<<DiscreteMath`Combinatorica`
Loads the combinatorica package

Directory[ ]
Gives the name of the active directory

SetDirectory[“z:\my documents”]
Sets the active directory to a new location. In our labs this should be z:\my documents.

ResetDirectory[ ]
goes back to the previous default directory

Export[“filename.eps”,%] 
Copies on to the current directory the preceding graphics output as an eps file

||
or

&&
and

x // f  

equivalent to 
f[x]

x ~ f ~ y 
equivalent to 
f[x,y]

f @ x 

equivalent to 
f[x] 

expr /. rules
equivalent to 
ReplaceAll[expr, rules]

expr //. rules
equivalent to
ReplaceRepeated[expr,rules] 

(applies “rules” to all parts of “expr” repeatedly, until the result no longer changes)

Examples:

 x + 2 /. x -> a 
   



gives

a + 2

x //.  x -> x+1
   



gives

an infinite loop!

ReplaceRepeated[x, x->x+1, MaxIterations->3]
gives

x+3

The basic data structure in Mathematica is a list. There is great versatility in what a list can be. It can be a list of numbers, a list of mathematical expressions or even a list of lists. For example, a 3-dimensional vector is a list of three numbers and a 3x4 matrix is a list containing four lists each of which is a list of three numbers. There are various ways to create lists.
Range[n]

generates a list of the first n consecutive integers

Range[m,n]

generates a list of consecutive integers from m to n

Range[m,n,d]

generates a list of integers from m through n in steps of d

Table[expression,{n}]
generates a list containing n copies of expression
Table[expr,{k,n}]

generates a list of the values of expr as k varies from 1 to n

Table[expr,{i,m1,n1},{j,m2,n2}]
generates a nested list (list of lists) whose values are expressions 




computed as j goes from m2 to n2 and as I goes from m1 to n1

Array[f,n]

generates a list containing the values of f[1], f[2], …, f[n] where f is a function

lst[[i]]

returns the i-th entry in the list lst

If lst is a list of lists, lsi[[i]] would itself be a list. In this case

Lst[[i]][[j]]
returns the j-th entry of the list lst[[i]]

One of the reasons why it is possible to write very powerful Mathematica programmes in a few slick lines is because of the way it can operate on lists

Examples

If lst = {1,2,3,4,5,6} then

lst! gives {1,2,6,24,120,720}
Therefore to produce a list of the numbers 1!, 2!,…,100! All we need to write is

Range[100]!

No need for while or for loops

If lst1={1,2,3,4} and lst2={2,1,0,3} then

2^lst1

returns {2,4,8,16}
and

lst1^lst2

returns {1, 2,1,64}

f[x_]=x^2+1;

Array[f,10]

gives

{2,5,10,17,26,37,50,65,82,101}

D[Table[x^i,{i,5}],x]
returns
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Again illustrating the powerful way in which Mathematica operates on lists

Apply[f, {a,b,c}]

equivalent to 

f[a,b,c]

Nest[f, x, 5]

equivalent to

f[f[f[f[f[x]]]]]

Map[f, {a,b,c}]

equivalent to

{f[a], f[b], f[c]}

NestList[f, x, 4]

gives


{x, f[x], f[f[x]], f[f[f[x]]], f[f[f[f[x]]]]}

Flatten[listoflists]

transforms

list of lists into a single list

Flatten[listoflists,n]
flattens


list of lists up to and including the nth







level of brackets

Partition[list,n]

partitions

list into a list of lists by grouping the 







elements of list into sublists of length n

Partition[list,n,d]

partitions

list into a list of lists by grouping the







elements into sublists of length n using offset







d for successive pieces

Examples

t={{{3,6},{6.9}}},{{6,9},{9,12}}}

Flatten[t]
gives
{3,6,6,9,6,9,9,12}

Flatten[t,1]
gives
{{3,6},{6,9},{6,9},{9,12}}

t={a,b,c,d,e,f,g}

Partition[t,2]
gives
{{a,b},{c,d},{e,f}}

Partition[t,3]
gives
{{a,b,c},{d,e,f}}

Partition[t,3,1]
gives
{{a,b,c},{b,c,d},{c,d,e},{d,e,f},{e,f,g}}

ListPlot[{y1,y2,…}]

plots y1,y2,… at x values 1,2,3…

ListPlot[{{x1,y1},{x2,y2},…}]
plots points (x1,y1), (x2,y2), …

Pure functions

Examples

These are equivalent:
f[x_]:=x^2




Function[x, x^2]




Function[#^2]




#^2&

#^2&[1+a]

gives
(1+a)^2

Expand[#^2]&[1+a]
gives
1 + 2a + a^2

For functions of several variables, 

#1, #2, etc denote the first, second,… variables;



##  denotes the sequence of all variables



##n  denotes the seq of all variables starting with the nth.

(#1^2 + #2^3)& [x,y]

gives
x^2 + y^3

   

Select[list, f]
selects elements of the list using the function Boolean f as criterion. Select applies f to each element of list in turn, and keeps only those for which the result is True.

Select[{1,7,2,3,5}, (#>4)&]
returns
{7,5}

Select[-2,4,3,2,-7}, (#^2==4)&]
returns
{-2,2}

MakeGraph[v,f]
constructs the graph whose vertices correspond to v and whose edges join pairs of vertices x and y in v for which the binary relation defined by the Boolean function f is True.

Options:
Type->Directed or Undirected  (default Directed)


VertexLabel->True or False (default False)

MakeGraph[Range[8], (Mod[#1,#2]==0)&]
creates a graph whose vertices are {1,2,…8} and whose arcs are {2,1}, {3,1},…{8,1}, {4,2},{6,2},{8,2}, {6,3}, {8,4}, and all loops {i,i}.


Some more graph theory commands:

A graph  g  is stored internally as a list of vertices, a list of edges, the type (undirected or directed) and the geometric coordinates (embedding) of the vertices which will be used when the graph is drawn.

PetersenGraph

CompleteGraph[n]

Cycle[n]

GeneralisedPetersenGraph[n,k]

HeawoodGraph

Edges[g]

Vertices[g]

ShowGraph[g]             one useful option is: ShowGrapg[g,VertexNumber->True]

ToAdjacencyLists[g]

ToAdjacencyMatrix[g]

AddVertex[g]

AddVertices[g,n]

AddEdge[g,e]

ChromaticNumber[g]

DeleteEdge[g,e]

DeleteEdges[g,list]

DeleteVertex[g,v]

DeleteVertices[g,list]

Diameter[g]

GraphComplement[g]

Neighborhood[g,v,k]

InduceSubgraph[g,list]

M[g]                               returns the number of edges of the graph g
MakeSimple[g]

MakeUndirected[g]

BipartiteQ[g]

HamiltonianQ[g]

EulerianQ[g]

IsomorphismQ[g,h]

Automorphisms[g]

RandomGraph[n,p]     n=no. of vertices, p=probability of an edge

Mod[a,b]                 remainder when  a  is divided by  b  (value of  a  mod  b)

KSubsets[l,k]          gives all subsets of set (list)  l  containing exactly  k  elements

Intersection[l1,l2]   gives a list of elements common to all l1 and l2

SameQ[l1,l2]          returns True is expressions or lists l1, l2 are identical (e.g. equal sets)

Range[n]                 returns the list {1,2,…,n}

{}                            the empty set

Finally: Mathematica often provides a way of solving a problem with a slick one-line programme. Studying these programmes is often a good way to learn Mathematica syntax and Mathematica programming. Try it on the following command:

Select[FromDigits/@Partition[First[RealDigits[E,10,1000]],10,1],PrimeQ,1]

which returns

{7427466391}
which is the the first 10-digit prime found in consecutive digits of e. This was a problem posed by Google. 

For more details go to:

http://mathworld.wolfram.com/news/2004-10-13/google/

