, 68

global elements

testing, 294

global helpers, 318

global variables, 62

graceful degradation, 217

gsub

use with Strings, 80

gunzip command, 33

H
has_and_belongs_to_many relationship,

359

has_many :through association, 331–

332, 340

has_many clause, 201–203

Hash (class), 77–79

methods, 78

saving data to the database, 166

use with blocks, 90

#{ } syntax, 227

hash mark (#), 63

#(), 79

hashed password storage, 259

headless mode, 414, 417

456

Heinemeier Hansson, David, 4, 5, 7

helper class, 142

helper files, 156

helper_method statement, 277

helpers

about, 155

form_for, 157–158

hexadecimal address, 75

highlighting effect, 228

HTML

in forms, 164

.html.erb file extension, 109

.html.erb templates, 225, 231

HTTP

and REST, 112

as stateless protocol, 250

HTTP codes

shortcuts, 187

HTTP GET, 187, 229, 243, 246, 289, 415

HTTP POST, 190, 245, 416

HTTP voting

testing, 246

I

id

for retrieval, 135, 136

identifying individual users, 250

if clause, 322

if construct, 85–86

if statement modifier, 86

include file, 180

include?

use with Strings, 80

incrementing a variable (+=), 72

indentation of code, 68

index action, 143, 144, 186, 314, 315,

343

index.html.erb (file), 143

individual users

identifying, 250

inheritance, 72, 103

initialize (method), 70

instance methods, 67–68, 233, 237, 268,

338, 361, 365

instance variables, 66, 67, 110, 150

instant messaging systems, 250

InstantRails

control panel, 18, 59

installing, 17

starting, 41

Integer (class), 81, 91

Integer object

times method, 91

upto method, 91

integer values, 60

integer?

use with Numeric subclasses, 81

integration tests, 408–412

creating the first test, 409–411

defined, 116, 179

functions, 408

how they work, 410

in headless mode, 415–417

running, 411

when to use?, 408

interactive Ruby shell, 59–60, 83

interface, 66

interpreter, 54

(see also Ruby interpreter)

irb (see interactive Ruby shell)

irb output, 59

J
JavaScript include files, 220

457

JavaScript libraries

including in applications layout, 220–

221

Prototype, 214, 216

script.aculo.us, 215–217

functionality, 216

jEdit (text editor), 50

join model relationship, 330

has_many :through association, 331–

332

testing, 340

.js.rjs file extension, 109

K
keys

use with Hash, 78

L
last

use with Arrays, 77

last method, 136

latest_votes method, 236, 241, 242

layout creation, 168–172

adding style, 170–172

establishing structure, 169–170

layouts (templates), 109, 168

length

use with strings, 80

lighttpd web server, 429

link attribute, 182

link column, 137

link_to function, 152

Linux

text editors, 50

Linux installation, 31–40

installing Rails, 37–38

installing Ruby, 33–35

installing RubyGems, 35

prerequisites, 32

using a package manager, 32

literal objects, 60

log files

about, 193–195

taking benchmarks from, 418–421

log out (see logout)

logged_in? helper method, 278, 317

logger, 406

logger object, 406

logging tool (Rails), 405–407

login

testing failed, 291

testing redirection after, 292

testing successful, 290–291

login form, 261, 264

testing display of, 289

login functionality, 259–266

adding functionality to the controller,

263–266

creating the controller, 259

creating the view, 261–263

Login link, 274

login method, 280, 290

login parameter, 262

login template, 261

login values

adding functionality to the controller,

263

logging, 407

testing a successful login, 290

login_logout div, 295

login_reguired filter, 277, 278

logout

manual function for, 273–275

http:script.aculo.us

458

testing, 292–293

logout function, 273–275

Logout link, 274

logout parameter, 259

loops, 88–90

control structures, 83

for loop, 89

while and until loops, 88–89

M
Mac OS X 10.4 (Tiger) and earlier install­

ation, 20

command line, 21

installing Rails, 28–29

installing Ruby, 25–26

installing RubyGems, 26

installing SQLite, 29–30

installing Xcode, 20

prerequisites, 20

setting the path, 23

staying organized, 24

terminal window, 22

Mac OS X 10.5 (Leopard) installation, 20

Mac OS X installation, 19–30

Mac OS X text editors, 48–50

TextMate, 48

TextWrangler, 49

make tool (C program), 129

manual benchmarking, 421–423

many-to-many associations, 104

map.story, 208

mapping

new resources, 164

URLs, 162

MemCached Store session container, 443

method calls

parentheses in, 64

method notation, 64

methods

defined, 56

in Ruby, 60

object interfaces, 66

migration files

class definition in, 126

class methods, 127

defined, 124

filling in the gaps, 127–129

modifying the schema, 125

name and type of data storage, 127

migrations

creating for Vote model, 198–199

defined, 102

to alter existing tables, 128

to generate the counter cache, 305–307

to make alterations to your database,

125

using rake to migrate data, 129–133,

200, 256, 288, 307, 327

mkdir command (make directory), 24

mod_ruby extension, 430

model callbacks, 324–325

model generator, 119–125

running the generate Script, 120–122

sample output, 121

understanding the output, 122–124

YAML, 124–125

model testing (see testing the model)

Model.find method, 265

modeling the user, 254–259

models

generating, 119–139

in MVC, 97

model-view-controller (MVC) architec­

ture, 96–110

459

about, 6

ActionController module, 106–107

ActionPack library, 105–110

ActionView module, 107–110

ActiveRecord module, 100–105

app subdirectory, 99

in theory, 97–98

processing a page request, 97

reasons for separating software applic­

ation components, 98

software application components, 97

the Rails way, 98–100

Mongrel web server

about, 43, 431

setting up Apache as web server for,

438–441

use on production database, 437

mongrel_rails command, 437, 440

mongrel_rails restart, 443

MVC (see model-view-controller (MVC)

architecture)

MySQL database engine

installing on Windows, 17

N
namespace

acceptance by rake task, 130

naming classes and files, 107

naming template files, 109

navigation menu, 275–276, 319–320

testing, 344

new action

functional tests, 188–192

new_record? method, 191

nginx web server, 429

nil (return value), 75, 82

Nil Class, 82

Numeric (class), 80–81

Numeric subclasses

converting a value to a Float, 81

converting a value to an Integer, 81

functionality, 81

types of numbers, 80

O
object level functionality, 66–70

accessor methods, 68–70

instance methods, 67–68

instance variables, 67

object oriented programming, 55–58

asking a simple question, 57

passing arguments, 58

sending instructions, 58

object oriented programming in Ruby,

65–74

classes and objects, 66

class-level functionality, 70–72

inheritance, 72

object-level functionality, 66–70

return values, 73–74

object receiver, 63

objects

(see also Ruby objects)

about, 55

and classes, 56, 57

and methods, 56, 66

and tables, 101

communication between, 56

in Ruby, 59

instance variables, 67

interface, 66

relationships between, 104

one-to-many associations, 104

one-to-many relationship, 201, 204, 359

460

information storage in the database,

205

one-to-one association, 104

:only parameter, 280

OOP (see object oriented programming)

Open Ruby Console, 59

operators

assignment operator (=), 89

equation operator (==), 89

to increment a variable (+=), 72

opinionated software, 7

:order argument, 136, 237

ordering records in Rails, 237

output

from Ruby, 74–75

P
package manager

apt-get, 32

for Linux, 31, 32

for Ruby software, 35

rpm, 32

yum, 32

page headings

testing, 343

page object, 226, 227, 235

page rendering

testing, 243–244

paragraph element, 190

parameters for blocks, 90, 92

params, 110

params hash, 166, 333

params object, 166

parentheses, 63

:partial, 235

partials (templates), 231–237

adding voting history, 231–232

creating, 232

defined, 109

modifying, 310

rendering, 310, 334

styling the voting history, 233–235

tweaking the voting history, 236–237

passing data back and forth, 150

passing variables between controllers

and views, 150

password, 264

password template, 262

password values, 263, 290

password_field_tag helper, 262

PATH environment variable, 23

period (.), 63

plugin script, 352

usage instructions, 353

plugins

acts_as_taggable, 354–363

functions, 351

installation, 352

README file, 352

what are they?, 351–352

pluralize helper, 309, 319

+= operator, 72

polymorphic associations, 359–360

POST, 190, 245, 416

post_with_user, 295, 297

presentation logic, 316–320

ActionView helpers, 317–319

avoiding spaghetti, 317

MVC principles, 107

print statement, 74, 75

private methods, 268

production environment, 94

choosing, 427–432

back-end options, 430–432

461

web server options, 428–430

creating the database structure, 436

does not log every database communic­

ation, 426

implications, 425–427

moving Shovell to, 432–438

protected controller methods, 314, 317,

324

protected methods, 268

protecting the form, 276–279

abstracting code using helper_method,

277

requiring users to log in, 278–279

protective measures, 249–301

adding a navigation menu, 275–276

filters, 266–269

generating a user model, 254–256

login functionality, 259–266

managing user logins, 269–275

modeling the use, 254–259

restricting the application, 276–284

sessions and cookies, 249–254

testing user authentication, 284–300

protocols in resource-centric applica­

tions, 111

Prototype JavaScript library, 214, 216

prototype.js (file), 220

proxy through, 439

ProxyRequests Off directive, 439, 440

public methods, 268

punctuation in Ruby code, 62–65

chaining statements together, 63

dot notation, 63

method notation, 64

use of parentheses, 63

puts statement, 74, 75

pwd command, 22

R
RadRails (text editor), 50

Rails, 15

as opinionated software, 7

built-in Ajax helpers, 217

code generation, 113–115

configuration files, 6

conventions, 6

debugging, 117, 380–408

default welcome page, 312

history, 4

installing on Linux, 37–38

installing on Mac OS X, 28–29

installing on Mac OS X 10.5 (Leo­

pard), 20

installing on Windows, 17–19

integrated support for email, 115

log files, 193–195

logging tool, 405–407

Prototype Javascript library, 214

sessions in, 253–254

supporting multiple databases in par­

allel, 96

testing, 115–117

use of Ajax in web applications, 214

use of MVC architecture, 98–100

visual effects with script.aculo.us, 216

what is it?, 1–3, 213

Rails applications

architecture, 427

database architecture, 96

standard directory structure, 40

rails command, 41, 42, 43, 122

Rails Console, 414–417

about, 102

creating records, 133–135

http:script.aculo.us

462

deleting records, 138

headless mode, 414, 417

retrieving records, 135–137

to manage data, 133–138

updating records, 137–138

Rails development principles, 5–9

Agile development, 8

convention over configuration, 5–7

don’t repeat yourself, 7

Rails development repository, 5

Rails environments, 93–94

development, 93

production, 94

testing, 94

Rails framework, 2, 4, 15, 93

Rails plugins, 351–378

Rails welcome screen, 45

rake command

accepting a namespace, 130

moving to the production system, 434

options accepted, 131

tasks available, 130

to create sessions table, 442

to execute functional tests, 188

to execute unit tests, 183, 242

to migrate data, 129–133, 200, 256,

288, 307, 327

to revert to the previous version of the

database, 132

to run integration tests, 411

to run the complete test suite, 192,

298–300, 388

use in production environment, 436,

442

rake test command, 411

rake test:integration command, 413

random stories

retrieving, 153

randomizer

stories, 208–209

readers, 68

Readline, 25

receiver, 58, 60

redirect_to function, 229

redirecting the user

about, 280–281

testing after login, 290, 292

redirection after logout

testing, 296

redirection logic, 175

relationships between objects, 200–205

belongs_to clause, 204–205

has_many clause, 201–203

remote scripting with Prototype, 214

render, 232, 235

render :partial syntax, 232

replace_html method, 227

require command, 180

resource-centric development, 110–113

resources

declaring, 162

mapping, 164

respond_to clause, 229

RESTful routes

adding custom actions, 315–316

RESTful-style (Representational State

Transfer) development, 110–113

restricted functionality

testing, 345

restricting access to story submission,

279–281

filter conditions, 279

redirecting the user, 280–281

463

restricting the application, 276–284

associating stories with users, 281–284

protecting the form, 276–279

restricting access to story submission,

279–281

retrieving records, 135–137

return values, 57, 60, 73–74, 75

:return_to URL, 280

return_to value, 292

.rhtml file extension (see .html.erb file

extension)

ri command, 77

.rjs file extension, 225

(see also .js.rjs file extension)

RJS templates

about, 225–228

approaches to, 226

rendering, 230

styling the voting history, 235

updating, 307–308

round

use with Numeric subclasses, 81

routing configuration, 312, 333

mapping URLs, 162

testing, 342

Ruby, 53–92

as object oriented language, 55–58

as open source, object oriented scrip­

ted language, 3

as scripting language, 53–55

checking version installed on Linux,

34

installing on Linux, 33–35

installing on Mac OS X 10.4 (Tiger)

and earlier installation, 25–26

installing on Mac OS X 10.5 (Leo­

pard), 20

installing on Windows, 17

method in, 60

object oriented programming in, 65–

74

standard output, 74–75

variables in, 62

Ruby classes, 75–83

Array, 75–77

Bignum, 80

Fixnum, 60, 80

Float, 80, 81

Hash, 77–79

Integer, 81, 91

naming, 101

not reloaded on each request in the

production environment, 426

Numeric, 80–81

object oriented programming, 66

String, 61, 79–80

Symbols, 82

Ruby code

about, 3

embedding in HTML using ERb syn­

tax, 108

indentation of, 68

punctuation in, 62–65

reading and writing, 59–65

Ruby control structures, 83–92

Ruby files

running, 83

ruby interactive (see ri command)

Ruby interpreter, 15, 83

Ruby objects

about, 59, 66

interacting with, 60–62

literal objects, 60

variables and constants, 61

464

Ruby on Rails (see Rails)

Ruby shell (see interactive Ruby shell)

ruby-debug tool, 117, 388–405, 423

RubyGems

installing on Linux, 35

installing on Mac OS X, 26

confirmation of successful installa­

tion, 27

.rxml file extension (see xml.builder file

extension)

S
Save changes, 167

save method, 104, 176, 199, 324

saving an object, 103–104

scaffolding

to generate views, 145–148

what is it?, 145

scalability, 98

SCGI protocol, 430

schema, 101

scope of variables, 62

scoreboard styling, 223–224

script folder, 113

script.aculo.us JavaScript library, 215–

217

scripting languages, 54

performance against compiled lan­

guages, 54

search engine friendly URLs, 12

self.down (class method), 127, 199, 307

self.up (class method), 127, 306

semicolon (;), 63

sender, 58, 60

session container

storing ActiveRecord objects, 265

storing objects, 254

session cookies, 252

session hashes, 110

session name, 253

session security, 270

session storage containers, 441–444

ActiveRecord Store, 441–443

MemCached Store, 443

session values

retrieval, 254

sessions

in Rails, 253–254

physical location of, 254

what are they?, 252

sessions table, 442

SessionsController, 259, 289, 292, 297

setters, 68

shell

ruby-debug, 394–398

shortcuts

for cryptic HTTP codes, 187

shove it link, 224, 225, 227, 234, 237,

322, 323

"Shovell" project

allowing users to add a story descrip­

tion, 328

completed login form, 264

controllers, 106

creating the database structure, 436

deploying, 432–441

directory structure, 41

displaying the current user, 273

empty front page, 313

example of user page, 336

final story page with voting history,

238

finished show action, 208

generate model script, 121

465

hiding the voting link from visitors,

322

index page linking to story page, 209

listing all stories tagged with “rails”,

372

login template, 261

making a template for, 159

moving to the production system,

432–438

name of story’s submitter displayed

with the story, 283

new story form with a layout, 171

providing feedback after story submis­

sion, 174

proxied through Apache, 441

Rails console, 102

served by Mongrel, 438

showing a story with voting history,

235

showing a story with voting score and

vote link, 224

story index with navigation, 276

story submission form with validation

output, 178

story voting bin, 320

story with auto-generated permalink,

330

successfully logging out of the applic­

ation, 274

tags display for the new story, 367

transferring to production system, 435

viewing stories on the front page, 323

show action, 243

show method, 109, 206

show template, 231

show view

changing, 222

Showing ... string, 319

showing off our stories, 207–213

Simple Common Gateway Interface

(SCGI) protocol, 430

size

use with Arrays, 76

use with Hash, 78

size method, 304

skeleton file

analyzing

controller test, 185–186

model test, 180

slice

use with Strings, 80

software cost, 16

source code

reloading, 403

 tag, 222

SQL statements

for development environment, 138

SQLite database engine, 15

installing on Mac OS X, 29–30

stack traces, 94, 426, 446

stand-alone helper, 160

standard directory structure

conventions, 40

creating, 41–43

starting our application, 43–46

stateless protocol

defined, 250

resource-centric applications, 111

statement modifiers

if, 86

unless, 87

static pages

creating, 148

466

stories

abstracting presentation logic, 316–

320

adding attributes to, 326–327

adding custom actions, 315–316

adding user pages, 330–335

determining URLS and actions, 206–

207

displaying, 207–208

displaying votes, 222–223

implementing clean URLs, 209–213

implementing the front page, 308–313

implementing the voting bin, 313–316

making Shove-able, 217–230

requiring that users log in to vote,

321–323

selecting on basis of voting scores,

303–327

story randomizer, 208–209

testing advanced functionality, 336–

347

testing display of by tag, 376

testing finding of by tag, 373

viewing by tag, 367–371

with auto-generated permalink, 330

Stories Controller

generating, 140

stories.yml (fixture file), 123

stories_controller.rb (file), 142

stories_controller_test.rb (file), 142

StoriesController

accessing from a browser, 144

modifying, 308, 322

testing, 341–345

StoriesController class

displaying the submitter, 282

fetch_stories method, 421

instantiation of, 144

sample class definition, 106

show method, 206

storing the submitter, 281

testing redirection after logout, 296

testing the controller, 289

testing the display of username, 296

storing the votes, 224

Story class

adding relationship definitions to, 257

story display page

testing, 344

story index pages

testing, 342

@story instance variable, 159, 161

Story Model, 122

making it taggable, 360–363

testing, 180–185

@story object, 158, 159

story page

testing display of tags on, 375

story partial, 334

updating, 365

story submission, 156–178

creating a form, 157–165

creating a layout, 168–172

providing feedback after, 174

resources in Rails, 162–164

template creation, 158–160

testing, 297–298

user feedback and the flash, 172–178

story submission form

allowing users to add a story descrip­

tion, 328

debugging within templates, 385–387

expanding, 326–329

testing, 344

467

testing the display, 375

with tags, 366

testing, 374

with validation output, 178

story submitter

displaying, 282–284

storing, 281

testing display of, 293

testing storage of, 298

story submitter link text

testing, 345

Story.find :all, 306, 309

story.rb (file), 123

@story.user, 283

story_helper.rb (file), 142

story_test.rb (file), 123

story_type, 319

story_url function, 208

StoryTest class, 186

Story’s relationship to Vote model, 239–

240

String class, 79–80

converting to Symbols, 82

literal objects, 61

methods, 80

string literal, 60, 62, 79

String object, 61, 79

string objects

converting to number objects, 210–211

style (layouts), 170–172

style sheet

applying to an application, 171

creating the view, 335

layout creation, 170

updating, 370

styling

front page, 311

voting history, 233–235

submission form

expanding, 327–329

Submit button, 160, 165

submitter (see story submitter)

Subversion (version control systems),

445

:success symbol, 187

successful login, 290–291

sudo, 26, 37

Symbols (class), 82

advantages over Strings, 82

converting to Strings, 82

T
tables, 101

(see also database tables)

relationship with objects, 101

Tag class, 361

tag display

creating a tag partial, 370

enabling, 364–365

updating the story partial, 365

updating the style sheet, 370

tag partial, 370

tag submission, 363–364

tag_id, 358

tag_list, 361, 365, 374

taggable_id, 358

taggable_type, 358

tagged stories

displaying, 369

testing tag action for listing, 376

tagging, 13, 353

tagging functionality

running the test suite, 377

testing, 372–378

mailto:@story.user

468

testing the controller, 374–375

testing the model, 372–374

taggings table, 357, 358

tags

assigning first, 365–367

testing display of on story page, 375

testing display of stories by tag, 376

testing finding of stories by tag, 373

viewing stories by, 367–371

tags table, 357, 358

tar command, 33

template files

creating, 207

extensions, 109

naming and storage, 109

template rendering, 334

testing, 341

templates

creating, 158–160

debugging within, 380–388

layouts, 109

partials, 109

stories, 207

temporary working directory, 24

test-driven development (TDD), 179

test types, 179

test_should_show_index test, 186, 189

test_should_show_new_form, 375

test_truth method, 181, 186

testing a failed login, 291

testing a logout, 292–293

testing a story’s relationship to a vote,

239–240

testing a successful login, 290–291

testing a vote’s relationship to a story,

240

testing additions to the counter cache,

336–338

testing advanced functionality, 336–347

running the complete test suite, 347

testing the model, 336–341

testing the StoriesController, 341–345

testing the UsersController, 346–347

testing Ajax voting, 245–246

testing deletions from the counter cache,

338

testing display of the username, 294–296

testing environment (Rails), 94

testing page headings, 343

testing page rendering, 243–244

testing redirection after login, 292

testing redirection after logout, 296

testing regular HTTP voting, 246

testing restricted functionality, 345

testing storage of the submitter, 298

testing story submission, 297–298

testing the assignment of tags, 372–373

testing the controller, 185–192

analyzing the skeleton file, 185–186

functional tests for new action, 188–

192

running a functional test, 188

writing a functional test, 186–188

testing the controller (tagging functional­

ity), 374–375

testing the display of stories by tag,

376

testing the display of tags on a story

page, 375

testing the display of the story submis­

sion form, 375

testing the submission of a new story

with tags, 374

469

testing the tag action for listing tagged

stories, 376

testing the controller (user authentica­

tion), 289–300

testing a failed login, 291

testing a logout, 292–293

testing a successful login, 290–291

testing display of the username, 294–

296

testing redirection after login, 292

testing redirection after logout, 296

testing storage of the submitter, 298

testing story submission, 297–298

testing the display of global elements,

294

testing the display of the login form,

289

testing the display of the story submit­

ter, 293

testing the controller (voting functional­

ity), 242–246

testing Ajax voting, 245–246

testing page rendering, 243–244

testing regular HTTP voting, 246

testing vote storage, 244–245

testing the creation of the initial vote,

339–340

testing the display of global elements,

294

testing the display of stories by tag, 376

testing the display of tags on a story page,

375

testing the display of the login form, 289

testing the display of the story submis­

sion form, 375

testing the display of the story submitter,

293

testing the finding of a story by tag, 373

testing the form, 178–195

controller testing, 185–192

model testing, 180–185

running the complete test suite, 192

testing the join model relationship, 340

testing the model, 180–185

analyzing the skeleton file, 180

new functionality, 336–341

running a unit test, 183–185

user authentication, 284–288

using assertions, 181

writing a unit test, 181–183

testing the model (tagging functionality),

372–374

testing the assignment of tags, 372–

373

testing the finding of a story by tag,

373

testing the model (voting functionality),

238–242

preparing the fixtures, 238–239

running the unit tests, 242

testing a story’s relationship to a vote,

239–240

testing a vote’s relationship to a story,

240

testing the voting history order, 241–

242

testing the navigation menu, 344

testing the rendering of templates, 341

testing the routing configuration, 342

testing the StoriesController, 341–345

testing the story display page, 344

testing the story index pages, 342

testing the story submission form, 344

testing the story submitter link text, 345

470

testing the submission of a new story

with tags, 374

testing the tag action for listing tagged

stories, 376

testing the tagging functionality, 372–378

testing the UsersController, 346–347

testing the VotesController, 345–346

testing the voting functionality, 238–247

controller testing, 242–246

model testing, 238–242

running the full test suite, 247

testing the voting history order, 241–242

testing user authentication, 284–300

testing user voting history, 346

testing vote storage, 244–245

testing your application, 408–417

integration tests, 408–412

using breakpoints, 412–414

tests (of assertions), 181

text editors, 46–50

ConTEXT, 47

cross-platform, 50

Emacs, 50

jEdit, 50

Linux, 50

Mac OS X, 48–50

RadRails, 50

TextMate, 48

TextWrangler, 49

UltraEdit, 47

Vim, 50

text_area helper, 329

text_field method, 158

text_field_tag, 262, 364

textarea element, 329

TextMate (text editor), 48, 403–405

textual identifiers, 82

TextWrangler (text editor), 49

37signals, 4

tilde, 22

times method of an Integer object, 91

timing values (log files), 194

title of the story, 311

to_formatted_s, 233

U
UltraEdit (text editor), 47

unit tests

about, 179

error information, 184

failed test, 185

running, 183–185, 242, 288

successful test, 184

writing, 181–183

unless condition, 271

unless construct, 86–88

unless statement modifier, 87

until, 88

up method, 127

upcase method, 64

update_attribute method, 137, 307

:updated_at, 199

updating records, 137–138

upto method of an Integer object, 91

URLs

mapping to controllers and actions,

162, 163

for stories, 206–207, 209–213

URLs in resource-centric applications,

111

user authentication, 284–300

running the full test suite, 298–300

testing the controllers, 289–300

testing the model, 284–288

471

User class, 256

adding relationships to, 256

user feedback, 176–178

information on type and place of error,

177

validation errors, 176

user log out, 273–275

user logins, 269–275

allowing users to log out, 273–275

displaying the name of the current

user, 271–273

retrieving the current user, 269–271

user model, 331

adding relationships to the User class,

256–258

creating a User, 258

database table creation, 255

generating, 254–256

testing a user's relationship to a story,

286

testing authentication, 284–288

preparing the fixtures, 284–285

running the unit tests, 288

testing a story’s relationship to a

user, 286

testing a user’s relationship to a

story, 286

testing a user’s relationship to a

vote, 287

testing a vote’s relationship to a

user, 288

User object

adding functionality to the controller,

264

creating, 258

modifying the controller, 333

user pages

adding, 330–335

creating the view, 333–335

has_many :through association, 331–

332

join model relationship, 330

modifying the controller, 332–333

user registration system, 12

user voting history

testing, 346

username

adding functionality to the controller,

264

creating the view, 262

testing display of, 294–296

users

associating stories with, 281–284

necessity to log in to vote, 321–323

redirecting, 280–281

requiring them to log in, 278–279

UsersController, 332

testing, 346–347

V

validation errors, 176

validations, 176

and redirection logic, 175

applying, 174–175

values

use with Hash, 78

variables, 62

class, 70

global, 62

instance, 66, 67

scope of, 62

verbs, 111, 112, 113

version control systems, 445

472

version numbers of installed compon­

ents, 45

vertical bars (|)

placement before blocks, 90

view template

filling in, 369

viewing stories by tag

displaying tagged stories, 369

filling in the view template, 369

modifying the controller, 367

views

communication with controllers via

instance variables, 110

creating, 145–153, 333–335

creating dynamic pages, 148–149

creating static pages, 148

generating with scaffolding, 145–148

modifying, 309–310, 363–365

in MVC, 97

passing data back and forth, 150–151

pulling in a model, 151–153

Vim (text editor), 50

visual effects with script.aculo.us, 215–

217

Vote class

adding relationship definitions to, 257

Vote class definition, 204

Vote model, 236

applying the migration, 200

association with Story model, 200,

201–203, 204, 205

creating the migration, 198–199

creating the model, 198

generating, 197–200

relationship to a story, 240

Vote object, 202, 241, 304, 305

vote storage

testing, 244–245

votes

auto-voting for newly submitted stor­

ies, 323–326

controlling where they go, 217–220

displaying, 222–223

incremented when a new vote is ad­

ded, 337

need to reload database when votes

added, 337, 338

storing, 224

votes method, 202, 240, 321

votes_count, 306, 309, 338, 339

VotesController

testing, 345–346

VotesController class

graceful degradation, 229

voting bin, 313–316

voting functionality

testing, 238–247

testing the controller, 242–246

testing the model, 238–242

voting history

adding, 231–232

styling, 233–235

testing the order, 241–242

tweaking, 236–237

voting scores

selecting stories on basis of, 303–327

W
Web 2.0

adding tagging, 353

and Ajax, 213

web application

definition, 2

http:script.aculo.us

473

Web applications

and REST, 112–113

web browsers

not supporting Ajax, 217

web server options, 428–430

WEBrick web server, 43

(see also Mongrel web server)

while loops, 88

Windows firewall, 18

Windows installation, 17–19

Windows text editors

ConTEXT, 47

UltraEdit, 47

writers, 68

X
Xcode

installing, 20

XcodeTools.mpkg, 21

.xml.builder file extension, 109

xml_http_request method, 246

XmlHttpRequest object, 214

Y
YAML, 124–125, 385

YAML file, 124

yield command, 170

Z
zero?

use with Numeric subclasses, 81

	Simply Rails 2
	Table of Contents
	Preface
	Who Should Read This Book?
	What You’ll Learn
	What’s in This Book?
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Conventions Used in This Book
	Code Samples
	Tips, Notes, and Warnings

	Acknowledgments

	Introducing Ruby on Rails
	History
	Development Principles
	Convention Over Configuration
	Don’t Repeat Yourself
	Agile Development

	Building the Example Web Application
	What Is Digg?
	Features of the Example Application

	Summary

	Getting Started
	What Does All This Cost?
	Installing on Windows
	Installing on Mac OS X
	Mac OS X 10.5 (Leopard)
	Mac OS X 10.4 (Tiger) and Earlier
	Installing Xcode
	Introducing the Command Line
	Setting the Path
	Staying Organized
	Installing Ruby on a Mac
	Installing RubyGems on a Mac
	Installing Rails on a Mac
	Installing SQLite on a Mac
	Installing the SQLite Database Interface for Ruby

	Installing on Linux
	Using a Package Manager
	Prerequisites
	Installing Ruby on Linux
	Installing RubyGems on Linux
	Installing Rails on Linux
	Installing SQLite on Linux
	Installing the SQLite Database Interface for Ruby

	Building a Foundation
	One Directory Structure to Rule Them All
	Creating the Standard Directory Structure

	Starting Our Application
	Which Text Editor?
	Windows Text Editors
	Mac OS X Text Editors
	Linux and Cross-platform Editors

	Summary

	Introducing Ruby
	Ruby Is a Scripting Language
	Compiled Languages
	Scripting Languages
	The Great Performance Debate

	Ruby Is an Object Oriented Language
	Reading and Writing Ruby Code
	The Interactive Ruby Shell (irb)
	Interacting with Ruby Objects
	Literal Objects
	Variables and Constants

	Punctuation in Ruby
	Dot Notation
	Chaining Statements Together
	Use of Parentheses
	Method Notation

	Object Oriented Programming in Ruby
	Classes and Objects
	Object-level Functionality
	Instance Variables
	Instance Methods
	Accessor Methods

	Class-level Functionality
	Inheritance
	Return Values

	Standard Output
	Ruby Core Classes
	Arrays
	Hashes
	Strings
	Numerics
	Symbols
	nil

	Running Ruby Files
	Control Structures
	Conditionals
	The if Construct
	The unless Construct

	Loops
	while and until Loops
	for Loops

	Blocks

	Summary

	Rails Revealed
	Three Environments
	Database Configuration
	The Database Configuration File

	The Model-View-Controller Architecture
	MVC in Theory
	MVC the Rails Way
	ActiveRecord (the Model)
	Database Abstraction
	Database Tables
	Using the Rails Console
	Saving an Object
	Defining Relationships Between Objects

	The ActionPack Module
	ActionController (the Controller)
	ActionView (the View)

	The REST
	In Theory
	REST and the Web
	REST in Rails

	Code Generation
	ActionMailer
	Testing and Debugging
	Testing
	Automated Testing
	Integration Testing

	Debugging

	Summary

	Models, Views, and Controllers
	Generating a Model
	The Model Generator
	Running the generate Script
	Understanding the Output
	Understanding YAML

	Modifying the Schema Using Migrations
	Creating a Skeleton Migration File
	Creating the stories Table
	Using rake to Migrate Our Data

	Managing Data Using the Rails Console
	Creating Records
	Retrieving Records
	Updating Records
	Deleting Records

	Where’s the SQL?

	Generating a Controller
	Running the generate Script
	Understanding the Output
	Starting Our Application … Again

	Creating a View
	Generating Views with Scaffolding
	Creating Static Pages
	Creating Dynamic Pages
	Passing Data Back and Forth
	Pulling in a Model

	Summary

	Helpers, Forms, and Layouts
	Calling upon Our Trusty Helpers
	Enabling Story Submission
	Creating a Form
	Introducing the form_for Helper
	Creating the Template
	Modifying the Controller
	Resources in Rails
	Mapping a New Resource

	Analyzing the HTML

	Saving Data to the Database
	Redirecting with URL helpers
	Creating a Layout
	Establishing Structure
	Adding Some Style

	Enabling User Feedback with the Flash
	Adding to the Flash
	Retrieving Data from the Flash
	Applying Validations
	Tweaking the Redirection Logic
	Improving the User Experience

	Testing the Form
	Testing the Model
	Analyzing the Skeleton File
	Using Assertions
	Writing a Unit Test
	Running a Unit Test

	Testing the Controller
	Analyzing the Skeleton File
	Writing a Functional Test
	Running a Functional Test
	Writing More Functional Tests
	Running the Complete Test Suite

	Revisiting the Logs

	Summary

	Ajax and Web 2.0
	Generating a Vote Model
	Creating the Model
	Examining the Vote Migration
	Applying the Migration

	Introducing Relationships
	Introducing the has_many Clause
	Introducing the belongs_to Clause
	How’s Our Schema Looking?

	Making a Home for Each Story
	Determining Where a Story Lives
	Displaying Our Stories
	Improving the Story Randomizer
	Implementing Clean URLs
	Converting from Strings to Numbers
	Investigating Link Generation

	Ajax and Rails
	Introducing Ajax
	Remote Scripting with Prototype
	Adding Visual Effects with script.aculo.us
	Making Stories Shove-able
	Controlling Where the Votes Go
	Including the JavaScript Libraries
	Giving Stories a Shove
	Styling the Scoreboard
	Storing the Votes
	Introducing RJS Templates
	Ensuring Graceful Degradation

	Introducing Partials
	Adding Voting History
	Creating the Partial
	Styling the Voting History
	Tweaking the Voting History

	Testing the Voting Functionality
	Testing the Model
	Preparing the Fixtures
	Testing a Story’s Relationship to a Vote
	Testing a Vote’s Relationship to a Story
	Testing the Voting History Order
	Running the Unit Tests

	Testing the Controller
	Testing Page Rendering
	Testing Vote Storage
	Testing Ajax Voting
	Testing Regular HTTP Voting

	Running the Full Test Suite

	Summary

	Protective Measures
	Introducing Sessions and Cookies
	Identifying Individual Users
	What’s a Cookie?
	What’s a Session?
	Sessions in Rails

	Modeling the User
	Generating a User Model
	Adding Relationships for the User Class
	Creating a User

	Developing Login Functionality
	Creating the Controller
	Creating the View
	Adding Functionality to the Controller

	Introducing Filters
	Before Filters
	After Filters
	Around Filters
	A Word on Filter Methods

	Managing User Logins
	Retrieving the Current User
	Displaying the Name of the Current User
	Allowing Users to Log Out

	Adding a Navigation Menu
	Restricting the Application
	Protecting the Form
	Abstracting Code Using helper_method
	Requiring Users to Log In

	Restricting Access to Story Submission
	Introducing Filter Conditions
	Redirecting the User

	Associating Stories with Users
	Storing the Submitter
	Displaying the Submitter

	Testing User Authentication
	Testing the Model
	Preparing the Fixtures
	Testing a User’s Relationship to a Story
	Testing a Story’s Relationship to a User
	Testing a User’s Relationship to a Vote
	Testing a Vote’s Relationship to a User
	Running the Unit Tests

	Testing the Controllers
	Testing the Display of the Login Form
	Testing a Successful Login
	Testing a Failed Login
	Testing Redirection After Login
	Testing a Logout
	Testing the Display of the Story Submitter
	Testing the Display of Global Elements
	Testing Display of the Username
	Testing Redirection After Logout
	Testing Story Submission
	Testing Storage of the Submitter
	Running the Full Test Suite

	Summary

	Advanced Topics
	Promoting Popular Stories
	Using a Counter Cache
	Introducing the Counter Cache
	Making Room for the Cache
	Applying the Migration
	Updating the RJS Template

	Implementing the Front Page
	Modifying the Controller
	Modifying the View
	Creating the Partial
	Styling the Front Page
	Setting the Default Page

	Implementing the Voting Bin
	Adding Custom Actions to RESTful Routes
	Abstracting Presentation Logic
	Avoiding Presentation Logic Spaghetti
	Introducing ActionView Helpers
	Writing an ActionView Helper
	Expanding the Navigation Menu

	Requiring a Login to Vote

	Auto-voting for Newly Submitted Stories
	Introducing Model Callbacks
	Adding a Callback

	Adding a Description to Stories
	Adding a Model Attribute
	Expanding the Submission Form

	Adding User Pages
	Introducing the Join Model Relationship
	Introducing the has_many :through Association
	Adding Another Controller
	Creating the View

	Testing the New Functionality
	Testing the Model
	Testing Additions to the Counter Cache
	Testing Deletions from the Counter Cache
	Preparing the Fixtures
	Testing the Creation of the Initial Vote
	Testing the Join Model Relationship

	Testing the StoriesController
	Testing the Rendering of Templates
	Testing the Story Index Pages
	Testing the Routing Configuration
	Testing Page Headings
	Testing the Story Submission Form
	Testing the Story Display Page
	Testing the Navigation Menu
	Testing the Story Submitter Link Text

	Testing the VotesController
	Testing Restricted Functionality
	Testing User Voting History

	Testing the UsersController
	Running the Complete Test Suite

	Summary

	Rails Plugins
	What Is a Plugin?
	Adding Tagging to Shovell
	Introducing the acts_as_taggable_on_steroids Plugin
	What acts_as_taggable_on_steroids Does
	Installing the acts_as_taggable_on_steroids Plugin
	Creating a Migration for the Plugin
	Understanding Polymorphic Associations
	Making a Model Taggable

	Enabling Tag Submission
	Modifying the View
	Modifying the Controller

	Enabling Tag Display
	Modifying the View
	Updating the story Partial

	Assigning Our First Tags
	Viewing Stories by Tag
	Creating the Controller
	Filling in the View Template
	Displaying Tagged Stories
	Creating a tag Partial
	Updating the Style Sheet

	Testing the Tagging Functionality
	Testing the Model
	Testing the Assignment of Tags
	Testing the Finding of a Story by Tag

	Testing the Controller
	Testing the Submission of a New Story with Tags
	Testing the Display of Tags on a Story Page
	Testing the Display of the Story Submission Form
	Testing the show Action of TagsController
	Testing the Display of Stories by Tag

	Running the Test Suite ... Again!

	Summary

	Debugging, Testing, and Benchmarking
	Debugging Your Application
	Debugging within Templates
	Debugging using ruby-debug
	Meeting ruby-debug
	Installing ruby-debug
	Adding ruby-debug to Your Application
	Debugging an Application
	The ruby-debug Commands
	Moving Around in the Shell
	Discovering All the Fancy Tools in ruby-debug
	Setting Breakpoints Mid-execution
	Reloading Source Code
	TextMate Integration

	Using the Rails Logging Tool
	Overcoming Problems in Debugging

	Testing Your Application
	Integration Tests
	When to Use an Integration Test
	Creating Our First Integration Test
	Running an Integration Test

	Using Breakpoints in a Test
	Revisiting the Rails Console

	Benchmarking Your Application
	Taking Benchmarks from Log Files
	Manual Benchmarking

	Summary

	Deployment and Production Use
	The Implications of “Production”
	Choosing a Production Environment
	Web Server Options
	Apache
	lighttpd
	nginx

	Back-end Options
	The mod_ruby Extension
	The SCGI Protocol
	The FastCGI Protocol
	Mongrel

	Deploying Shovell
	Moving to the Production System
	Setting up Apache

	Alternatives for Session Storage
	The ActiveRecord Store Session Container
	The MemCached Store Session Container

	Further Reading
	Caching
	Version Control and Deployment Management
	Subversion
	Capistrano

	Errors by Email

	Summary

	Index

