
CSA4020: Lecture 3

Multimedia Systems: Adaptive Hypermedia Systems 1
Dept. Computer Science and AI

CSA4020

Multimedia Systems:
Adaptive Hypermedia Systems

Lecture 3: Inverted Files
(continued…)



CSA4020: Lecture 3

Multimedia Systems: Adaptive Hypermedia Systems 2
Dept. Computer Science and AI

Concerns

• Index represents collection of
documents at the time it was
indexed

• What if collection needs to be
changed?

Re-indexing from scratch is slow

Most of the work has already
been done, hasn’t it?



CSA4020: Lecture 3

Multimedia Systems: Adaptive Hypermedia Systems 3
Dept. Computer Science and AI

• Insertion/deletion overheads

Depends on frequency of update
If infrequent but large, consider complete re-
indexing
If frequent, but small, consider on-line
insertion/deletion
If frequent, but large, …

Currency of index
Does much information go out of date quickly?

Workload of system
Is system accessed 24/7? Is it off-line at certain
time of the day/week anyway?

• What sort of system is it?

Library applications (used mainly during
the day by visitors to the library, collection
changes infrequently): insertion overhead
not a problem

At the other extreme, newspaper and
Web collections pose a problem…



CSA4020: Lecture 3

Multimedia Systems: Adaptive Hypermedia Systems 4
Dept. Computer Science and AI

• Factors to consider:

Size of main memory
If index fits in memory, then updates will be
faster

Temporary disk space
Can still be a problem if size of index is in
terabytes!

Batched/online updates



CSA4020: Lecture 3

Multimedia Systems: Adaptive Hypermedia Systems 5
Dept. Computer Science and AI

Batched Insertion by sorting

• Collect all new documents

• Extract terms for each document

• Prepare inverted index

• Inverted index can be “inserted” into
existing index
Large overheads if disk blocks need to be
moved!
Don’t write master inverted index to disk
sequentially…
Borrow from db technology to improve
efficiency
Problem if new term needs adding to vocab!



CSA4020: Lecture 3

Multimedia Systems: Adaptive Hypermedia Systems 6
Dept. Computer Science and AI

Batched insertions using tries

• Previous example has huge
overheads if (db) index blocks need
to be split

• Also if new terms need to be added
to vocabulary

• Better if index is stored on disk in
manner which enables easy insertion

• How is index is constructed from
scratch?

A trie is a digital search tree which
uses labelled trees to store strings

Retrieval time is proportional to
length of string

Each edge of the tree is labelled with
a letter



CSA4020: Lecture 3

Multimedia Systems: Adaptive Hypermedia Systems 7
Dept. Computer Science and AI

'l'

'm' 'a'
'd'

'n'

't'

'w'

letters: 60

made: 50

many: 28

text: 11, 19

words: 33, 40

Each word in the text is searched for
in the trie (in memory)
If it exists, update occurrence (postings) list
If it doesn’t, add it

Continue until memory is exhausted
Write trie to disk
Flush memory

Repeat until all text is processed
Several partial tries will be written to disk

Merge tries on disk

• Insertions: merge new/old tries



CSA4020: Lecture 3

Multimedia Systems: Adaptive Hypermedia Systems 8
Dept. Computer Science and AI

Deletions

• Documents removed from
collection…

• Must (ultimately) remove references
from postings lists

• Normally, documents in postings
lists are indirectly referred to (to
save space)

• Can replace entry in lookup table
with null reference, indicating doc is
deleted

• But operations on inverted index still
involve deleted docs… inefficient

• Again, can borrow from db
technology to create index of
references to docs in postings lists…


