MAT1801 Mathematics for Engineers I

Sequences and Series

1 Sequences

Informally, a sequence is an infinite list of numbers, usually labelled as follows: a_1, a_2, a_3, \ldots More precisely, a sequence is a function f from \mathbb{N} to \mathbb{R} such that $f(1) = a_1, f(2) = a_2, f(3) = a_3$ etc.

We shall denote a sequence by $\{a_n\}_{n=1}^{\infty}$ or simply by a_n .

The sequence is said to converge to a limit A if the terms in the sequence get closer and closer to A as n increases. More precisely, if the limit of the sequence is A, we can make the terms a_n as close to A as we wish by taking n sufficiently large.

Definition: The sequence $\{a_n\}_{n=1}^{\infty}$ is said to converge to a limit A if, for all $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|a_n - A| < \varepsilon$ for all $n \ge N$.

If the sequence $\{a_n\}_{n=1}^{\infty}$ converges to the limit A, we write $\lim_{n \to \infty} a_n = A$.

If a sequence has a limit, then this limit is unique, and the sequence is said to be *convergent*. Otherwise, it is said to be *divergent*.

Note that adding or deleting a finite number of terms from a convergent sequence does not change the limit. Hence, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_{n+1}$ (where the limit exists).

Theorem: Let $\lim_{n \to \infty} a_n = A$ and $\lim_{n \to \infty} b_n = B$. Then

1.
$$\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n = A \pm B;$$

2.
$$\lim_{n \to \infty} (ca_n) = c \left(\lim_{n \to \infty} a_n\right) = cA;$$

3.
$$\lim_{n \to \infty} (a_n b_n) = \left(\lim_{n \to \infty} a_n\right) \left(\lim_{n \to \infty} b_n\right) = AB;$$

MAT1801

JLB

4.
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{A}{B}, \text{ provided } B \neq 0;$$

5.
$$\lim_{n \to \infty} a_n^c = \left(\lim_{n \to \infty} a_n\right)^c = A^c, \text{ provided } A^c \text{ exists};$$

6.
$$\lim_{n \to \infty} c^{a_n} = c^{\left(\lim_{n \to \infty} a_n\right)} = c^A, \text{ provided } c^A \text{ exists}.$$

We write $\lim_{n\to\infty} a_n = \infty$ if the terms in the sequence grow arbitrarily large for larger n (more precisely, for all M > 0, there is a natural number N such that $a_n > M$ for all $n \ge N$).

Note that in this case the sequence is still a divergent sequence!

1.1 Bounded and Monotonic Sequences

Definition: If there exists a number M, independent of n, such that $a_n \leq M$ for all n, then the sequence is said to be *bounded above*, and M is said to be an *upper bound* for the sequence.

Definition: If there exists a number m, independent of n, such that $a_n \ge m$ for all n, then the sequence is said to be *bounded below*, and m is said to be a *lower* bound for the sequence.

Definition: If a sequence is both bounded above and bounded below it is said to be *bounded*.

Theorem: Every convergent sequence is bounded.

Note that not every bounded sequence converges e.g. 1, -1, 1, -1, 1, -1, ...

Definition: The sequence $\{a_n\}_{n=1}^{\infty}$ is said to be *monotonic increasing* if $a_n \leq a_{n+1}$ for all n. If $a_n < a_{n+1}$ for all n, then it is said to be strictly monotonic increasing.

Definition: The sequence $\{a_n\}_{n=1}^{\infty}$ is said to be monotonic decreasing if $a_n \ge a_{n+1}$ for all n. If $a_n > a_{n+1}$ for all n, then it is said to be strictly monotonic decreasing.

Theorem: 1. If a sequence is bounded above and monotonic increasing, then

JLB

MAT1801

it has a limit.

2. If a sequence is bounded below and monotonic decreasing, then it has a limit.

1.2 Some standard limits

- 1. $\lim_{n \to \infty} x^n = 0 \text{ for } |x| < 1;$ 2. $\lim_{n \to \infty} \frac{n^p}{x^n} = 0 \text{ for } |x| > 1 \text{ and any } p;$ 3. $\lim_{n \to \infty} \frac{x^n}{n!} = 0;$ 4. $\lim_{n \to \infty} \left(1 + \frac{c}{n}\right)^n = e^c;$
- 5. $\lim_{n \to \infty} n^{-p} \ln n = 0 \text{ for } p > 0;$ 6. $\lim_{n \to \infty} \sqrt[n]{n} = 1.$

2 Series

Consider the sequence $\{a_n\}_{n=1}^{\infty}$, and define a new sequence as follows:

$$s_1 = a_1;$$

 $s_2 = a_1 + a_2;$
 $s_3 = a_1 + a_2 + a_3;$
 \vdots
 $s_n = a_1 + a_2 + \dots + a_n;$ etc.

The term s_n is called the *n*th partial sum of the series $a_1 + a_2 + a_3 + \cdots = \sum_{n=1}^{\infty} a_n$.

Definition: If the sequence $\{s_n\}_{n=1}^{\infty}$ converges with limit S, then the series $\sum_{n=1}^{\infty} a_n$ is said to be *summable* or *convergent* and the limit $\lim_{n\to\infty} s_n = S$ is called the *sum* of the series. Otherwise, the series is said to be *divergent*.

Note: 1. If a series converges, then $\lim_{n \to \infty} a_n = 0$.

2. This is *not* a sufficient condition for convergence. For example, the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

JLB

3. Multiplying every term in a series by the same nonzero constant does not affect whether the series converges or not.

4. Adding (or removing) a finite number of terms to (or from) a series does not affect whether the series converges or not.

2.1 Geometric Series

The sequence $a, ar, ar^2, ar^3, \ldots$ is called a geometric progression. The number r is called the *common ratio*.

The corresponding series $a + ar + ar^2 + ar^3 + \cdots$ is called a *geometric series*. The *n*th partial sum, s_n , of a geometric series is given by

$$s_n = \frac{a(1-r^n)}{1-r}$$

when $r \neq 1$.

So when |r| < 1, the series converges to $\lim_{n \to \infty} s_n = \frac{a}{1-r}$.

If $|r| \ge 1$, the series diverges.

2.2 Test for Convergence

1. Comparison Test

Suppose $0 \leq a_n \leq b_n$ for all $n = 1, 2, 3, \ldots$ Then

- (i) if $\sum b_n$ converges, then $\sum a_n$ converges;
- (ii) if $\sum a_n$ diverges, then $\sum b_n$ diverges.

2. Ratio Test

Suppose $a_n \ge 0$ for all n, and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = r$. Then

(i) if r < 1, the series converges;

JLB

MAT1801

(ii) if r > 1, the series diverges;

(iii) if r = 1, the test fails (i.e. no conclusion about the convergence of the series can be drawn).

3. The *n*th Root Test

Suppose $a_n \ge 0$ for all n, and $\lim_{n \to \infty} \sqrt[n]{a_n} = r$. Then

(i) if r < 1, the series converges;

(ii) if r > 1, the series diverges;

(iii) if r = 1, the test fails (i.e. no conclusion about the convergence of the series can be drawn).

4. The Integral Test

Suppose the function f is positive (i.e. f(x) > 0), continuous and monotonic decreasing¹ for $x \ge 1$, and $f(n) = a_n$ for all $n = 1, 2, 3, \ldots$. Then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the limit $\lim_{N \to \infty} \int_1^N f(x) \, dx$ exists.

Example: By considering the function $f(x) = x^{-p}$ (for $p \neq 1$), find the values of p such that the series $\sum_{n=1}^{\infty} \frac{1}{x^p}$ converges.

5. The Alternating Series Test

An alternating series is a series whose terms are alternately positive and negative. Such a series converges if:

- (i) $|a_{n+1}| \leq |a_n|;$
- (ii) $\lim_{n \to \infty} a_n = 0.$

¹A function f is said to be monotonic decreasing if $f(x) \ge f(y)$ whenever x < y.

2.3 Absolute and Conditional Convergence

Definition: The series $\sum a_n$ is said to be *absolutely convergent* if the series $\sum |a_n|$ converges.

Theorem: If the series $\sum a_n$ is absolutely convergent, then it is convergent (i.e. if $\sum |a_n|$ converges, then $\sum a_n$ converges).

If the series $\sum a_n$ converges, but $\sum |a_n|$ diverges, then $\sum a_n$ is said to be *conditionally convergent*.