Differential Equations

1. First order differential equations — variables separable

A first order differential equation with variables separable is one of the form:

dy
—=f .
5 = T (x)a(y)
dy d’y d’

(1) Itonly involves first order derivatives, i.e. only —=, not —-, —, etc.
dx dx  dx

(2) The variables x and y may be easily separated to obtain an equation
which may be integrated:
idy = f (x)dx

g(y)

Q1.1 Find the general solution of the differential equation:

dy
_:X
dx y

Al.1l By separating the variables we obtain:

ldy = xdx
y

which upon integration of both sides we obtain:

I% dy = J'xdx

In|y|+c X +C
1_? 2

2
or:In|y|:X?+K

NOTE: Since the final solution contains the undermined constant of
integration, this solution is referred to as the ‘general
solution’.



Q1.2 Given that y(O) =3, find the particular solution of the differential equation:

dy 1 .
—===sin(x
dx vy ( )
Al.2 By separating the variables we obtain:
ydy =sin (x)dx

which upon integration of both sides we obtain the general solution:
Iydy :Isin (x)dx

y2
= ~cos (x) +K

We may now obtain the particular solution by using the fact that y(O) =3, l.e.
that at x=0, y=3, i.e.:

2

Y - ~cos(x) +K, y(0)=3

2
32
0 cos(0} K

-
Dg—-lK
2
DI’#-]LgE
2 2

i.e. the particular solution is given by:

2
y7: —cos(x)+1—21 or: y®+2cos(x)+11=0

Q1.3 For afirst order chemical reaction, the rate law is given by:
d|A
o

dt
Given that at time t=0, the initial concentration of A is given by [A]O, obtain

an expression for, [A]t, the concentration of A at any time t after the
commencement of the reaction.

Al.3 By separating the variables we obtain:
id[A]=—kdt
[A]
This may be solved in one of two ways (with method B being the
recommended method).



Method A: By integration of both sides we obtain the general solution:
1
—=d|A| = [—kdt
I[A] [A] I
1
—=d|A| =-k[dt
I[A] [A] I

In[A] = =kt +const
where [A] represents the concentration of A at any time t. Given that at time

t=0, the initial concentration of A is given by [A]O, we may now obtain the
particular solution:

In[A] =kt +const, at t=0, [A] {4,

O In[Alz~- k& const

O const In[A],
i.e. the particular solution is given by:

In[A] = -kt +In[ A] |

or: In[A], =kt +In[ A] |

ie: In[A]-In[Al =kt or: In%%éz—kt

Method B: By integration of both sides using the appropriate boundary
conditions we immediately obtain the general solution:

A
J[ ]d[A] ! —kdt
rE d[A] = —k[dt
[

An[Aley = - k[,
In[A], -In[A], = ~*(t -0)
ie.: In[A]t - In[Aq .= &t or: In D[A]t

o=«
Ao

0



2. Second order differential equations, homogeneous with constant
coefficients

In general a second order differential equation is of the form:
d’y dy
+p(x)==+q(x)y=r(x
L p(x) 2 +alx)y =r(x)
and if r (x) =0, then the solution is said to be homogeneous. In this course we shall

only deal with homogeneous second order differential equations where
p(x) and g(x) are constants, i.e. (in its more general form):
2
ad—zl + bﬂ +cy =0
dx dx
and it may be shown that such an equation will always have a solution of the from e**
where A is a suitable constant.

In particular, let y =e" be a trial solution of the equation:

2
a d 3/ +bﬂ +cy =0
dx dx
From y =e** we may obtain:
2
Yope  and G 2/ :iz(/\e“) =A%
dx dx* dx

By substitution into the differential equation we obtain:
A%eM +are +be™ =0

ie.
e (a/\2 +bA +c) =0

which since DAx, e™> 0, we obtain the so called characteristic equation:
aA?+bA +c =0

The characteristic equation is a simple quadratic equation with roots:

—b ++b? —4ac

A=
2a
_ _ —b++/b? —4ac _ b —Jb* —-4ac
or: A= % and A, = o

The nature of these roots depend on the discriminant b®> —4ac. If a, b and ¢ are real
numbers then the three possible types of roots are:

> If b®—4ac >0 (positive), then there are two distinct real roots
> If b*>—4ac =0 then there is one double real root
> If b® —4ac <0 (negative), then roots are pair of complex conjugates.

Furthermore,



(1) If b>—-4ac>0, i.e. A, and A, are distinct real numbers, then the general
solution of the differential equation is y = Ae** +Be'?* where A and B are constants,

-b ++/b* —4ac -b —Vb? —4ac
2a ’

A= s and A, =

(2 Ifb*>-4ac=0,ie. A =A,= —2£, then the general solution of the differential
a

equation is y = (A+B)e™ =(A +Bx)exp Sl;—zxﬁ where A and B are constants.

(3)  If b®—4ac <0, then we have:

Ob f Obg
toaH HH|"
is hence of the form:

y = Aexp Ha +iB)xg+Bexpg(a -iB) g
= Aexp(ax)exp (iwx) +Bexp (ax)exp(-iwx)

= exp(ax)Fre’” +Be™PH
or in trigonometric form by recalling that Re” =R os(6) +isin(6)g:
y =e™ e’ +Be™H
=™ { ARgos(Bx) +isin (Bx)g+BHcos (—Bx) +isin ( —BXE}
e"X{A@os (Bx) +isin (Bx)g+BHcos ( Bx) —|5|n(BxE}
e {(A+B)cos(Bx) +i(A-B)sin(Bx}
e"X{C cos(Bx)+Dsin Bx}

where a ——b B= . The general solution of the differential equation

ob of Ol

"\t HE

In each case, if initial or boundary conditions are specified, the particular solution is
then obtained at the end by determining the values of the constants A, B, C or D (as
appropriate).

where g =— and C and D are constants.




Summary:

Second order differential equations of the form a3—3+ b% +cy =0 have a
corresponding characteristic equation of the form aA? +bA +c =0 which:
1. If the characteristic equation has different real roots A;,A, then the
general solution is of the form y = Ae** +Be**
2. If the characteristic equation has equal real roots A =A, =A, then the
general solution is of the form y = (A +Bx)e™

3. If the characteristic equation has complex conjugate roots A =a £fi,
then the general solution is of the form
y= e‘“{C cos(Bx)+Dsin (Bx}

In each case, given the general solution, one may obtain the particular solution

(i.e. determine the values of the constants A, B, C or D (as appropriate))
provided that initial or boundary conditions are specified.

Q 2.1: Find the particular solution of the following second order differential equation:

A21:

y"+y'-6y =0
given that y(0)=0, y'(0) =5.

The characteristic equation is A°+A-6=0. This factorises to
(A-2)(A +3) =0, ie. the roots of the characteristic equation  are

A =24, =-3.

The general solution is hence given by:
y = Ae®”* +Be™

The particular solution may be obtained since we know that
y(0)=0, y'(0) =5. Thus since:
y'=2Ae” —3Be™

i.e.atx=0:
y(0)=0
ie
Ae’ +Be’ =A+B =0 (eqn. 1)
and:
y'(0)=5
ie
2Ae’ -3Be’ =2A-3B =5 (eqn. 2)
i.e. solving egn. 1 & 2 simultaneously we have:
A+B=0 0O
DA=1B=-1
2A-3B =5



i.e. the particular solution is given by:
y = e2>< _e—3x

Note: You may verify that y=e”* —e™ is indeed the solution for the

differential equation through differentiation since:

y= e2x _e—3x
y'=2e* +3e7
y"=4e* —0e™
which when substituted into:
y"+y'=6y =0
we obtain:

LHS = (4e™ -9 ) +(26™ +3e™) -6(e?* =)
= 4% -0 +2% +3e™ —6e?* +6e
=0
=RHS

Q 2.2: Find the general solution of the following second order differential equations:
(i) y"+3y'+2y =0
(i) 2y"+8y'+4y =0
(iii) y"+2y'+1y =0
(iv) y"+2y'+3y =0
(v) y"+2y'+4y =0



Q 3.1: The wave function of a particle in a one-dimensional box: Solve the
Schrodinger equation below to obtain:

(i) acceptable wave function(s), ¢ =/(x), and

(i) the corresponding total energy(s), E
for a particle of mass m moving in the x-direction:

Hy =Ey
where H is the appropriate Hamiltonian that gives the total energy E and is given by:
~_ hd?
H=-——+V (X
2m dx? ()
and V (x) is the potential energy of the particle which is given by:
[0 O<x<I
V(x)=0 .
7o otherwise
given the boundary conditions that:
p(0)=y(1)=0
and that for the wave function to be normalised, the wave function must satisfy the
condition:

JI'L/IZ (x)dx =1

A3.1: The SWE may be written as:

O #* d? 0
——+V (X =E
ie.
1 day
- +V (X)y =E
2m dx’ () =Ew
which for the particle inside the box (i.e. 0<x <I) we have V(x) =0, i.e.:
_h_zﬂ = E(,U
2m dx?
or:
Or* Od %y _

This is a homogenous second order differential equation of the form:

2
A9Y W ey =0

dx*>  dx
with a characteristic equation:
AA?*+BA +C =0
i.e. in this case:
2
7 S}\z +E =0
MmO

which re-arranges to:



A% =-E
m
ie.:
,__E _2mE
O0r* O W’
mH
ie.:
A :i\/— ZQLE J_ri\/zglE =q +if
where: a =0, ZQLE

Thus the general solution to this equation is given by:
y =e™{C cos(Bx) +Dsin(Bx}
i.e. in this case:
 (x) =Ccos(Bx) +Dsin(Bx)
2mE

where = P

On application of the boundary condition we obtain that:
@ (0)=00 Ccos(0) Dsin(0F 0
C(1)+D(0)=0
i.e. c=0
and:

w(1)=00 Dsin(BIF 0
which for sin(B1)=0, we must have:

Bl =nmt
(Recall that sin(x)=0 for x =...-3m, 27 -10, 712 18 1 .)
ie.

Chrtx

 (x) = Dsin(Bx) =Dsin T O

Also, for the for the wave function to be normalised, the wave function must
satisfy the condition:

;[wz (x)dx =1

ie.
X[

;[ﬁjz sin’ Enl—%dx =1



where since cos2A=1-2sin? A then :

.o Ohmxg_ 1 02n {0
sin® ==d-co
AT et e
i.e. since:
iEBm(Ax)S: ACOS(AX)—C os (Ax) Icos (Ax)dx sin (Ax const
dxg A [ A A

then:

X[ ! | .[02n

n2Hl le -co dx—ED SI @d
e 2.([ SH H™"2F 208 "1 HE
g1 Eanﬂ[DD !
=21 H

—sm 0
2n7T 2n1
1 I
=={1-0|40-0 =—
[1-0{o-d =
which implies that:
D2|—:1
2
ie.:
p?=2
|
ie.:
D=2

Thus the wave-functions are given by:
Chroxd

L,U Sln B—H

Also, the general solution for the SWE suggests that:
2mE
B=

whilst the boundary conditions require that:

_nr
P

Thus:

2mE _nhm

p= |

2mE _ n*
T

10



i.e. the corresponding energies for the wave functions ¢/, (x) are given by:
_n’r’h? _ n’h?
" 2ml*  8ml?

ASIDE: The Hamiltonian for this system:
The Hamiltonian for this system is given by:
H=T+V
where V and T are the potential and kinetic energy of the particle.

The kinetic energy is given by:

2

mv 2

T—lmv ——( X) =P

2 2m 2m

and where from Quantum Mechanics:

ih d
px = mvx = T A
27T dx

_1pgihddf_ h d? hod?

2m B—ET&B 8EMAE | 2mdx?

where h is Plank’s constant and 7 = 21
T

Thus the Hamiltonian is given by:

2 2
A=T+v =-1" 9 L (x)
2m dx?

Also, for a particle in a 1D square well (i.e. for 0 <x <I), the potential
energy is given by:

V(x)= 0 O0<x<I
EP° otherwise

Thus the Hamiltonian for the particle in the well simplifies to:

2 2 2 2
H=T+Vv -—h—d—+o =
2m dx? omdx®
i.e. the SWE is given by:
_ndy
2m dx? =

11



