UNIVERSITY OF MALTA FACULTY OF SCIENCE

Department of Mathematics

MAT1801 Mathematics for Engineers I Problem Sheet 6

(1) Using the theorems on limits of sequences and the definition of a limit of a sequence, find the limit as $n \to \infty$, if any, of the following sequences:

$$\frac{\sin n}{n}$$
, $\frac{4-2n}{3n+2}$, $\frac{n^4+1}{n^6}$, $2^{\frac{1}{n}}$, $\frac{n^4+1}{n^2}$.

- (2) Show that the sequence $a_n = \frac{n+2}{n+1}$ is monotonic decreasing and bounded below, and hence show that it converges. Prove that the limit is 1.
- (3) Show that the sequence $a_n = \frac{1-n}{n^2+1}$ is monotonic increasing (for $n = 3, 4, 5, \ldots$) and bounded above, and hence show that it converges. Prove that the limit is 0.
- (4) The sequence u_n is defined by the recursion formula $u_{n+1} = \sqrt{3u_n}$, $u_1 = 1$. Prove that the sequence is monotonic increasing and bounded above, and hence show that it converges. Prove that the limit is 3.
- (5) Using the Ratio test, determine the convergence or otherwise of the following series:

(i)
$$\sum_{n=1}^{\infty} \frac{(n+1)^3}{2^n}$$
, (ii) $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$, (iii) $\sum_{n=1}^{\infty} \frac{n^n}{n!}$.

(You may assume that
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$
.)

(6) Using the integral test, determine the convergence or otherwise of the following series:

(i)
$$\sum_{n=1}^{\infty} \frac{1}{(n+2)^3}$$
, (ii) $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

1

(7) Consider the infinite series

$$1 + 2r + r^2 + 2r^3 + r^4 + 2r^5 + \dots$$

where (a) $r = \frac{2}{3}$, (b) $r = -\frac{2}{3}$, (c) $r = \frac{4}{3}$. Show that the ratio test is inapplicable for the above series and using the *n*th root test, show that the series converges for cases (a) and (b), and diverges in case (c).