
© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 1

CSA402

Lecture 14

The Dexter Hypertext
Reference Model

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 2

Reference

Halasz, F. and Schwartz, M. 1994. 'The Dexter Hypertext Reference
Model', in Communications of the ACM, 37(2), February, 1994, 30-39.

Overview

• A Reference Model for hypertext that:

can be used to compare existing
hypertext systems;

that can be used to design new
hypertext systems;

that can be used to devlop interchange
and interoperability standards

• Not the cartoon character

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 3

Background

• Between 1988 and 1990, a number of
hypertext technology leaders met to
define hypertext and hypertext
standards, and the DHRM was
developed

• DHRM is one of the most popular
hypertext reference models because it
is based on graph theory, whereas
others are based on set theory, petri-
nets, etc.

• DHRM is a reference model and not an
implementation of a reference model,
although it has been implemented

• We will not be talking about the
implementation

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 4

Overview of the Model

• DHRM divides a hypertext system into
three layers

Run-time Layer

Storage Layer

Within-component Layer

Run-time Layer
Presentation of the hypertext;

user interaction; dynamics

Presentation Specifications
Storage Layer

a 'database' containing a
network of nodes and links

Anchoring

Within-Component Layer
the content/structure inside

the nodes

• DHRM focuses mainly on the Storage
Layer, which models the basic
node/link network structure of
hypertext

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 5

• The Storage Layer does not concern
itself with what is contained in the
node - that is the function of the within-
component layer

• Moreover, the within-component layer
does not attempt to provide a model for
the different types of data that can be
contained within components - it is
assumed that other reference models
will do this and that those reference
models will be used in conjunction
with DHRM to capture the entirety of
the hypertext

• However, DHRM does specify the
interface between the Storage Layer
and the within-component content and
structure, to provide an addressing
mechanism

• In DHRM, this is called anchoring, and
allows links to have source and
destination anchors.

• Links can be span-to-span, as well as
document-to-document, and their
combinations (e.g., document-to-span)

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 6

• The Run-time Layer provides tools to
access, view and manipulate the
hypertext network

• Once again, the tools which could be
included in the run-time layer are too
diverse to be captured by a generic
model, so DHRM describes only a
'bare-bones' model

• The run-time layer captures the
essentials of the dynamic, interactional
aspects of hypertext systems, without
covering the details of the user
interaction with the hypertext

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 7

Simple Storage Layer Model

• The Storage Layer describes a
hypertext as a finite set of components
together with two functions: resolver
and accessor

• The resolver and accessor functions are
jointly responsible for retrieving
components

• A component can be atomic, a link, or
composite (composed of many non-self
referential components)

• A component has a globally unique
identity (UID), not just within a
specific hypertext implementation, but
across the entire universe of discourse

• The accessor function is responsible for
accessing a component given its UID

• The resolver function is responsible for
determining the UID(s) of satisfying
components given some other method
of reference

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 8

• E.g., difference between IP and DNS

• E.g., difference between URL and
search engine

• E.g., link to the component which
contains the statement "The King of
France wears a wig"

• The resolver function takes a
component specification and returns
one or more UIDs which can be fed to
to accessor function

• A component specification can result in
0, 1 or more UIDs, but for every
component there is at least 1
specification which will resolve to the
UID for that component

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 9

Links in the Storage Layer

• To implement span-to-span linking,
more than just the UIDs of the
components are required

• It is also necessary to identify
substructures within the component

• Needs to be independent of the actual
data type contained in the component

• The addressing technique used in
DHRM is anchoring

• An anchor contains two parts:

anchor id
anchor value

• Anchor id identifies the anchor

• Anchor value identifies some location,
region, or substructure within the
component

• The anchor value is interpretable only
by the application(s) responsible for

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 10

handling the content/structure of the
component

• The mechanism of the anchor id can be
combined with the component
specification mechanism to provide a
way of specifying the end-points of a
link

• In DHRM, this is called a specifier

• Apart from the component
specification and the anchor id, a
specifier also contains a direction and a
presentation specification

• A link's specifier specifies a
component and an anchor point within
the component which acts as the end-
point of the link

• The link's direction specifies whether
the anchor point is the link source
(FROM), destination (TO), both source
and destination (BIDIRECT), or NONE

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 11

Atom #3346
Component_Info

Attributes
Presentation_Spec
Anchors Value ID

 #1

Content
Some arbitrary text
that is the of this
node and so on

Link #9981
Specif ier
Component_Spec #3346
Anchor_ID #1
Direction: FROM
Presentation_Spec

Specif ier
Component_Spec #4112
Anchor_ID #1
Direction: TO
Presentation_Spec

Component_Info
Attributes
Presentation_Spec
Anchors Value ID

 #1

Content
Some in here...

Atom #3346

Some more text

Atom #332

'resolves to'

'resolves to'

 • The presentation specification forms
part of the interface between the
storage and run-time layers - discussed
later

• Links can have arbitrary arity (min. 2),
with at least one having a direction of
TO or BIDIRECT

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 12

• A component was previously described
as atomic, link, or composite

• These are actually base components

• A component is a base component
together with component information

• The component information describes
the properties of the component, apart
from its content

• Component information contains:

Sequence of anchors
Presentation specification
A set of arbitrary attribute/value pairs

• The attribute/value pairs can be used to
associate keywords and type
information with the component

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 13

• The storage layer also defines a set of
operations that can be used to
access/modify the hypertext

• Examples:

CreateComponent
DeleteComponent
ModifyComponent
LinksToAnchor
LinksTo

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 14

Simple Run-Time Layer Model

• The most important function of the run-
time layer is the presentation of a
component to the user

• This is called the instantiation of a
component

• When a component is requested, a
'copy' is cached in the instantiation.
The cached copy can be viewed and/or
edited, and the altered cache is
'written' back to the storage layer

• Each instatiation is assigned a unique
within-session identfier (IID)

• The instatiation of a component also
results in the instantiation of its
anchors, called link markers, which are
a visible manifestation of the anchors
in the displayed document

• At any given moment, a user can be
viewing/editing any number of
instatiations

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 15

• The run-time layer keeps track of the
mapping between components and their
instantiations through an entity called a
session

• The interaction cycle of a session is

Open session: user initialises interaction with hypertext

Present component: user creates an instantiation

Realise edits: user modifies the component based on edits
to the instantiation

Unpresent component: user destroys the instantion

Close session: user terminates interaction with hypertext

• The session entity contains:

the hypertext being accessed
a mapping from IIDs to components
a history
a run-time resolver function
an instatiation function
a realiser function

• The run-time resolver function is the
run-time version of the storage layer's
resolver function

• It maps specifiers into component UIDs

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 16

• The run-time resolver function (RTRF)
is a superset of the storage layer's
equivalent function (STRF)

• RTRF can refer to information in the
run-time session, to which the storage
layer does not have access

• E.g., a reference to "the most recently
accessed component named 'xyz'"

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 17

The instantiator function

• The core of the run-time model

• Input to the instantiator is a component
UID and a presentation specification

• The instantiator returns an instantiation
of the component as part of the session

• The presentation specification specifies
how the component is to be presented
by the system during this instantiation

• The component also has a presentation
specification as part of its information

• This represents the component's own
notion about how it is to be presented

• The instantiator function must decide
how to resolve differences between the
two presentation specifications

• The act of following a link (follow
link) calls the present component
operator, which in turn calls the
instantiator.

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 18

 The realiser function

• The 'inverse' of the instantiator
function

• Takes an instantiation and creates a
new component in the storage layer

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 19

Conformance with DHRM

• DHRM describes a significantly more
powerful hypertext system than existed
beack in 1990, and indeed, which exist
today

• Main differences between DHRM and
typical hypertext implementations are:

multiway links
composite components
dangling links

• DHRM is revised into sets of models,
including a minimal model, and
optional mechanisms within more
complex models

© 2001. Christopher Staff. Department of Computer Science and AI, University of
Malta.

CSA402: Lecture 14 20

Can the Dexter Hypertext Reference
Model be used to describe an Adaptive
Hypertext System?

