Contents

1	Probabilistic Model		1
	1.1	Estimation of Term Occurrence Probability	3
	1.2	Term Occurrence Probability Without Relevance Information	3
	1.3	Other Ranking Functions	4

1 Probabilistic Model

- To achieve optimal performance, documents should be ranked in order of their *probability of relevance* to the query.
- Whether or not document x should be retrieved depends on:
 - -Pr(rel|x), the probability that a given document x is relevant, and
 - -Pr(nonrel|x), the probability that a given document x is nonrelevant.
- Document x should be retrieved if:

$$a_2 Pr(rel|x) > a_1 Pr(nonrel|x)$$

where a_1 and a_2 are, respectively, the costs associated with the retrieval of a nonrelevant document and the nonretrieval of a relevant document. For simplicity, we assume a_1 and a_2 are the same.

$$g(x) = \frac{Pr(rel|x)}{Pr(nonrel|x)} - \frac{a_1}{a_2} > 0.$$

Since it is not possible to determine Pr(rel|x), we apply Bayes theorem to rewrite it as:

$$Pr(rel|x) = \frac{Pr(x|rel)P(rel)}{Pr(x)}$$

- -Pr(x) is the probability of observing x (whether x is relevant or not).
- -P(rel) is the a priori probability of relevance (i.e., the probability of observing a set of relevant documents).
- -Pr(x|rel) is the probability that x is in the given set of relevant documents.
- Similar formulation can be obtained for Pr(nonrel|x).
- The document ranking function (or discrimination function) can be rewritten as (after dropping a_1/a_2):

$$\log g(x) = \log \frac{Pr(x|rel)Pr(rel)}{Pr(x)} \frac{Pr(x)}{Pr(x|nonrel)Pr(nonrel)}$$

$$\log g(x) = \log \frac{Pr(x|rel)}{Pr(x|nonrel)} + \log \frac{Pr(rel)}{Pr(nonrel)}.$$

- Since Pr(x|rel) and Pr(x|nonrel) are unknown quantities, they need to be replaced in terms of the keywords in the document.
- Assuming terms occur independently in relevant and nonrelevant documents:

$$\log g(x) = \sum_{i=1}^{t} \log \frac{Pr(x_i|rel)}{Pr(x_i|nonrel)} + constant.$$

where $Pr(x_i|rel)$ is the probability that a relevant document contains term x_i ; $Pr(x_i|nonrel)$ interpreted likewise.

• Considering document $D = \langle d_1, d_2, ... d_t \rangle$, where d_i is the weight of term i:

$$\log g(x) = \sum_{i=1}^{t} \log \frac{Pr(x_i = d_i|rel)}{Pr(x_i = d_i|nonrel)} + constant.$$

where $Pr(x_i = d_i|rel)$ is the probability that a relevant document x contains term x_i with weight d_i ; $Pr(x_i|nonrel)$ interpreted likewise.

• When $d_i = 0$, we want the contribution of term i to g(z) to be zero. This can be done by introducing a normalization factor (or a transformation):

$$\log g(x) = \sum_{i=1}^{t} \log \frac{Pr(x_i = d_i|rel)}{Pr(x_i = d_i|nonrel)} \frac{Pr(x_i = 0|nonrel)}{Pr(x_i = 0|rel)} + constant$$

$$\log g(x) = \sum_{i=1}^{t} \log \frac{p_i(1-q_i)}{q_i(1-p_i)} + constant,$$

where

$$\begin{array}{rcl} p_i &=& Pr(x_i=d_i|rel)\\ &=& \operatorname{Probability} \text{ of finding } x_i \text{ in a relevant document.}\\ q_i &=& Pr(x_i=d_i|nonrel)\\ &=& \operatorname{Probability} \text{ of finding } x_i \text{ in a nonrelevant document.}\\ Pr(x_i=0|nonrel) &=& \operatorname{Probability} \text{ of not finding } x_i \text{ in a nonrelevant document.}\\ &=& 1-q_i. \end{array}$$

• The term-relevance weight of term x_i is:

$$tr_i = \log \frac{p_i(1-q_i)}{q_i(1-p_i)} = \log \frac{Pr(x_i = d_i|rel)}{Pr(x_i = d_i|nonrel)} \frac{Pr(x_i = 0|nonrel)}{Pr(x_i = 0|rel)}.$$

• Weight of term j in document i is taken as:

$$w_{i,j} = t f_{i,j} \times t r_j$$
.

1.1 Estimation of Term Occurrence Probability

• Given a query, a document collection can be partitioned into a set of relevant documents and a set of nonrelevant documents. The importance of index term j can be determined the role it plays in discriminating relevant and nonrelevant documents. The following diagram can be obtained:

totally N documents

• If we have *complete* information about the relevant and nonrelevant documents, p_j and q_j can be estimated by:

$$\begin{split} p_j &= r_j/R & q_j &= \frac{df_j - r_j}{N - R} \\ tr_j &= \log \frac{r_j/R}{(df_j - r_j)/(N - R)} \frac{1 - (df_j - r_j)/(N - R)}{1 - r_j/R} = \log \frac{r_j}{R - r_j} \frac{N - df_j - R + r_j}{df_j - r_j}. \end{split}$$

- Approximation 1: $tr_j = \log \frac{r_j}{R} \frac{N}{df_i}$.
- Approximation 2: $tr_j = \log \frac{r_j}{R} \frac{N-R}{df_j-r_j}$. (Eqns. 9.17 a and b in [S] and p. 368 in [FB])
- Approximation 3: $tr_j = \log \frac{r_j}{R-r_j} \frac{N-df_j}{df_j}$.
- tr_j can be interpreted as the power of term j in discriminating between the relevant and nonrelevant documents.

1.2 Term Occurrence Probability Without Relevance Information

- $q_j = df_j/N$ because most documents are nonrelevant; $p_j = 0.5$ for all j (quite arbitrary). Then, $tr_i = \log(N/df_i 1)$, which is the same as the inverse document frequency.
- A better approximation using Approximation 3: $tr_j = \log \frac{r_j}{R r_j} + \log \frac{N df_j}{df_j} \approx constant + \log(N/df_j 1) \approx idf_j.$
- Approximation by interpolation:
 - Assume best case when term j appears only in relevant documents: $r_i = df_i$.
 - Worst case when term j spread evenly among the relevant and nonrelevant documents: $r_j = (R/N) \times df_j$.

- An estimation of r_j can be made somewhere in between:

The constants a, b, c can be obtained by calibration or simply assumed to be some medium values (e.g., a = 0.5).

1.3 Other Ranking Functions

- $tr_j = C + \log \frac{N df_j}{df_j} = C + idf_j$.
- $sim_i = \sum_j (C + idf + j) f_{i,j}$ where $f_{i,j} = k + (1 - k) \frac{freq_{i,j}}{maxfreq_j}$, and $maxfreq_j$ is the frequency of the most frequent term in the document.
- When $k = 0, f_{i,j} = \frac{freq_{i,j}}{maxfreq_j}$.