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In Memoriam

Lil Gejtanu, li gh̄allimni nh̄obb ngh̄odd.

1 What is the course about?

Since this course will be followed mostly by first year students, it is perhaps
right to dwell a little on the meaning of the two words in the title, since this
might also put other courses into better perspective.

1.1 “Discrete”

The word discrete can be largely taken to mean the opposite of continuous. For
example, most of the mathematics you have been studying in your Advanced
Level dealt with functions of a continuous variable, such as, f(x) = sinx. A
graph of such a function would look like a continuously drawn curve. In this
course, however, the variables we shall generally be concerned with are usually
from the set Z = {0,±1,±2, . . .} or N = {1, 2, . . .} or even more simply the finite
set N = {1, 2, . . . , n}. You are probably used to denoting such a variable (which
takes on integer values only) by the letter n (this stands for the first letter in
“Natural Numbers” which is the name of the set N). Thus, for example, a plot
of the above function f(n) would consist of a series of isolated (discrete) points
giving the values of sin 1, sin 2, . . . etc.

What bearing does this have on the type of mathematics we shall be doing
in this course? For one thing, it will not be possible to do calculus on functions
such as f(n), since this would pre-suppose the ability to take limits arbitrarily
close to a given point, whereas f(n) is defined only in discrete jumps (the only
limit we might be able to talk about here would be the limit as n tends to ∞).
It also means that most of what we shall be doing will be conceptually simpler
than for “continuous” mathematics: no limits, no irrational numbers, no tricky
questions about infinity (especially if our variables will be limited to the set N).

But this is merely a sampling of what discrete mathematics is not about.
What sort of things does this branch of mathematics study? One mathematical
structure we could study is a graph, or network, which could model a set of
towns joined by roadways. The variables involved would include the number
of cities and the number of roadways and the interconnections between them,
and questions investigated mathematically could be, for example, finding the
minimum distance between two given cities. Just as in calculus, we have to
find the minimum of some function (distance between the two cities), but new
techniques will have to be sought since the functions we are dealing with are
discrete. One could study data structures, the algorithms defined on them, and
analyse their performance. For example, how many comparisons are required
to sort n objects into increasing or decreasing order? One could study ways of
sending over a transmission channel a code containing n bits in such a way that,
if at most 3 errors, say, are committed by the channel, then the receiver would
be able to detect, or even correct, the errors made.

These are only a few of the interesting topics studied in discrete mathematics,
and in other courses you would have the opportunity to delve deeper into some
of them. In this course we shall be considering something even more basic:
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Enumeration. Basically, enumeration is just a fancy way of saying “counting”.
We shall be studying counting problems. In other words, most of our questions
will be of the type “In how many ways can you . . .”. For example, “In how
many ways can you put n objects into k boxes such that no box is empty?”

Such questions are basic to discrete mathematics because they crop up in var-
ious contexts: “How many comparisons does a given sorting algorithm make?”,
for example, is an important question in algorithmics. In probability, when the
number of possibilities is finite, calculating the probability of an event is often
a question of solving two counting problems—the number of possibilities which
give rise to the event and the total number of possibilities—and taking the ratio.
Even in statistical mechanics, some problems depend on the number of ways in
which photons or particles can occupy a number of energy levels (a question
similar to the last one in the preceding paragraph).

What techniques will be needed for such a course? The main pre-requisite
is a good mathematical sense obtained during your “A” Level studies together
with the love of solving mathematical problems. More specific pre-requisites will
be the section usually entitled “Permutations and Combinations” from your “A”
Level. Unfortunately, many skip this section because they find that, unlike many
other “A” Level topics, the questions involved are not the rôte type questions.
Some good news and some bad news for such students: The topics covered in
“Permutations and Combinations” in the “A” Level syllabus will be revised in
this course—that is the good news. The rest of the news is that this revision
will be done rather quickly (two or three lectures at most) and that one thing
which you have to learn in order to get through the course is to tackle those
questions which are not of the rôte type. But one other bit of encouragement:
Although many students find the going a bit tough early on, the great majority
always manage to get through the unit, and with reasonably good marks.

1.2 “Methods”

You will soon find out that you can divide most of the mathematics courses
in your B.Sc. degree into different families, for example, pure or applied. One
other partitioning is between those courses which are more theoretical and oth-
ers which are based more on developing methods or computational techniques.
Actually this is more of a pedagogical distinction than a mathematical one,
because good computational methods are grounded on good theory, and valid
theory gives rise to effective methods of solving problems. However, it does make
some difference for the student and in the way the course is taught. A “meth-
ods” course is, in many ways, more similar to what you have been accustomed
in your “A” Level—the end of the solution to a problem is an “Answer”—and
this is usually obtained by following techniques learnt during the course. A
more theoretical course usually follows the format “Theorem-Proof-Theorem-
Proof...” In such courses the solution to a problem is generally a whole proof.
In a theoretical course little is taken for granted. For example, in the previous
subsection I mentioned words like “continuous”, “limit”, “finite”, “infinite” and
“irrational” without giving any definitions. I simply relied on our intuition. I
would not do this in a theoretical course. But this is a “methods” course and
a first-year one, therefore a little less emphasis is placed on defining and prov-
ing everything rigorously and we rest a bit more on intuition. All this is done
in order to emphasise the honing of our techniques and methods and to avoid
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missing the computational wood for the theoretical trees, not because we are
against proofs in principle. Also, we do this in the full knowledge that what
is being left to intuition will be amply covered in the more theoretical courses.
Thus, a student who has followed a coherent selection of units from the degree
course should see how the theory and methods complement each other. In fact,
in the more advanced courses, this distinction between methods and theory will
diminish, reflecting more the mathematical way in which these topics should be
tackled.

But in this early “methods” course, the implications for the student are that
there will be very little theory to learn and memorise, and more emphasis will be
placed on learning how to solve problems. This has one important consequence
regarding how you should study the course (although this advice, in my view,
applies to all mathematics courses). Some students first try to understand
the theory and leave the working of set problems to the end (usually close to
the examination date). This is bad even for the theoretical courses, because
the set problems are generally intended to help you understand the theory,
which would be more difficult to do without attempting the problems. But
it applies even more to a methods course, where the emphasis is on problem
solving. Throughout these notes you will find “Problem Sheets”. THESE MUST
BE ATTEMPTED AS YOU GO ALONG WITH THE COURSE. Some of the
problems will be marked by an asterisk. These will be the problems for which
we shall have time to go over in more detail during tutorial sessions. But it
would be a mistake to skip these problems simply because they will be done
in class. Even if you attempt them without success, the time you would have
spent going over them and trying to solve them will not be wasted. You would
be gaining much more from the tutorial than someone who has not had a good
crack at them. Most of the problems in the Problem Sheets are “drill” type
problems, to help re-inforce what has been covered in class. Around half way
through the course you should start attempting questions from past papers.
Exam questions are not strictly of the short drill type which you will find in the
problem sheets. They might require you to reproduce some “theory” from the
lectures, and the problem would probably borrow ideas from different problems
in the Problem Sheets. So you should also try out these past papers when
indicated. Doing all this at a regular pace during the course should enable you
to learn the elementary basics of discrete enumeration techniques sufficiently
well to apply them when needed in other topics (probability, data structures,
algorithms, some parts of algebra, etc) and to face the unit exam with confidence

1.3 The number of credits

This course is worth 4 ECTS credits. It will consist of 28 lectures, two lectures
every week. After the first few weeks we shall be devoting one lecture a week
to tutorials, that is, answering your difficulties in class and working out the
marked questions in the problem sheets. Those who miss these lectures will be
missing that part of the course which, hopefully, should make things clearer to
the student.

The unit’s exam paper will contain 4 questions and candidates are to attempt
three questions in two and a half hours.
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2 Set books

Hundreds of text-books on discrete mathematics have been published in recent
years, so it is not easy to make suggestions. First of all: For those who only
care about getting the credits for the unit and do not want (or think that they
will not need) to hear again about discrete mathematics, these notes should be
sufficient. However, most of you would want to read more about these topics,
or at least read a more extended version than it is possible to present in class
or in these short notes. At least one text book is essential for this.

There are essentially two types of student attending the course. I shall
therefore suggest alternative texts. (Be sure to get the paperback edition of any
of these books when available.)

2.1 B.Sc. & B.Ed. students

One category of student is the B.Sc. student taking Mathematics as a main
subject (or Stats. & OR) and I include in this category the B.Ed. student who
will be following at least half of the mathematics courses given in the B.Sc. For
these I very strongly recommend the book:

Discrete Mathematics (2nd Edition) by N.L. Biggs (Oxford Univer-
sity Press)

I am suggesting this book for this category of student because I shall be
using parts of it in other courses that I shall eventually be teaching you, and
it also contains sections which can prove useful background reading to courses
given by other lecturers. Also, it is written with the “mathematics” student in
mind. Therefore it is a good investment. Moreover, it is supported by an OUP
website which contains solutions to many of the exercises.

To guide you find those parts which are more relevant to this course, here is
a list of more specific reading from Biggs:

• Chapter 5

• Chapter 6

• Chapter 10 Sections 1,4,5

• Chapter 11 Sections 1–5

• Chapter 12 Sections 1,2,4

• Chapter 19 Sections 1,2

• Chapter 25 Sections 1–4

• Chapter 26 Sections 1–4

Of course, there is nothing to stop you reading other parts of Biggs, even
during this unit!

I would also highly recommend the book

Applied Combinatorics (2nd Edition) by F.S. Roberts & B. Tesman.
(Prentice-Hall)
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Although this excellent text does not fit in with the other units I teach as well
as Biggs does, I recommend it because it brings the subject to life mainly through
its several examples of applications of combinatorial theory. I would particulary
recommend the book to future teachers who might be teaching higher forms
and who would find very useful the real-life applications of mathematics which
this book contains.

Here is a guide to those sections of this book which are more relevant to this
course.

• Chapter 1

• Chapter 2 Sections 2.1–2.3, 2.5–2.7, 2.10, 2.14

• Chapter 5 Sections 5.1, 5.3

• Chapter 6 Sections 6.1–6.2

• Chapter 7 Sections 7.1.1, 7.1.2

For those who find that they really enjoy discrete mathematics and combi-
natorics (a word almost synonymous with discrete mathematics) here are two
very good books which you can buy. (The first one is perhaps slightly more
difficult than Biggs. The second is, on the other hand, slightly more easy going,
but it does not overlap so much with what I do in this unit.)

Combinatorics: Topics, Techniques, Algorithms by Peter J. Cameron (Cam-
bridge University Press)

Aspects of Combinatorics: A Wide-ranging Introduction by V. Bryant (Cam-
bridge University Press)

Finally, for this category of students I would like to mention another excellent
reading text:

Mathematics: A Discrete Introduction by E.R. Scheinerman (Brooks/Cole)

As its name suggests, the scope of this book is wider than the scope of these
lectures. But if you like mathematics, and if you discover that you like discrete
mathematics, you will find that this book not only helps you in other branches
of mathematics but is also enjoyable to read.

But I also want to recommend here a book which, in my opinion, is highly
suitable to mathematics students and, in particular, to future teachers of math-
ematics, that is, the B.Ed. students taking this course:

Discrete Mathematics—Elementary and Beyond by L. Lovász, J. Pelikán & K.
Vesztergombi (Springer-Verlag)

There are several reasons for suggesting this book. These three authors are
world class mathematicians, but they are also superb teachers. The book they
have written is a joy to read–if you like mathematics, as I presume you do! The
difference, however, between this book and the other two recommended texts, is
that there is less of a one-one correspondence between it and my course; in other
words, if you are just looking for a text which will help you with this course,
you might be disappointed. So why am I recommending this text, particularly
for future mathematics teachers? It is because I hope that as teachers you will
occasionally be privileged to teach students who are able and want to learn
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more than is taught in the normal mathematics curriculum. Often, a teacher
in this position needs problems and ideas which bring out more of the hidden
beauty and usefulness of mathematics. Combinatorics, or discrete mathematics,
is one very fertile field of mathematics for finding such ideas. This book is
not a collection of challenge problems for the more able children, but it is an
education for the reader on how elementary looking ideas in mathematics can be
developed into diverse results and applications. It is a book which might help
you somewhat marginally in improving your grade in this course, but which
I am sure will go a very long way towards making you a better mathematics
teacher.

2.2 Students from the Faculty of ICT

The other category of student following this course is made up of those who
are following the FICT degree course. The two main texts I suggested above
are quite OK even for these students, since in those the authors devote sev-
eral chapters to applications of discrete mathematics to computer science (algo-
rithms, data structures etc). But I shall be suggesting an alternative text which
is slightly less “mathematical” (at least in the chapters we shall be needing) and
gives more motivation for the IT student. Moreover, it was in the reading list
of some of the IT course units some time ago (this could have changed and I
have no control over it) so it could also be a good investment. The book is:

Discrete and Combinatorial Mathematics: An Applied Introduction
(4th (or later) edition) by R.P. Grimaldi (Addison Wesley)

Again here is a guide to those sections from this book which are more relevant
to this course (these refer to the 3rd edition):

• Chapter 1

• Chapter 5

• Chapter 8 Sections 1,2,3

• Chapter 9 Sections 1,2,3

• Chapter 10 Sections 1,2,3

medskip Another book which I strongly recommend to this class of student
is the following:

Discrete Mathematics (5th Edition) by Dossey, Otto, Spence and Vanden
Eyndon (Prentice-Hall)

These are the sections of this book which are most relevant to this course:

• Section 2.4

• Chapter 8, Sections 8-1–8.6

• Chapter 9, Sections 9.1, 9.2, 9.3, 9.5
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One advantage of buying this text is that I shall be suggesting it again for
my Networks course which the IT students will be taking next year together
with the BSc and BEd students, so it is also a good investment.

Of course, no harm will be done if you buy all three alternative texts, or even
all the books I have mentioned!

2.3 For all students

Recently I have come across the following book:

Combinatorics) by Balakrishnan (Schaum Series)

You might be already familiar with the mathematics books in The Schaum
Series. They are very useful study aids, based on worked problems. They are
also quite inexpensive. In general, they vary in quality, but this is a very good
representative for the series, especially for a course of this type, based very
much on problem solving. I recommend this book very much. Especially from
the point of view of the student who wants a direct no-fuss overview of most of
what we shall do in the course, this is an extremely helpful text. Have a look
at it in our bookshops and decide for yourselves.

Some of you might find the two main texts I recommended above a little
difficult to start off with. In that case I recommend the following text.

Introductory Combinatorics, 4th Ed by R.A. Brualdi (Pearson-Prentice
Hall)

Although I am saying that this is somewhat more easy-going than Biggs, I
do not mean that it is an “A”-Level standard book (see the next subsection).
Brualdi is a first class combinatorialist and a superb teacher. The book basically
contains all the material which the main texts I suggested do, but not in the same
order and not so much in correspondence with this course—which is another
good reason to have it as a secondary text!

2.4 Not cook-books

One final word about these texts. You will find that they are not “A” Level
texts—the student is not spoon-fed, although the authors go through some pains
to describe the subject slowly (they know that they are addressing first year
undergraduates). They are not based on the “cook-book approach”: a method
is given, followed by one or two examples, then the problems or exercises are
just a drill exercise to reinforce the methods learned. This cannot be helped at
this level, and I would not have tried to help it even if I could, because now
you must begin to read text books which give a true representation of what
mathematics is: you learn certain things by drill, you memorise techniques and
theory, but mostly you have to think for yourself by applying what you have
learnt in order to solve new problems.
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3 Past examination papers

As I have already said, apart from working through the problem sheets in parallel
with the lectures, around half way through the course you should start looking
at and attempting questions from the past examination papers. There you
will find out that many questions contain parts which ask for things which
you can reproduce from studying the course and these usually hint at what
methods will be required to solve the subsequent problem—this usually helps
the weaker student who is not so confident at working out unseen problems to get
a few marks and gain some confidence during the exam. Some exam problems
are similar to those in the problem sheets, and some go slightly beyond, but
can always be worked out by the student who has followed the course. Most
of these past papers can be downloaded from my web site. Others would be
available from the secretary of the Department of Mathematics. Again, to
guide you through this (since there are several past papers now) here is a list
of suggested problems, roughly divided into three categories corresponding to
the topics covered in the course. Those problems marked by an asterisk are
somewhat more typical or instructive (this is a subjective opinion). During the
later tutorials we should have time to go over some of these questions.

Elementary Counting, Stirling Numbers, Inclusion-Exclusion, Generating Func-
tions

• Jan 99 No. 1 *

• Jan 99 No. 4 *

• Jan 98 No. 1 *

• Jan 98 No. 2(a) *

• Jan 97 No.2 *

• Jan 97 No. 3 *

• Jan 96 No. 1 *

• Jan 96 No. 4(a), (b) *

• Jan 95 No. 1

• Jan 95 No. 2(b)

• Jan 94 No. 1

Recurrence relations

• Jan 99 No. 2 *

• Jan 98 No. 3

• Jan 98 No. 4 *

• Jan 97 No. 1 *

• Jan 96 No. 2(a)
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• Jan 95 No. 3

• Jan 94 No. 2

Partitions of an integer

• Jan 99 No. 3 *

• Jan 98 No. 2(b)

• Jan 97 No. 4 *

• Jan 96 No. 2(b)

• Jan 96 No. 4(d)

• Jan 95 No. 2(a) *

• Jan 94 No. 3

The last problem sheet in these notes contains many of the asterisked ques-
tions, so this last sheet is definitely not one which you should start attempting
at the end of the course!

4 Four motivating problems

In this section I shall pose four simple counting problems which will, in a sense,
form a leitmotif throughout the course. After the first couple of lectures you
will be able to solve the first problem. The solution to the fourth problem will
emerge towards the end of the course (I shall point out, during the course, the
moments when these problems become “solvable”.)

The basic question is this:

In how many ways can you put six golf balls into four boxes such that no box
remains empty?

The four variations of the problem arise if the balls or boxes are distinguish-
able or identical. By distinguishable balls or boxes I mean that some marks, say
1, 2, 3, . . ., are placed on each object. By identical we mean, of course, that there
is no way to distinguish between the balls or the boxes. These distinctions give
different solutions to the above question. The four variations which therefore
arise (in the order in which they will be solvable along the course) are:

1. Golf balls are identical, boxes are distinguishable

2. Golf balls are distinguishable, boxes are identical

3. Golf balls are distinguishable, boxes are distinguishable

4. Golf balls are identical, boxes are identical
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A few more words about the above four problems: I have chosen the small
numbers 6 and 4 so that one can solve these questions by trial and error, that
is, by hand, trying all possibilities, without the need for any of the theory or
techniques developed in this course. And it would be a very useful (and not very
time-consuming) exercise to try and do these problems this way now, because
this would help you develop a better “combinatorial” sense. However, think
what would happen if, instead of 6 and 4 I had posed the problem with, say,
100 golf balls and 70 boxes. Trial and error would not have been much of a
help here, and this is where a more systematic way of solving these problems
would be necessary. But we want to be even more ambitious. I would want you
eventually to be able to solve the above four instances for this question:

In how many ways can you put n golf balls into k boxes such that no box remains
empty?

What is now required is a formula in terms of n and k, or at least an
efficient method (algorithm) in which to get the result when the numbers are
the general n and k. Definitely, without some theory or systematic way to solve
such problems it would be impossible to get at the result. This is one thing
which you will learn to do along this course.

5 A little probability

In order to enliven the discussion, I shall occasionally present a problem or an
example involving probability. These problems are only meant to highlight some
of the counting techniques we will be learning. You will not need to know any
probability really, beyond these intuitive notions.

Suppose you are “carrying out an experiment.” This could have various
meanings, for example: throwing a die and recording the number shown on
the uppermost face; knocking on the door of a residence and recording the
number of children of each sex living inside the residence; putting three letters
in there envelopes in any possible order. We will always assume that the total
number of possible results of the experiment is finite, and we denote the set of
all possibilities by Ω. For example, in the die experiment,

Ω = {1, 2, 3, 4, 5, 6}

and in the letters-in envelopes-experiment, if we call the letters X , Y and Z,
imagine the envelopes to be the “first”, the “second” and the “third” envelopes,
and keep a record of the order in which the letters were put in the envelopes,
then

Ω = {XY Z, XZY, Y XZ, Y ZX, ZXY, ZY X}.
An “event” in the experiment will be just a subset A of Ω. For example,

in the letters-in-envelopes experiment, the event “The letter X is in the second
envelope” is the set

A = {Y XZ, ZY X}.
Now, if all the possibilities in Ω are equally likely, then we say that the proba-
bility of event A happening is the ratio of the sizes of A and Ω, that is,

Prob(A) =
|A|
|Ω| .
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There is nothing more to know about probability for this course. The problems
encountered will be to determine what Ω should be in order to model the prob-
lem under consideration and to find the sizes |A| and |Ω|. If you can understand
the following then that is all the probability theory you need to know! (By a
fair or unbiased die we mean one for which all the possible outcomes are equally
likely.)

1. The probability of getting a 4 if a fair die is rolled is 1/6.

2. The probability of getting an even number if a fair die is rolled is 1/2.

3. The probability of getting an odd prime number if a fair die is rolled is
1/3.

6 Choosing k objects out of n

In this section we shall look at the most elementary and basic of all counting
problems (and we shall incidentally cover most of what you should have learnt
in the “Permutations and Combinations” part of your “A” Level). The question
is:

In how many ways can k objects be chosen from n available distinct objects?

Again there are four variations in which this problem can be posed. (Note:
These four ways do not correspond to the four motivating problems from the
previous section). We can either allow or not allow repeated choice of the
same objects, and we can decide to count differently or not the same choice of
objects but picked in different order (for example, we can decide that the choice
of three letters cab or abc is different, or the same—if they are considered to
be different we say that order is significant). These considerations, of course,
lead to different results to the above question. We shall deal with these four
variations separately, starting from the easiest.

6.1 Repetition allowed, order is significant

Think of the problem as choosing k letters in order from an alphabet containing
n letters—therefore you are asked to form all possible k-letter words. How
many such words are there in all? Well, the first letter can be chosen in n ways.
Having chosen this first letter, for each of these choices the second letter can be
chosen also in n ways, because we are allowed to repeat letters. Therefore the
first two letters can be chosen in n2 ways. Continuing this way, we see that the
first three letters can be chosen in n3 ways, and in general, the first k letters
(which is our problem here) can be chosen in

nk

ways, and this is the solution to our problem.

6.1.1 The multiplication and addition rules

Note that we have here used what is called the multiplication rule, which is
sometimes described by saying that if we can do one thing in a ways and another
in b ways, then both things can be done simultaneously in ab ways.
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We have to be careful however: We can only apply this rule if we can say
that, for each of the a ways in which the first thing can be done, the second
one can be done in b ways. You must always be very careful that you only
apply the multiplication rule when you can say loud and clear the condition
which I have highlighted. Very often, mistakes are made because one applies
the multiplication rule when the first thing can be done in a ways, but the
second thing can be done in b ways for some of these a ways, in c ways for some
of the others, etc. In this case, we obviously cannot multiply.

Another source of confusion here is that there is another rule, the addition
rule, and sometimes a student asks when do we multiply and when do we add?
The addition rule says that if one thing can be done in a ways and another thing
can be done in b ways, then one or another of these things can be done in a + b
ways.

Example 6.1 1. In how many ways can one choose two books of different
languages from amongst 5 in English, 7 in Maltese and 10 in Italian.

2. In how many ways can the choice be made if the books need not be of
different languages?

Solution

1. 5 × 7 + 5 × 10 + 7 × 10 = 155.

2. 22 × 21 = 462.

To help you draw better the distinction between the multiplication and ad-
dition rules, try Exercise 5 and Exercise 6 from Problem Sheet 1.

6.2 Repetition not allowed, order is significant

We can argue as in the previous case. The first object can be chosen in n
ways. For each of these ways (therefore we can use the multiplication rule) the
second object can now be chosen in n − 1 ways, because repetition is now not
allowed. Therefore the first two objects can be chosen together in n · (n − 1)
ways. Continuing this way, the first k objects (which is our problem here) can
be chosen in

n · (n − 1) · (n − 2) . . . (n − k + 1)

ways, and this is the answer to our problem.
You might already be familiar with this number, and also know that this

way of selecting k out of n objects is called the number of permutations of k
objects out of n. You might also be familiar with notation such as nPk for this
number. The notation which we shall use will be

[n]k

and we shall call this number the falling factorial. When k = n, then

[n]n = n(n − 1)(n − 2) . . . 2 · 1
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and we denote this number by n!, calling it “n factorial”. Note that [n]k can be
written in terms of factorials as,

[n]k =
n!

(n − k)!

and this is a formula with which you are most probably also already familiar
from your “A” Level.

6.2.1 Stirling’s approximation

Evaluating n! is no easy task—as n becomes large n! increases very rapidly.
This last sentence could form a good part of a whole course, but we shall not
spend much more time on it here. We shall only mention that there is a very
good approximation to n! called Stirling’s Approximation, and it says,

n! ≃
√

2πn
(n

e

)n

.

Here, f(n) ≃ g(n) means that f(n)/g(n) tends to 1 as n tends to ∞, that is,
f(n) is closer in value to g(n) the larger n is. When n = 10, the percentage
error made by Stirling’s approximation is high: 83%. But when n = 100, say,
the percentage error is only 0.09%. This approximation for n! makes it possible
to obtain very good estimates of the values of n! and of expressions in which it
appears.

Sometimes, a rougher, but maybe easier to use, estimate for n! is applied,
namely that

(n

e

)n

≤ n! ≤ (n + 1)n+1

en
.

Although the proofs of these approximations are not terribly difficult, we shall
not give them here since they require calculus.

Example 6.2 The approximation

n! ≃
(n

e

)n

is a very useful estimate for n!. Using this estimate show that

(

n

k

)

≃ nn

(n − k)(n − k)kk
.

Using a mathematical computational package such as Mathematica, investigate
how good an approximation for

(

n
k

)

this is for large values of n and k.

6.3 Repetition not allowed, order not significant

Let x be the number of ways in which the k objects can now be chosen. Having
listed these x ways of choosing the k objects, suppose we decide that order will
become significant. Then, each one of these x ways (so we can use multiplication
rule) will, by jumbling up in all possible ways the k objects selected, give us k!
different selections with order significant. That is, we would have x · k! ways of
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choosing the k objects, without repetition, but order significant. But we have
just seen that this is equal to [n]k. Therefore

x · k! = [n]k

x =
n!

(n − k!)k!
.

Therefore our required answer is

n!

(n − k)!k!

and we shall write this, for short, as

(

n

k

)

calling it “n choose k”. This is the famous binomial number or binomial coef-
ficient, with which you are almost certainly familiar from your “A” Level. We
shall have more to say about the binomial coefficient in a subsequent section.

Example 6.3 In some problems it is clear whether, in the given counting prob-
lem, order is or is not significant, sometimes because the problem specifically
says so. But sometimes you have to decide for yourself. This is true, for ex-
ample, in probability problems. Consider the following elementary example but
which, nevertheless, gave problems to mathematicians when the theory of prob-
ability was still in its infancy.

Suppose that you know that a family has two children but you know nothing
else about the family except that it is equally likely that a child is a boy or a girl.
Let p denote the probability that the two children in the family are both boys.

1. Why do you think that some argue that p = 1/2?

2. Why do you think that some argue that p = 2/3?

3. Which answer do you think is correct? Remember the italicised require-
ment above about the set Ω.

4. What simulation would you carry out to verify which is the correct result.
Does this method of verification indicate an interpretation of what “proba-
bility” really means? Do you know any results in probability theory which
justify this interpretation? Do you know if this interpretation is contro-
versial even amongst mathematicians? (These last questions are for those
students who know more probability theory than is explained in Section 5.)

Example 6.4 Do not be mislead by the wording of a problem. When we say
that we are counting “unordered” selections or that order is not “significant” we
mean that, in the situation we are interested in, any selection will be counted
once, if if that selection can be ordered in several different ways.

For example: How many three-letter words are there? By a “three-letter
word” we mean here any string of three distinct letter written in alphabetical
order.
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In spite of superficial appearance, the answer is
(

3
26

)

, that is, the number
of unordered choice of three distinct letters. Just think a few seconds about
it. Every choice counts only once not six times, because it is presented in a
unique pre-determined order. This unique order means that the different ways
of ordering the three chosen letters are not counted as different choices, that is,
order is not significant for the purpose of counting here.

6.4 Repetition allowed, order not significant

The previous three cases should all have been familiar to you from your previous
studies. This fourth case is slightly more difficult to solve, and it is, in fact,
probably the first item you are meeting in this course which is not a revision of
what you have done in your “A” Level.

First of all note that we cannot use the multiplication rule here. Yes, the
first choice can be made in n ways, and for each of these ways, the second
choice can be made in another n ways (since repetition is allowed). But we
are already overcounting, because we are counting choices such as ab and ba
to be different, whereas order is not significant here. You might think, well let
us use the same system we employed for calculating

(

n
k

)

based on [n]k, that
is, divide by the number of repetitions. However, in this case, it is not true
that every choice is repeated the same number of times. (This emphasised text
has the same importance as the emphasis we place on the phrase for every one
of the previous choices when applying the multiplication rule—we can be said,
after all, to be applying the ”division principle” here.) Some choices like ab
are repeated twice while others, like aa, appear only once. One could carefully
consider those which are repeated twice, divide their number by two, and add
the rest, and this would work well here. But what happens when we come to
a choice of three letters? Now, some choices, like abc, are repeated six times,
others are repeated three times, others are not repeated at all. And the situation
becomes more complex when four objects are chosen. And what about the case
when k objects are chosen? It seems clear that proceeding this way will not give
us a nice neat formula for the result we are seeking. And all this because, just
as in those situations where we cannot use the multiplication rule, we cannot
here say that all choices are repeated the same number of times.

We therefore have to solve this problem more carefully. The technique we
shall use is to translate the problem into a second counting problem, show that
the second counting problem has the same solution as the first, and then show
that there is an easy way to solve the second problem. This is a very important
technique in combinatorics. Seeing it applied for the first time, most students
feel that the solution is like a magic rabbit drawn out of a hat, without any hint
as to how one should be stumble on the idea, if not by accident. This student
would worry, not without some justification, that presented with such a problem
himself, he would be at a complete loss how to proceed. Well, the best advice is
that you are seeing this type of mathematics for the first time, and that is the
reason why the technique appears to be all trickery. But when you would have
seen other problems solved in this way, the mystery begins to dissolve, and you
would eventually be able to find the “tricks” yourself.

(In fact, the mystery never really dissolves. This is what a mathematician
does for a living: Finding clever new ways of solving problems. The better
the mathematician, the more difficult the problems she would be tackling, and
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the more clever the “tricks” have to be. But even a world class mathematician
builds his cleverness upon an accumulation of techniques learnt gradually over
the years. And in any case, for the student, especially a first year student taking
his first mathematical steps, the advice of the previous paragraph is generally
what is expected of him.)

But let us now continue with solving the problem at hand. Let us reconsider
the problem as one of a distribution of k objects into n boxes. For example,
if k = 4 and n = 3 and the n objects are the letters {a, b, c}, then the choice,
say, aabc (remember that repetition is allowed but order is not important), can
be represented as a distribution of four identical objects into the three boxes
marked a, b, c, respectively: Two objects go into box marked a, and one object
goes into each of boxes marked b and c. Note that this representation ensures
that the number of choices is the same as the number of distributions of the
objects into the boxes. So we might as well count the latter in order to solve
our problem.

Suppose we want to represent each distribution by some code. We can decide
to represent each object by the symbol ×. We shall also decide which box will
have its symbols listed first in our code, which listed second, and so on. We shall
show the separation between boxes by the symbol | (hence, only 2 separation
symbols | will be required in this case). Therefore the above choice would be
represented by the code

×× | × | × .

If the choice had been, say, aacc, then the code representing it would have been

×× || × ×.

Note that we need four symbols × (corresponding to k = 4) and two separation
symbols | (one less than the number n = 3 of boxes). Note also that again we
have that the number of codes is the same as the number of distributions: So
we might as well count the number of codes.

How many codes of this type are there? Well, each code has a total of six
symbols, and a code is determined once we decide where to put the four symbols
×. And this can be done in

(

6

4

)

= 13

ways. This is then the solution to our problem when k = 4 and n = 3.
We can now repeat the same argument for general k and n. It all boils down

to determining the number of codes containing exactly k symbols × and n − 1
symbols | (for a total of n + k − 1 symbols). This is equivalent to the number
of ways in which we can choose the positions of the k symbols ×, and this can
be done in

(

n + k − 1

k

)

ways. This is the solution to our problem, that is, the number of ways in which
we can choose k objects out of n allowing repetition but disregarding order.

The above result will be very important throughout the rest of the course.
You will be meeting it under different guises. You will at first forget the result,
or fail to see the connections, but I expect that by the end of the course this
result will become second nature to you!
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Example 6.5 You can now do the first of the “four motivating problems” posed
earlier on.

6.4.1 Choosing objects versus distributing objects

The above technique of transforming a problem involving choosing objects into
one involving distributing objects into boxes is quite general. In fact, the prob-
lem:

In how many ways can you choose k objects out of n?
can be translated into the equivalent problem:

In how many ways can k objects be distributed into n boxes?
Each one of the boxes is made to correspond to one of the n objects, and a
choice of one of the n objects in the first problem is represented by putting
one of the k objects into the corresponding box. In this way, k boxes out of
the n are “chosen”. The main question is how to translate the conditions of
repetition/non-repetition and ordered/unordered.

Well, the first question is easy. If repetition is allowed in the choice problem,
then putting more than one object into the same box is allowed in the distri-
bution problem. For the second question, if order of choice is to be taken into
consideration, then the k objects will be numbered 1, 2, . . . , k, respectively. This
way, the order in which an object is chosen is represented by placing an appro-
priately numbered (corresponding to the order) object into the corresponding
box. But if order is not significant, then the objects distributed into the boxes
will be identical.

It is best to illustrate by some examples. Suppose that we are required to
choose k = 3 objects out of n = 5. Let the five objects be {a, b, c, d, e}. Suppose
first that order is significant and repetition is allowed. Consider the choice ada.
This will be represented by putting objects marked 1 and 3 into box a and
object marked 2 into box d. The “code” repersenting this distribution will be
13|||2|.

Now consider the same choice ada where, this time, order is not significant.
This would be represented by placing two objects into box a and another object
into box d, where all the objects will be identical. The code for this distribution
would be ×× ||| × |.

Now consider the choice dac, where order is significant, but there is no
repetition. This would be represented by placing object numbered 1 into box
d, object 2 into box a and object 3 into box c. The code for this distribution
would be 2||3|1|.

Finally, consider the same choice dac but where now the order is not impor-
tant. This would be represented by placing three identical objects one each into
boxes a, c and d. The corresponding code would be ×|| × | × |.

The study of distribution of objects in boxes under various conditions is of
some importance in statistical mechanics (see Exercise 8).

7 The binomial coefficient and a first look at the
interplay between algebra and combinatorics

A whole combinatorics course can be built around the binomial coefficient. We
shall, of course, not be so ambitious here, but we shall open a small window on
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the many properties of the binomial coefficient and we shall use this discussion
as a vehicle in order to introduce some very important techniques involving the
interplay between algebra and combinatorics.

7.1 Two simple identities

The simplest identity involving the binomial coefficient is surely the following:

(

n

k

)

=

(

n

n − k

)

.

We can prove this identity in two ways. One way is purely algebraic: Use the
formula for the binomial coefficient to write

(

n
k

)

as n!/(n − k)!k!, and similarly
(

n
n−k

)

as n!/k!(n − k), and clearly these quantities are equal.
We can also see that the above identity is true combinatorially, that is, by

interpreting the binomial coefficient as the number of ways of choosing objects
in a certain fashion, without resorting to an algebraic formula for the coefficient.
OK, how does the argument go. Well,

(

n
k

)

means the number of choosing without
order or repetition k objects out of n—think of it as choosing the best k players
out of a pool of n in order to play in an important match. But choosing the k
players who will be playing is exactly equivalent to choosing the n− k who will
not be playing, that is, the number of ways of doing the former is equal to the
number of ways of doing the latter, in other words,

(

n
k

)

=
(

n
n−k

)

.
Let us now look at another less trivial (but still simple) identity involving

the binomial coefficient. This is:
(

n

k

)

=

(

n − 1

k

)

+

(

n − 1

k − 1

)

.

The algebraic way to prove this runs as follows. Using the formula for the
binomial coefficient, write the right hand side of the proposed identity as

(n − 1)!

k!(n − k − 1)!
+

(n − 1)!

(k − 1)!(n − k)!

then simplify it (take the least common multiple of the denominators, etc—all
this is left as an easy exercise for the reader) to obtain n!/k!(n − k)!, which is
the formula for

(

n
k

)

, which is the left hand side. Therefore the identity has been
proved.

Now for the combinatorial proof. The left hand side counts the number of
ways of choosing k objects out of n without order or repetition. Suppose the
n objects are {1, 2, 3 . . . , n}. Then let us divide all these possible choices of k
objects into two types: Type I all those in which “1” is chosen, and Type II all
those in which “1” is not chosen. Clearly,

(

n
k

)

is equal to the sum of all choices
of Type I and Type II (because no choice is left out this way, and no choice is
counted more than once, since Type I and Type II are “disjoint”).

So let us count the number of choices of Type I. We now have n− 1 objects
to choose from, and we need to choose k− 1 objects, since “1” has already been
chosen. So the number of ways to do this is

(

n − 1

k − 1

)

.
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Let us consider the Type II choices. Again we have n−1 objects to choose from,
but we now still need to choose k objects, because all we know is that “1” is
not to be chosen. The number of ways to do this is clearly

(

n − 1

k

)

,

and therefore adding these two results gives the required identity.

You might well ask here: Why do we need two ways to prove the same result?
There are many valid reasons for this. First of all, in mathematics, it is generally
a font of new results and ideas when we can get to the same place by different
routes. Very often, different expressions for the same thing are obtained, and
by equating the different expressions new identities are discovered. Also, the
different routes can give different insights into why the result is true. Note
above that the algebraic method gave us an almost mechanical way of proving
our results—algebra took over and we did not need to think very hard on why
the results were true. This is often one advantage of the algebraic way when
dealing with more difficult and complex identities. On the other hand, the
combinatorial method forced us to interpret the meaning of the coefficients and
hence of the identity we were proving. This often gives a deeper understanding of
the results we are proving, although this is sometimes more difficult to achieve.

In our context, there is another very compelling reason for learning these
two types of proofs. We shall soon encounter another counting number like the
combinatorial coefficient, but for which no closed formula is known. In spite
of this we shall be proving an identity very similar to the second one above.
Clearly, in this case, since no formula is available, we do not have the luxury of
both the algebraic and the combinatorial proof, but we must instead know how
to make the latter work.

7.2 Pascal’s Triangle and a first look at recurrence rela-
tions

Deriving combinatorial identities is not simply a fun exercise in itself. Very
often these identities can be used for practical purposes, such as computing the
value of some binomial coefficients. This is the case with the second identity
above. We have already noted that computing factorials is no mean task for
large numbers. However, we can obtain the value of the binomial coefficient for
reasonable values of n and k (and for much higher, with a computing machine)
by using this identity. Notice that this identity gives us the binomial coefficient
in terms of itself, therefore we seem to be going round in circles. However, note
that the parameters on the right hand side are smaller than those on the left
hand side. That is, we can find what

(

n
k

)

is if we know what it is for smaller
values of n and k—a sort of cascade effect going backwards. Such an identity
is called a recurrence relation. However, in order to stop this cascade effect
from going backwards without ever stopping, we need to know the value of

(

n
k

)

from some starting values. A recurrence relation always comes equipped with
such starting values, and they are usually called initial conditions or boundary
conditions. These initial conditions have to be obtained not from the recurrence
relation (Of course! Why?), but from the nature of the problem itself. In our
case this is easy. For any value of n, there is only one way to choose all n objects
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(remember, no repetition, no order), and only one way to pick no object at all.
Therefore, our initial conditions are

(

n

n

)

= 1 and

(

n

0

)

= 1.

Starting from
(

0
0

)

= 1 or even
(

1
0

)

=
(

1
1

)

= 1 we can then calculate
(

2
k

)

for all

appropriate values of k, then
(

3
k

)

,
(

4
k

)

and so on, using the above identity, and
stopping when we hit boundary conditions. You are already familiar with how
this is done in this case, and the values obtained in this order form what is called
Pascal’s Triangle. Here are the first few lines from Pascal’s Triangle. The kth
number (starting from k = 0) in the nth row (also starting from n = 0, which
is the top row, consisting of just “1”) is the value of

(

n
k

)

.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

The above discussion on recurrence relations and initial conditions should
have reminded you of two topics you have already encountered (one, if you
are not studying any computing), namely, proofs by induction and recursive
programming. These three topics (recurrence relations, proof by induction and
recursive programming) are different facets of the same mathematical idea. In
fact, at this stage, computing students should find it instructive to try out the
next example (unless you have already been assigned this or similar exercises).

Example 7.1 Write a recursive program which will input n and k and compute
(

n
k

)

using the above recurrence relation. Write also a non-recursive program to
do this. Is the recursive program easier to write? On the other hand, which is
the most efficient program in terms of calculations involved?

7.3 The Binomial Theorem—Our first generating function

You should already know that the binomial coefficients are the main components
of the, so-called, Binomial Theorem, which says:

Let x be any real number and n a positive integer. Then

(1 + x)n = 1 + x +

(

n

2

)

x2 +

(

n

3

)

x3 + . . . + xn

n
∑

k=0

(

n

k

)

xk.

Again, there are two ways to prove this. The algebraic way is by induction.
Assume the result is true for n. Then, for n+1, since (1+x)n+1 = (1+x)(1+x)n,
we need to multiply the right-hand-side by (1 + x), collect like terms (using the
recurrence relation which we have just discussed for the binomial coefficients)
and get the formula for n + 1.
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We shall not dwell any longer on this because we want to discuss in more
detail the other method of proof, the combinatorial method. (The interested
reader is invited to fill in the details of the above proof by induction, or else to
look it up in some good “A” Level textbook.) So, imagine writing out (1 + x)n

as a product of n brackets (1 + x). Each coefficient in the expansion of this
product is obtained by “visiting” each of the brackets once and picking either 1
or x and multiplying the choices together. Therefore the term xk appears every
time we choose x exactly k times and 1 the rest of the times. The number of
ways this can happen is equal to the number of terms xk which, when collected
together, give xk multiplied by its coefficient. Therefore this coefficient is the
number of ways of picking k objects (x’s) out of n possibilities (given by the
n brackets). Repetition is not allowed (we can only choose one object from
each bracket) and order is not important, since multiplication is commutative.
Therefore the required number of ways (that is, this coefficient) is equal to

(

n
k

)

,
and the result is proved.

We can also think of the binomial expansion in this way: The expression
(1+x)n is storing, in a compact algebraic expression, all the binomial coefficients
(

n
k

)

. It is as if carrying with us (1 + x)n means that we have in our pocket all
these binomial coefficients. All we need to do to extract one or any of these
coefficients is to expand (1 + x)n and, if we need

(

n
k

)

, then we look up the
coefficient of xk. This process of expanding an algebraic expression p(x) and
taking the coefficient of the term xk is so often used that we have a special
notation for it. Thus, instead of saying “the coefficient of xk in the expansion
of p(x)” we write

[xk]p(x).

Therefore,
(

n

k

)

= [xk](1 + x)n,

and this is just another way of writing the Binomial Theorem. But here we are
emphasising the role of (1+x)n as a “carrier” of the binomial coefficients, rather
than seeing the theorem as a way of expanding (1+x)n which, incidentally, gives
(

n
k

)

as coefficients.
When an expression is viewed like p(x) above as a carrier of its coefficients,

we say that p(x) is the generating function of its coefficients. Of course, given a
generating function we might still need to do a lot of work in order to extract its
coefficients, and we shall see situations where this cannot be done completely.
However, we shall see that even in such cases, having the generating function
without knowing exactly what the coefficients are can also be very useful in
order to get results.

In this section we have started from known coefficients (the binomials) and
arrived at their generating function. In solving counting problems we often need
to do the reverse, that is, construct a generating function whose coefficients are
the answer to our counting problem. The question remains: Are we able to
expand the generating function in order to get at the coefficients?

We shall see an example of this in the next section.
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7.4 Using generating functions to solve counting problems

Suppose we have the following counting problem. We are to choose five letters
from the letters a, b, c, d with order not important, but we are given that the
letter a can be chosen up to twice (including the possibility of not being chosen),
the letters b and d can each be chosen at most once, while the letter c must be
chosen at least once but not more than three times. In how many ways can a
choice of five letters be made subject to these restrictions?

Let us try and solve this by taking a leaf out of the combinatorial proof of
the Binomial Theorem. Let us write down a product of four brackets, one each
for the letters a, b, c, d, respectively, and let us do this in such a way that, when
multiplying out these brackets, the coefficient of xk will be the number of ways
of choosing k letters under these conditions (we are interested in k = 5, but
that is just an example). The product would be

(1 + x + x2)(1 + x)(x + x2 + x3)(1 + x).

The first bracket contains these powers of x: 0, 1 and 2, since a can be chosen
zero times, once or twice. Similarly for the other brackets. In particular, notice
that the third bracket does not contain the constant term 1. This is because
c cannot be chosen zero times, that is, it must be chosen at least once. It
should not be difficult to convince yourself that the coefficient of xk in the above
expansion is equal to the number of ways in which we can choose k letters out
of a, b, c, d under the given restrictions. In other words, the above expression is
the generating function for our counting problem, and we can write, using our
notation defined previously, that the number of ways of choosing k letters in
this problem is equal to

[xk]x(1 + x)2(1 + x + x2)2,

after simplifying a little the expression.

Example 7.2 Find the coefficient of x5 in the expansion of the above expres-
sion.

Solution This is now a simple “A” Level problem, and the result is 8.

Sometimes we require what is sometimes called a full inventory of the choices
possible, not just their number, that is, a complete listing of the possible choices.
Algebra can also help us to achieve this. First, let us decide that a choice of,
say, two a’s, one b and two c’s will be written as a product a2bc2. Then, to get
the full inventory we replace the above expression by

(1 + ax + a2x2)(1 + bx)(cx + c2x2 + c3x3)(1 + dx),

and the coefficient of xk (which will now not be a number but a sum of products
of the letters a, b, c, d) will actually list the possible choices of k letters from
a, b, c, d under the given conditions.

Example 7.3 Draw up a list of the possible choices of five letters in the above
example.
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Solution This is now given by the coefficient

[x5](1 + ax + a2x2)(1 + bx)(cx + c2x2 + c3x3)(1 + dx),

and although it is still an easy problem in multiplication of algebraic variables,
more work needs to be done here (of course, we are asking for more information).
This is left as an exercise to the reader. Notice that, in this case, finding this
coefficient is really no more or less different or difficult than actually listing the
possible choices.

7.5 Returning the favour: using the result of a counting
problem to obtain an algebraic result—the Binomial
Theorem with negative integral exponent

The problem we would now like to solve is a purely algebraic one, namely, to
find an expression for the expansion of

(1 − x)−n

where n is a positive integer. That is, we shall be proving the Binomial Theorem
for negative integral exponent. However, we shall be using mainly counting
techniques to do this (we shall actually use a result we have proved above),
although this is, of course, not the only way to prove this theorem.

First consider the expression (1 − x)−1. If we assume that −1 < x < 1 then
this is the infinite sum of the geometric progression

1 + x2 + x3 + x4 + . . .

We shall henceforth assume that all conditions required for convergence of any
infinite series we might meet do hold (this is, after all, a “methods” course,
although all these convergence arguments can be made completely rigorous and
water-tight—but this treatment is enough for a first course in generating func-
tions).

Well, back to our expression. If we write out (1 − x)−n as a product of n
brackets, each a G.P., as

(1 + x2 + x3 + x4 + . . .)(1 + x2 + x3 + x4 + . . .) . . . (1 + x2 + x3 + x4 + . . .)

then our problem becomes that of finding the coefficient of xk in this expansion.
It looks rather hopeless, doesn’t it, multiplying n infinite expressions! But look
at it this way. We are required to collect k x’s (xk) out of n possibilities (the
brackets). But each possibility allows us to: not choose x (choose the term 1),
or choose one x, or choose two x’s (x2), etc. So the problem can be re-worded
as follows: In how many ways can you choose k objects out of n, order not
significant, and repetition allowed without limit (except that you cannot, of
course, make more than k choices in all)? But we know the answer to this, it
is
(

n+k−1
k

)

. And this is the required coefficient of xk, and so we have obtained
the Binomial Theorem we were aiming for. We shall write down this theorem
in different equivalent ways, not only so that you can make the extra effort to
remember this very important result, but also so that we can revise the different
notations we have developed up to now.
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The Binomial Theorem for negative integral exponent
Let x be a real number, −1 < x < 1, and let n be a positive integer. Then

(1 − x)−n = 1 +

(

n

1

)

x +

(

n + 1

2

)

x2 +

(

n + 2

3

)

x3 + . . .

=

∞
∑

k=0

(

n + k − 1

k

)

xk.

Alternatively, we can say that the coefficient of xk in the expansion in powers
of x of (1 − x)−n is

(

n + k − 1

k

)

or, using the shorthand notation we have defined for such situations,

[xk](1 − x)−n =

(

n + k − 1

k

)

.

7.6 Probability generating functions

This section requires more knowledge of probability than what is explained in
Section 5 and may be omitted.

The use of generating functions in probability is very important, and there they
are called probability generating functions, because the coefficients of the xk,
that is, the numbers which they generate, are probabilities. Let us consider a
simple example which illustrates a non-trivial use of generating functions.

Let A be a random variable which can take on the values {0, 1, . . . , n} and
let the probability P (A = k) that A is k be denoted by pk and let it be equal to

(

n

k

)

pkqn−k

where q = p − 1. Let us form the generating function

g(x) =
n
∑

0

pkxk =
n
∑

0

(

n

k

)

pkqn−kxk.

It is clear that
g(x) = (q + px)n

by the Binomial Theorem. In fact, the random variable A is said to have the
binomial distribution. Now, to what use can we put the function g(x)? One
thing which we would like to calculate for a given random variable is its mean.
For A this is equal to

n
∑

0

kpk.

We can evaluate this sum by some simple manipulations with g(x). Note that,
by differentiating g(x) term-by-term,

d

dx
g(x) =

n
∑

0

k

(

n

k

)

pkqn−kxk−1 =
n
∑

0

kpkxk−1,
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And substituting x = 1 in this sum gives exactly the mean of A. Therefore let
us differentiate g(x) = (q + px)n with respect to x and then substitute x = 1.
Since g′(x) = n(q + px)n−1 this gives

g′(1) = np(q + p.1)n−1 = np,

since p+q = 1. Therefore the mean of A is np, and we got this result quite easily,
without having to evaluate any more summations, but just by manipulating
g(x).

8 Counting functions

In this section we shall look at some of the previous counting problems in a
slightly different guise. This will have several aims. Firstly, as we have already
commented, looking at the same problem from a different angle helps us to gain
more insight into the problem. Secondly, these next few sections will enable us
to look at possible the single most important concept in mathematics: functions.
Of course, in other courses you will be doing much more on functions—here we
shall only be interested in counting particular types of functions. But reviewing
the basic definitions will help to consolidate what you are learning in other units.
Finally, this point of view will lead us to a totally new counting problem, a new
combinatorial coefficient, and the opportunity to apply some of the previous
principles and techniques in a different setting.

First of all, what is a function? We shall not give the most rigorous definition
here, but simply say that a function involves two sets A and B (often, these
sets are subsets of the real numbers, like intervals; and we are not excluding the
possibility that A = B; A is called the domain of the function and B is called
its co-domain) and it is a rule which assigns to every element in A a unique
element in B. This situation is often described by the notation

f : A → B

and if an element a ∈ A is mapped by f into the element b ∈ B we denote this
either by

f : a 7→ b

or
f(a) = b.

The set of all elements of B on which the elements from A are mapped is called
the range of the function. Note that the range is a subset of B—it can consist
of only one element, or, at the other extreme, it might be equal to all of B.

Notice the two emphasised words in the definition of a function. No element of A
can fail to be mapped onto something in B, (although not all elements in B need
have some element mapped onto them) and no element in A can be mapped into
more than one element from B. Thus, for example, the ”function” f(x) = ±√

x
is not a function. The two functions f(x) = |√x| and g(x) = −|√x| however are
legitimate functions. The best way to remember all this is perhaps by keeping
in mind the two ”forbidden” pictures for a function, that is, what a function
cannot be (see Figure 1).
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Figure 1: The forbidden pictures for functions

The most basic counting question which now arises is the following. Suppose
A and B are finite sets with |A| = k and |B| = n. How many functions are
there from A to B?

Well, suppose A = {a1, a2, . . . , ak}. Any function f is completely determined
once we know f(ai) for all 1 ≤ i ≤ k. In how many ways can f(a1) be chosen?
Clearly in n ways, because a1 can be mapped into any element of B. Now, for
each of these choices the value of f(a2) can also be chosen in n ways (remember,
in the forbidden pictures of a function we are not excluding the possibility that
different elements of A are mapped into the same element of B and neither that
some elements of B are “left out”). Therefore the first two elements of A can,
between them, be mapped into B in n2 ways. Continuing this way we conclude
that all the elements of A can be mapped into elements of B in nk ways, and
each of these ways gives a different function. And there are no more! Therefore
the number of functions from a k-set to an n-set is

nk.

Of course, we have already seen this expression in the very first counting
problem we have studied in this course, and this is because a function from
A to B is simply another way of choosing k elements (the f(ai)) from the n
elements of B. Repetition is allowed by the definition of a function, and order is
important, because, if we, say, interchange the values of f(a1) and f(a2), then
we get a different function.

8.1 Counting injections

The definition of a function is very lenient. Sometimes we require more restric-
tions. For example, we might require that no different two elements of A are
mapped into the same element of B. When a function has this property we say
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that it is one-to-one or injective. The forbidden picture for injective functions
(called injections) is shown in Figure 2.

z-

1

-

?

?A B

Figure 2: The forbidden picture for injective functions

Sometimes we require that no element of B is left unmapped, that is, for
any element b ∈ B there must be at least one element a ∈ A such that f(a) = b.
Such functions are said to be onto or surjective. The forbidden picture for
surjective functions (called surjections) is shown in Figure 3.

z-

z

:

?
A

B

Figure 3: The forbidden picture for surjective functions

A function which is both injective and surjective is called a bijective function
or a bijection or a one-one-correspondence.

Example 8.1 When there is a bijection between two finite sets, then the two
sets have the same number of elements. (If this common number is n, then the
number of bijections between the sets is n!—why?) Thus bijections are one of
the two most important counting tools in combinatorics (the other is generating
functions!).

Can you find examples of two infinite sets A and B such that one is appar-
ently “larger” than the other but it is still possible to construct a bijection from
A to B?

Solution Consider the set A of positive integers and the set B of even positive
integers (that is, B is a subset of A). But f : A → B defined by f(a) = 2a is a
bijection. This seemingly strange phenomenon does not occur with finite sets.
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That the number of bijections between two n-sets is n! can be seen in various
ways, one being that [n]n = n!.

In this section we shall be counting injections. Counting surjections is more
difficult, and we shall tackle that in the next section.

Thus, let A and B be finite sets with |A| = k and |B| = n. How many
injective functions are there from A to B?

Again, suppose A = {a1, a2, . . . , ak}, and again we note that any function f
is completely determined once we know f(ai) for all 1 ≤ i ≤ k. In how many
ways can f(a1) be chosen? Clearly in n ways, because a1 can be mapped into any
element of B. Now, for each of these choices the value of f(a2) can be chosen
in n − 1 ways (remember, in the forbidden pictures of an injective function we
are excluding the possibility that different elements of A are mapped into the
same element of B). Therefore the first two elements of A can, between them,
be mapped into B in n(n − 1) ways. Continuing this way we conclude that all
the elements of A can be mapped into elements of B in n(n− 1) . . . (n − k + 1)
ways, and each of these ways gives a different function. And there are no more!
Therefore the number of functions from a k-set to an n-set is

n(n − 1) . . . (n − k + 1) =
n!

(n − k)!
= [n]k,

the falling factorial.
We have already seen this expression in the second counting problem we

have studied in this course, and this is because an injective function from A to
B is simply another way of choosing k elements (the f(ai)) from the n elements
of B. Repetition is not allowed by the definition of an injective function, and
order is, as explained above, important.

8.2 Counting surjections

Recall that a surjection from A to B is one for which the range is all of B—
that is, every element of B has at least one element from A mapped onto it.
Counting surjections is a trickier problem. Suppose that |A| = n and |B| = k
(we have reversed the roles of n and k, not that it makes any difference to the
problem, but so that our final result will agree with the notation used to solve
a related problem). Let B = {b1, b2, . . . , bk}. For any surjection f from A to B,
each element bi will have at least one element (possibly more) from A which is
mapped onto it by f . So, let f−1(bi) denote the set of all those elements of A
which are mapped onto bi. The subsets f−1(b1), f

−1(b2), . . . , f
−1(bk) of A have

two very important properties (which stem from the two “forbidden” diagrams
for a function):

1. No two subsets overlap, in other words they are disjoint. This is because,
by the definition of a function, no element of A can be mapped by f onto
two different elements of B.

2. The union of all these subsets covers all elements of A. This is because,
again by the definition of a function, no element of A can fail to be mapped
onto some element of B.
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These two properties of a system of subsets of a set A (whether or not the
subsets arise from a surjection) are so important in mathematics that we give
such systems a special name. Thus, if a system of subsets of a set A satisfies the
above two properties, then we call the system of subsets a partition of the set
A. The subsets in the partition are often called parts. From a counting point of
view we can see why partitions are particularly useful to work with: if we know
the number of elements in each subset of the partition, then, adding all these
numbers, gives us the total number of elements in A. This is obviously not true
if the subsets do not form a partition, and in a later section we shall see the
difficulties in dealing with such a situation.

But let us go back to our problem, that of counting surjections. We have
just seen that every surjection from the n-set A to the k-set B determines a
partition of A into k parts. On the other hand, a partition of A into k parts can
determine several surjections from A to B, because now the situation is this.
We have the k parts of the partition, and these are to be mapped one-to-one
onto the k elements of B. This mapping can be done in k! ways. Therefore, if
we let S(n, k) denote the number of partitions on an n-set into k parts (we do
not yet have any idea what value S(n, k) might have) then, since every partition
leads to k! surjections, the number of surjections is therefore

k! · S(n, k).

Of course, to make this result in any way meaningful we have to find S(n, k).
This is what we shall attempt to do in the next section.

8.2.1 Counting partitions of a set: Stirling Numbers of the Second
kind and “Stirling’s” Triangle

The numbers S(n, k), called Stirling numbers of the second kind are very simi-
lar to the binomial coefficients (they “count” something, each depends on two
parameters, and we shall see more significant similarities soon). However, let us
say at the outset that, unlike for the binomial coefficient, we shall not be able
to obtain a nice closed formula for S(n, k).

Values for S(n, k) can be found “by hand” for small values of the parameters
n, k. In particular, it is easy to see that

S(n, 1) = 1

and
S(n, n) = 1.

These will be the initial or boundary conditions of the basic recurrence relation
for Stirling numbers which is

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k) (2 ≤ k ≤ n − 1).

We immediately have these comments to make about this recurrence relation.

1. We have stated the relation without any proof. This will be remedied soon
below.

2. There is a very close similarity with the recurrence relation for the binomial
coefficient which gave us Pascal’s Traingle. The only difference is the
appearance of a k multiplied to one of the terms on the right hand side.
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3. Just as with the analogous relation for the binomial coefficients, we can
use this relation to compute recursively values of S(n, k), and this can be
done by constructing a “triangle” of values similar to Pascal’s Triangle.
Here are the first few values of this triangle, which we shall call “Stirling’s
Triangle”—the task of checking that these values can be obtained recur-
sively from the above recurrence relation is left to the reader (note the
lack of symmetry which we had in Pascal’s Triangle).

1
1 1

1 3 1
1 7 6 1

1 15 25 10 1
1 31 90 65 15 1

So now, what we have to do is to proof the recurrence relation for Stirling
numbers.

Recall that for the binomial coefficients we had the luxury of two proofs: an
algebraic and a combinatorial proof. However, since we do not have (at least as
yet) a formula for the Stirling numbers, the algebraic proof is not available. We
must therefore proof the relation combinatorially.

Let us proceed this way. Let the n-set A which is to be partitioned into k
parts be {1, 2, . . . , n}. Let us divide all partitions of A into k parts into two
types, Type I and Type II. Type I will contain all those partitions in which {1}
is one of the k parts, whereas Type II will contain all those partitions in which
the element “1” appears in a part together with some other element or elements
of A. Clearly, if we add the number of partitions of Type I and of Type II we
would obtain the total number of partitions of A into k parts, that is, S(n, k).

Now, how many partitions are there of Type I? One part, that is {1} has
already been determined. So the other parts can be chosen in S(n − 1, k − 1)
ways, because we now need only to subdivide the resulting set into k−1 subsets,
and the set has an element (the element 1) missing, that is, it has n−1 elements.

Now, how many partitions are there of Type II? Again, the base set has
an element missing, therefore we are partitioning an (n − 1)-set, and we need
to obtain k parts, because now the element 1 does not form a partition on its
own. This can be done in S(n − 1, k) ways. But we still need to put back the
element 1. (In the Type I case, there was only one way to do this, by placing it
alone as a subset {1}.) This element can be put in any one of the k parts, each
such choice giving a different partition. That is, each of the above S(n − 1, k)
partitions then leads to k possible partitions of A by putting 1 back. This gives
k · S(n − 1, k) partitions.

Adding the number of partitions of Types I and II and equating to S(n, k)
gives the required recurrence relation.

9 Problem Sheet 1: Elementary Counting

1. ∗

(a) In how many ways can you deal a bridge hand (13 cards) from a full pack
(52 cards)?
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(b) In how many ways can you choose a Chairman, Secretary and a Treasurer
from a 10-person committee?

(c) How many binary numbers (consisting of 0’s and 1’s) are there with eight
digits?

(d) How many different patterns can be obtained by throwing three indistin-
guishable dice? (By “patterns” we mean that, for example, 4, 4, 6 and
4, 6, 4 are considered to give the same pattern.)

2. ∗ A family has four children. It is assumed that a chid is equally likely to be
a boy or a girl. What is more likely, that the family has two boys and two
girls or that it has three children of the same sex? (You can see that, even
with very elementary counting ideas, counter-intuitive results in probability are
accessible.)

3. ∗

(a) In how many ways can k indistinguishable golf balls be coloured with any
one of n given colours?

(b) In how many ways can k identical objects be put into n boxes, where each
box can accommodate any number of objects, including none?

(c) What is the number of solutions of the equation

t1 + t2 + . . . + tn = k

in non-negative integers t1, t2, . . . , tn?

(d) Consider the effect of multiplying out the following n bracketed expres-
sions:

(1 + x + x2 + . . .)(1 + x + x2 + . . .) . . . (1 + x + x2 + . . .).

What is the coefficient of xk in the resulting expansion?

(e) How many different terms are there in the expansion of

(w + x + y + z)5?

4. ∗

(a) In how many ways can a total of 16 be obtained by rolling four dice once?
(Here, configurations such as 4, 4, 3, 5 and 4, 3, 4, 5 are to be considered
different.)

(b) Calculate the coefficient of t12 in the expansion of

„

1 − t6

1 − t

«4

.

(c) Express the number N(n, p) of ways of obtaining a total of n with p dice
as a coefficient in a suitable product of binomial expansions.

5. ∗ How many times is the word “Hello” written by the following program frag-
ment?

For i:= 1 to 10 do

Writeln ("Hello");

For j:= 1 to 10 do

Writeln ("Hello");

For k:= 1 to 10 do

Writeln ("Hello");
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6. ∗ How many times is the word ”Hello” written by the following program frag-
ment?

For i:= 1 to 10 do

For j:= 1 to 10 do

For k:= 1 to 10 do

Writeln ("Hello");

7. ∗ How many times is the word ”Hello” written by the following program frag-
ment?

For i:= 1 to 10 do

For j:= 1 to i do

For k:= 1 to j do

Writeln ("Hello");

What would have been your answer if there were r(≥ 1) For loops instead of
three in this last program segment?

8. In statistical mechanics this type of problem occurs: A system consists of N
particles. Each of the particles can be in one of two states, A or B.

(a) ∗ In how many possible states can the system of particles be?

(b) ∗ Suppose that a particle in state A has zero energy while a particle in state
B has energy 1. In how many of these possible states does the system have
total energy E?

Now suppose that each particle can be in any one of three possible states, A, B
or C, and suppose that the energies associated with these states are 0, 1 and 2,
respectively. Answer (a) and (b) above in this case.

9. ∗ Prove that:

(a)
`

n

0

´

+
`

n

1

´

+ . . . +
`

n

n−1

´

+
`

n

n

´

= 2n.

(b)
`

n−1
k

´

+
`

n−1
k−1

´

=
`

n

k

´

.

(c)
`

n

0

´

−
`

n

1

´

+
`

n

2

´

− . . . + (−1)n
`

n

n

´

= 0.

(d)
`

n+1
k+1

´

=
`

n

k

´

+
`

n−1
k

´

+ . . . +
`

k+1
k

´

+
`

k

k

´

.

(e)
`

n

0

´

+ 1
2

`

n

1

´

+ 1
4

`

n

2

´

+ . . . + 1
2n

`

n

n

´

=
`

3
2

´n
.

(f)
`

n

1

´

+ 2
`

n

2

´

+ . . . + n
`

n

n

´

= n2n−1.

(g)
`

n

0

´

+ 1
2

`

n

1

´

+ . . . + n

n+1

`

n

n

´

= 1
n+1

(2n+1 − 1).

10. (a) In how many ways can a pack of 52 cards be dealt out to four players so
that each gets at least one card, but the four do not necessarily get the
same number of cards?

(b) In how many ways can a pack of 52 cards be dealt out to four players so
that each gets a full hand? (See Section 9.2 below.)

11. ∗ (This problem tests your understanding of various ideas we have covered: the
addition and the multiplication rules, the ordered and unordered selections, rep-
etition and no repetition, using generating functions to solve counting problems,
and the binomial and multinomial (see Section 9.2 below) coefficients.)

Determine the number of different 4-letter words which can be constructed from
the letters in MISSISSIPPI. Here a word means a selection of not necessarily
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distinct letters such that different orders of the letters selected are counted as
different words. Solve the problem as follows. Find, using inventory generating
functions, how many unordered words there are of each type, where, by a type,
we mean, for example, words with two S’s one P and one I, or, two I’s and
two P’s, etc. Then, for each type, find how many orderings there are using the
multinomial coefficient (see Section 9.2 below).

(The general technique for solving this type of problem is the use of exponential

generating functions. Some of the suggested texts cover exponential generating
functions, and you are encouraged to have a look if you are interested. The
generating functions we discuss in these notes are called ordinary generating

functions.)

12. (See Section 9.1 below.)

(a) Show that in a party of six people there are either three mutual acquain-
tances or three persons none of whom knows any of the two others.

(b) Show that in a party of people there are at least two persons with the same
number of acquaintances within the party. (In these last two questions
assume that if person a knows person b then b also knows a.)

(c) Show that in a group of 37 people there are always at least 4 who were
born in the same month of the year.

(d) Suppose five points are chosen inside an equilateral triangle of side-length
1. Show that there is at least one pair of points whose distance apart is at
most 1/2.

(e) ∗ (This is called the ”Birthday Paradox.” Again we see a counter-intuitive
result in probability accessible with very simple counting techniques.)

Show that in a group of at least 23 persons it is more likely than not (that
is, there is more than 50% probability) that at least two persons in the
group have the same birthday. (Assume 365 days in a year and that all
days are equally likely to be birthdays.)

13. (a) For a given positive integer n, a partition of n is an equation

n1 + n2 + . . . + nk = n

in positive integers ni. For example, 5+1 and 3+1+1+1 are two partitions
of 6, but 1+5 is considered to be the same partition as 5+1. The number
of partitions of n is denoted by p(n); k is said to be the number of parts

of the partition. The number of partitions of n with k parts is denoted by
pk(n).

Find, by listing all the partitions, p(6).

(b) What is the coefficient of x6 in the expansion of

(1 + x + x2 + . . .)(1 + x2 + x4 + . . .) . . . (1 + x6 + x12 + . . .)?

Can you write down p(n) as a coefficient of xn in some suitable expansion?

(c) In how many ways can Lm1 be exchanged for 25 cent, 10 cent and 5 cent
coins? What is

[x100](1 − x5)−1(1 − x10)−1(1 − x25)−1?

14. (a) Write down the first four terms and the general term in the expansion of
the power series (1 − x)−3.

(b) Find the general term in the power series 1+3x

(1−x)2
.
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(c) Find

[xn]
1 + 2x + 2x2

1 − 3x + 3x2 − x3
.

Selected answers

1. (a)
`

52
13

´

; (b) [10]3; (c) 28; (d)
`

6+3−1
3

´

.

2. (a)–(d)
`

n+k−1
k

´

; (e)
`

4+5−1
5

´

.

3. (a), (b)
`

15
3

´

− 4
`

9
3

´

+ 6; (c) [tn−p](1 − t6)(1 − t)−p.
4. 30.
5. 103.
6.
`

10+3−1
3

´

; with r (≥ 1) loops:
`

10+r−1
r

´

.

7. (a) 2N ; (b)
`

N

E

´

; (c) [xE ](1 + x + x2)N .

9. (a) 4!S(52, 4); (b) 52!
13!13!13!13!

.
11. (a) 11; (b) 11; (c) 29.
12. (a) General term:

`

r+2
r

´

xr; (b) (4n + 1)xn; (c) 1
2
(5n2 + 3n + 2).

9.1 The Pigeonhole Principle

Parts of Problem 12 involves the use of the so-called Pigeonhole Principle:

If more than n objects are placed into n pigeonholes, then at least one

pigeonhole must contain more than one object

A slight extension of this principle says:

If more than rn objects are placed into n pigeonholes, then at least one

pigeonhole must contain more than r objects

(The Pigeonhole Principle is effectively saying that [n]k = 0 if k > n.)
We shall not dwell too much in this course on this principle or its applications.

Suffice it to say that it crops up in various branches of mathematics, particularly
combinatorics, and that although it is perhaps one of the most trivial mathematical
principles in its bare form, it is often cleverly employed to obtain results which seem
to be very far removed from what the principle trivially asserts. Parts of Problem 12
illustrate simple (although clever) ways in which the Pigeonhole Principle can be used,
or is somehow disguised in some seemingly unrelated problem. Those of you who will
eventually decide to do a Combinatorics Elective in the final year of the B.Sc. will
encounter a topic, “Ramsey Theory”, which, in many ways, can be considered to be a
very non-trivial extension of the Pigeonhole Principle.

9.2 The multinomial coefficient

Problem 10b involves what is called the “multinomial coefficient”. We shall limit
ourselves to a brief discussion here. The suggested texts all give a more extended
treatment.

Suppose that we are required to arrange n objects into k boxes so that exactly ni

objects go into box i, i = 1, . . . , k, order is not important, and n1 + n2 + . . . + nk = n
(that is, each object is placed in some box). Then the number of ways of doing this is

n!

n1!n2! . . . nk!
.

This number is denoted by
 

n

n1, n2, . . . , nk

!

and it is called the multinomial number or multinomial coefficient. A few points will
be, very briefly, summarised here about this number.
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1. The binomial number can be viewed as a special of the multinomial number,
since the former can be written as

 

n

k

!

=

 

n

n − k, k

!

.

Can you give a combinatorial interpretation of this?

2. Just as the binomial coefficient is the main component of the Binomial Theo-
rem, then so is the multinomial ceofficient the main component of Multinomial
Theorem, which is an extension of the Binomial Theorem: Let x1, . . . , xk be real
numbers and n a positive integer. Then

(x1 + x2 + . . . + xk)n =
X

r1+...+rk=n

 

n

r1, r2, . . . , rk

!

xr1

1 xr2

2 . . . x
rk

k .

3. The number
`

n

n1,n2,...,nk

´

is equal to the number of partitions of an n-set into
k parts such that one part contains n1 elements, another contains n2 elements,
etc.

The binomial coefficient can also be defined as follows. Let there be a total of n
objects such that n1 are identical to each other, n2 are identical to each other, and so
on up to nk. Therefore n = n1 + n2 + · · · + nk In how many ways can these objects
be permuted (order significant, no repetition)?

If no two elements were the same, the result would be n!. But among these n!
permutations every arrangement of the n1 elements which are the same is counted n1!
times instead of once. Therefore since each arrangement of these elements is counted
n1! times, instead of once, the total number of permutations taking into consideration
that they are identical is n!/n1!. Arguing similarly for the other sets of identical
objects gives a total of

n!

n1!n2! . . . nk!
,

and this is the multinomial coefficient.

10 The Inclusion-Exclusion Principle

Suppose we have two finite sets A, B and we know their respective sizes |A|, |B|.
What is |A ∪ B|? The first temptation would be to answer |A| + |B|. But only
a moment’s thought will reveal that this is wrong in general, because if there
are elements in both A and B (that is, in the intersection A ∩ B), then these
elements will be counted twice. And we want all elements in A∪B to be counted
once and only once. Well, the solution is to subtract a count for each one of
these elements in the intersection, and we would be ok. This then gives,

|A ∪ B| = |A| + |B| − |A ∩ B|.

Let us try this for three sets (it would be helpful if you were to draw a Venn
Diagram). If we write

|A ∪ B ∪ C| = |A| + |B| + |C|

then we could be overcounting several elements which are in the intersections
of these sets. So, our ”second approximation” to the result would be to take off
the sizes of the intersections in order to compensate for the overcount:

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|.

37



All elements are counted exactly once (which is what we are aiming for) except
those elements which are in all three sets. Each of these elements is first counted
three times (|A| + |B| + |C|), then removed three times, so in total it is not
counted at all. To compensate for this undercounting we need to add another
term, and the formula is then correct:

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|.

I am sure that you are now beginning to see the pattern (and to understand
why this is called ”inclusion-exclusion”). We are therefore ready to state and
proof the result for n sets.

The Inclusion-Exclusion, or the Sieve, Formula
Let A1, A2, . . . , An be finite sets, and let αi for 1 ≤ i ≤ n denote the sum of the
sizes of all intersections of these sets taken i at a time. Then

|Ai ∪ A2 ∪ . . . ∪ An| = α1 − α2 + . . . + (−1)n−1αn.

Proof We shall take an arbitrary element x in Ai ∪ A2 ∪ . . . ∪ An and show
that it is counted exactly once by the RHS.

Suppose that x is contained in exactly t of the sets, 1 ≤ t ≤ n. Then how
many times is x counted by α1? Clearly the answer is t. How many times is it
counted by α2? Well, every time we take an intersection of two sets from the t
in which x lies, and this is

(

t
2

)

. Similarly in αi x is counted
(

t
i

)

for i ≤ t, and
in αi, for any i > t, it is not counted at all since, in this case, the intersection
would contain at least one set in which x does not lie.

Therefore the RHS of the result we have to prove counts x the following
number of times,

t −
(

t

2

)

+

(

t

3

)

+ . . . + (−1)t−1

(

t

t

)

=

(

t

1

)

−
(

t

2

)

+

(

t

3

)

+ . . . + (−1)t−1

(

t

t

)

= 1 − 1 +

(

t

1

)

−
(

t

2

)

+

(

t

3

)

+ . . . + (−1)t−1

(

t

t

)

= 1 −
((

t

0

)

−
(

t

1

)

+

(

t

2

)

−
(

t

3

)

+ . . . + (−1)t

(

t

t

))

= 1 − (1 − 1)t

= 1,

as required.

In the next three sections we shall see some applications of the inclusion-
exclusion principle in cases where its use is not immediately obvious.

10.1 An application in Number Theory

We shall now make a short excursion into Number Theory. This branch of
mathematics deals with properties of the integers, their factorisations, prime
numbers and their distributions, solutions of equations in which the variables can
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only take integral value and several other problems of this type. Of course, ours
will be a very minor excursion, and what we shall present will only be scratching
the surface of this vast field. However, it will enable us to use inclusion-exclusion
in what will at first seem to be quite an unexpected way.

The problem is to find, for any positive integer n, the number of integers
{1, 2, . . . , n} which are relatively prime to n. This number will be denoted by
φ(n), and it is often called Euler’s φ-function. Recall that two integers are said
to be relatively prime if they have no common factor apart from 1; for example,
15 and 22. A pair of relatively prime integers need not be prime themselves, as
this example shows.

Let us first start with a simple concrete example, finding φ(60). Note that
to find the factors of 60 is quite easy. Just write the prime factorisation of
60 = 22 × 3× 5, and then consider all those numbers which have at least one of
these prime numbers as factors. These factors of 60 are quickly listed knowing
these prime factors and are shown in Figure 4. This figure, in fact, gives the
lattices of factors of 60, in which a number m is joined by a straight line to a
number n below it if n is a factor of m.

60

30

15

20 12

6

3

4

2

1

10

5

Figure 4: The lattice of factors of 60

To find φ(60) is, however, more tricky. Let start by defining those sets of
numbers which we do not want to count, and then we shall subtract them from
all possibilities (You will soon learn that this is a common trick when working
with the inclusion exclusion principle.)

Thus,
let A be the set of numbers in {1, 2, . . . , 60}which have 2 as a factor
let B be the set of numbers in {1, 2, . . . , 60}which have 3 as a factor
and let C be the set of numbers in {1, 2, . . . , 60}which have 5 as a factor.
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Our required φ(60) is simply

60 − |A ∪ B ∪ C|

and this is where the inclusion-exclusion formula comes in. Let us first compute
the cardinalities of the respective sets (You will see how much easier it is to
count those numbers which we do not want rather than those which we do.)

Clearly, |A| = 60
2 = 30, |B| = 60

3 = 20 and |C| = 60
5 = 12. Also, |A ∩ B| =

60
2·3 = 10, |A ∩ C| = 60

2·5 = 6, and |B ∩ C| = 60
3·5 = 4. Finally, |A ∩ B ∩ C| =

60
2·3·5 = 2.

We now have all the values we need to expand |A∪B∪C| using the inclusion-
exclusion formula, giving,

φ(60) = 60 − (30 + 20 + 12) + (10 + 6 + 4) − (2) = 11

We now have seen enough to enable us to attack the general problem, that
is, finding φ(n). So, suppose writing n as a product of prime factors gives

n = pe1

1 pe2

2 . . . , pet

t

. Let N = {1, 2, . . . , n}, and let Ai (for i = 1, 2, . . . , t) be the set of all those
numbers in N which have pi as a factor. Clearly

φ(n) = n − |A1 ∪ A2 ∪ . . . ∪ At|.

Now, as we had when n was 60, each |Ai| equals n
pi

. Similarly |Ai∩Aj | = n
pipj

,

and so on for the other intersections.
Therefore, by the inclusion exclusion formula,

φ(n) = n − α1 + α2 − . . . + (−1)tαt

where the α’s have their usual meaning as above when we proved the inclusion-
exclusion formula. From the example with the number 60, it is not difficult to
see that each αi equals n divided by the sum of all possible products of i distinct
prime factors of n, and again it is not difficult to see that this gives

φ(n) = n(1 − 1

p1
)(1 − 1

p2
) . . . (1 − 1

pt
)

which is our required formula.

10.2 Derangements

We know that there are n! permutations of the numbers in the set

N = {1, 2, . . . , n}.

In some of these permutations the number 1 could find itself in the first position,
or the number 2 in the second position or, in general, the number i might
be placed in the ith position. In this section we are going to count all those
permutations in which this never happens, that is, all those permutations of N
in which no i ∈ N appears in its natural (that is, the ith) position. Such a
permutation is called a derangement, and the number of derangements of the
set N is denoted by dn.
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This problem is often presented in more popular language. The most usual
setting is the following. Suppose a secretary has n letters which are to be put in
n addressed envelopes, and suppose that he or she does this in such a way that
no letter is put in the correct envelope. In how many ways can this be done.
Clearly, the answer is dn, as defined above, and which we shall now proceed to
find a formula for.

So, as before, let us count those permutations which are not “allowed”. Thus,
let Ai, for 1 ≤ i ≤ n, be the set of all those permutations in which the number
i occurs in its natural position. Therefore,

dn = n! − |A1 ∪ A2 ∪ . . . ∪ An|

and, by the inclusion-exclusion formula, this equals

n! − α1 + α2 − . . . + (−1)nαn

where the α’s have their usual meaning.
Consider first |A1|. Since the number 1 is fixed (in the first position) this set

contains all permutations of the other n−1 elements. Therefore |A1| = (n−1)!.
And similarly, for all the other sets, |Ai| = (n − 1)!. Therefore,

α1 = n · (n − 1)!

since there are n sets with this size.
Similarly, consider |A1 ∩ A2|. Here two numbers (1 and 2) are fixed, and

therefore the size of this intersection is equal to (n − 2)!. Therefore,

α2 =

(

n

2

)

· (n − 2)!

since there are
(

n
2

)

intersections of the sets A1, . . . , An taken two at a time, and
they all have size (n − 2)!.

It should now be easy to write down the value of αi. There are
(

n
i

)

of
choosing the i sets to be intersected, and each intersection has size (n − i)!.
Therefore

αi =

(

n

i

)

· (n − i)! =
n!

i!

Therefore

dn = n!

(

1 − 1 +
1

2!
− 1

3!
+ (−1)n 1

n!

)

≃ n!

e
.

Note that the last line is only an approximation, since we can evaluate (to
e−1) the summation

∑

1
n! only when this sum is to infinity. Yet this is a good

approximation since the series converges very rapidly. In fact, the first six terms
give the value of 1/e as 0.36806 while the first four decimal places of 1/e are
0.36788. This means that the probability that a random permutation (where
all permutations are equally likely) is a derangement is equal approximately
to dn/n! ≃ 1/e and this practically gives the same result whether n = 10 or
n = 10, 000.

The next few examples require knowledge of some elementary probability.
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Example 10.1 Show that the probability that at least a number is in its natural
position in a random permutation (where all permutations are equally likely) is
approximately 0.63, and find the order of accuracy of this value.

Solution

Prob(at least one match out of n) = 1 − Prob(no match)

= 1 − dn/n!

≃ 1 − e−1

≃ 0.63.

But

|e−1 − dn| ≤
1

(n + 1)!

and, for n ≥ 4, 1/(n + 1)! ≤ 1/120. Therefore Prob(at least one match) is 0.63
with an error of less than 1% for n ≥ 4.

Example 10.2 Show that the expected number of matches in a random permu-
tation is 1.

Solution 1 Prob(i is in its correct position) equals (n−1)!/n! = 1/n. There-
fore Exp(no of matches of symbol i) equals 1 × 1/n + 0 × (1 − 1/n) = 1/n.
Therefore, by linearity of expectation, Exp(no. of matches)=Exp(no. of matches
of 1) +. . .+ Exp(no. of matches of n) = 1/n + 1/n + . . . 1/n = 1.

Solution 2 Prob(exactly r symbols match) equals

(

n
r

)

· dn−r

n!

which equals
1 − 1 + 1

2! − 1
3! + (−1)n−r 1

(n−r)!

r!

which equals e−1/r! for large n − r. Therefore expected number of matches
equals

e−1
∞
∑

r=0

r

r!
= e−1 · e = 1.

10.3 Counting surjections again and a summation formula
for the Stirling numbers

We have already seen that the number of surjections from an n-set A to a k-set
B is equal to k!S(n, k). This result puts the onus of counting surjections on the
ability to find a formula for S(n, k). We shall now reverse our point of view.
Let us, for the time being, denote by T (n, k) the number of surjections from A
to B. Therefore

S(n, k) =
1

k!
T (n, k).
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Now, let us concentrate on T (n, k). Let B = {b1, b2, . . . , bk}. Let A1 be
all those functions from A to B for which no element of A is mapped onto
b1. Clearly, we have to remove these functions from our count of surjections.
Similarly, for 1 ≤ i ≤ k, let Ai be the set of all functions from A to B for which
no element of A is mapped onto bi. Clearly, T (n, k) is equal to all functions from
A to B (which is equal to kn) less |A1∪A2, . . . , Ak|, that is, less those functions
which omit some element or elements of B in their range. It is here where we
need the inclusion exclusion principle (together with our earlier formula for the
total number of functions from one set to another).

Thus, consider A1. This contains all functions which omit b1 from its range.
Therefore we have all functions from an n-set A to a (k − 1)-set B − {b1}. We
know that there are (k − 1)n such functions, and this therefore is the value of
|A1|. But the same holds for A2, . . . , Ak, that is, each |A| is equal to (k − 1)n.

Now consider A1 ∩ A2. Here we have all functions which omit both b1 and
b2 from their range (they could omit others, for all we care—inclusion-exclusion
will take care of that for us). Therefore we have all functions from an n-set A to
a (k − 2)-set B −{b1, b2}. We know that there are (k − 2)n such functions, and
this therefore is the value of |A1 ∩ A2|. But the same holds for all intersections
taken two at a time, that is, each such intersection has size equal to (k − 2)n.

We can now begin to see the pattern. Each intersection Ai ∪ Aj ∪ Al taken
three at a time has size (k − 3)n, and so on for the other intersections.

Therefore the α’s in the inclusion-exclusion formula are given by

αi =

(

k

i

)

(k − i)n,

the binomial coefficient being there because there are that many intersections
of i sets from k, while the (k − i)n counts the size of each such intersection.

Therefore, T (n, k) is equal to

nk − |A1 ∪ A2, . . . , Ak|
= nk − α1 + α2 − . . . + (−1)nαn

= nk −
k
∑

i=1

(

k

i

)

(k − i)n

=

k
∑

i=0

(−1)i

(

k

i

)

(k − i)n

Therefore the Stirling numbers S(n, k) are given by

S(n, k) =
1

k!
T (n, k) =

1

k!

k
∑

i=0

(−1)i

(

k

i

)

(k − i)n.

Of course, although this gives us an alternative to what we called “Stirling’s
Triangle” for calculating Stirling numbers, it is still far from being a closed
formula for S(n, k). However, such an expression for the Stirling numbers can
help us obtain an approximate closed form representation for S(n, k), and we
will briefly consider this now.

The remainder of this section can be omitted.
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Let us first write

S(n, k) =
kn

k!

k
∑

i=0

(−1)i

(

k

i

)

(1 − i/k)n =
kn

k!

k
∑

i=0

(−1)iBi.

We shall concentrate on obtaining an approximate value for the summation.
First, since

(k − i)i < [k]i < ki

then
ki(1 − i/k)i+n < i!Bi < ki(1 − i/k)n.

Now, for 0 < t < 1, − log(1 − t) = t + t2/2 + t3/3 + . . ., therefore therefore

t < − log(1 − t) < t/(1 − t)

therefore
[ne−(i+n)/(k−i)]i < i!Bi < [ne−n/k]i.

Let
λ = ne−n/k.

(This procedure should remind students who have done a course in probability
of the Poisson approximation to the binomial distribution). Let n, k → ∞ such
that λ remains bounded. For fixed i, the ratio of the left-hand side and right-
hand side of the last inequality tends to one as n and k tend to ∞. Therefore

0 ≤ λi

i!
− Bi → 0.

But

e−λ − k!S(n, k)

kn
=

∞
∑

i=0

(−1)i(
λi

i!
− Ai)

therefore

e−λ − k!S(n, k)

kn
→ 0

as n, k → ∞ in the manner described above. Therefore

S(n, k) ≃ kne−lambda

k!

and, using the approximation n! = (n/e)n this gives

S(n, k) ≃ kn−k exp[k(1 − e−n/k)].

Use a package like Mathematica to investigate how good this approximation
is for large n and k.
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11 Problem Sheet 2: Inclusion-Exclusion

1. In a class of 67, 47 can read French, 35 can read German and 23 can read both
languages. How many can read neither? If, furthermore, 20 can read Russian,
of whom 12 read French also, 11 German also and 5 read all languages, how
many cannot read any of the three languages.

2. Is there something wrong with this data? In a class of 30 students, 18 study
mathematics, 20 study IT and 7 study both mathematics and IT.

3. ∗ In how many ways can the letters A,E,M,O,U,Y be arranged in an ordered
sequence such that the words ME and YOU do not occur?

4. Show that if the prime factorisation of n is

pe1

1 pe2

2 . . . per
r

then the number of divisors of n is

(1 + e1)(1 + e2) . . . (1 + er).

5. Show that if m, n are relatively prime then φ(mn) = φ(m)φ(n).

6. ∗ How many integers from 1 to 1000 are divisible by none of 3,7,11?

7. How many ways are there of placing n non-taking rooks on an n×n chessboard?
How many if none lie on the main diagonal? How many if exactly one lies on
the main diagonal? How many if exactly k lie on the main diagonal?

8. ∗ Some “Scratch and Win” lotteries are organised as follows. The company
running the election prints tickets with two numbers. The first number is a
number within the range {1, 2, . . . , 100, 000}. This number is shown. The second
number is chosen randomly within the same range and also printed on the ticket,
but this second number is hidden by some silvering which can be scratched off.
You win if the number revealed is the same as the first number shown.

What is the probability of finding a winning ticket? What would this probability
be if the two numbers are chosen within the range {1, 2, . . . , 10, 000, 000}?

9. ∗ How many permutations are there of the digits 1, 2, . . . , 8 in which none of the
patterns 12, 34, 56, 78 appears?

In how many ways can the letters

α, α, β, β, β, γ, δ, δ, δ, δ

be permuted so that all the letters of the same kind are not in a single block?

10. ∗ In how any ways can the numbers 1, 2, 3, . . . , 9 be permuted such that,

(a) 1,2,7,9 are not in their natural positions;

(b) 1,2,7,9 are in their natural positions but none of the others are;

(c) exactly four integers are in their natural positions;

(d) at least four are in their natural positions?

Selected answers

1. 8, 6
2. 582
5. 520
6. n!, dn (the number of derangements of n objects), n · dn−1,

`

n

k

´

dn−k.

7. 24024, 10!
2!3!4!1!

− ( 9!
3!4!

+ 8!
2!4!

+ 7!
2!3!

) + ( 7!
4!

+ 5!
2!

+ 6!
3!

) − 4!.

8. (a) 9!−
`

4
1

´

8!+
`

4
2

´

7!−
`

4
3

´

6!+
`

4
4

´

5!; (b) d5; (c)
`

9
4

´

d5; (d)
`

9
4

´

d5 +
`

9
5

´

d4 +
`

9
6

´

d3 +
`

9
7

´

d2 + 1.
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12 Recurrence relations (linear, mainly first &
second order)

Consider the following problem: n lines are to be drawn in the plane in what is
sometimes called the “general position”, that is, no two lines are parallel and no
three pass through a common point. Let an be the number of sectors in which
the plane is divided by these n lines. Find an.

Well, we could certainly write down the values of the first few terms of the
sequence 〈an〉: a0 = 1, a1 = 2, a2 = 4 and a3 = 7. These values do not however
point to any obvious pattern or, better still, to a formula for an. So we shall
proceed this way.

Suppose that n lines have already been drawn, therefore the plane is divided
into an pieces, and suppose that the (n + 1)-st line is to be drawn. This new
line L will meet each one of the other lines once. Therefore there will be n new
points of intersection P1, P2, . . . , Pn. Between each pair of points Pi, Pj a section
of the plane (defined by the first n lines) will be divided into two sections. These
pairs of points will therefore give n− 1 new sections of the plane. But also, the
part of the line from P1 to infinity will divide an existing section into two, as
will that part of the line from Pn to infinity, giving a total of n− 1 + 2 = n + 1
new sections of the plane. That is, when the (n + 1)-st line is drawn, n + 1 new
sections of the plane will be created, and this can be written as the recurrence
relation

an+1 = an + n + 1.

Now, it takes only a little common sense to find a formula for an from this.
Thus,

a1 = a0 + 1 = 2

a2 = a1 + 2 = 2 + 2

a3 = a2 + 3 = 2 + 2 + 3.

And one can easily see that, in general,

an = 1 + 1 + 2 + 3 + . . . + n = 1 + n(n + 1)/2.

What we have seen in this simple example contains most of the ingredients
which we shall elaborate upon. We had a first order recurrence relation (an

depends only on the previous term of the sequence, apart from some functions
of n) and we had to have at least one initial condition to get from the recur-
rence relation to a formula for n. All of this should remind you of two other
situations: Proof by Induction and Recursive Programming. As we have said
earlier, Recurrence Relations, Proof by Induction and Recursive Programming
are all different faces of the same mathematical coin.

The formula we are looking for is what we mean when we say that we are
“solving” the recurrence relation. Very often, finding the formula finally boils
down to a summation which we either are able to evaluate (as we did in the
simple case above) or else it is too difficult to evaluate and we must consider the
summation formula as the best we can do towards finding an expression for an

(just as what we had to do for S(n, k), for example). Here is another example
of a simple first order recurrence relation which arises in computer science.
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Example 12.1 In bubble-sort, a linear array of n numbers is given and they
are sorted this way: a scan (involving n − 1 comparisons) is made through the
whole array to find the largest number, and this is placed at the end of the array.
The procedure is repeated for the remaining n− 1 numbers in the array, and so
on, until the array is sorted in non-decreasing order. How many comparisons
are required to sort this way an array of n numbers?

Solution Let an be the required number. After the first n − 1 comparisons
to locate the largest number, we are back to the same problem, but this time
on an array of n − 1 numbers, and this takes an−1 comparisons. Therefore

an = (n − 1) + an−1

with a1 = 0. It is easy to see that

a2 = a1 + (2 − 1) = 1

a3 = a2 + (3 − 1) = 1 + 2

a4 = a3 + (4 − 1) = 1 + 2 + 3

etc

and the general solution is an = 1 + 2 + 3 + . . . + (n − 1) = n(n − 1)/2.

12.1 Linear first order

Let us now consider first order linear recurrence relations in more systematic
detail. As we have just explained, by first order we mean that in the recurrence
relation the terms an and an−1 appear, that is, each term of the sequence
depends on the previous one. To solve completely such a recurrence relation we
require also the value of a first term of the sequence, say a0 or a1. With just
this initial condition and the relation, we can effectively find numerical values
of the terms of the sequence (just as we do with Pascal’s Triangle or “Stirling’s”
triangle). But we would like to get more. We are after a formula for the term
an.

By linear we could say that what we mean is that the recurrence relation
does not contain terms like a2

n or anan−1. A better definition of linear is that if
bn and cn are both solutions of the recurrence relation, then so is Abn + Bcn,
where A, B are constants. We shall see later on the power of linearity when we
come to second order relations.

The most general form of a linear first order recurrence relation is

an = f(n)an−1 + g(n)

where f and g are functions of n, together with a value for a0, say. For example,
we might have

an = (n2 + 1)an−1 + log(n) (n ≥ 1); a0 = 7.

But first let us start with some simpler examples.
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12.1.1 Four easy pieces

Example 12.2 Solve an = kan−1, where k is a constant and a0 = A.

Solution It is easy to see that a1 = ka0 = kA, a2 = ka1 = k2A and, in
general, the solution is

an = knA.

Example 12.3 Solve an = f(n)an−1, where f(n) is a function of n and a0 =
A.

Solution Again it is not difficult to see that a1 = f(1)a0 = f(1)A, a2 =
f(2)a1 = f(1)f(2)A and, in general, the solution is

an = f(1)f(2) . . . f(n)A.

For example, if f(n) = n, then the solution would have been an = n!A.

Example 12.4 Solve an = an−1 + k, where k is a constant and a0 = A.

Solution We proceed as above: a1 = a0 + k = A + k, a2 = a1 + k = A + 2k
and the general pattern is again easy to see, giving the solution

an = A + nk.

Example 12.5 Solve an = an−1 + g(n), where g(n) is a function of n and
a0 = A.

Solution Again we look for the general pattern in the usual way: a1 =
a0 + g(1) = A + g(1), a2 = a1 + g(2) = A + g(1)+ g(2) it is easy to see that the
solution is

an = A + g(1) + g(2) + . . . + g(n).

For example, if g(n) = n, then the solution would have been an = A+n(n+1)/2.

12.1.2 A method for the general case and a few examples

The general first order linear recurrence relation is, as we have said,

an = f(n)an−1 + g(n) (n ≥ 1) a0 = A.

In the previous four examples we considered cases where only f or g was
involved. But now we need to consider what to do when both are present.
Taking a cue from the second example in the previous section, we define a new
sequence 〈bn〉 as follows. Let

bn =
an

f(1)f(2) . . . f(n)
(n ≥ 1)
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(we are tacitly assuming that none of the f(i) equals zero) with b0 = a0 = A.
Then substitute into the recurrence relation:

f(1)f(2) . . . f(n)bn = f(n)f(1)f(2) . . . f(n − 1)bn−1 + g(n).

This is the whole point of the substitution: after rearranging the product on
the RHS we get f(1)f(2) . . . f(n) which we can factor off, leaving us with a
recurrence relation for bn similar to the last example in the previous section.
Thus,

bn = bn−1 +
g(n)
∏n

1 f(i)

= bn−1 + h(n)

say. Then, as in the last example of the previous section, the solution for bn is

bn = A +
n
∑

1

h(i)

and therefore

an =
n
∏

1

f(i)bn =
n
∏

1

f(i)

(

A +
n
∑

1

h(i)

)

.

Of course, our ability to obtain a closed solution for an would then depend
on whether or not we can evaluate the product of f(i)’s and the summation
of h(i)’s, which does look rather horrid. But the important thing is for you to
remember the method not the last formula above, and you will see that, often
enough, the product and the summation boil down to something which we can
easily handle.

Example 12.6 Solve

an = nan−1 + 4; a0 = 7.

Solution Let
bn =

an

1 · 2 · . . . · n = an/n!

and b0 = 7. Therefore

n!bn = n!bn−1 + 4

bn = bn−1 +
4

n!

bn = 7 +

n
∑

i=1

4

n!

an = n!

(

7 +

n
∑

i

4

n!

)

and this is the best we can do with this series (we can only sum it if it were an
infinite series).
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Example 12.7 Solve

an = 3an−1 + n; a0 = 1.

Solution Let
bn =

an

3 · 3 . . . · 3 = an/3n

and b0 = a0 = 1. Then substituting in the recurrence relation gives

3nbn = 3nbn−1 + n

bn = bn−1 +
n

3n

bn = b0 +

n
∑

i=1

i

3i

an = 3n

(

1 +

n
∑

i=1

i

3i

)

Now how are we going to evaluate this summation, which is a mixture of an
arithmetic and a geometric sequence? We proceed this way, starting from the
well-known formula for a geometric progression. (This is a technique well worth
remembering.)

n
∑

i=1

ri =
r(1 − rn)

1 − r

n
∑

i=1

iri−1 =
d

dr

(

r(1 − rn)

1 − r

)

n
∑

i=1

iri = r
d

dr

(

r(1 − rn)

1 − r

)

which, after differentiation, multiplication by r and substituting r = 1/3, which
is the common ratio in our case, gives

n
∑

i=1

i

3i
= 1 − (2n + 3)(1/3)n

and after substituting into the above expression for an this gives

an = 3n

(

2 − (2n + 3)
1

3

n+1)

.

12.2 Second order

We shall now consider second order linear recurrence relations. But to make
this easier we shall only allow constant coefficients, and we shall only deal with
a few special cases of the right hand side. Thus, we shall be considering the
recurrence

an + ban−1 + can−2 = f(n), (n ≥ 2); a0 = c1, a1 = c2
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where a, b, c are constants, c1, c2 are the given initial values of a0, a1, respectively,
and where the function f(n) of n will take on a few particular forms which we
shall study below.

One important case of this recurrence relation is when f(n) ≡ 0. This is
called the homogeneous case, and it is with this that we shall start our investi-
gations.

12.2.1 Homogeneous case: two mysterious substitutions

We shall start with a concrete example. We shall effect two substitutions which
will transform the second order recurrence into two first order ones. At this
stage, these substitutions might seem quite mysterious—they seem to have been
plucked out of thin air. In this section concentrate only on checking that these
substitutions really do what is required of them—that is, just check that the
working is ok. In the next section you will be told how to find these two
substitutions, and it will turn out to be very easy indeed!

Example 12.8 Solve

an − 5an−1 + 6an−2 = 0; a0 = 5, a1 = 22

Solution Let
cn = an−1 − 3an−2, (n ≥ 2).

Therefore, from a0 and a1, c2 = 7. This is the first of our “mysterious” substi-
tutions. Here is the second one. Consider

cn+1 − 2cn.

In terms of an, this is equal to,

an − 3an−1 − 2an−1 + 6an−2

which equals
an − 5an−1 + 6an−2

which equals 0. Therefore

cn+1 − 2cn = 0

cn+1 = 2cn.

Therefore c3 = 2c2 = 2 · 7, c4 = 22 · 7, c5 = 23 · 7 and, in general, cn = 7 · 2n−2 =
7
4 · 2n.

Having solved our first of our pair of first order recurrence relation we can
now substitute in cn = an−1 − 3n−2 to solve for an. Thus,

an−1 = 3an−2 +
7

4
· 2n

or

an = 3an−1 +
7

2
2n.

As per our usual “recipe” for solving such recurrences, let

bn = an/3n.
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Therefore

3nbn = 3nbn−1 +
7

2
2n

bn = bn−1 +
5

2
· 2n

3n

bn = b0 + 7/2

n
∑

1

(2/3)n

= 5 + (7/2)
(2/3)(1− (2/3)n)

1 − (2/3)

= 5 + 7(1 − (2/3)n).

Therefore
an = 3nbn = 12 · 3n − 7 · 2n.

12.2.2 All is made clear: the auxiliary equation!

But how did we manage to guess the two substitutions for cn which made the
last one equal to 0 starting us off with a first order recurrence relation? The
little thing which helped us is a quadratic equation called the auxiliary equation.
Thus, corresponding to the recurrence relation

an − 5an−1 + 6an−2 = 0

the auxiliary equation is
k2 − 5k + 6 = 0.

This factorises into
(k − 2)(k − 3)

that is, has roots 2 and 3. When we see an auxiliary equation of this type we
know that the substitution

cn = an−1 − 3an−2

will lead to
cn+1 − 2cn = 0.

(The other way round is just as valid: cn = an−1 − 2an−2 would lead to cn+1 −
3cn = 0—try it out!)

If you study carefully the previous section, you will see the important part
which the roots 3 and 2 played, and that the solutions to such a pair of first
order recurrence relations will ultimately be of the form

A2n + B3n

so much so that, after finding the roots of the auxiliary equation we can imme-
diately write out this answer without actually working out the two first order
recurrences. Let us repeat the above example working this way.
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Example 12.9 Solve

an − 5an−1 + 6an−2 = 0; a0 = 5, a1 = 22

Solution The auxiliary equation is

k2 − 5k + 6 = 0

which has roots 3 and 2. Therefore the solution is

an = A2n + B3n

where A, B are arbitrary constants which need to be determined. We determine
them this way. Since a0 = 5 and a1 = 22, this gives two simultaneous equations

5 = A + B

22 = 2A + 3B

which easily gives A = −7 and B = 12, as above.

Therefore the whole thing boils down to solving a simple quadratic equation.
There is occasion in which the above answer would vary, and that occurs if the
auxiliary equation has equal roots.

Example 12.10 Solve

an − 4an−1 + 4an−2 = 0; a0 = a1 = 1

Solution The auxiliary equation is

k2 − 4k − 4 = 0

which has repeated roots 2,2. The solution cannot be A2n + B2n since this
would have only one arbitrary constant which can be determined just knowing
a0, and we know that a second order recurrence relation needs two initial values
to start the solution off. We must again repeat, at least for the first time until
we get the pattern right, the long method involving two first order recurrence
relations. Thus, let

cn = an−1 − 2an−2, (n ≥ 2)

and consider
cn+1 − 2cn

which, when written out in terms of an, 0. Solving these resulting first order
recurrences is left to the reader, but the general form of the solution will be

an = (A + Bn)2n.

getting this via the two first order equations will also give you A and B. In our
case, we can find them as usual:

a0 = 1 ⇒ 1 = A

a1 = 1 ⇒ 1 = 2A + 2B

which immediately gives A = 1 and B = −1/2.
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So we can write down the general rule for solving second order homoge-
neous recurrence relations with constant coefficients: Find the roots α, β of the
auxiliary equation. If α 6= β then the solution is

an = Aαn + Bβn

whereas if α = β, then the solution is

an = (A + nB)αn.

This rule, appropriately extended, also works for higher order.

Example 12.11 Solve

4an − 20an−1 + 17an−2 − 4an−3 = 0.

Solution The auxiliary equation is

4k3 − 20k2 + 17k − 4 = 0

which has roots k = 1/2, 1/2, 4. Therefore the general solution is

an = (A + nB)

(

1

2

)n

+ C4n

where the arbitrary constants A, B, C can be found from three initial values
a0, a1, a2.

12.2.3 The auxiliary equation via matrices

This section can be omitted without loss of understanding of the rest of the
course. It requires knowledge of some linear algebra. We shall gloss over these
linear algebra details somewhat rapidly.

Consider the 2nd order recurrence relation

an + ban−1 + can−2 = 0.

This can be represented by the matrix equation

[

an

an−1

]

=

[

−b −c
1 0

] [

an−1

an−2

]

.

Therefore,
[

an

an−1

]

=

[

−b −c
1 0

]n [
a1

a0

]

.

In other words, to find a formula for an in terms of the initial conditions a0, a1

we need a formula for
[

−b −c
1 0

]n

.
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Now, there are standard techniques in linear algebra for finding nth powers
of matrices. Let us first find the eigenvalues of the matrix. These are the
solutions of the equation,

det

[

−b − λ −c
1 −λ

]

= 0,

that is,
λ2 + bλ + c = 0,

which is just the auxiliary equation!

As usual, suppose first that the auxiliary equation has distinct roots α, β.
Then it follows, again from linear algebra, that the matrix has a complete set of
eigenvectors, and that if P is the matrix whose columns are linearly independent
vectors, then the matrix is similar to a diagonal matrix, that is,

[

−b −c
1 0

]

= P

[

α 0
0 β

]

P−1.

Therefore
[

−b −c
1 0

]n

= P

[

α 0
0 β

]n

P−1

= P

[

αn 0
0 βn

]

P−1

and hence
[

an

an−1

]

= P

[

αn 0
0 βn

]

P−1

[

a1

a0

]

which gives
an = Aαn + Bβn

where A and B are appropriate constants. Rather than finding the matrix P to
obtain these constants, we can now use the initial values of a1 and a0, as before.

Now suppose that the roots α, β of the auxiliary equation are equal—denote
them by α. The matrix is now not similar to a diagonal form, but it almost is.
In fact, one can find a matrix P such that

[

−b −c
1 0

]

= P

[

α 1
0 α

]

P−1.

Therefore
[

−b −c
1 0

]n

= P

[

α 1
0 α

]n

P−1

= P

[

αn 0
0 nαn−1αn

]

P−1

and hence
[

an

an−1

]

= P

[

αn nαn−1

0 αn

]

P−1

[

a1

a0

]
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which gives
an = (A + nB)αn

where A and B are appropriate constants. Again, rather than finding the matrix
P to obtain these constants, we use the initial values of a1 and a0, as before.

12.2.4 Nonhomogeneous case: the power of linearity

Well, now that we know how to solve the homogeneous case, the next step is
certainly to learn how to solve the case where the RHS of the recurrence relation
is not 0. Specifically we shall be concerned with the recurrence relation

an + ban−1 + can−2 = f(n)

where f(n) will be allowed to take on some special forms. These details will
be considered in the next section. Here we shall make some observations which
apply for any f(n).

First of all, suppose we have solved, via the auxiliary equation, this recur-
rence relation with f(n) = 0. Suppose that our solution still has its arbitrary
constants to be determined (for example, A2n +B3n or (A+nB)7n). Therefore
what we have is really not just one solution but a whole family of solutions:
thus any solution of

an + ban−1 + can−2 = 0

is contained in this family by appropriately choosing A and B. Let us call this
solution Sn, where we have used a capital S in order to remind us that this is
not just one solution but a family which contains all solutions.

Now, suppose that the solution of

an + ban−1 + can−2 = f(n)

satisfying the initial conditions is found (we shall soon see how to do that); let
us call it s(n). Suppose also that we can somehow “guess” a solution of

an + ban−1 + can−2 = f(n)

which does not necessarily satisfy the initial conditions (we shall also see how
to do this in the next section). Let us denote this “guessed” solution by pn—all
this means is that if pn is substituted in the LHS of

an + ban−1 + can−2 = f(n)

then the result will be f(n). This “guessed” solution is called the particular
solution.

Now consider the sequence sn − pn. By linearity, if we substitute this se-
quence in the LHS of the recurrence relation, the result would be the same as
if we had substituted sn and then pn and then subtracted, that is

sn + bsn−1 + csn−2 − pn + bpn−1 + cpn−2.

But this would equal zero, since both sn and pn give the same result, f(n),
when plugged into the LHS. Therefore sn − pn is a solution of the homogeneous
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recurrence, that is, it is of the form Sn, for appropriate arbitrary constants.
That is,

sn − pn = Sn

sn = Sn + pn

We therefore have a very simple way of solving these nonhomogeneous re-
currence relation.

1. Solve with the RHS equal to zero, leaving the arbitrary constants unde-
termined.

2. “Guess” or somehow find a solution valid for the given RHS (the particular
solution).

3. Add these two solutions together.

4. Finally determine the arbitrary constants.

In the next section we shall see how to determine the particular solution for
a few types of RHS.

12.2.5 Nonhomogeneous case: particular solutions for some special
right-hand-sides

We shall proceed by examples.

Example 12.12 Solve the recurrence relation

an − 5an−1 + 6an−2 = n

given that a0 = a1 = 0.

Solution The auxiliary equation has roots 2 and 3, therefore the homoge-
neous solution is

an = A2n + B3n.

But now we need to find a particular solution to add to the above. Let us
try an = n, for want of a better guess at this stage. Substituting in the LHS
gives 2n − 7, and this is clearly not correct (we want the result to be n, like
the RHS). Ok, so let us try an = n/2—at least this should get the coefficient
of n right. In fact, when we substitute into the LHS we obtain n − 7/2. We
must therefore get rid of the constant term. Let us try an = n/2 + 7/4, (since,
on substituting in the LHS, the constant term is multiplied by 2). Substituting
in the LHS now does give n (check this!), which is precisely what we want. So
an = n/2 + 7/4 is a particular solution, and we got there after three trials.

However, with hindsight, it is now easy to realise that the solution must
necessarily have been of the form Hn + K, where H and K are constants. So,
instead of the above three trials, let us find the particular solution at one go by
substituting an = Hn + K into the LHS and finding H, K by equating to the
RHS. Substitution gives

Hn + K − 5(H(n − 1) + K) + 6(H(n − 2) + K)
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which, on simplifying gives

2Hn + 2K − 7H.

Equating with the RHS and comparing coefficients gives that 2H = 1 and
2K − 7H = 0, giving, as above, H = 1/2 and K = 7/4.

Therefore the complete solution is now,

an = A2n + B3n +
n

2
+

7

2
.

Only at this point do we substitute a0 = a1 = 0 in order to find the two arbitrary
constants A and B. This is here left as a simple exercise for the reader.

Example 12.13 Solve the recurrence relation

an − 5an−1 + 6an−2 = 4n

given that a0 = a1 = 0.

Solution The homogeneous solution is exactly like the previous example. So
all we have to do is find a particular solution and add it to the homogeneous
solution, as we did above.

In the same vein as our first attempts in the previous example, let us try
an = 4n. Substituting in the LHS gives

4n − 5 · 4n−1 + 6 · 4n−2

= 4n(1 − 5/4 + 6/16)

=
1

8
4n.

But our RHS is 4n, therefore let us try an = 8 · 4n (hoping that this will
cancel out the 1

8 ). Substituting in the LHS gives us the right answer, 4n, so a
good particular solution. Again, using hindsight, we now see that we could have
guessed that the result would be of the type constant times 4n. So, instead of
making a number of trials, we could simply substitute an = H4n in the LHS,
and after simplification compare coefficients with the RHS to obtain H . Thus,

H4n − 5H4n−1 + 6H4n−2 =

H4n(1 − 5/4 + 6/16) =

H4n(1/8) = RHS

= 4n

giving, as above, that H = 8.
Now, adding to the homogeneous solution we obtain

an = A2n + B3n + 8 · 4n

which is the complete solution. All we have to do now is use a0 = a1 = 0 to
obtain the values of the arbitrary constants a and B—this is left as an exercise
for the reader.
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Example 12.14 Solve the recurrence relation

an − 5an−1 + 6an−2 = 3n

given that a0 = a1 = 0.

Solution The homogeneous solution is

A2n + B3n,

as in the previous two examples. Now, continuing in the same vein as in the
previous example, one would try substituting an = H3n into the LHS in order
to find the particular solution. But if we do this now, the LHS will become 0,
and therefore no value of H can make the LHS equal to the RHS. But if we look
carefully at the homogeneous solution we note that this was bound to happen,
because constant times 3n is already a part of the solution there, and this means
that substituting constant times 3n into the LHS must give us zero.

Therefore we are alerted to this problem as soon as we see the roots of the
auxiliary equation and we note that the “3” in 3n of the RHS is already a root.
So what should we do? The substitution here should be an = Hn3n. Let us try
putting this into the LHS.

Hn3n − 5H(n − 1)3n−1 + 6H(n − 2)3n−2 =

Hn3n(1 − 5/3 + 6/9) + H3n(1 + 5/3 − 12/9) =

0 + H3n(4/3) = RHS

= 3n.

(Note how the 0 which was causing us trouble has now been diverted to the
term containing n, which is precisely what we want, since the RHS does not
contain terms like n3n.)

Therefore H = 3/4, giving as particular solution 3
4n3n. This can now be

added to the homogeneous solution and the arbitrary constants determined as
usual.

Example 12.15 Solve the recurrence relation

an − 6an−1 + 9an−2 = 3n

given that a0 = a1 = 0.

Solution The auxiliary equation here has a double root at 3. Therefore the
homogeneous solution is

an = (A + Bn)3n.

We now need to find a particular solution. As before, we see that the attempt
an = H3n does not work. But even an = Hn3n collapses the LHS to zero—
and we should not be surprised really, because 3 being a double root, n3n is
already in the homogeneous solution. Therefore we attempt an = Hn23n. If
we substitute in the LHS we see that the terms in n2 and those in n become
zero, leaving us with a non-zero term containing H3n which can be compared
to the RHS to give H . The details are left to the reader. The general rule is
therefore that if α is a root of the auxiliary equation with multiplicity m, to
find a particular solution we should try an = Hnmαn.

In the next problem sheet you will be asked to find the particular solution
for combinations of these different RHS’s.

59



12.2.6 The use of generating functions

This section may be omitted.

At this point the reader would be justified in thinking that he or she is being
asked to take too many things for granted. Yes we have justified the use of
the auxiliary equation for order 2, but what about higher orders? We are told
that we can use the auxiliary equation without any real justification. And what
about our way of getting a particular solution? For some situations (as in the
last example) we did not give much justification (although one can always verify
that the particular solution is correct by substituting in the LHS). Moreover, we
have considered only a very restricted type of RHS. What about other types?
And what if the recurrence relation does not have constant coefficients?

Well, one way in which all this can be put on a surer mathematical footing
is by means of generating functions. In this course we shall not be dealing too
much with this method of solving recurrence relations, but, for completeness’
sake, and also as another illustration of the power and versatility of generating
functions, we shall redo one of the above examples by this method.

Example 12.16 Solve the recurrence relation

an − 5an−1 + 6an−2 = n

given that a0 = a1 = 0.

Solution We are looking for a sequence a0, a1, a2, . . . which satisfies the above
recurrence relation, including the initial conditions. Let us form the generating
function for this sequence:

g(x) = a0 + a1x + a2x
2 + . . . + ajx

j + . . .

Using the recurrence relation we shall obtain an algebraic expression for g(x),
and then we shall expand g(x) in order to get the coefficient of xn, which is an,
precisely what we want.

So, let us multiply the recurrence relation by xn and let us sum the LHS
and RHS from n = 2 (why?) to infinity.

∑

n=2

anxn − 5
∑

n=2

an−1x
n + 6

∑

n=2

an−2x
n =

∑

n=2

nxn

g(x) − a0 − a1 − 5x
∑

n=2

an−1x
n−1 + 6x2

∑

n=0

anxn = x
∑

n=1

(n + 1)xn

g(x) − 5x(g(x) − a0) + 6x2g(x) = x((1 − x)−2 − 1))

g(x) =
2x2 − x3

(1 − x)2(1 − 3x)(1 − 2x)
.

Expanding the last expression in partial fractions gives

g(x) =
4/5

1 − x
+

1/2

(1 − x)2
+

5/4

1 − 3x
+

−3

1 − 2x
.

Therefore the coefficient of xn in g(x) is

4/5 + (n + 1)/2 + 3n(5/4) − 2n · 3
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which is therefore an.

Of course, this method is much longer than the ones we have been studying
so far, but this is only because our intention was to give an illustration of the use
of generating functions in a simple situation whose solution can be verified by
simpler techniques. Keep in mind, however, that there are many situations in
which our “short” methods do not apply (non-linear recurrences, non-constant
coefficients, more complex right-hand-sides, etc) and it is the powerful and ver-
satile method of generating functions which has to be used. The next problem
sheet presents one such example.

13 Problem Sheet 3: Recurrence Relations

1. ∗ Solve the following recurrence relations:

(a) an+2 − 3an+1 − 4an = 0 (n ≥ 0); a0 = 1, a1 = 3.

(b) an+3 − 6an+2 + 11an+1 − 6an = 0 (n ≥ 0); a0 = 2, a1 = 0, a2 = −2.

(c) an+3 − 3an+1 + 2an = 0 (n ≥ 0); a0 = 1, a1 = 0, a2 = 0.

2. ∗

(a) A man climbs stairs in the following fashion. Sometimes he takes two stairs
in one stride, sometimes only one. Find a formula for an, the number of
different ways he can climb n stairs.

(b) Find bn, the number of n-digit binary words containing no two consecutive
zeroes.

3. ∗ Let qn be the number of words of length n in the alphabet {a, b, c, d} which
contain an odd number of b’s. Show that

qn+1 = 4n + 2qn, (n ≥ 1)

and hence find qn. [Hint: Divide the set of such words of length n+1 into those
which begin with b and those which do not.]

4. ∗ Find a particular solution for each of the following recurrence relations:

(a) an + 5an−1 + 6an−2 = 2n2 + n − 5.

(b) an − 5an−1 + 6an−2 = 3.

(c) an + an−1 = 4n3n.

(d) an − 2an−1 = 5 · 2n.

(e) an − 6an−1 + 9an−2 = (n − 1)3n.

(f) an = an−1 + 5.

(g) an − 2an−1 + an−2 = 5.

(h) an − 7an−1 + 12an−2 = 5.

(i) an − 5an−1 + 6an−2 = 3n + n.

(j) an − 2an−1 + an−2 = n.

5. Let the sequence 〈an〉 be defined by

an+2 + an+1 + nan = 0, (n ≥ 0)

with a0 = 1; a1 = 0.
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Let g be the generating function of the sequence. Show that

g′(x) = −
g(x)

x3 + x2
.

[Hint: Multiply the recurrence relation by xn−1 and take summations.]

Can you find an expression for g(x) and, from it, the term an?

6. The remaining set of questions up to Question 10 are all illustrations of the

use of recurrence relations to problems in computer science. You might have

already met them or some variants, particularly in courses on data structures

and algorithms.

A full binary tree T is defined to be a rooted tree such that every vertex is either
a leaf or else has both a left and a right child. Show that, if T has l leaves and
i internal vertices, then l = i + 1.

Now assume that all the leaves are at level k (the level of the root is taken to be
zero). How many leaves does T have? Deduce that the total number of vertices
is 2k+1 − 1.

Now let uk be the sum of the levels of all the vertices of T . By considering T −r,
that is, T with the root vertex r deleted, show that

uk = 2uk−1 + 2k+1 − 2.

Hence deduce that uk = (k − 1)2k+1 + 2.

What does this result say about the average number of comparisons required to
find an element in a sorted array using binary search?

7. Let cn be the average number of comparisons required to quicksort n items in
an array (assuming all possible initial orderings are equally likely). It can be
shown that

cn = (n − 1) +
2

n

n−1
X

i=0

ci, (c0 = 0).

CS students should know this or at least should know where to look up the proof

of the result.

Show that
cn = (n + 1)H(n) + 4 − 4(n + 1)

where H(n) = 1 + 1
2

+ 1
3

+ . . . 1
n

(called the harmonic function), and hence that

cn ≃ 1.39n log2 n.

8. Consider the following algorithm for sorting n numbers, for n ≥ 2.

(a) Use 2n− 3 comparisons to determine the largest and second largest of the
n numbers;

(b) recursively sort the remaining n − 2 numbers.

Let an denote the number of comparisons used for sorting n numbers in this
fashion. Find an.

9. Let S be the set of n = 2k distinct integers (k ≥ 1). Show that it is possible to
find the maximum and the minimum of S using 3n/2 − 2 comparisons.

10. Consider a “divide-and-conquer” recursive algorithm which takes T (n) compu-
tational steps when running on a problem whose input size is n. The algorithm
proceeds by dividing the problem into two subproblems each of size n/2 (assume
n is a power of 2) and so on recursively.

Suppose that the number of steps to carry out this division is c1n for some
constant c1 and that T (1) = c2 for some constant c2. Show that

T (n) ≤ (c1 + c2)n log2 n + c2.
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11. The last two questions are taken from probability theory. These and the previous

problems should convince the student that recurrence relations crop up in many

areas of mathematics

Two gamblers A and B play a game against each other. They repeatedly flip a
coin which comes up heads with probability p and tails with probability q = 1−p.
Gambler A starts with Lm n and ganbler B starts with LM (N − n). If tails
comes up, then A wins Lm 1 from B, whereas if heads comes up, then B wins
Lm 1 from A. The game proceeds until one gambler has Lm 0. Let an be the
probability that A wins starting with Lm n; clearly a0 = 0 and aN = 1. Show
that

an = pan+1 + qan−1,

and solve the recurrence relation to find an.

12. A coin is tossed repeatedly. Each time there is a probability p of a head turning
up. Let n be the probability that an even number of heads has occurred after n
tosses. Show that

an = p + (1 − 2p)an−1.

Hence show that an = 1
2
[1 + (1 − 2p)n].

Selected answers

1. (a) 4n+1+(−1)n

5
; (b) 5 − 2n+2 + 3n; (c) 8−6n(−2)n

9
.

2. Recurrence relations for the two quantities:
(a) an = an−1 + an−2, n ≥ 2; a0 = a1 = 1.
(b) bn = bn−1 + bn−2, n ≥ 3; b1 = 2, b2 = 3.
3. qn = 1

2
(4n − 2n).

4. (a) Roots =−3,−2; Trial soln: an = Hn2 + Jn + K.
(b) 3,2; an = H .
(c) -1; an = (Hn + J)3n.
(d) 2; an = Hn2n.
(e) 3,3; an = (Hn + J)n23n.
(f) 1; an = Hn(1)n = Hn.
(g) 1,1; an = Hn2(1)n = Hn2.
(h) 3,4; an = H .
(i) 3,2; an = Hn3n + Jn + K.
(j) 1,1; an = (Hn + J)n21n = (Hn + J)n2.
9. Biggs, worked example p.253.
10. Aho, Hopcroft & Ullman worked example 9.1 p.296.

14 Partitions of a positive integer: a brief intro-
ductory excursion

In this final section we shall again be looking at a problem from number theory.
We shall only be scratching the surface of this topic, so what is presented here
is only a small part of what would be covered in this field of study if this were
a course in number theory. However, we want to end these lecture notes with
this topic because, even with this cursory treatment, it is possible to see some
non-trivial applications of things like generating functions, and this should not
only help to consolidate what you have learned in the previous sections but it
should help convince you that discrete mathematics is not an isolated subject
but it is part of mainstream mathematics with applications to various other
fields. Moreover, you will be able to see almost side by side the two principal
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methods of counting in combinatorics: counting by means of bijections and
counting using generating functions.

Let us first define what a partition of an integer means, and also introduce
some notation. In the first problem sheet you were asked to find in how many
ways can the number 6 be written as a sum of positive integers, order not
significant and repetition allowed. The number 6 is small enough that we can
solve this without knowing any number theory. Thus,

6 = 6

6 = 1 + 5

6 = 2 + 4

6 = 1 + 1 + 4

6 = 3 + 3

6 = 1 + 2 + 3

6 = 1 + 1 + 1 + 3

6 = 2 + 2 + 2

6 = 1 + 1 + 2 + 2

6 = 1 + 1 + 1 + 1 + 2

6 = 1 + 1 + 1 + 1 + 1 + 1.

So there are 11 partitions of 6. We write this as p(6) = 11 and, in general,
the number of partitions of the positive integer n is denoted by p(n). The terms
in the summation are called the parts of the partition. Sometimes we require
partitions satisfying certain conditions. Thus let P be a property such as ‘the
number of parts cannot exceed five’ or ‘each part is even’. We denote the number
of partitions of n with such a restriction by the notation p(n|P).

Finding the number of partitions of 6 was easy. But this ease is very de-
ceptive for numbers larger than 6. To give you an idea, note that p(20) =
627, p(100) = 190, 569, 292 and p(200) = 3, 972, 999, 029, 388. Clearly a more
mathematical way of tackling this problem is required. This is what we shall
attempt to do in the next two sections.

Example 14.1 You can now look at the last of the four motivating problems
we stated at the beginning of the course. What general problem is it a special
case of?

14.1 Ferrers Diagrams

The technique which we shall now present is so simple that it seems quite
surprising that any nontrivial mathematics can be done with it. But this often
happens in many areas of mathematics, not the least in combinatorics.

To every partition we shall associate what is called a Ferrers diagram of the
partition. which is a diagram made up of dots or multiplication signs. The best
way to explain this is by some examples. The partition 10 = 2 + 3 + 5 has the
Ferrers diagram

× × × × ×
× × ×
× ×
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while the partition 7 = 4 + 1 + 1 + 1 has

× × × ×
×
×
×

as its Ferrers diagram.
Note that the rows of a Ferrers diagram are written in nonincreasing length.
For any diagram D there is a corresponding diagram which is called the

conjugate of D, and is denoted by conj(D), and whose ith column corresponds
to the ith row of D (this is similar to taking the transpose of a matrix). For
example, conj(D) for each of the above two diagrams is, respectively,

× × ×
× × ×
× ×
×
×

and
× × × ×
×
×
×

.

But can we do any mathematics with such a simple idea as the Ferrers
Diagram? Let us try.

Theorem 14.1 Let P1 be the property that the largest part of a partition is m
and let P2 be the property that the partition has exactly m parts. Then,

p(n|P1) = p(n|P2).

Proof Let A be the set of Ferrers diagrams corresponding to p(n|P1) and
let B be the set of Ferrers diagrams corresponding to p(n|P2). We need to
show that |A| = |B|, and, in order to show that two sets have the same size,
one common technique is to find a bijection between them. Thus, define the
function conj from A to B which maps any diagram D in A into its conjugate,
conj(D). This is clearly a bijection. (Details are left to the reader.) Therefore
|A| = |B|, as required.

Note a few things about that proof. First of all, as soon as we spotted what
function to define it became easy to see that it is a bijection. This is true in
many of the elementary cases you might be meeting, but not true in general.
Sometimes very ingenious arguments are required to show that the function is
a bijection. Secondly, what we have seen is what is called, in combinatorics, a
proof by bijection, and it is a very important counting technique. One of its
advantages is that not only does it show you that two sets are equal but it also
shows you which elements of the two sets correspond to each other—it tells you
why the two sets are equal. In the next section we shall see another method of
counting which does not have this advantage but it has others instead.
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Finally, note that we have no way of knowing what p(n|P1) or p(n|P2) is,
yet we know that they are equal. Most of our results in this section will be of
this type: It is too difficult to find p(n) or variations of it, but we still can state
nontrivial relationships between different types of partitions.

Theorem 14.2 Let P1 be the property that the number of parts in the partition
is at most r, and let P2 be the property that the partition has exactly r parts.
Then

p(n|P1) = p(n + r|P2).

[For example, the number of partitions of 12 in which there are at most 5 parts
is equal to the number of partitions of 17 with exactly 5 parts.]

Proof Let A be the set of Ferrers diagrams corresponding to p(n|P1 and let
B be the set of Ferrers diagrams corresponding to p(n|P2. We need to show
that |A| = |B|, and again, in order to do this we shall find a bijection between
the two sets. Thus, define the function f : B → A as follows: f(D) is obtained
from D by removing its first column. It is easy to see that a diagram in B
is really sent to a diagram in A (remember what shape Ferrers diagrams must
have), therefore f is a function from B to A. It is just as easy to show that f
is a bijection.

14.2 Use of generating functions

When finding partitions of n, what we are actually doing is deciding how many
1’s, if any, the partition will have, then how many 2’s, how many 3’s, etc. It is as
if we have boxes with a limitless supply of 1’s, 2’s, 3’s, etc to choose from. The
fact that the supplies are limitless does not mean that we can take an infinity of
1’s, say, because our sum cannot exceed the value of n. But it helps to imagine
limitless supplies because this way we need not change the boxes if we are asked
to find the partition of another number different from n—the same arrangement
will suffice.

Let us think of this algebraically. Suppose we represent the first box by the
barcket

(1 + x + x2 + x3 + . . .)

the second by the bracket

(1 + x2 + x4 + x6 + . . .)

and so on. Then, the value of p(n) equals the coefficient of xn in the product

(1 + x + x2 + x3 + . . .)(1 + x2 + x4 + x6 + . . .)(1 + x3 + x6 + x9 . . .) . . . .

Note again that just because we have a potentially infinite number of brackets
it does not mean that we can use all of them, since the sum of the powers of
the terms we choose must equal to n.

In order to make this a bit clearer, think of the partition of 22 given by

1 + 1 + 1 + 3 + 4 + 4 + 8.

In our algebraic formulation this means that we have chosen to multiply x3

from the first bracket (the three 1’s) by x3 from the third bracket (the single 3)
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by x8 from the fourth bracket (the two 4’s) and by x8 from the eight bracket
(the single 8). Therefore an x raised to a given power will come from different
brackets depending on how many 1’s or 2’s or 3’s, etc, we have chosen from the
respective ‘boxes’.

What we have just seen is that the generating function of p(n) is given by

(1 + x + x2 + x3 + . . .)(1 + x2 + x4 + x6 + . . .)(1 + x3 + x6 + x9 . . .) . . .

whose brackets contain infinite geometric progressions, and which therefore can
be written as

1

(1 − x)(1 − x2)(1 − x3)(1 − x4) . . .
.

In other words

p(n) = [xn]
1

(1 − x)(1 − x2)(1 − x3)(1 − x4) . . .
.

What about partitions with restrictions? Can we find generating functions
for them? Here are a few.

• Let P be the property that the value of the parts can only be equal to
m1, m2, . . . , mk. Then

p(n) = [xn]
1

(1 − xm1)(1 − xm2) . . . (1 − xmk)
.

• Let P be the property that no part can occur more than k times. Then

p(n) = [xn](1 + x + x2 + . . . + xk)(1 + x2 + x4 + . . . + x2k)(1 + x3 + x6 + . . . + x3k) . . .

= [xn]
∏

i=1

(1 + xi + x2i + . . . + xki)

= [xn]
∏

i=1

1 − x(k+1)i

1 − xi
.

• Let P be the property that the value of each parts is odd. Then

p(n) = [xn]
1

(1 − x)(1 − x3)(1 − x5) . . .
.

• Let P be the property that each part must have value at most m. Then

p(n) = [xn]
1

(1 − x1)(1 − x2) . . . (1 − xm)
.

• Let P1 be the property that there are precisely m parts. By the previous
section, p(n|P1) equals p(n|P2) where P2 is the property that the largest
part equals m. Therefore the generating function here is

(1 + x + x2 + . . .)(1 + x2 + x4 + . . .) . . . (xm + x2m + . . .)

which is equal to
xm

(1 − x)(1 − x2) . . . (1 − xm)
.
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We shall now illustrate, by a very simple theorem due to Euler, the type of
results obtainable using generating functions. Some more examples are give in
the Miscellaneous Problem Sheet.

Theorem 14.3 Let P1 be the property that the parts of the partition are dis-
tinct, and let P2 be the property that each part is odd. Then

p(n|P1) = p(n|P2)

Proof Let D(x) and O(x) be the respective generating functions. Therefore

D(x) = (1 + x)(+x2)(1 + x3) . . .

and

O(x) =
1

(1 − x)(1 − x3)(1 − x5)
. . . .

We need to show that D(x) = O(x).
Recall that, for any number y, 1 + y = (1− y2)/(1− y). Applying this to all

the terms of D(x) (with y successively equal to x, x2, x3, . . .) gives

D(x) =
(1 − x2)(1 − x4)(1 − x6) . . .

(1 − x)(1 − x2)(1 − x3) . . .

=
1

(1 − x)(1 − x3)(1 − x5) . . .

= O(x),

which is what we had to prove.

Note that in the generating function method, unlike the method of bijections,
we do not obtain an explicit one-to-one correspondence between the two sets of
partitions, although we still show that they have an equal number of elements.
In a sense, we therefore obtain less of an understanding why the result is true.
On the other hand, this method requires much less intuition than the bijection
method, and it is as if the algebraic machinery is doing all the thinking for us.
It is almost as if we can automate the method to generate the proof. This, and
its very general applicability, is one of the advantages of the generating function
method.

14.3 A recurrence relation for p(n)—combining the tech-
nique of Ferrers diagrams with generating function

Although there is no known formula for p(n), there is a recurrence relation which
computes p(n) efficiently. Here it is, for completeness’ sake.

p(n) =
∑

m=1

(−1)m

[

p

(

n − 1

2
m(3m − 1)

)

+ p

(

n − 1

2
m(3m + 1)

)]

with the convention that p(k) is zero when k is negative.
Note that this is not a first, or second order relation or anything like that,

because the number of previous terms required to find p(n) increases with n. The
derivation of this formula combines the use of Ferrers diagrams and generating
functions. It is not so difficult that whoever has reached this stage cannot
understand it; it is simply that we have no time for it in this course. An excellent
exposition of its derivation and use can be found in Biggs, pp. 433–438.
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15 Problem Sheet 4: Partitions of an Integer

1. ∗ This problem shows that the difficulty with partitions of an integer is that the
order of the parts is not significant when counting p(n).

The number of compositions of a positive integer n, denoted by comp(n), is the
number of ways of writing n as a sum of non-zero positive integers such that
different orderings of the parts are counted as different compositions. Show that

comp(n) = 2n−1.

(Look back at Problem 3c

When you see this result, what sort of proof does it suggest?

2. ∗ Prove that the number of partitions of n which have at most m parts is equal
to the number of partitions of n + 1

2
m(m + 1) in which there are m parts,

all of which are different. [Hint. Use Ferrers diagrams; add a “triangle” with
1
2
m(m + 1) marks.]

3. ∗ A partition of n is said to be self-conjugate if D = DT (where D is the Ferrers
diagram of the partition and DT is its conjugate). Prove that the number of
self-conjugate partitions of n is equal to the number of partitions of n whose
parts are distinct and odd.

4. ∗ Write down the generating function for the sequence whose nth term is equal
to the number of partitions of n such that no even number occurs more than
once as a part.

Hence show that this number is equal to the number of partitions of n in which
each part occurs at most three times. [Hint. Use (1−y4) = (1−y)(1+y+y2+y3).]

5. The following rule is the basis of a method for listing all partitions of n in
lexicographic order. The first partition is [n]. Suppose the current partition has
parts λ1 ≥ λ2 ≥ . . . λr. Then the next partition is found as follows:

(a) If λr 6= 1, then the parts of the next partition are λ1, λ2, . . . , λr, λr − 1, 1.

(b) If λr = λr−1 = . . . = λr−s+1 = 1 but λr−s = x 6= 1, then the parts of
the next partition are obtained by replacing λr−s, . . . , λy by x − 1, x −
1, . . . , x − 1, y, where 1 ≤ y ≤ x − 1 and y is chosen so that the result is a
partition of n.

Use this algorithm to list lexicographically the partitions of 8. Write a computer
programme based on this algorithm.

16 Solutions to the four motivating problems

We shall pose the four questions in a slightly more general setting:

In how many ways can you put r golf balls into q boxes such that no box remains
empty?

Looking at the four variants of this problem will help us review a few of the
main topics discussed in this course:

16.1 Golf balls are identical, boxes are distinguishable

This amounts to choosing r of the q boxes without order (since the balls are
identical) and with repetition (equivalent to putting more than one ball in a
box) allowed. We need, however, to deal with the proviso that no box is empty.
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This can be taken care of by first putting one ball in each box, and this can
be done in only one way, since the balls are identical. Then, the remaining
r− q balls are distributed, this being equivalent to choosing r− q of the q boxes
without order and with possible repetition. Therefore the number of ways of
doing this is

(

p + (r − q) − 1

r − q

)

=

(

r − 1

r − q

)

.

16.2 Golf balls are distinguishable, boxes are identical

What is important here is deciding which balls go together in the same box—
which particular box is not important. This is equivalent to partitioning an
r-set (the set of balls) into exactly q parts (“exactly” because no box is empty).
This can be done in

S(r, q)

ways.

16.3 Golf balls are distinguishable, boxes are distinguish-
able

Now it does matter which box contains which balls. The problem is therefore
not one of partitions, although it is closely related. Here we should see every
arrangement as a surjection from an r-set to a q-set (“surjection” because no
box is empty), and there are exactly

q!S(r, q)

of these.

16.4 Golf balls are identical, boxes are identical

This is actually the most difficult case, and it was only towards the end of the
course that we could see the problem in its true perspective. Here, it is not
important to know which balls go together and in which box—only the number
of balls in a box and only the number of boxes. This is equivalent to asking for
the number of partitions of the integer r into exactly (because no box is empty)
q parts. The number of such arrangements is therefore

p(r| exactly q parts ).

17 Problem sheet 5: Miscellaneous

Most of these problems are taken from past examination papers.

1. Find the number of ways of colouring k golf balls with four colours such that
there are an odd number of balls coloured with the same colour.

2. Find the number of ways of placing m similar balls into n different boxes so that
no box is empty.

3. Find the number of ways of distributing 2t + 1 similar objects amongst three
distinct boxes so that no box will contain more than t objects.
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4. A set of 14 identical golf balls is partitioned into five parts: two parts have 4 balls
each while each of the other parts have two balls. The balls are to be coloured
using two colours red and blue but balls in the same part of the partition are
to be coloured the same. Obtain a generating function giving the inventory of
the number of ways in which the colourings can be carried out. That is, the
coefficient of of biri in the expansion of the generating function should give the
number of colourings with i blue balls and j red ones.

What is the total number of possible colourings?

What is the total number of possible colourings if six balls are to be coloured
red and eight balls are to be coloured blue?

5. How many permutations are there of the digits 1, 2, . . . , 9 in which none of the
patterns 23, 56, 89 appears?

How many permutations are there of the digits 1, 2, . . . , 9 in which exactly
five digits are in their natural position?

[You may leave factorials in your answers but any results on derangements
must be derived and written out in full.]

6. (a) Let S(n, k) denote the number of partitions of an n-set into k parts (subsets).
Write down a recurrence relation giving S(n, k) in terms of S(n − 1, k − 1) and
S(n − 1, k). Find the values of S(6, k), 1 ≤ k ≤ 6.

(b) In how many ways can six golf balls labelled 1 to 6 be put into four
identical boxes so that at most one box is empty.

(c) Using induction on n or otherwise show that, for n ≥ 2,

S(n, 2) = 2n−1 − 1.

7. (a) Two integers are said to be relatively prime if they have no common factors
except for the factor 1. How many positive integers less than 1000 are relatively
prime to both 1000 and 90?

(b) Show that there are
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(9 − i)n

n-digit numbers using the digits 1, 2, . . . , 9 and such that each of the nine digits
is used at least once.

[Hint: Let Ak, 1 ≤ k ≤ 9, be the set of all those n-digit numbers in which
the digit k is not used.]

8. Use generating functions to find

(i) The number of ways of placing 2r identical balls into eight distinct boxes
such that each box gets an even number of balls.

(ii) The number of ways in which a sum of 25 can be obtained when 10 distinct
dice are rolled.

9. (a) Write down the coefficient of xk in the expansion of (1 − x)−n in ascending
powers of x.

(b) Find the coefficients of x20 in each of the following products:

(i) (x2 + x3 + x4 + . . . )4

(ii) (x2 + x3 + · · · + x12)4

(iii) (x2 + x3 + x4 + . . . )3(x + x2 + · · · + x6)

(c) How many ways are there to distribute 2k identical balls into 4 distin-
guishable boxes so that no box contains more than k balls?

71



10. (a) How many integers are there in the range 1 to 999 (inclusive) which are not
divisible by any of 2, 5 or 23?

(b) Let S(n, k) denote the number of ways of partitioning an n-set into k
parts. Write down a recurrence relation for S(n, k) and use this relation to find
all values of S(n, k) for 1 ≤ k ≤ n ≤ 5.

(c) How many ways are there to distribute 5 distinguishable balls amongst
6 distinguishable boxes such that exactly three of the boxes are nonempty?

11. Each of twenty rooms contains five persons. Thirty persons are to be selected
from these hundred with the condition that at least one person from each room
is to be selected. Show that the number of ways in which this can be done is

14
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[Hint: Let the rooms be numbered from 1 to 20 and let Ai be the set containing
all the ways in which the selection can be made without choosing anyone from
room i.]

12. Ten letters are to be chosen (order not important) using the letters a, b, c. In
how many ways can this be done if:

(i) Each of the three letters can be chosen an unlimited number of times?

(ii) The letter a must be chosen at least once (but otherwise an unlimited
number of times), the letter b cannot be chosen more than five times, and
the letter c can be chosen an unlimited number of times?

13. (a) Solve the following recurrence relation

an = n2an−1 + [(n + 1)!]2 (n ≥ 1)

given that a0 = 1. [You may use the fact that
Pn

1 i2 = n(n + 1)(2n + 1)/6.]

(b) Solve the recurrence relation

an − 5an−1 + 6an−2 = 3n (n ≥ 2)

given that a0 = a1 = 0.

14. (a) Let p(n) denote the number of partitions of the positive integer n and let
p(n|P) denote the number of partitions of n having property P . Write down
the generating functions of each of the following

(i) p(n);

(ii) p(n| all parts are distinct);

(iii) p(n| all parts are odd);

(iv) p(n| no part appears more than twice);

(v) p(n| no part is a multiple of 3).

Show that

p(n| all parts are distinct) = p(n| all parts are odd)

and

p(n| no part appears more than twice) = p(n| no part is a multiple of 3).

[You may need to use 1+ y = (1−y2)/(1−y) and 1+y +y2 = (1−y3)/(1−y).]

(b) Using Ferrers diagrams, show that
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(i) The number of partitions of 3n into n parts is equal to the number of
partitions of 2n into at most n parts.

(ii) The number of partitions of n into exactly m parts is equal to the number
of partitions of n such that the largest part equals m.

15. The sequence 〈an〉 satisfies the recurrence relation

an+2 − 2αan+1 + α2an = βn (n ≥ 0)

(where α, β are non-zero constants) subject to the initial conditions a0 = a1 = 0.

Solve this recurrence relation (obtaining an in terms of α, β and n) in the
two cases:

(i) β 6= α.

(ii) β = α.

16. (a) A loan of Lm3000 is taken from a bank. After a year, and at the end of
every subsequent year, a repayment of LmP is effected. Moreover, at the end
of every year the bank charges interest at the rate of 1 per cent of the amount
owed during that year.

Let An denote the amount owed to the bank at the end of the nth year
(therefore A0 = 3000). Obtain and solve a recurrence relation for An.

How much should the repayment amount P be equal to if the loan (including
all interests) is to be repaid by the end of the third year?

(b) Solve the recurrence relation

an+2 − 5an+1 + 6an = n.5n(n ≥ 0)

given that a0 = a1 = 0.

17. In this question, p(n) denotes the number of partitions of the positive integer n
and p(n|P) denotes the number of partitions of n satisfying a given property P.

(a) Write down a generating function for p(n).

(b) Show that

p(n| number of parts = m) = p(n| size of largest part = m)

and

p(n| number of parts ≤ m) = p(n + m| number of parts = m)

(c) Show that

p(n| all parts distinct) = p(n| each part is odd)

and

p(n|no number occurs more than three times as a part)

= p(n| no multiple of 4 occurs as a part)

= p(n| no even number occurs more than once as a part)

[Hint for last part of this question:

(1 + y + y2 + y3) =
1 − y4

1 − y
=

(1 − y2)(1 + y2)

1 − y
]
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18. Let p(n) denote the number of partitions of the positive integer n and let p(n|P)
denote the number of partitions satisfying a given property P . Write down the
generating function for p(n).

Let k ≥ 1 be fixed, let P1 be the property “No part in the partition appears
more than k times” and let P2 be the property “No part in the partition is
divisible by k + 1”. Prove that p(n|P1) = p(n|P2).

19. (a) Solve the following recurrence relation

an = nan−1 + (n + 1)! (n ≥ 1)

given that a0 = 1.

(b) Let an denote the number of regions created by n mutually overlapping
circles drawn on a sheet of paper such that no three circles have a common
point of intersection.

Obtain and solve a recurrence relation for an.

[Hint: Two overlapping circles intersect at exactly two points. Consider by how
much the number of regions increases when the nth circle is drawn.]

20. Solve the first order recurrence relation

an = nan−1 + (−1)n (n ≥ 2)

given that a1 = 0. What is the value of

lim
n→∞

an

n!
?

21. (a) Find the number of five-letter words that use letters from the set {α, β, γ}
and such that none of these three letters is missing from any word.

(b) How many permutations are there of the digits 1, 2, . . . , 100 in which no
odd number appears in its natural position?

[In (c) you may give your answer as a summation of terms involving factorials.]

22. (a) Let S(n, k) denote the number of partitions of an n-set into k parts (subsets).
Write down a recurrence relation giving S(n, k) in terms of S(n − 1, k − 1) and
S(n − 1, k). Find the values of S(6, k), 1 ≤ k ≤ 6.

(b) In how many ways can six golf balls labelled 1 to 6 be put into four
identical boxes so that at most one box is empty.

(c) Using induction on n or otherwise show that, for n ≥ 2,

S(n, 2) = 2n−1 − 1.

23. Suppose there are m boxes labelled 1, 2, . . . , m respectively and n balls (m ≥ n)
labelled 1, 2, . . . .n respectively. The balls are put into the boxes such that no
two balls are in the same box and no ball labelled i is put into box i, for all
1 ≤ i ≤ n. Show that the number of ways in which this can be done is

n
X

i=0

(−1)i

 

n

i
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(m − i)!

(m − n)!
.

24. Let N = {1, 2, . . . , 2n}. Show that the number of permutations f on N with
the property f(2i) 6= 2i, 1 ≤ i ≤ n is given by

(2n)!
n
X

i=0

`

n

i

´

[2n]i
(−1)i.
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25. (a) Write down the coefficient of xk in the expansion of (1 − x)−4 in ascending
powers of x.

(b) Let S(n, k) denote the number of ways of partitioning an n-set into k
parts. Write down, without proof, a recurrence relation involving S(n, k), S(n−
1, k − 1) and S(n − 1, k). Use this recurrence relation and the values of S(n, n)
and S(n, 1) to calculate the value of S(6, 4).

(c) In how many ways can six balls be distributed amongst four boxes so
that no box is empty, if:

(i) The balls are identical and the boxes are distinguishable?

(ii) The balls are distinguishable and the boxes are distinguishable?

(iii) The balls are distinguishable and the boxes are identical?

(d) How many ways are there to distribute 5 distinguishable balls amongst
6 distinguishable boxes such that exactly three of the boxes are nonempty?

26. Show that the number of partitions of n is equal to the number of partitions of
2n into exactly n parts and that this number is equal to the number of partitions
of n with the largest part equal to n.

27. (a) Let g(x) =
P

∞

r=0 arx
r and f(x) =

Pk

r=0 xr. Write down the coefficient of
xk in the product f(x)g(x) in terms of the coefficients of g(x).

(b) Write down the generating functions for:

(i) p(n), the number of partitions of the integer n;

(ii) p(0) + p(1) + . . . + p(n), the number of partitions that add up to at most
n;

(iii) The number of partitions that add up to an even number at most 2n.
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