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1 Preliminaries

This is an undergraduate short introduction to linear representations of finite
groups. Therefore we shall only be able to scratch the surface of the subject.
However, we shall do enough to see some spectacular results which can be
achieved when power group theory and linear algebra are combined. These
notes are intended to accompany the course which is built around the first
eighteen chapters of Representations and Characters of Groups by Gordon
James and Martin Liebeck, henceforth referred to as [JL]. Your are expected
to have a copy of this book and to have it with you during the lectures,
especially during the problem-solving sessions. In these notes, most theorems
are presented with a reference to their numbering in [JL]. However, we do
differ in some of the proofs which we present and in the order in which some
results are presented. This is where these notes should be useful. Where we
differ from [JL] we generally follow the first chapter of The Symmetric Group
by Bruce Sagan, referred to as [S]. Your are not expected to have a copy of
[S].

One important point to emphasise here is the notation for functions.
In order to be consistent with [JL] we write functions as (x)f rather than
f(x). This notation is not entirely consistent with other ways of representing
functions. For example, we still write

f : A→ B

rather than
B ← A : f

and, in the cycle notation for permutations, (xyz . . .) still means that x is
mapped into y rather than y into x. Later on in these notes (as in [JL])
we shall revert to the usage f(x) for certain types of functions (notably,
characters). All this might be a little confusing for those who are used to
the notation “f(x)”, but you will soon get used to it and we shall see that
the use of both the left and the right sides of “x” for functions makes the
presentation of some results flow more easily.

We differ from [JL] however in writing f : x 7→ x2, say, rather than
f : x→ x2, as [JL] does.

Finally, you should read Chapter 1 of [JL] which is a quick revision of
elementary group theory.
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2 Vector spaces and linear transformations

Please read Chapter 2 of [JL] which is a quick revision. In this sections we
shall emphasise some salient points and notation.

Remember that a linear transformation

θ : V → W

is such that
(u+ v)θ = uθ + vθ

and
(λv)θ = λ(vθ)

or, in one single condition,

(λu+ µv)θ = λ(uθ) + µ(vθ).

Recall also the relation

dimV = dim(ker θ) + dim(im θ).

2.1 Matrix representations of endomorphism

An endomorphism is a linear transformation a the vector space into itself.

A matrix is a coordinisation of a linear transformation, that is, way of rep-
resenting a linear transformation with respect to a basis. Let θ be an endo-
morphism on the vector space V . Fix an ordered basis B = {v1, v2, . . . , vn}
of V . Then, for all i,

viθ = αi1v1 + αi2v2 + . . .+ αinvn.

The n×n matrix (αij is called the matrix representation of θ with respect
to the ordered basis B and is denoted by

[θ]B.

(All of this is under the assumption of a ground field F which, for us, will
usually be C. We us the term matrix over F if we want to emphasise that
the entries in the matrix are from F .)

If θ and φ are emdomorphisms on V and λ ∈ F , then θ + φ, θφ (compo-
sition) and λθ can be defined as endomorphisms on V by

v(θ + φ) = vθ + vφ
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v(θφ) = (vθ)φ

v(λθ) = λ(vθ).

The nice thing about matrix representations of endomorphisms is that
the usual rules for matrix multiplication, addition, and multiplication by a
scalar is consistent with the above, that is,

[θ + φ]B = [θ]B + [φ]B

[θφ]B = [θ]B[φ]B

[λθ]B = λ[θ]B.

Note that although [JL] does not use this, we can extend this notation to
vectors. That is, let v ∈ V and let

v = α1v1 + α2v2 + . . .+ αnvn.

Then we can write [v]B to denote the n-tuple

(v1, v2, . . . , vn)

and it follows that, again using the usual multiplication of a matrix by a row
vector,

[vθ]B = [v]B[θ]B.

The process of getting a matrix from an endomorphism can be reversed. Let
A be an n × n matrix and V an n-dimensional vector, both over F . Fix an
ordered basis B. For any v ∈ V , compute [v]BA and use the resulting row
vector to form a linear combination of the ordered basis. Let this new vector
be w that is, [w]B = [v]BA . Then v 7→ w is an endomorphism on V .

2.2 Change of basis

Consider the two ordered bases

B = {v1, v2, . . . , vn}
and

B′ = {v′1, v′2, . . . , v′n}.
Then

v′i = ti1 + ti2 + . . .+ tinvn

for some elements tij in the field.
Let T = (tij. Then T is an invertible matrix which is called the change

of basis matrix from B to B′. The following result is important: Let θ be an
endomorphism on V . Then

[θ]B = T−1[θ]B′T.
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2.3 Eigenvalues

Let θ be an endomorphism on V . Then λ ∈ F is called an eigenvalue of θ
with corresponding eigenvector v 6= 0 if

vθ = λv.

The scalar λ is an eigenvalue for θ iff

det([θ]B − λIn) = 0.

When F = C, every endomorphism has an eigenvalue.

2.4 Direct sums

If V1, V2, . . . , Vr are subspaces of the vector space V and any v ∈ V can be
written uniquely as

v = v1 + v2 + . . .+ vr

where vi ∈ Vi, then V is said to be the direct sum of V1, V2, . . . , Vr and we
write

V1 ⊕ V2 ⊕ . . .⊕ Vr.

Example 2.1 It is easy to write a vector space V as the direct sum of sub-
spaces. Let v1, v2, . . . , vk be linearly independent in V and let U = sp(v1, . . . , vk).
Extend this to a basis

v1, . . . , vk, vk+1, . . . , vn

of V . Let W = sp(vn+1, . . . , vn). Then

V = U ⊕W.

The ease with which this can be done for a vector space is emphasised here
because we will soon meet vector spaces with additional structures in which
this cannot be done so easily.

Example 2.2 If V = U +W and U ∩W = {0}, then V = U ⊕W . Compare
all this with the direct product of groups.
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2.5 Projections

If V = U ⊕W , define the endomorphisms π1, π2 on V by

vπ1 = (u+ w)π1 = u

and
vπ2 = (u+ w)π2 = w.

Then, im π1 = U , ker π1 = W , and π2
1 = π, and similarly for π2. Con-

versely, an endomorphism π on V is a projection if π2 = π, and it is always
true that if π is a projection on V , then

V = im π ⊕ ker π.

2.6 Inner products

One main difference between the course and [JL] is the proof of Maschke’s
Theorem. The proof in the course uses inner products which we therefore
have to introduce much earlier than [JL] does.

The motivation behind the general definition of inner products is the
familiar scalar product or “dot” product of n-tuples. That is, let u =
(α1, α2, . . . , αn) and v = (β1, β2, . . . , βn), where the entries are elements of C.
Then the dot product u · v is defined by

u · v = α1β1 + . . .+ αnβn.

Now this product satisfies a few basic properties which become the defin-
ing axioms of an inner product. That is, let V be a vector space over the
field C. With every pair of vectors u, v ∈ V we associate a complex number
〈u, v〉 such that

1. 〈u, v〉 = 〈v, u〉;

2. 〈λ1u1 + λ2u2, v〉 = λ1〈u1, v〉+ λ2〈u2, v〉;

3. 〈u, u〉 > 0 if u 6= 0.

Note that it follows that

〈u, λ1v1 + λ2v2〉 = λ1〈u, v1〉+ λ2〈u, v2〉.
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Example 2.3 One important vector space will arise as follows. Let A be a
finite set (usually A will be a group). Let V be the space of all functions from
A to C. Therefore (θ + φ) would be defined by

(θ + φ)(a) = θ(a) + φ(a).

(Note that in this context, like [JL] we operate with functions on the left.)
Define 〈θ, φ〉 by

〈θ, φ〉 =
∑

a∈A

θ(a)φ(a).

It is easy to verify that this satisfies the properties of an inner product.

An inner product provides us with another easy way of decomposing a vector
space as a direct product of two subspaces. Two vectors u, v are said to be
orthogonal with respect to an inner product if 〈u, v〉 = 0. Let V be a vector
space equipped with an inner product 〈·, ·〉. Let U be a subspace of V . The
orthogonal complement U⊥ of U is the space

{v ∈ V : 〈v, w〉 = 0∀w ∈ U}.
It is easy to check that

V = U ⊕ U⊥.

Again we must emphasise that we shall soon encounter vector spaces with
more algebraic structure which are not so easy to decompose into direct sums.

2.7 Unitary transformations

A linear transformation θ : V → V is said to be unitary (with respect to a
given inner product 〈·, ·〉) if, for all u, v ∈ V ,

〈uθ, vθ〉 = 〈u, v〉.
Therefore a unitary transformation is one that preserves “distances”, for
example, a rotation. The following are standard results about unitary trans-
formations.

1. θ is unitary iff it maps an orthonormal basis into an orthonormal basis.

2. Let A = [θ]B where B is an orthonormal basis. Then

A−1 = A
t
.

Conversely, if A−1 = A
t

then A represents a unitary transformation
with respect to some orthonormal basis. Such a matrix A is called
unitary.
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3. A unitary matrix has all columns (rows) orthonormal under the usual
dot product of n-tuples.

3 A different look at an algebraic construc-

tion

Let G be an abelian group with operation denoted by +. Suppose there is
an action of G on itself,

r̂ : g 7→ r̂g.

Since an action is a homomorphism,

r̂sg = r̂ŝ(g).

Suppose we also insist that r̂ is a homomorphism on G. Then,

r̂(g + h) 7→ r̂g + r̂h.

Suppose there is another action of G on itself. To show that this is a
different action we shall act on the right. (This is one advantage of being
open minded as to which side a function acts from: you have two sides to
choose from.) So we have

r̂ : g 7→ gr̂

with
r̂s : g 7→ gr̂ŝ.

Suppose we also insist that

(g + h)r̂ = gr̂ + gŝ.

Finally, suppose that, as we usually do, we shall remove the ˆ in order
to simplify the notation. Look at all the above relations. What have we
obtained? It is clear that we have a ring. What is the point of constructing a
ring this way? What I want to point out here is that an abelian group with
two appropriate actions gives rise to a new algebraic construct—a ring. This
is something which will be central in our course and which you might need
to make some effort to get used to. Namely, we shall have a homomorphism
from a group G to a group of matrices and, if the resulting operations are
viewed in a certain way, we end up with a new algebraic construct which will
be called a module. You might want to look back at this section when we
come to that point.
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4 Group representations

We shall denote by GL(n, F ) the group of all invertible n× n matrices over
a field F . A representation of G (over F ) is a homomorphism

ρ : G→ GL(n, F )

for some n. The degree of the representation ρ is n.
Therefore, if g ∈ G, (g)ρ (or gρ, for short) is an n × n matrix over F .

Also,
(gh)ρ = (gρ)(hρ)

where the multiplication between g and h is the group multiplication, but
the multiplication between gρ and hρ is matrix multiplication.

Remember also that
1ρ = In

and
g−1ρ = (gρ)−1.

Example 4.1 Let

D4 = 〈a, b : a4 = 1 = b2, ab = ba−1〉.

(Careful! [JL] denotes the dihedral group by D8.) Let

ρ : a 7→
(

0 1
−1 0

)

and

ρ : b 7→
(

1 0
0 −1

)
.

Then, knowing what ρ does to the two generators, and using the fact that
ρ is a homomorphism, we can write down gρ for any element g in G. Do it!

Example 4.2 For any G and any n, ρ : G → GL(n, F ) defined by gρ = In
is a representation.

Let ρ and σ be two representations over F of degree n. If there exists an
invertible matrix T such that, for all g ∈ G,

gσ = T−1(gρ)T,

then ρ and σ are said to be equivalent representations.
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Example 4.3 Let ρ be the above representation of D4. Let

T =
1√
2

(
1 1
i −i

)

therefore

T−1 =
1√
2

(
1 −i
1 i

)
.

Then,

aσ = T−1aρT =

(
i 0
0 −i

)

and

bσ = T−1bρT =

(
0 1
1 0

)
.

Example 4.4 Let G = Z2 = 〈a : a2 = 1〉 and define ρ by

aρ =

(
5 12
−2 5

)
.

Check that ρ is, in fact, a representation. (What do you need to check? Why
is it sufficient to give the value of ρ on a?) Then, if T is as in the previous
example,

aσ = T−1aρT =

(
1 0
0 −1

)

is an equivalent representation.

Given a representation ρ : G→ GL(n, F ), define

ker ρ = {g ∈ G : gρ = In}.

If ker ρ = G and n = 1, then gρ = 1 for all g ∈ G. This is called the
trivial representation of G.

If ker ρ = {1} then ρ is injective and im ρ ' G. In this case ρ is said to
be a faithful representation.

The above representations of D4 are all faithful. Representations equiv-
alent to faithful representations are faithful.

Finally, we shall often be faced with the following situation: as in Example
4.1, we are given a group G presented in terms of generators and relations
and we are given, for each generator only, a matrix to which that generator
corresponds. We extend this to a matrix representation of all of G in the
obvious way using the generators. (For example, if g and h are two generators
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with corresponding matrices gρ and hρ and s is the element g2h−1, then sρ
is defined to be (gρ)2(hρ)−1.) To verify that this assignment of matrices is
indeed a representation (that is, a homomorphism) what we need to check
is that the matrices assigned to the generators satisfy the corresponding
relations satisfied by the generators. This is worked out in detail for the
dihedral group and the symmetric group S5 in Examples 1.4 and 1.5 in [JL].

Homework: Chapter 3 of [JL], numbers 2 and 5.

5 FG-Modules

(You might want to look back at the section where we discussed an alternative
way of constructing rings.)

Let ρ be a representation of G, ρ : G → GL(n, F ). Recall that the group
GL(n, F ) can be seen as linear transformations of some vector space over
F of dimension n. Therefore, although we do not mention this vector space
explicitly, whenever we are faced with a representation of a group G, we have
three algebraic spaces, G which acts on GL(n, F ) which in turn acts on a
vector space. Let us now bring this vector space into the picture.

Let V be a vector space over F of dimension n. Let us in fact take V = F n.
(We could take any vector space over F of dimension n, take an ordered basis
of the vector space and, for any vector, work with its components with respect
to the basis.) Then matrix gρ acts on any v ∈ V by matrix multiplication:

v 7→ v(gρ).

Let us simply denote v(gρ) by vg (this is similar to removing the ˆ in an
action). Then it is clear that we have relations like

(λv)g = λ(vg)

and
(u+ v)g = ug + vg.

These are just consequences of matrix multiplication. But notice that, if
we forget for a moment that g is in fact a shorthand for the matrix gρ, it
seems as if we are getting a new algebraic construct. (Compare with our
construction of rings, above.) This motivates the following definition.

Let V be a vector space over F and let G be a group. Then V is said to be
an FG-module if there is a multiplication vg (v ∈ V, g ∈ G) satisfying the
following conditions for all u, v ∈ V, λ ∈ F, g, h ∈ G.
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1. vg ∈ V

2. v(gh) = (vg)h

3. v1 = v

4. (λv)g = λ(vg)

5. (u+ v)g = ugvg.

Note that property 2 gives that G is acting on V from the right, the
fact that V is a vector space means that F is acting on V from the left
(explaining why “FG′′-module and properties 4 and 5 give that v 7→ vg is a
linear transformation on V .

We have seen that a representation of G of order n turns V = F n into an
FG-module (Theorem 4.4(1) in [JL]). It is important that you also realise
that the converse is true, that is, a vector space of dimension n which is also
an FG-module corresponds to a representation of G of degree n, as follows
(this is Theorem 4.4(2) in [JL]).

Let B = {v1, v2, . . . , vn} be an ordered basis for V . Let

vig =
∑

j

αijvj.

(Note, in the FG-module, vg is not the result of a matrix multiplication.
It is just an element of v satisfying the axioms. It is up to us to turn it
into a matrix, as we now do. The axioms are designed to ensure that the
construction does yield a representation.)

Let [g]B denote the matrix (αij). Then, if

v =
∑

i

βivi

, that is,
[v]B = [β1, . . . , βn],

the mapping v 7→ vg corresponds to

[β1, . . . , βn] 7→ [β1, . . . , βn][g]B.

Moreover, the axioms of the FG-module guarantee that the mapping

ρ : g 7→ [g]B

is, in fact, a representation. (All of this is proved in detail in Theorem 4.4 of
[JL].) What you need to understand and practice is the actual construction
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of the representation from a given FG-module. See examples 1 and 2 of
section 4.5 of [JL].

A final note. We shall often be faced with the following situation. We
are given a group G and a vector space V with a basis {v1, . . . , vn}. We
define a product vg, v ∈ V, g ∈ G by defining the values of vig only, and
extending this to all elements of V by linearity (that is, if v =

∑
λivi then

vg = (
∑
λivi)g =

∑
λi(vig)). It is easy to see, and it is proved in Proposition

4.6 in [JL], that for this product to give an FG-module what is required is
that

1. vi ∈ V ;

2. vi(gh) = (vig)h;

3. vi1 = v1.

6 Equivalent representations and FG-modules

Given an FG-module V we can take any basis of V to give a representation
following the above method. So does an FG-module correspond to essentially
different representations? The answer is no, because the different represen-
tations arising from different choices of basis for V are all equivalent. This is
the substance of Theorem 4.12 of [JL]. (Results like these give us confidence
that our definitions of equivalent representations and FG-modules and our
way of associating a representation with an FG-module are working they
way we would expect them to do.)

We can summarise this theorem and its proof as follows.

1. Let V be an FG-module with basis B and let ρ be the corresponding
representation, that is, gρ is equal to the matrix [g]B, as above.

Suppose we take a different basis B′ giving us the corresponding repre-
sentation φ : g 7→ [g]B′ .

Let T be the change of basis matrix from B to B′. Then

[g]B = T−1[g]B′T.

2. Let V be an FG-module with basis B and let ρ be the corresponding
representation, that is, gρ is equal to the matrix [g]B, as above. Suppose
σ is a representation of G, equivalent to ρ.

Then there is a basis B′′ of V such that the change of basis matrix from
B to B′′ is R and

[g]B = R−1[g]B′′R.

15



That is, there is a basis B′′ of V such that gσ = [g]B′′ .

Example 6.1 This is example 4.13 in [JL]. Let G = Z3 = C3 = 〈a : a3 = 1〉.
Let the representation ρ be defined by

1ρ =

(
1 0
0 1

)
,

aρ =

(
0 1
−1 −1

)

and

a2ρ =

(
−1 −1
1 0

)
.

(What do you need to check to verify that this is really a representation?)
Let V = C

2. We shall now turn V into a CG-module as described above.
Let v1 = (1, 0) and v2 = (0, 1) and let B = {v1, v2} be a basis for V . Turn V
into a CG-module by defining

v11 = v1, v21 = v2,

v1a = v2, v2a = −v1 − v2,

and
v1a

2 = −v1 − v2, v2a
2 = v1,

and extending the action of G on all of V by linearity. This turns V into a
CG-module. (How were the above values for vig, g ∈ G obtained? What is
the connection with the representation ρ?)

Now let us take a different basis B′ = {u1, u2} of V where u1 = v1 and
u2 = v1 + v2. Then, from the definition of the product on the CG-module V
as defined above, we get (no matrices required here!)

u11 = u1, u21 = u2,

u1a = −u1 + u2, u2a = −u1,

and
u1a

2 = −u2, u2a
2 = u1 − u2.

This gives the matrix representation φ : g 7→ [g]B′ where

[1]B′ =

(
1 0
0 1

)
,
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[a]B′ =

(
−1 1
−1 0

)
,

and

[a2]B′ =

(
0 −1
1 −1

)
.

Observe that the change of basis matrix from B to B′ is

T =

(
1 0
1 1

)
,

and in fact it can be checked that

[g]B = T−1[g]B′T .

Homework: Chapter 4 exercise 3 of [JL]

7 Reducibility

Let V be an FG-module. W is said to be an FG-submodule of V if W is a
subspace (as a vector space) of V and W is itself an FG-module, that is,

wg ∈ W∀w ∈W.

An FG-submodule is therefore a subspace of V which, moreover, is in-
variant under the action of G, that is, the action of G sends elements of W
into W .

Clearly, {0} and V are FG-submodules of V . These are called the trivial
submodules. We now have this very important definition.

An FG-module V is irreducible iff the only submodules of V are the
trivial ones. Otherwise V is called reducible.

It is important to appreciate this. For a vector space V it is easy to find
non-trivial subspaces: any set of linearly independent vectors span a sub-
space. Therefore a vector space is never irreducible, unless it has dimension
1. But if V is moreover an FG-module, a subspace is not necessarily an FG-
submodule because it might not be invariant under the action of G. It is, in
general, less easy to find FG-submodules and it could happen that there are
none, that is, the FG-module is irreducible.

Remember that with an FG-module is associated a representation of G and
vice-versa. The above definition of an irreducible FG-module leads to the
following definition.
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A representation of G is said to be an irreducible representation (writ-
ten irrep for short) if the corresponding FG-module V = F n is irreducible.
Otherwise it is called reducible.

Now, we know what an irreducible FG-module means: it has no invariant
subspaces. But what does an irrep mean in terms of matrices? We shall now
investigate this question

Let V be an reducible FG-module and W an FG-submodule of V . Let
dimW = k, 0 < k < dimV . Let B1 be a basis for W . Extend B1 to B, a
basis for V . Then, for any g ∈ G, the matrix [g]B has the form

(
Xg 0
Yg Zg

)

where Xg is a k × k matrix.
Conversely, a representation of G is reducible if it is equivalent to a rep-

resentation of the above form.
Note that in this case,

[g]Br =

(
Xr
g 0

? Zr
g

)
.

Also, g 7→ Xg and g 7→ Zg are themselves representation of G. We shall soon
have more to say about the possibility of making Yg equal to the zero matrix.

Example 7.1 Examples 5.2 and 5.5(1) in [JL].
Let G = C3 = 〈a : a3 = 1〈, and let V be a vector space with basis

{v1, v2, v3} We now turn V into an FG-module by defining an action of G
on the basis. We must have that

v11 = v1, v21 = v2, v31 = v3.

We define the action of a by

v1a = v2, v2a = v3, v3a = v1.

We therefore must have (why?)

v1a = v3, v2a = v1, v3a = v2.

We shall show that this is a reducible FG-module. Let w = v1 + v2 + v3

and let W = sp(w). That is, W is a 1-dimensional subspace of V . It is easy
to check that w1 = wa = wa2 = w therefore W is invariant under the action
of G, that is, W is an FG-submodule.
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But let U = sp(z) where z = v1 + v2. Clearly U is a subspace (as vector
space) of V but za = (v1 + v2)a = v2 + v3 which is not in U . Therefore U is
not an FG-submodule.

Now, let B be the basis {v1 + v2 + v3, v1, v2} of V . (We are here extending a
basis for W to a basis for V .) Then, check that

[1]B =




1 0 0
0 1 0
0 0 1


 ,

[a]B =




1 0 0
0 0 1
1 −1 −1




and

[a2]B =




1 0 0
1 −1 −1
0 1 0


 .

Note that the top left matrices give the 1-dimensional representation map-
ping all group elements into 1. This corresponds to the FG-submodule W .
The bottom right matrices give the representation

1 7→
(

1 0
0 1

)
, a 7→

(
0 1
−1 −1

)
, a2 7→

(
−1 −1
1 0

)
.

To what FG-module does this representation correspond? We shall have more
to say about this question.

Example 7.2 Example 5.5(2) in [JL].
Let

G = D4 = 〈a, b : a4 = b2 = 1, ab = ba−1〉.
Let the representation ρ be defined by

aρ =

(
0 1
−1 0

)
, bρ =

(
1 0
0 −1

)
.

(Why is this a representation?)
Let V = F 2 (F = R or F = C). We now turn V into an FG-module in

the usual way. Define vg to be v(gρ). For example,

(1, 0)a = (1, 0)

(
0 1
−1 0

)
= (0, 1).
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Therefore if v = (1, 0) and w = (0, 1), the FG-module is defined by the
rules

va = w,wa = −v
and

vb = v, wb = −w,
by the above presentation for G, and by linear extension. Therefore the action
of G on V becomes,

(λ, µ)a = (−µ, λ)

and
(λ, µ)b = (λ,−µ).

We now claim that this FG-module (and hence the representation) is
irreducible. Suppose U is a submodule of V , U 6= V . Therefore dimU ≤ 1.
Therefore

U = sp{(α, β)}
for some fixed α, β in F . Therefore

(α, β)a = (−β, α) = h(α, β),

and this forces α = β = 0, therefore U = {(0, 0)}, that is, trivial. Hence V
is irreducible, as claimed.

Homework: Chapter 5 of [JL] number 1.

8 Maschke’s Theorem

8.1 Reducibility for vector spaces does not work for
FG-modules

Let us review the problem at hand. Any vector space V is reducible (that
is, has a non-trivial subspace), unless it is 1-dimensional. Just take a set of
linearly independent vectors whose size is less than the dimension of V and
let W be the subspace spanned by these vectors. Moreover it is also easy to
write V as the direct sum of two subspaces. Let {w1, . . . , wk} be the basis of
W . Extend it to a basis {w1, . . . , wk, wk+1, . . . , wn} of V and let W ′ be the
subspace spanned by {wk+1, . . . , wn}. Then

V = W ⊕W ′.
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If V is equipped with an inner product, then we have another way of writing
V as a direct sum. Just let W⊥ be the orthogonal complement of W and
then

V = W ⊕W⊥.

However, these simple constructions do not work when V is an FG-
module. Firstly, W need not be an FG-submodule. That is, W need not be
invariant under the action of G, that is, there could be some w ∈ W such
that wg is not in W . Secondly, even if W were to be an FG-submodule,
there is no guarantee that W ′ or W⊥ is an FG-submodule. (Therefore, these
constructions can still be carried out in an FG-module which is, remem-
ber, also a vector space. But they yield sub-vector-spaces not necessarily
FG-submodules.)

8.2 Decomposability of an FG-module

If an FG-module is not only reducible (has an FG-submodule) but can also
be written as the direct product of two FG-submodules, we say that it is
decomposable (this term is not defined in [JL]). Why would we want an FG-
module to be decomposable? Recall the following: Let V be an reducible
FG-module and W an FG-submodule of V . Let dimW = k, 0 < k < dimV .
Let B1 be a basis for W . Extend B1 to B, a basis for V . Then, for any g ∈ G,
the matrix [g]B has the form

(
Xg 0
Yg Zg

)

where Xg is a k × k matrix. Here, if W ′ is the subspace spanned by the
extra vectors in the basis B, then V = W ⊕W ′ as subspaces but not as FG-
submodules. But if W ′ did happen to be an FG-submodule, that is invariant
under the action of G, then for any g ∈ G, the matrix [g]B has the form

(
Xg 0
0 Zg

)
.

(Why is this so?) This is quite a simplification of the matrix. For example,
we would now have,

[g]Br =

(
Xr
g 0

0 Zr
g

)
,

where we have removed the “question mark” which we had earlier. More-
over if W and W ′ were also decomposable, then we could transform the
matrix representation further into a block diagonal form. If the reducible
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FG-submodules encountered this way are always decomposable, then this
simplification can go on until the blocks of the matrix correspond to irre-
ducible FG-submodules. This way, any representation can be written in
terms of irreducible ones, and the study of group representations essentially
becomes the study of irreducible representations.

But for this programme to succeed we require decomposability of re-
ducible representations. We shall see that, over the fields R or C, all reducible
FG-modules (and hence reducible representations) are decomposable.

8.3 The Theorem

Lemma 8.1 Let V be an FG-module, U a submodule of V , and 〈·, ·〉 an in-
ner product on V which is invariant under the action of G, that is, 〈ug, vg〉 =
〈u, v〉 for all u, v ∈ V, g ∈ G.

Then U⊥ is also an FG-submodule of V , and therefore V = U ⊕ U⊥ as
FG-modules.

Proof. We are required to prove that

∀g ∈ G,∀w ∈ U⊥, wg ∈ U⊥.

Let u ∈ U . Then

〈wg, u〉 = 〈wgg−1, ug−1〉〉
= 〈w, ug−1〉
= 0

(The first step follows since the inner product is invariant under the action
of G, and the last step follows since w ∈ U⊥ and ug−1 is in U because U is
an FG-submodule.)

Therefore wg is orthogonal to any u ∈ U , therefore wg ∈ U⊥.

We can now prove our first major theorem.

Theorem 8.1 (Maschke’s Theorem) Let G be a finite group and let F
be C or R. Let V be a reducible FG-module. Then V is decomposable. That
is, let U be an FG-submodule of V . Then there is an FG-submodule W of
V such that

V = U ⊕W.

Proof. [This proof is given in [JL] as Exercise 6 at the end of Chapter 8.]
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Pick any basis {v1, . . . , vn} of V . Consider the unique inner product that
satisfies

〈vi, vj〉 = δij

extended to all of G by linearity. This inner product might not be G-
invariant. Define

〈v, w〉1 =
∑

g∈G

〈vg, wg〉.

Then 〈·, ·〉1 satisfies the axioms of an inner product (exercise!).
Now,

〈vh, wh〉1 =
∑

g∈G

〈vgh, wgh〉

=
∑

f∈G

〈vf, wf〉

= 〈v, w〉1

that is, 〈·, ·〉1 is G-invariant.
Therefore, by the previous lemma, W = U⊥ (where orthogonality is with

respect to 〈·, ·〉1) is an FG-submodule, that is, V = W ⊕W as submodules.

Corollary 8.2 Let V be an FG-module, where F is R or C. Then V is the
direct sum of irreducible submodules:

V = U1 ⊕ U2 ⊕ . . . Ur.

Proof. By induction on dimensions of U and W of Maschke’s Theorem.

An FG-module which is the direct sum of irreducible representations is
called completely reducible. Therefore, as an immediate corollary of Maschke’s
Theorem we have that, if F = C or R, every FG-module is completely re-
ducible. Maschke’s Theorem and its Corollary are therefore saying that, for
the field C, the notions of decomposable and completely irreducible coincide.

It is important to be able to interpret Maschke’s Theorem in terms of matrix
representations. So we now give this formally.

Theorem 8.3 (The corollary of Maschke’s Theorem for Matrix Representations)
Let G be a finite group, F = R or C, and ρ a representation of G of dimen-
sion n > 0. Then there is a basis over which all the matrices gρ are of the
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form

Xg =




X1
g

X2
g

. . .

Xr
g


 .

Proof. Let V = F n. Let
vg := v(gρ).

As usual, this turns V into an FG-module and, by the corollary to Maschke’s
Theorem,

V = U1 ⊕ . . .⊕ Ur
with each Ui irreducible. Take an ordered basis B for V in which first come
a basis for U1, then a basis for U2, etc/ With respect to this basis, each [gρ]B
has the required form.

In fact, let T be the matrix that transforms from the standard basis of
F n to B. Then

[gρ]B = T−1(gρ)T,

that is, one matrix T block-diagonalises all matrices gρ simultaneously.

A matrix of the form



Xg
1

Xg
2

. . .

Xg
r




is said to be the direct sum of the submatrices X1
g , . . . and we write

Xg = X1
g ⊕X2

g ⊕ . . .⊕Xr
g .

Homework: [JL] Chapter 8 Nos 1, 4, 5.

8.4 Failure of the Theorem

Example 8.1 This is Example 8.2(2) in [JL]. Let G = Cp = 〈a : ap = 1〉, p
prime. Let F = Zp. Consider the representation

aj 7→
(

1 0
j 1

)
, 0 ≤ j ≤ p− 1.

24



The corresponding FG-module is V = sp{v1, v2} where v1 = (1, 0) and v2 =
(0, 1) and

v1a
j = v1, v2a

j = jv1 + v2.

Then sp{v1} is an FG-submodule of V . But there is no FG-submodule W
such that V = U ⊕W , since U is the only 1-dimensional FG-submodule of
V .

So Maschke’s Theorem can fail if the field is not R or C.

Example 8.2 Compare this example with Exercise 5 of Chapter 8 in [JL].
It shows that Maschke’s Theorem can fail for infinite groups.

Let G be the group R
+ under multiplication. Let F = C and V = C

2.
Define the representation

x 7→
(

1 0
log x 1

)
= xρ.

Let U = {(c, o) : c ∈ C}. Then it is easy to see that U is an FG-
submodule of V . If the representation is completely reducible then there must
exits a matrix T such that

T−1xρT =

(
ax 0
0 bx

)

for all x ∈ R
+.

Therefore ax, ay are eigenvalues for xρ, and these are both 1. But then

xρ = T

(
1 0
0 1

)
T−1 =

(
1 0
0 1

)
,

which is a contradiction.

9 Schur’s Lemma

First we need to consider FG-homomorphisms. This material corresponds
to Chapter 7 of [JL].

9.1 FG-homomorphisms

Let V and W be FG-modules. A function θ : V → W is said to be an FG-
homomorphism if θ is a linear transformation and moreover, if θ : v 7→ w
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then θ : vg 7→ wg, for all v, w ∈ V and g ∈ G. That is θ does to vg what g
does to vθ. This can be written also as

(vg)θ = (vθ)g

and can also be viewed as saying that the two “functions” gθ and θg (acting
on V from the right) are equal.

What is the analogue of FG-homomorphisms for representations? Let
ρ : G→ GL(n, F ) be a representation of G. An n× n matrix A corresponds
to an FG-homomorphism (and not just a linear transformation, which it
always does) if

(gρ)A = A(gρ)

for all g ∈ G.
The proof of the following theorem is easy and can be found in [JL].

Theorem 9.1 Let V,W be FG-modules and θ : V → W an FG-homomorphism.
Then ker θ is an FG-submodule of V and im θ is an FG-submodule of W .

Another definition: Suppose that the FG-homomorphism is also invert-
ible, that is, it is injective and surjective. Then we say that it is an FG-
isomorphism. In this case we also say that V and W are isomorphic FG-
modules, written as V ' W .

The next theorem (proof in [JL]) shows that our definitions do what is
expected of them.

Theorem 9.2 Suppose that V,W are FG-modules with bases B and B ′ re-
spectively. The V ' W iff the representations ρ : g 7→ [g]B and σ : g 7→ [g]B′

are equivalent.

We can now give the main result of this section.

9.2 The Lemma

Theorem 9.3 (Schur’s Lemma) Let V and W be irreducible CG-modules.
Then

• If θ : V → W is a CG-homomorphism, then either θ is a CG-isomorphism
or vθ = 0 for all v ∈ V ;

• If θ : V → V is a CG-isomorphism, then θ is a scalar multiple of the
identity endomorphism 1V : v 7→ v.
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Before we give the proof of Schur’s Lemma we give the equivalent formu-
lation in terms of representations.

Theorem 9.4 (Schur’s Lemma in terms of representations) Let ρ : G→
GL(n,C) and σ : G→ GL(n,C) be two irreducible representations of G.

• Suppose there exists a matrix T such that T (gρ) = (gσ)T for all g ∈ G.
Then either T is non-singular and therefore ρ and σ are equivalent, or
else T = 0.

• Suppose that there exists a matrix T such that T (gρ) = (gρ)T for all
g ∈ G. Then T = λI for some λ ∈ C.

Proof of Theorem 9.3. For the first part, suppose that vθ 6= 0 for
some v ∈ V . Then im θ 6= {0}. But im θ is a submodule of W , which is
irreducible. Therefore im θ = W . Also, ker θ is a submodule of V and it is
not equal to V , since vθ 6= 0 for some v ∈ V . But V is irreducible, therefore
ker θ = 0. Therefore θ is invertible, hence an isomorphism.

For the second part, let θ be an endomorphism of V . By standard linear
algebra, θ has an eigenvalue λ. Therefore ker(θ−λ1V ) 6= 0. Thus ker(θ−λ1V )
is a non-zero submodule of V , which is irreducible. Therefore ker(θ−λ1V ) =
V , that is, v(θ− λ1V ) = 0 for all v ∈ V , that is, vθ = vλ1V for all v ∈ V .

Note how elegant this proof is. It is a basis-free proof about matrices
which commute with matrices of irreducible representations. This is possible
thanks to the module view of representations.

Note also that the converse of the second part of the theorem is also true
(Proposition 9.2 in [JL]). Read this as an exercise.

Example 9.1 This is Example 9.4(1) in [JL]. Let

G = C3 = 〈a : a3 = 1〉.

Let ρ : G→ GL(2,C) be defined by

aρ =

(
0 1
−1 −1

)
.

It is clear that the matrix (
0 1
−1 −1

)

commutes with 1ρ, aρ and a2ρ. (Why?) But this matrix is not diagonal,
therefore the representation is reducible.
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HW: Generalise the previous example to show that any k-dimensional,
k > 0, representation of an abelian group is reducible, that is, the irreducible
representations of an abelian group are all 1-dimensional. This anticipates a
result which we will soon obtain.

Example 9.2 This is Example 9.4(2) in [JL]. Let

G = D5 = 〈a, b : a5 = b2 = 1, ab = ba−1〉.

Let ω = e2πi/5. Then the following defines a representation ρ : G→ GL(2,C):

aρ =

(
ω 0
0 ω−1

)
bρ =

(
0 1
1 0

)
.

Suppose

A =

(
α β
γ δ

)

commutes with both aρ and bρ. Then, commutation with A forces β = γ = 0
and commutation with bρ forces α = δ. Therefore by the converse of Schur,
ρ is irreducible.

9.3 Abelian groups

Theorem 9.5 Let G be a finite abelian group. Then every irreducible CG-
module has dimension 1.

Proof. We shall give two equivalent proofs of this, one in terms of ma-
trices, and another in terms of modules. First the one involving matrices.
This is the exercise following Example 9.1.

For contradiction, let ρ be an irrep k-dimensional representation of G,
k ≥ 2. If all the matrices gρ are diagonal then ρ is reducible. So suppose
that some matrix A = gρ is not diagonal. Since G is abelian, A commutes
with all the matrices gρ, for all g ∈ G. But this contradicts Schur’s Lemma.

And now for the second proof (as given in [JL]). Let V be an irreducible
CG-module. Let x ∈ G. Since G is abelian,

vgx = vxg

for all g ∈ G, v ∈ V . Therefore the mapping v 7→ vx is a CG-homomorphism.
Therefore it is a scalar multiple of the identity 1V , say λx1V . Thus

vx = λxv
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for all v ∈ V .
Therefore every subspace W of V is a CG-submodule (because if w ∈W ,

then wx = λxw ∈ W ). But V is irreducible, therefore dimV = 1 in order
that it cannot have non-trivial subspaces which, as we have seen, would be
submodules.

Note that the converse of this theorem is also true (Proposition 9.18
in[JL]).

9.4 Diagonalisation

Let H = 〈g〉 be a cyclic group of order n. Let V be a nonzero CH-module.
Therefore V is the direct sum of irreducible submodules,

V = U1 ⊕ V2 ⊕ . . .⊕ Ur.

But each Ui has dimension 1. Therefore let Ui = 〈ui〉. Let ω = e2πi/n.
Now,

uig = λiui

since Ui is a CH-module. But

uig
n = λni ui = ui1 = ui.

Therefore λi is an n-th root of unity, that is

uig = ωmiui.

Hence, if B is the basis u1, u2, . . . , ur of V , then

[g]B =




ωm1

ωm2

. . .

ωmr


 .

We therefore have the following.

Theorem 9.6 Let G be a finite group and V a CG-module. If g ∈ G then
there is a basis B of V such that the matrix [g]B is diagonal. If g has order
n, then the entries on the diagonal of [g]B are the n-th roots of unity.

Proof. Let H = 〈g〉. Since V is also a CH-module, the result follows from
the above. (Note that changing g here changes the subgroup H which can
therefore change the basis B.)

HW: Do Exercise of Chapter 9 of [JL].
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10 Conjugacy and conjugacy classes

Revise Chapter 12 of [JL], particularly the sections on conjugacy classes,
conjugacy class sizes and normal subgroups.

11 Characters

11.1 Definitions and examples

Let A be an n× n matrix. Then the trace of A, denoted by tr A, is defined
to be

tr A =
∑

i

= 1nAii.

These facts about the trace are all well-known:

• tr (A+B) = tr A+ tr B;

• tr (AB) = tr (BA);

• tr (T−1AT ) = tr A;

• But in general, tr (AB) 6= tr (A)tr (B).

Now let V be a CG-module with basis B. Then the character of V is the
function

χ : G→ C

defined by
χ(g) = tr ([g]B (g ∈ G).

If ρ : G→ GL(nn,C) is a representation of G, then the character of the
representation is defined to be

χ(g) = tr (gρ) (g ∈ G).

Note that the character of a CG-module is independent of the choice of
basis, and the character of a representation is the same as the character of a
corresponding CG-module. Note also that we write characters as functions
from the left, not from the right.

If χ is any function from G to C we say that χ is a character of G if it is
the character of some CG-module (equivalently, of some representation of G
over GL(n,C)). The character χ is said to be reducible (irreducible) if the
corresponding CG-module (or the corresponding representation) is reducible
(irreducible).
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It is clear (Theorem 13.5(2) in [JL]) that if x and y are conjugate elements
of G then, for any character χ,

χ(x) = χ(y).

(This is because similar matrices have the same trace.)
For basically the same reason, we have the following (Theorem 13.5(1) in

[JL]).

Theorem 11.1 Isomorphic CG-modules have the same character. In terms
of representations, this means that equivalent representations of G have the
same character.

Although the proof of this result is easy, we have singled it out as a
theorem because one of the remarkable results that we shall soon prove is
that the converse is also true!

Example 11.1 Let

G = D4 = 〈a, b : a4 = b2 = 1, ab = ba−1〉.

Define ρ : G→ GL(2,C) by

aρ =

(
0 1
−1 0

)

and

bρ =

(
1 0
0 −1

)
.

Then the character of this representation is given by the following table
(check that these values correspond to the matrix representation — the full
example is Example 13.6(1) in [JL]).

g 1 a a2 a3 b ab a2b a3b
χ(g) 2 0 −2 0 0 0 0 0

Example 11.2 Let

G = D3 = 〈a, b : a3 = b3 = 1, ab = ba−1〉

and let three representations be defined as follows

ρ1 : a 7→ (1), ρ1 : b 7→ (1)
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ρ2 : a 7→ (1), ρ2 : b 7→ (−1)

and

ρ3 : a 7→
(
ω 0
0 ω−1

)
, ρ3 : b 7→

(
0 1
1 0

)

where ω = exp(2πi/3).
Then the three corresponding characters χ1, χ2 and χ3 are given in the

following table.

g 1 a a2 b ab a2b
χ1(g) 1 1 1 1 1 1
χ2(g) 1 1 1 −1 −1 −1
χ3(g) 2 −1 −1 0 0 0

.

11.2 First results

The degree of a character is defined to be the dimension of the corresponding
CG-module, that is, the size of the corresponding matrix representation.

Theorem 11.2 (Prop 13.9 in [JL) ] Let χ be the character of a CG-module
V . Let g ∈ G with |g| = m. Then

1. χ(1) = dimV ;

2. χ(g) is equal to the sum of mth roots of unity;

3. χ(g−1) = χ(g);

4. if g is conjugate to g−1 then χ(g) is real.

Proof.

1. Let n = dimV . For any basis B, [1]B = In therefore the trace eqials n,
that is, χ(1) = n.

2. By Theorem 9.6 there exists a basis B of V such that

[g]B =




ω1 0
. . .

0 ωn


 .

Therefore χ(g) = ω1 + . . .+ ωn.
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3. We know that tr [g−1]B = ω−1
1 + . . .+ω−1

n since the matrix is diagonal.
But ω−1

i = ωi because each ω is of the form eiθ, θ real, (modulus equals
1) and (eiθ)−1 = e−iθ = eiθ. Therefore

χ(g−1) = omega1 + . . .+ ωn = χ(g).

4. If g is conjugate to g−1 then

χ(g) = χ(g−1) = χ(g)

therefore χ(g) is real.

Corollary 11.3 (Corollary 13.10 in [JL) ] Let χ be a character of G and
let |g| = 2, g ∈ G. Then χ(g) is an integer and

χ(g) = χ(1) mod 2,

that is, χ(g) and χ(1) are both odd or both even.

Proof. Read [JL] as exercise.

Theorem 11.4 (Theorem 13.11 in [JL) ] Let ρ : G → GL(n,C) be a
representation of G and let χ be the character of ρ. Then,

1. For g ∈ G,
|χ(g) = χ(1) = n

if and only if
gρ = λIn

for some λ ∈ C. (Note that this is true for all bases.)

2.
ker ρ = {g ∈ G : χ(g) = χ(1) = n}.

Proof. For the first part read [JL] as exercise. For the second part,
let g ∈ ker ρ. Then gρ = In therefore χ(g) = n = χ(1). Conversely, let
χ(g) = χ(1). Therefore gρ = λIn for some λ ∈ C, by the first part. Therefore
χ(g) = λn = λχ(1), hence λ = 1, that is, gρ = In. Therefore g ∈ ker ρ.

The second part of this theorem justifies the following definition. Let χ
be a character of G. Then the kernel of χ, kerχ, is defined by

kerχ = {g ∈ G : χ(g) = χ(1) = n}.
By the previous theorem, ker ρ = kerχ, therefore kerχ is a normal subgroup
of G. We also say that the character χ is faithful if kerχ = {1}.
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Theorem 11.5 (Proposition 13.15 in [JL) ] Let χ be a character of G.
Then χ is a character of G. Also, if χ is irreducible then so is χ.

Proof. Read from [JL] as exercise.

Example 11.3 Let

G = D3 = 〈a, b : a3 = b2 = 1, ab = ba−1〉.

It will eventually be shown that the irreducible characters of G are χ1, χ2 and
χ3 which take on these values.

g 1 a a2 b ab a2b
χ1(g) 1 1 1 1 1 1
χ2(g) 1 1 1 −1 −1 −1
χ3(g) 2 −1 −1 0 0 0

.

Note that kerχ1 = G, kerχ2 = 〈a〉 and kerχ3 = {1}, therefore χ3 is faithful.

Example 11.4 Let

G = D4 = {a, b : a4 = b2 = 1, ab = ba−1}

and let χ be as shown.

g 1 a a2 a3 b ab a2b a3b
χ(g) 2 0 −2 0 0 0 0 0

.

It can be seen that chi is faithful, since kerχ = {1}. Also, since |χ(a2)| =
| − 2| = χ(1)| it follows that if ρ : G → GL(2,C) is a representation with
character χ then a2ρ = −In, by the previous theorem.

Look back at some of the homework examples which we have worked
earlier out earlier and see how easier it is to tell that a representation is
faithful just by reading off its character. It is remarkable that with so little
information compared with the whole matrix of the representation we can
still make conclusions about the nature of the representations. This is only
the beginning. We shall soon see truly remarkable results which tell us that
the trace, which seemingly throws away so much of the matrix, can tell us
practically all we would want to know about the representation.
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12 Orthogonality relations of the first kind

12.1 The relations

Recall that

〈χ, ψ〉 =
1

|G|
∑

g∈G

χ(g)ψ(g)

=
1

|G|
∑

g∈G

χ(g)ψ(g−1).

We extend this definition to arbitrary functions from G to C, that is, for
two such functions f and g their inner product 〈f, h〉′ is defined by

〈f, g〉′ =
1

|G|
∑

g∈G

f(g)h(g−1).

Note that 〈., .〉 and 〈., .〉 are equal for characters.

It is mainly at this juncture that we part company, at least for the time being,
with [JL]. The proof we give for the following theorem is very different from
that in [JL]. The latter uses more the concept of FG-modules, while the
one below involves working with matrices, summation over suffixes etc. The
proof in [JL] is therefore more elegant and more in the tradition of the modern
way of presenting group representations. However [JL]’s proof requires more
preparation and I wanted to get quickly to the more important results. This
way the student is not presented with a long sequence of abstract definitions
and lemmas which do not seem to lead to concrete results about characters.
Therefore from this point our sequencing of the results will also be quite
different from that in [JL]. The proof we present here is quite standard (and
clever) and can be found, for example, in Sagan [S]. [Hold on tight here. This
is one of the difficult proofs in the course. There is no conceptual difficulty
really. But there is the difficulty of having to check carefully some matrix
manipulations.]

Theorem 12.1 (Theorem 1.9.3 in [S) ] Let χ and ψ be irreducible char-
acters of a group G. Then

〈χ, ψ〉 = δχ,ψ.

Proof. Let χ, ψ be, respectively, characters of matrix representations
A,B of degrees d, f . For any element g ∈ G we write the corresponding
matrix as A(g) or B(g).
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Let X = (xij) be a d× f matrix of indeterminates xij. Let

Y =
1

|G|
∑

g∈G

A(g)XB(g−1).

We claim that A(h)Y = Y B(h) for all h ∈ G. So, to prove the claim:

A(h)Y B(h)−1 =
1

|G|
∑

g∈G

A(h)A(g)XB(g−1)B(h−1)

=
1

|G|
∑

g∈G

A(gh)XB((hg)−1)

=
1

|G|
∑

f∈G

A(f)XB(f−1)

= Y,

as required.
Therefore, by Schur’s Lemma,

Y =

{
0 if A 6' B
cId if A ' B

.

Consider first the case when χ 6= ψ, that is, A 6' B. Therefore yij = 0
for all i, j. Therefore

1

|G|
∑

k,l

∑

g

aik(g)xklblj(g
−1) = 0.

Equating coefficients of each xkl to zero gives,

1

|G|
∑

g

aik(g)blj(g
−1) = 0, ∀i, j, k, l.

Therefore
〈aik, blj〉′ = 0, ∀i, j, k, l.

Now,
χ = tr A = a11 + a22 + . . .+ add

and
ψ = tr B = b11 + b22 + . . .+ bff .

But
〈χ, ψ〉 = 〈χ, ψ〉′ =

∑

i,j

〈aii, bjj〈′= 0,
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as required.

Now let us suppose that χ = ψ. We may therefore take A = B. As we have
seen, there is a c ∈ C such that yij = cδij. Therefore, as above,

〈aik, alj〉′ = 0

as long as i 6= j. We need to consider what happens when i = j.
Let us start with

1

|G|
∑

g∈G

A(g)XA(g−1) = cId

and take traces. This gives

cd = tr cId

=
1

|G|
∑

g∈G

tr [A(g)XA(g−1)]

=
1

|G|
∑

g∈G

tr X

= tr X.

Therefore yii = c = 1
d
tr X. That is,

yii =
1

|G|
∑

k,l

∑

g∈G

aik(g)xklali(g
−1) =

1

d
(x1,1 + x2,2 + . . .+ xd,d).

Equating coefficients of like monomials gives

〈aik, ali〉′ =
1

|G|
∑

g∈G

aik(g)ali(g
−1)

=
1

d
δkl.

Therefore

〈χ, χ〉 =
d∑

i,j=1

〈aii, ajj〉′

=
d∑

i=1

〈aii, aii〉′

=
d∑

1

1

d

= 1,

as required.
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12.2 Consequences of the orthogonality relations

We can now easily obtain, as a corollary to the last theorem, some truly
remarkable results on characters.

Theorem 12.2 Let X be a matrix representation of G with character χ.
Suppose

X ' m1X1 ⊕m2X2 ⊕ . . .⊕mkXk

where the Xi are pairwise non-equivalent irreps with characters χi. Then

1. χ = miχ1 +m2χ2 + . . .mkχk;

2. 〈χ, χj〉 = mj,∀j;

3. 〈χ, χ〉 = m2
1 +m2

2 + . . .+m2
k;

4. X is irreducible iff 〈χ, χ〉 = 1;

5. Let Y be another matrix representation of G with character ψ. Then
X ' Y iff χ(g) = ψ(g) for all g ∈ G.

Proof.

1. χ = tr X = tr ⊕miXi =
∑
miχi.

2. 〈χ, χj〉 = 〈
∑

imiχi, χj〉 =
∑

imi〈χi, χj〉 = mj, by the orthogonality
relations.

3.

〈χ, χ〉 = 〈
∑

i

miχi,
∑

j

mjχj〉

=
∑

i,j

mimj〈χi, χj〉

=
∑

i

m2
i ,

again by orthogonality.

4. If χ is irreducible then all mi are zero except one whose value equals 1.
Therefore 〈χ, χ〉 = 1 by the second result.

Conversely, suppose 〈χ, χ〉 = 1 =
∑

im
2
i . Since the mi are integers, all

of them must be zero except one whose value should be 1. Therefore χ
is irreducible.
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5. We already know that if X ' Y then, by elementary matrix algebra,
χ = ψ. For the converse, let

Y ' ⊕niXi.

(If necessary let missing irreps have coefficient 0.) Since χ = ψ,
〈χ, χi〉 = 〈χ, ψi〉 for all i. Therefore, by the second result, mi = ni
for all i. That is, X ' Y .

The last two parts of this theorem are truly remarkable results. You
should now look back at some of the problems you did earlier and work them
out using characters.

13 The group algebra

The previous result answered a number of important questions about repre-
sentations of a group. However, we still have two very important questions
to investigate: How many irreps does a finite group have? How do we find
them?

To answer these questions we need to develop further some algebraic
machinery. Now that we have some significant concrete results under our
belts we can sit back and calmly develop some more abstract theory. Do not
worry, concrete results will soon appear.

13.1 The definition of the group algebra CG

Let G = {g1, g2, . . . , gn} be a finite group. The field F will always be C. The
group algebra CG (or FG) is the set of all formal sums

α1g1 + α2g2 + . . .+ αngn

where each αi is in C. What do these formal sums mean?
For the moment think of CG as a vector space over C. We can think of

a vector over C as an ordered list of elements of C. How do we denote the
order of a list of complex numbers? We usually do this by fixing the actual
order in which the numbers are written. For example, in the vector

v = (2, 0,−i, 7)
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the number 0 is the second element in the list and the number −i is the
third. However, we could also indicate this order by using ”markers”. For
example, we could write v as cubic polynomial:

2− ix2 + 7x3.

Here, the marker xi denotes the i+1-st position. The absence of the marker
x means that its coefficient is 0, which is therefore the second element in the
list. The term −ix2 means that −i is the third element in the list. We can
write the above cubic as

−ix2 + 7x3 + 2

without disturbing the order of the list – the markers do that job for us.
Now, instead of the markers xi we can use the elements of any finite set,

including a group. For example, if the group G is the Klein 4-group

{1, a, b, c}

(remember, the elements commute, each of a, b, c has order 2, and ab = c,
ac = b and bc = a) we could decide that, as markers, the elements 1, a, b, c
will denote, respectively, the first, second, third and fourth positions. Then,
the vector v can be written as

2.1− ib+ 7c.

The group algebra CG would therefore be a 4-dimensional vector space iso-
morphic to C

4 with 1, a, b, c as basis elements.
Therefore, up to this point, what we have is that the group algebra CG is

an n-dimensional vector space over C, where n is the order of G, with basis
elements g1, g2, . . . , gn. This basis is called the natural basis of CG. However,
the markers we have chosen are not lifeless symbols. They belong to a group,
and can therefore be multiplied. We can use this to put a multiplication on
CG. For example, in the 4-dimensional case we are using as an example, if
w is the vector

2a+ ic

then, in a natural way (letting the group multiplication be distributive over
the addition in CG) we can say that vw is equal to

4a+ 2ic− 4ic+ a+ 14b+ 7i

which, by collecting like terms, simplifies to

7i+ 5a+ 14b− 2ic.
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In general, we are defining a product on CG such that

(
∑

g

λgg)(
∑

h

µhh) =
∑

g,h

λgµh(gh).

This turns the vector space CG into what is called an algebra. CG is
called an algebra because, apart from the axioms of a vector space, the
above product satisfies, for all r, s, t ∈ CG and for all λ ∈ C, the following
properties:

1. rs ∈ V ;

2. r(st) = (rs)t;

3. r.1 = 1.r = r where 1 here denotes the identity element in G;

4. (λr)s = λ(rs) = r(λs);

5. (r + s)t = rt+ st;

6. r(s+ t) = rs+ rt;

7. r0 = 0r = 0 where 0 denotes the zero in C.

13.2 The group algebra as a CG-module: The regular
CG-module

Let us consider the vector space V = CG. As a vector space we can turn
this in the usual way into a CG-module by defining a suitable action of G on
V . The multiplicative structure of CG enables us to define this action in a
very natural way because any given element g ∈ G can be considered to be
an element of CG (coefficient 1 for the element g and coefficients 0 for all the
other elements) therefore the element g can be multiplied by any element in
CG by virtue of the multiplication in CG which we have just defined.

Thus, we define the action g : V → V (remember V = CG) by g : v 7→ vg.
This is called the right regular representation of G (Do you recall Cayley’s
Theorem?) and the resulting module is called the regular CG-module. This
module is faithful (that is, the only g ∈ G for which vg = v for all v ∈ CG is
g = 1).

The corresponding matrix representation ρ (the regular representation –
we drop the “right” for short) is defined by taking the natural basis B of CG
and letting gρ be [g]B. An example should make all these concepts clear.
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Example 13.1 Let G = C3 = 〈a : a3 = 1〉. Elements of CG therefore have
the form λ11 + λ2a+ λ3a

2, λi ∈ C. Consider the action on the natural basis
B = {1, a, a2} of CG.

(1)1 = 1, (a)1 = a and (a2)1 = a2. Therefore

1ρ = [1]B =




1 0 0
0 1 0
0 0 1


 .

(1)a = a, (a)a = a2 and (a2)a = 1. Therefore

aρ = [a]B =




0 1 0
0 0 1
1 0 0


 .

(1)a2 = a2, (a)a2 = 1 and (a2)a2 = a. Therefore

a2ρ = [a2]B =




0 0 1
1 0 0
0 1 0


 .

13.3 The character of the regular CG-module

Now that we have turned the group algebra CG into a CG-module we can
ask what its character is. This character is called the regular character of G
and is denoted by χreg.

Theorem 13.1 Let χreg be the regular character of G. Then

χreg(1) = |G|
and

χreg(g) = 0

for all g 6= 1.

Proof. Let B be the basis {g1, g2, . . . , gn} of CG. By an earlier result,
χreg(1) = dim CG = |G|, as required. But we can also see this as follows:
[1]B = In since 1 sends every gi onto itself. But the trace of In is n = |G|.

Now, let g ∈ G, g 6= 1. Then, for any gi, gig = gj for some j 6= i.
Therefore the i-th row of [g]B has zero everywhere except for the column j
which is not equal to i. In particular, the ii-th entry of [g]B is 0. Therefore

χreg(g) = tr [g]B = 0,

as required.

(NOTE: This result and the form of the inner product on characters
should remind you of “fixed points” and Burnside’s Lemma.)
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13.4 The group algebra can also act instead of the
group G

When we have an FG-module V , the group G acts on the elements of V from
the right. That is, for any elements v ∈ V and g ∈ G there is an element
vg ∈ V . We shall sometimes extend this action so that not only do elements
of G act on elements of V from the right but also elements of FG (which are
linear combinations of elements of G) act on elements of V from the right.
We define this action in a very natural way, that is, if V is an FG-module,
v ∈ V and r ∈ FG such that r =

∑
g λgg, then the product vr is defined by

vr =
∑

g∈G

λg(vg).

Note now the multiple use of “FG” or “CG”: (i) We write “FG-module”
or “CG-module” to denote a vector space over F or C on which the group
G acts from the right; (ii) We write FG or CG to denote the group algebra
whose elements are formal sums consisting of linear combinations (over F or
C) of elements of G — this structure is a vector space on which we have also
defined a product; (iii) and now we see that the group algebra FG or CG
can act from the right in place of G on a given FG-module or CGmodule —
the given module could be FG (CG) itself!

Try to understand these uses of the symbol FG and do not be confused
by them.

Homework: Exercises 1,2,3 and 6 from Chapter 6 of [JL].

13.5 CG is the mother of all representations

The following theorem shows why it is worth studying the group algebra CG
as a CG-module: it contains all irreducible CG-modules of G! (In particular
this shows that there are only a finite number of non-equivalent irreducible
modules of a given finite group. Why?)

Theorem 13.2 Let
CG = m1Vi ⊕m2V2 ⊕ . . .

as a CG-module, where Vi are non-equivalent irreducible CG-modules of G.
(All possible irreducible CG-modules are written down and those which do not
appear in CG have the corresponding multiplicity mi equal to 0. Of course,
only a finite number of the mi are non-zero since CG is finite-dimensional.)

Then, for all i, mi = Vi. Therefore each irreducible Vi appears in CG at
least once and there are therefore a finite number of them.
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Proof. Let Vi have character χi. Then,

mi = 〈χreg, χi〉

=
1

|G|
∑

g∈G

χreg(g)χ(g−1)

=
1

|G|χreg(1)χi(1)

=
|G|
|G| dimVi.

We shall henceforth denote by k the number of irreducible CG-modules
(or representations over C) of G. This result will also be useful.

Theorem 13.3 Let CG be as above. Then

sumk
i (dimVi)

2 = |G|,

where the sum is taken over all non-equivalent irreducible CG-modules of G.

Proof. Take dimensions in

CG = m1Vi ⊕m2V2 ⊕ . . .⊕mkVk.

Then
dim CG = dim(m1V1) + dim(m2V2) + . . .+ dim(mkVk)

therefore

|G| = m1 dimV1 +m2 dimV2 + . . .+mk dimVk

=
k∑

i

(dimVi)
2.

This result can also be obtained from

|G|.|G|
|G| = 〈χreg, χreg〉 =

∑
m2
i .

Example 13.2 Let G = D3. The complete list of characters is

g 1 a a2 b ab a2b
χ1(g) 1 1 1 1 1 1
χ2(g) 1 1 1 −1 −1 −1
χ3(g) 2 −1 −1 0 0 0

.
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Verify some of the results we have proved on characters, such as 〈χi, χj〉 = δij.
Also, note that the linear combination χ1 +χ2 +2χ3 (coefficient of χi equal to
the dimension of χi) takes the value 6 on 1 ∈ G and 0 on any g 6= 1, which
is the regular character.

14 The number of irreducible characters

14.1 Functions from G to C and class functions

¿From now on we shall denote the irreducible characters of G by

χ1, χ2, . . . , χk

now that we know that there is a finite number of them. Therefore k will
denote the number of irreducible characters of G or, equivalently, the number
of irreducible representations of G or, equivalently, the number of irreducible
CG-modules. For the next few pages we shall attack the problem of deter-
mining the value of k.

But before proceeding with this we take a short simple look at the set of
all functions from G to C. Characters are such functions, but we might need
to widen our horizon to include other functions from G to C.

The set of all functions G → C can be turned into a vector space. Let
f, h : G → C and let G = {g1, g2, . . . , gn}. Then we can consider f (and
similarly h) to be the n-tuple (f(g1), f(g2), . . . , f(gn)). Therefore the natural
way to define addition of functions would be by

(f + h)(gi) = f(gi) + h(gi)

and this would be analogous to the addition of n-tuples where

(f(g1), f(g2), . . . , f(gn)) + (h(g1), h(g2), . . . , h(gn))

becomes equal to

(f(g1) + h(g1), f(g2) + h(g2), . . . , f(gn) + h(gn)).

Similarly multiplication by a scalar is defined by

(λf)(gi) = λf(gi).

With these definitions the set of all functions G → C becomes a vector
space. (Note the similarity of this idea with the turning of CG into a vector
space by considering the gi as place holders. After all, the function f for which
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f(gi) = λi is another way of considering the element λ1g1 +λ2g2 + . . .+λngn
of CG. Note also that the way we have been representing characters—which
are functions G → C—in a tabular form is again a way of considering each
character as an n-tuple of complex numbers.)

What is the dimension of the space of all functions G→ C? It is clearly
n = |G| because the functions f1, f2, . . . , fn defined by

fi(g) =

{
1 if g = gi
0 if g 6= gi

.

form a basis.
We are however more interested in a particular subspace of the space of all

functions G→ C. A class function ψ : g → C is a function which is constant
on conjugacy classes of G, that is, it has the property that ψ(x) = ψ(y)
whenever x and y are conjugates in G. We shall denote the set of of class
functions by C. It is easy to see that C is a vector space under the above
definition of addition of functions and scalar multiplication.

What is the dimension of C? Let the conjugacy classes ofG be Ci, C2, . . . , Cl
(from now on, l will denote the number of conjugacy classes of G). Let
ψ1, ψ2, . . . , ψl be functions defined as follows

ψi(g) =

{
1 if g ∈ Ci
0 if g 6∈ Ci . .

Then the ψi are clearly class functions. Also they are linearly independent.
Moreover, they span C because if ψ ∈ C takes on the value λi on all elements
of the class Ci, then

ψ = λ1ψ1 + λ2ψ2 + . . .+ λlψl.

Therefore the ψ1, ψ2, . . . , ψl form a basis for C and hence the dimension of C
is l, the number of conjugacy classes of G.

Now, characters are elements of C and the irreducible characters have a
particular property.

Lemma 14.1 The irreducible characters χ1, . . . , χk of G are linearly inde-
pendent.

Proof. This again follows from the orthogonality properties of irreducible
characters. For, let

λ1χ1 + λ2χ2 + . . .+ λlχk = 0,
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the zero function. Therefore

0 = 〈λ1χ1 + λ2χ2 + . . .+ λlχk, χi〉 = λi,

and this is true for all λi.

But the irreducible characters live in C which has dimension l. Therefore
we immediately have,

Theorem 14.1 Let k be the number of irreducible characters of G and let l
be the number of conjugacy classes. Then

k ≤ l.

We have gone some way towards finding k: it is at most equal to the
number of equivalence classes. Could it possibly be that k = l? We shall
show that in fact this is the case by proving that k ≥ l. But to do this we
need to consider in more detail the internal structure of CG.

14.2 Z(CG), the centre of CG and class sums

The centre of CG, denoted by Z(CG), consists with all those elements of CG
which commute with all other elements of CG, that is

Z(CG) = {z ∈ CG : zr = rz∀r ∈ CG}.

Clearly, the centre of G, Z(G), is in CG, because any element z of Z(G)
can, like any other element of G, be considered an element of CG (z is that
linear combination of elements of G in which every coefficient is 0 except the
coefficient of z itself, which is 1). But then, for any r =

∑
g λgg in CG,

rz = (
∑

g

λgg)z

=
∑

g

λggz

=
∑

g

λgzg

= z(
∑

g

λgg)

= zr.

However, in CG the centre can be much larger than just Z(G), as the
following example illustrates.
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Example 14.1 Let G = D4 = 〈a, b : a4 = b2 = 1, ba = a−1b〉. Then the
conjugacy classes are

{1}, {a2}, {a, a3}, {b, a2b}, {ab, a3b}.

We shall soon see that conjugacy classes are important when considering
CG.) Let

z = ia2 + (2 + 3i)(b+ a2b).

You do check that for any g ∈ G, zg = gz. (Check it only for g = a and
g = b. The rest follows since all other elements are generated by a and b.
But DO IT! It will help you to understand better the sequel.) Then, since
any elelemnt of CG is a linear combination of elements of G it follows that
zr = rz for all r ∈ CG.

Note that the centre of G is trivial, so here we have an element of Z(CG)
which is not obtained from any central element of G.

Did you notice that the element z in the above example was a linear
combination of elements of G with the property that elements in the same
conjugacy class had the same coefficient? In this case the coefficients were i,
2 + 3i and 0. It will turn out that all elements of Z(CG) have to be of this
form. Before we proof this we need another definition.

Let the classes of G be C1, . . . , Cl, as above. For each class Ci define the
following element C i of CG:

C i =
∑

g∈Ci

g.

Therefore in C i all the elements of Ci have coefficient equal to 1 and all the
others have coefficient equal to 0. Each C i is called a class sum.

We are now ready to start proving some results. But note the state of play.
On the one hand we have characters which are special (linearly independent)
class functions, that is functions which are constant on conjugacy classes.
On the other hand we have class sums, which are elements of CG whose
coefficients are constant on conjugacy classes. If we can only put our fingers
on the right buttons surely some connections will drop out.

First a technical lemma whish we shall soon be needing.

Lemma 14.2 (Theorem 9.14 in [JL) .] Let V be an irreducible CG-module
and let z ∈ Z(CG). Then there exists λ ∈ C such that

vz = λv,∀v ∈ V.
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Proof. Note that the product vz involves CG acting on the left on the
CG-module V , an extension of the action of G on V which we pointed out
in Section 13.4.

Now, for all g ∈ G and for all v ∈ V ,

vgz = vzg.

Therefore the map v 7→ vz is a CG-homomorphism on V . But V is irre-
ducible, therefore by Schur’s Lemma this homomorphism is equal to

v 7→ λv

where λ is a constant depending only on z.

The next theorem brings us closer to our goal of connecting the space
generated by irreducible characters to the space generated by class sums,
and hence connecting k with l.

Theorem 14.2 (Theorem 12.22 in [JL) .] The class sums C1, . . . , C l

form a basis for Z(CG). Hence dimZ(CG) = l.

Proof. We present the proof in three parts.

Part 1: C i ∈ Z(CG)
Write Ci in terms of conjugates of a single element g:

Ci = {y−1
1 gy1, y

−1
2 gy2, . . . , y

−1
r gyr}.

Therefore
C i = y−1

1 gy1 + y−1
2 gy2 + . . .+ y−1

r gyr.

Therefore, for any h ∈ G,

h−1C ih = (y1h)
−1gy1h+ (y2h)

−1gy2h+ . . .+ (yrh)
−1gyrh,

and this is still equal to C i written in a possibly different order.
Therefore C ih = hC i, that is, C i commutes with every element of G.

But any element of CG is a linear combination of elements of G, therefore
C i commutes with every element of CG.

Part 2: C1, . . . , C l are linearly independent
This is easy. Let

λ1C1 + . . .+ λlC l = 0.

But conjugacy classes are mutually disjoint, therefore λi = 0 for al i.
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Part 3: C1, . . . , C l span Z(CG)
This is equivalent to proving that any element of Z(CG) has constant coef-
ficients on conjugacy classes. Let

r =
∑

g

λgg ∈ Z(CG).

For h ∈ G, h−1rh = r. Therefore

∑

g

λgh
−1gh =

∑

g

λgg.

If we look carefully at this we see that it means that, for any h, the coefficient
of h−1gh in r is the same as the coefficient of g; that is, in the sum r, elements
in the same conjugacy class must have the same coefficient. So, suppose that
elements in class Ci have coefficient λi. It then follows that

r =
l∑

1

λiC i,

as required.

We have finally arrived at our result. To prove this we shall bring to bear
most of the facts we have obtained for CG.

Theorem 14.3 (Theorem 15.3 in [JL) .] The number of irreducible char-
acters of G is equal to the number of conjugacy classes of G, that is, k = l.

Proof. We have already shown that k ≤ l. We now need to show that
l ≤ k.

Consider the regular CG-module V = CG. Let V1, . . . Vk be a complete set
of non-isomorphic irreducible CG-modules. (Remember, by Theorem 13.2,
all k irreducibles must appear as submodules of V .) Therefore

CG = W1 ⊕ . . .⊕Wk

where each Wi is a direct sum of a number of copies of Vi. But 1 ∈ CG,
therefore

1 = f1 + f2 + . . .+ fk

where each fi is in Wi (some of the fi might be equal to 0).
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Now let z ∈ Z(CG). By Lemma 14.2, for each i there exists a λi ∈ C

such that, for all v ∈ Vi, vz = λiv. Therefore wz = λiw for all w ∈ Wi. In
particular, fiz = λifi. Therefore

z = 1z

= (f1 + f2 + . . .+ fk)z

= λ1f1 + λ2f2 + . . .+ λkfk.

Therefore Z(CG) is contained in the subspace spanned by f1, f2, . . . , fk,
which must therefore have dimension at most k. But we have seen that
dimZ(CG) = l. Therefore l ≤ k, as required.

15 The character table and orthogonality re-

lations of the second kind

From now on we shall present what is called the character table of G as
follows. Each row of the table will represent an irreducible character of G.
Therefore the table will contain k rows. By convention, the first row is taken
to represent the trivial character, that is the character which takes on the
value 1 for each element of G. Since characters are constant on conjugacy
classes, we only need to know the values of a character on class. Therefore
each column will represent a conjugacy class. The values in the i-the row
and j-th column of the table will be the value which the i-th character takes
on the elements in the j-th conjugacy class. Usually, at the head of the
table we give a row which contains a representative from each class. Below
this, I usually give the size of the class, which I find useful for calculating
inner products. Note that [JL] and some other books give the centraliser of
any element in the class. Since conjugacy is an action of G on itself, each
conjugacy class is an orbit of this action, and the centraliser of an element is
its stabiliser, it follows (from the Orbit-Stabiliser Theorem) that these sizes
are related by

|G| = |C(g)| · |Ci|,
where g is any element in the class Ci and C(g) is its centraliser. Therefore
knowing one number easily gives the other, but be careful whenever you read
a character table which convention is used.

So, for example, the character table of D3 ' S3 which was given in

51



Example 11.2 in long form will now be written as

g 1 a b
Size of class 1 2 3
χ1(g) 1 1 1
χ2(g) 1 1 −1
χ3(g) 2 −1 0

.

Therefore to compute the inner product 〈χ1, χ2〉 from this table we have to
compute

1× 1× 2 + 2× 1×−1 + 3×−1.

Do not forget the sizes of the classes! These are the orthogonality relations
of the first kind or the row orthogonality relations.

Now, the fact that the character table is square will enable us to obtain
easily the column orthogonality relations or the orthogonality relations of the
second kind from the row orthogonality relations.

The row orthogonality relations give that

〈χr, χs〉 = δrs,

that is,

1

|G|

k∑

i=1

χr(gi)χs(gi)× |Ci| = δrs,

where gi is any element in the class Ci.
1

Now modify the character table by multiplying each entry χr(gi) by

√
|Ci|
|G|

and let M be the resulting matrix (sometimes called the modified character
table). Therefore the rows of M are orthogonal, that is,

MM
t
= I

which implies that

M
t
M = I.

1We have two fixed characters and we are summing over all elements. The r and s refer

to the two characters.
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Therefore the columns of M are also orthogonal. This can be written as

|Cr|
1
2 |Cr|

1
2

|G|

k∑

i=1

χ(gr)χi(gs) = δrs.
2

When r 6= s, this sum is zero, that is,

k∑

i=1

χi(gr)χi(gs) = 0.

When r = s, these relations become

|Cr|
|G|

k∑

i=1

χi(gr)χi(gr) = 1.

These relations can be written as
∑

χ

χCr
· χCs

=
|G|
|Cr|

δrs

or
k∑

i=1

χi(gr)χi(gr) =
|G|
|Cr|

δrs.

Note that while the in the orthogonality relations of the second kind the
factor |Ci| can be taken outside the summation, in the relations of the first

kind they have to remain under the sum. Also, remember that |G|
|Cr|

is equal

to |C(gr)|, the centraliser of any gr ∈ Cr, and sometimes you can see the
relations of the second kind written this way (e.g. in [JL]).

Example 15.1 Let us look again at the character table of S3 (this is the
same group D4 we had above, but let us treat it as if it were another group).
Confirm that S3 has three conjugacy classes (remember that two permutations
are conjugate in S3 iff they have the same cycle structure). One irreducible
character is the trivial character. Another is the sign character, where χ(g)
is 1 if g is an even permutation and χ(g) is -1 if g is an odd permutation
(this is an irreducible character for every Sn). Therefore the character table
of Sn can be written as

g id (12)(3) (123)
Size of class 1 3 2
χ1(g) 1 1 1
χ2(g) 1 −1 1
χ3(g) x y z

,

2We now have two fixed elements and we sum over all characters. Here, r and s refer

to the conjugacy classes of the two elements.
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where x, y, z need to be found. Now,

12 + 12 + x2 = |G| = 6

therefore x = 2. Also,
1.1 + 1.(−1) + 2y = 0

therefore y = 0, and
1.1 + 1.1 + 2z = 0

therefore z = −1. Therefore we have found the whole character table.
Note that we could have tried the inner product of the third column with

itself to find z. This would have given us z2 = 1 and we would have needed
to decide which of z = ±1 is the correct answer. The advantage of doing
the inner product of column 3 with column 1 is that it removes this problem.
But note that is is no difficulty when we do the inner product of the first
column with itself, because here all entries are dimensions therefore they are
all positive integers.

HW.

1. Read Examples 14.18, 15.7, 16.3 and 16.5 in [JL].

2. Do Problems: Ch 15, nos 1,2,3 and Ch 16, nos 1,2,3,4 from [JL].

16 Defining representation for permutation

groups

When G is a permutation group it has a very natural representation associ-
ated with its permutation action. Thus, let G be a subgroup of Sn. Let V be
a vector space with basis B = {v1, v2, . . . , vn}. Turn V into an FG-module
by defining

vig = vig

and extending this definition to all of V by linearity.

Example 16.1 This is Example 4.9 in [JL]. Let G = S4 and let B =
{v1, . . . , v4}. If g = (12), then

v1g = v2, v2g = v1, v3g = v3, v4g = v4

and if h = (124), then

v1h = v3, v2h = v2, v3h = v4, v4h = v1.

Construct [g]B and [h]B.
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This module V is called the permutation module of G or the defining
module of G. The basis {v1, . . . , vn} is the natural basis of V .

The matrices of this representation are permutation matrices, that is,
they have a single 1 in every row and column and all the other entries are 0.

This module (representation) is faithful since only id fixes every vi. By
Cayley’s Theorem, every finite group has a faithful representation of dimen-
sion |G|.

Example 16.2 Let G be a subgroup of Sn and let {v1, . . . , vn} be the natural
basis of the permutation module. Let u = v1 + . . . + vn. Clearly ug = u for
all g ∈ G. Therefore U = sp{u} is a non-trivial submodule of V , hence the
permutation module is not irreducible.

Example 16.3 This is example 7.3(3) in [JL]. Let G be a subgroup of Sn
and let {v1, . . . , vn} be the natural basis of the permutation module V . Let
W = sp{w} be the trivial module for G (that is, wg = w for all g ∈ G).

Define θ : V → W by

θ :
n∑

1

λivi 7→ (
n∑

1

)w.

Therefore viθ = w for all i. Hence θ is a linear transformation. Also, you
can easily check that (vg)θ = (vθ)g. Therefore θ is an FG-homomorphism,
and

ker θ = {
n∑

1

λivi :
n∑

1

λi = 0}

is a submodule of V .

16.1 The permutation character and the standard char-
acter

The character of the permutation module is clearly

χ(g) = number of fixed points of the permutation g = |fix(g)|.

This character is denoted in [JL] (Section 13.22) by π.

Example 16.4 Let G = S4. Then G has five conjugacy classes with repre-
sentatives as shown in this table which also shows the permutation character.

g id (12) (123) (12)(34) (1234)
Size of class 1 6 8 3 6
π(g) 4 2 1 0 0

.
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The permutation character leads to another character which is sometimes
called the standard character and it is denote by ν in [JL]. It is defined as
follows:

ν = π − 1,

that is, ν(g) = |fix(g)| − 1 for all g ∈ G.
But we still have not shown that this function G → C is a character.

Read the proof of this which is Proposition 13.24 in [JL]. The proof requires
the result of Example 16.3.

Theorem 16.1 The function defined by

ν = π − 1

is a character of G.

But we can say more. If the permutation group is 2-transitive (in partic-
ular, if it is Sn), then ν is irreducible. We state the result for Sn here as a
theorem in order to be able to refer to it.

Theorem 16.2 The standard character ν of Sn is an irreducible character.

HW.

1. How much of the full character table of S4 can you produce?

2. If π is the character of the permutation group G and it is written as
a linear combination of irreducible characters of G, which coefficient
gives the number of orbits of the action of G?

17 More on the character table: normal sub-

groups

We have now seen ways of constructing the full character table from partial
information using inner products. With more sophisticated machinery one
can of course do more. In fact character tables have been found of groups
about which only very partial information was know. Chapter 17 of [JL]
presents some of the more elementary of these methods. We review them
here. In many cases you will not be required to reproduce the proofs, but
you should know how the results are used in practice.

Character tables are very important because they tell us a lot about
the group. Chapter 17 also looks at one aspect of this, namely, using the
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character table to determine whether a group is simple. So we look at some
of these results concerning normal subgroups. Normal subgroups are also
important for the other problem we have mentioned, that is, the problem of
constructing the full character table of a group. So normal subgroups are the
leitmotif of this chapter.

Unfortunately in my treatment I am going to change again the order of
things from that given in Chapter 17 of [JL].

17.1 New irreducibles from products of old irreducibles

Let χ and λ be characters of G (in fact, for this definition, χ and λ can be
any functions g :→ F ). Then the product χλ is defined by

χλ(g) = χ(g)λ(g).

Now, even if χ and λ are irreducible characters, we do not have any guarantee
that χλ is a character, let alone that it is irreducible. However, if one of the
characters is linear (dimension = 1) then we have the following simple result.

Theorem 17.1 (Theorem 17.14 in [JL) .] Suppose that χ is a character
of G and λ is a linear character of G. The the product χλ is a character of
G. Moreover, χλ is irreducible iff χ is irreducible.

Proof. Let ρ : G → GL(n,C) be a representation of G with character
χ. Remember that the matrix representation with character λ is λ itself,
because λ(g) is simply a complex number. Define ρλ : G→ GL(n,C) by

g(ρλ) = λ(g)(gρ).

That is, g(ρλ) is just the matrix gρ multiplied by the complex number λ(g).
We first want to show that the function ρλ is a homomorphism. This is easy,
because

(gh)(ρλ) = λ(gh)((gh)ρ)

= λ(g)λ(h)gρhρ

= (λ(g)gρ)(λ(h)hρ)

= (gρλ)(hρλ)

But the matrix g(ρλ) has trace λ(g)tr (gρ) which is equal to λ(g)
chi(g). Hence the latter is a character.
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Now, remember that for all g ∈ G, the complex number λ(g) is a root of
unity. Therefore λ(g)λ(g) = 1. So we have,

〈χλ, χλ〉 =
1

|G|
∑

g∈G

χ(g)λ(g)χ(g)λ(g)

=
1

|G|
∑

g∈G

χ(g)χ(g)

= 〈χ, χ〉.

But χ is irreducible iff 〈χ, χ〉 = 1, therefore χλ is irreducible iff χ is
irreducible.

So, finding linear characters can help us find new characters. We shall
soon discuss how this can be done, but first we need to describe a way of
getting a character of G from a character of G/N where N is normal.

HW See how easier it now is to find the complete character table of S4.

17.2 Lifted characters

If we know that G has a normal subgroup N then we know that G/N is
also a group. But since G/N is smaller than G we might already know its
characters. Therefore it would be useful if we had a method of going from a
character of G/N to one of G.

Theorem 17.2 Let N C G and and let χ̃ be a character of G/N . Define
χ : G→ C by

χ(g) = χ̃(Ng).

Then the function χ is a character of G and χ and χ̃ have the same degree
(dimension).

Note the natural way in which χ was defined based on χ̃: to calculate
χ(g) find the coset of N in which g lies and let χ(g) be the value of χ̃ on
that coset. This character is called the lift of χ̃ to G.

The next theorem tells us that if we know the character table of G/N
then we can write down as many irreducible characters of G as there are of
G/N .

But first recall that we have defined the kernel of a character χ as

kerχ = {g ∈ G : χ(g) = χ(1) = n},

and that by Theorem 11.4, kerχ is a normal subgroup of G.
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Theorem 17.3 (Theorem 17.3 in [JL) .] Let N C G. Associate with
each character of G/N with its lift to G. This gives a bijective correspondence
between the set of characters of G/N and the set of characters χ of G which
have the property that N ≤ kerχ.

Under this correspondence, irreducible characters of G/N correspond to
irreducible characters of G which have N in their kernel.

Example 17.1 This is Example 17.4 in [JL]. Let G = S3, and let

N = {id, (12)(34), (13)(24), (14)(23)}.

Then it is easy to see that N C G.
Let a be the coset N(123) and let b be the coset N(12). Then

G/N = 〈a, b : a3 = b2 = N = 1, ab = a−1b〈.

Therefore G/N is isomorphic to D3 or S3. But we already have the character
table of S3¿ Therefore the character table of G/N is:

g N N(12) N(123)
χ1(g) 1 1 1
χ2(g) 1 −1 1
χ3(g) 2 0 −1

.

We can now calculate lifts to give us the following three irreducible char-
acters of S4. Note that χ((12)(34)) = χ̃(N) and χ((1234)) = χ̃(N(13)).

g id (12) (123) (12)(34) (1234)
χ1(g) 1 1 1 1 1
χ2(g) 1 −1 1 1 −1
χ3(g) 2 0 −1 2 0

.

17.3 Finding all linear characters

Now, in our study of groups we have already seen one very important normal
subgroup of any group, that is, the centre Z(G) (the centre could, of course,
be trivial, that is, equal to {1} or G itself). We now define another very
important normal subgroup of G which is also related to the commutativity
(or lack of it) of G. In the context of our discussion, this normal subgroup
is important because it will allow us, in principle, to determine all the linear
characters of G.
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Firstly, let g and h be two elements of G. The commutator of g, h, written
[g, h] is defined to be the product

g−1h−1gh.

Note that the commutator seems to be trying to capture whether or not g and
h commute, for [g, h] = 1 iff g and h commute. Now, collect all commutators
for all pairs of elements and construct all possible products of these elements.
The resulting group is called the derived subgroup of G and is denoted by G′.
Therefore G′ is the subgroup of G generated by all commutators, or

G′ = 〈[g, h] : g, h ∈ G〉.

It is easy to show that G′ = {1} iff G is abelian and also that G′ is a
normal subgroup of G.

It is not always easy to determine G′, although the examples you will be
meeting will not be too difficult. Here is an easy example.

Example 17.2 This is example 17.8 in [JL]. Let G = S3. Clearly [g, h] is
always an even permutation (Why?). So G′ ≤ A3. Also, if g = (12) and
h = (23) then [g, h] = (123). But (123) generates the whole of A3, therefore
G′ = A3.

Theorems 17.9 and 17.10 of [JL] are not difficult group theoretic proper-
ties of G′. We have already mentioned two: G is abelian iff G′ = {1} and
G′

C G. Other important results are: (i) if chi is a linear character then
G′ ≤ kerχ (Prop 17.9) — this is very easy because multiplication of linear
characters is simply multiplication in C which is commutative; (ii) G/G′ is
always abelian (Prop 17.10) – this is a not difficult technical result using only
group theory without any representations. But for our purpose the interest
is in the following which follows from these properties of G′ and the ear-
lier results on lifts. We shall concentrate on the use of this result to obtain
irreducible characters of G.

Theorem 17.4 (Theorem 10.10 in [JL) .] The linear characters of G
are precisely the lift to G of the irreducible characters of G/G′. In particular,
the number of distinct linear characters of G is equal to |G|/|G′| and so
divides |G|.

Therefore to use this theorem to find all the linear characters of G we need
to be able to (i) find G′; (ii) find G/G′ (which is always abelian and therefore
has all characters linear); (iii) find the characters of this smaller group G/G′;
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and (iv) lift the characters of G/G′ to G. This might not always be easy
but you will meet examples for which carrying out this formula is not too
difficult. And sometimes this result is no help at all. If G is abelian, G′ = {1}
and G/G′ is simply G itself! It could also be that G has few linear characters
so that finding them all is still a l,ong way away from finding the complete
character table, as we see in this example.

Example 17.3 This is Examples 17.12 and 17.13 in [JL]. We shall find
all the linear characters of Sn. Example 17.12 first determines Sn for all
n ≥ 4. It is clear that every [g, h] is an even permutation (why?) so S ′

n ≤ An
(no need for Proposition 17.10(2)). Then, if p, q, r ∈ {1, 2, . . . , n}, and if the
permutations g and h are (p q) and (q r), respectively, then their commutator
[g, h] is equal to the cycle (p q r). Therefore every 3-cycle is in S ′

n. But it is
well-know that the 3-cycles generate An, therefore An ≤ S ′

n. So, S ′
n = An.

Then Example 17.13 uses this to find the linear characters of Sn. We have
that Sn/S

′
n = Sn/An = {An, An(1 2) ' C2. But C2 has only two characters,

the trivial character χ1 and the character χ2 which takes the value on on the
identity and the value −1 on the other element. Lifting these two characters
to Sn give us the trivial character and the sign character.

So this method does not give us any new linear character of Sn—we al-
ready knew about them. But what it tells us is that these are the only linear
characters of Sn, therefore it is useless to try and find any others.

17.4 Finding normal subgroups

Once we have found the character table we can use it to determine various
properties of G, the easiest of which is to determine whether G is simple.

Recall first that the kernel of a character χ, which is a normal subgroup
of G, is easily located from the character table. Just go through the row
corresponding to χ and collect all those elements g such that χ(g) = 1. It
is true, of course, that any intersection of kernels of characters is a normal
subgroup of G. The remarkable fact is that every normal subgroup of G
arises this way.

Theorem 17.5 (Proposition 17.5 in [JL) .] If N C G then there exist
irreducible characters χ1, . . . , χs of G such that

N = ∩si=1 kerχi.

This result makes it possible to tell easily from the character table of G
whether or not G is simple.
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Theorem 17.6 (Proposition 17.6 in [JL) .] The group G is not simple
iff

χ(g) = χ(1)

for some non-trivial irreducible character of G, and some non-identity ele-
ment g of G.

HW.

1. Chapter 17 of [JL], Exercises 1, 4, 5, 7.

2. Read Chapter 18, Sections 1 and 2.

3. Chapter 18 Exercises 1 and 2.

18 An application: The spectrum of a graph

In the sequel, Γ will be a simple graph on the vertex-set V = {1, 2, . . . , n}
and A = A(Γ) will be the adjacency matrix of Γ, that is, Aij = 1 if i, j are
adjacent in Γ and Aij = 0 otherwise. An automorphism of Γ is a permutation
p of V such that i, j are adjacent iff p(i), p(j) are adjacent. The group of all
automorphisms of Γ is denoted by Aut(Γ). Let p be any permutation of V .
Let Ap be the matrix whose ij entry is Ap(i)p(j). Then it is clear that p is an
automorphism of Γ iff A = Ap. (If you need convincing, draw a small graph,
write down its adjacency matrix, and test with an automorphism p.)

Let the matrix P = P (p) be the permutation matrix corresponding to p,
that is, Pij = 1 if p(i) = j, Pij = 0 otherwise. Note that P−1 = P (p−1).
The matrices P give a linear representation of Aut(Γ), and this representation
will often determine what types of eigenvectors and eigenvalues the adjacency
matrix can have. The link between the matrix A and this representation of
Aut(Γ) is given by the following theorem.

Theorem 18.1 Let P be the permutation matrix corresponding to the per-
mutation p of V , and let A be the adjacency matrix of Γ. Then p is an
automorphism of Γ iff AP = PA.

Proof. To be able to concentrate on one edge at a time we define D(ij)
to be the matrix all of whose entries are 0 except the ij-entry which is 1.
Then, of course,

A =
∑

ij∈E(Γ)

D(ij).
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Consider P−1AP . We need to show that this product equals A iff p is an
automorphism of Γ.

Suppose p(i) = k and p(j) = l. Since p−1(k) = i, there is only one non-
zero entry in the column i of P−1, namely in row k. Therefore P−1D(ij) =
D(kj). Similarly, D(kj)P = D(kl). Therefore

P−1D(ij)P = D(kl) = D(p(i)p(j)).

Therefore

P−1AP = P−1(
∑

ij∈E(Γ)

D(ij))P

=
∑

ij∈E(Γ)

P−1D(ij)P

=
∑

ij∈E(Γ)

D(p(i)p(j))

= Ap.

But we have already observed that Ap = A iff p is an automorphism of Γ.

From now on, out treatment will be based on Cvetkovic, Doob and Sachs,
Spectra of Graphs [CDS]. Suppose P is the representation of G = Aut(Γ) as
permutation matrices, that is, for every p ∈ G there is the matrix P (p)
defined as above. Then A, the adjacency matrix of Γ, commutes with every
P (p).

18.1 The number of distinct eigenvalues of A

Since A is symmetric, there exists T such that

T−1AT = D = diag(λ1, . . . , λn)

where the eigenvalues λi are arranged such that λ1 ≥ λ2 ≥ . . . ≥ λn. Suppose
there are t ≤ n distinct eigenvalues and D1, . . . , Dt are the submatrices of D
corresponding to the t blocks of equal eigenvalues. Therefore

D = D1 ⊕ . . .⊕Dt,

where each Di is a diagonal matrix with all its entries equal. Let us apply T
to A and the matrices P (p). Let

T−1P (p)T = Q(p).
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Then D commutes with every Q(p) (since AP = PA, (T−1AT )(T−1PT ) =
(T−1PT )(T−1AT )). But then, Q(p) has to decompose into t blocks corre-
sponding to the eigenvalues multiplicities. (This is an elementary matrix
algebra result, not requiring any of the theory we have developed in this
course. For example, check that if




2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 3




(
A B
C D

)
=

(
A B
C D

)



2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 3




then B = C = 0.)
So we can write

Q(p) = Q1(p)⊕ . . .⊕Qt(p)

where each Qi is a square matrix whose size is equal to the multiplicity of
the i-th distinct eigenvalue of A. Now, apply Maschke’s Theorem to each of
the Qi separately to get matrices Si such that S−1

i QiSi decomposes into mi

irreducibles (counting multiplicities). Note that S−1
i DiSi = Di, therefore the

matrix
S = S1 ⊕ . . .⊕ St

reduces Q to its irreducible constituents and leaves D unchanged. The num-
ber of irreducibles of Q is m =

∑t
i=1mi and clearly m ≥ t. We have therefore

proved the following.

Theorem 18.2 Let Γ be a graph and let G = Aut(Γ) and also let A be the
adjacency matrix of Γ. Let P be the permutation matrix representation of G.
Suppose that A has t distinct eigenvalues and suppose that the decomposition
of P into irreducibles has m irreducibles, counting multiplicities. Then t ≤
m.

Example 18.1 Let Γ be the graph shown in Figure 18.1. Then G = Aut(Γ) '
S3 ' D3. The character table of G is therefore given by

g 1 {a, a2} {b, ab, a2b}
χ1(g) 1 1 1
χ2(g) 1 1 −1
χ3(g) 2 −1 0

where a and a2 correspond to the two rotations about the central vertex, and
b, ab, ab correspond to the permutations which interchange two of the three
“wings” of the “windmill”, leaving the other fixed.
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The defining character π of the representation P of G is given by

g 1 {a, a2} {b, ab, a2, b}
π(g) 13 1 5

.

Let π = αχ1 + βχ2 + γχ3. We find α, β, γ in the usual fashion, giving
that α = 5, β = 0, γ = 4. Therefore the number of irreducible components
of P is 5 + 4 = 9 and we deduce, without even looking at the adjacency
matrix of Γ, that it can have at most nine distinct eigenvalues. In fact,
if it has this number of distinct eigenvalues, then this would mean, from
π = 5χ1 + 4χ3 and the fact that dim(χ1) = 1 and dim(χ3) = 2, that it
would have five distinct simple eigenvalues and four distinct eigenvalues with
multiplicity 2; and 5.1 + 4.2 = 13 which checks out to the total number of
eigenvalues (counting multiplicities) of Γ.

Figure 1: How many distinct eigenvalues does this graph have?

HW: Show, without using its adjacency matrix, that the graph in Figure
18.1 can have at most four distinct eigenvalues.

18.1.1 The simple eigenvalues

The above is only a sample of what can be deduced about the distinct eigen-
values of a graph from knowledge of its automorphism group. In the rest of
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Figure 2: This graph can have at most four distinct eigenvalues

this subsection we present some more such results which might help to bring
the above into better context. None of the sequel in this subsection uses
group representations.

Lemma 18.1 Let P be the matrix corresponding to an automorphism p of
the graph Γ. If x is an eigenvector of of A corresponding to the eigenvalue
λ, then Px is also an eigenvector of A corresponding to the eigenvalue λ.

Proof. Ax = λx. But APx = PAx = P (λx) = λPx.

Theorem 18.3 Let λ be a simple eigenvalue of A and let x be a correspond-
ing eigenvector with real components. If P is a matrix corresponding to an
automorphism of Γ, then Px = ±x,

Proof. Because λ is simple and x and Px are both eigenvectors corre-
sponding to λ, these vectors are linearly dependent. That is, Px = kx for
some k ∈ R. But because P is a permutation matrix, P s = I for some s ∈ N.
Therefore k = s

√
1 = ±1.

Theorem 18.4 Suppose all the eigenvalues of Γ are simple. Then every
non-trivial automorphism of Γ has order 2. This, in particular, implies that
Aut(Γ) is abelian.

Proof. Let P be any permutation matrix corresponding to an auto-
morphism of Γ, and let {x1, . . . , xn} be a complete set of eigenvectors of Γ.
Because Pxi = ±xi for each i, P 2xi = xi. But the xi form a basis for R

n,
therefore P 2 = I, the identity.

Example 18.2 Since the permutation (1 4 2 3)(5 6) is an automorphism of
the graph shown in Figure 18.2 and this permutation has order 4, we can
deduce, without looking at the graph’s adjacency matrix, that it cannot have
all its eigenvalues simple.
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5 6

Figure 3: Are all the eigenvalues simple?

18.2 Finding the eigenvalues

Sometimes, one can exploit the symmetries of a graph in order to simplify
the problem of finding its eigenvalues. For example, one might be able to
reduce the problem of finding the eigenvalues of a graph on twenty vertices
to five 4×4 problems rather than one 20×20 problem. The technique which
we are going to describe to do this is often used molecular chemistry.

What we shall do is essentially the reverse of what we did in the previous
section. There we applied the matrix which diagonalised A to P and then
decomposed P into irreducibles. Here, we shall apply to A the matrix which
decomposes P into irreducibles, and then apply Schur’s Lemma.

First we need an extension of Schur’s Lemma. Remember that Schur’s
Lemma talked about matrices which commute with a representation — which
is just what we have here with the matrix A and the representation P —
but the representation needed to be irreducible. What if P is reducible, as is
generally the case with the permutation representation of the automorphism
group of a graph?

Consider first a simple example. Suppose X is a reducible matrix repre-
sentation of a group G, and suppose

X = X1 ⊕X2
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where X1, X2 are non-equivalent irreps. Suppose the matrix
(
A B
C D

)

commutes with X, and that A and D have the same sizes as X1 and X2,
respectively. Then we get that X1B = BX2 and X2C = CX1. But X1

and X2 are irreducible and non-equivalent. Therefore, by Schur’s Lemma,
B = C = 0. This result can be extended to give that, if

X = m1X1 ⊕ . . .⊕mtXt

where the Xi are non-equivalent irreps, and if K commutes with all the X(g),
then K must decompose into blocks

K = K1 ⊕ . . .⊕Kt

where the size of Ki is (mi dim(Xi))× (mi dim(Xi)).

Now, let Γ, G,A, P be as in the previous section. By Maschke’s Theorem,
there is a matrix U such that

U−1P (p)U = m1P1 ⊕ . . .⊕mtPt(p),

where the Pi are irreps and non-equivalent. We now apply U to A to give

B = U−1AU.

The eigenvalues of B are the same as those of A. Also, B commutes with
U−1PU . Therefore B has the block structure described above. And the
eigenvalues of B are precisely the eigenvalues of these smaller blocks.

Each block corresponds to that submodule Sχi
of R

n which can be de-
scribed as follows: each Sχi

consists of the sum of all of the irreducible
submodules of the representation P which have character χi. If we can find
these subspaces of R

n we can then solve the eigenvalue problem for each of
these smaller subspaces — effectively this means finding the eigenvalues for
the smaller matrix Bi.

How do we find this smaller subspace? We need a theorem form [JL]
whose proof we do not give.

Theorem 18.5 (Theorem 14.26 in [JL) ] If χ is an irreducible character
of G and V is any CG-module, then the sum of those CG-submodules of V
which have character χ is equal to V r where

r =
∑

g∈G

χ(g−1)g.
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Note that r is an alement of CG, and we are using again the fact that
CG acts on V as an extension of the action of G on V .

So what we do to find the eigenvalues of A is the following.

1. Take a basis {e1, . . . , en} for R
n, say the standard basis.

2. Find the irreducible characters of the permutation representation of
Aut(Γ) using the character table of G = Aut(Γ).

3. For each such character χ calculate the matrixR =
∑

p∈Aut(Γ)
χ(p−1)P (p)

and let vi = Rei.

4. Then the vectors {v1, . . . , vn}, which in general are not linearly inde-
pendent, span the submodule Sχ of R

n which is the sum of all the
irreducible submodules of P which have character χ.

5. Solve the eigenvalue problem for A on the space Sχ which has dimension
smaller than n.

6. Repeat for all the irreducible characters of P .

We shall illustrate this method with an example taken from [CDS].

Example 18.3 Let Γ be the path P3 shown in Figure 18.3. Of course, we do
not need any special methods to find the eigenvalues of such a small graph,
but we shall use it as an illustration.

1 2 3

Figure 4: The path P3

The adjacency matrix of Γ is

A =




0 1 0
1 0 1
0 1 0


 .
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The automorphism group of Γ is G = {id, (1 3)(2)} = {1, a}. Let χ be the
character of the permutation representation of G. The character table of G
and the character χ are given below.

1 a
χ1 1 1
χ2 1 −1

χ 3 1

.

As usual, we find that
χ = 2χ1 + χ2.

We can now reduce finding the eigenvalues of A to two smaller problems
corresponding to the characters χ1 and χ2.

Eigenvectors and eigenvalues from χ1

Let the matrix representation of Aut(Γ) be

P (1) =




1 0 0
0 1 0
0 0 1




and

P (a) =




0 0 1
0 1 0
1 0 0


 .

Let e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). Therefore

R = χ1(1
−1)P (1) + χ1(a

−1)P (a)

= 1.




1 0 0
0 1 0
0 0 1


 + 1.




1 0 0
0 1 0
0 0 1




=




1 0 1
0 2 0
1 0 1


 .

Therefore
v1 = Re1 = e1 + e3,

and
v2 = Re2 = 2e2

and
v3 = Re3 = e1 + e3.
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Therefore v1, v2, v3 span the two-dimensional subspace of R
3 given by

{(α, β, α) : α, β ∈ R},
and this is the eigenspace required. Therefore we solve the eigenvalue problem
for A for this smaller subspace:




0 1 0
1 0 1
0 1 0







α
β
α


 = λ




α
β
α




giving us (
λ −1
2 −lλ

)(
α
β

)
=

(
0
0

)

with the solution λ = ±
√

2.

Eigenvectors and eigenvalues from χ2

We work with the matrix representation of Aut(Γ) as above, and with the

same e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). Now, let

R = χ2(1
−1)P (1) + χ2(a

−1)P (a)

= 1.




1 0 0
0 1 0
0 0 1


 + (−1).




1 0 0
0 1 0
0 0 1




=




1 0 −1
0 0 0
−1 0 1


 .

Therefore
v1 = Re1 = e1 − e3,

and
v2 = Re2 = 0

and
v3 = Re3 = e3 − e1.

Therefore v1, v2, v3 span the one-dimensional subspace of R
3 given by

{(α, 0,−α) : α ∈ R},
and this is the eigenspace required. Therefore we solve the eigenvalue problem
for A for this smaller subspace:




0 1 0
1 0 1
0 1 0







α
0
−α


 = λ




α
0
−α




giving immediately the solution λ = 0.

71



HW: Find, using the above method, the eigenvalues of the graph K1,3.

18.2.1 Cayley graphs of abelian groups

When the group G is abelian and the graph Γ has a structure closely related
to the group, it can become very easy to determine the eigenvalues and
eigenvectors of Γ from the character table of G. In order to illustrate the
connection between the characters of G and the eigenvalues of Γ we shall
give one result but without a proof. First we need to define what we mean
by a Cayley graph. Let G be a group and let S ⊆ G be a subset of G which
generates G, which has the property that if s ∈ S then s−1 ∈ S, and which
does not contain 1. The Cayley graph Γ = Cay(G,S) is defined as follows.
The vertex set of Γ is G, that is, the vertices of G are the elements of G.
Then, a vertex g ∈ G is made adjacent to all the vertices gs for all s ∈ S.
We leave it as an exercies to show that:

1. Since 1 6∈ S, Γ has no loops;

2. Since s ∈ S → s−1 ∈ S, the edges of Γ are not directed, that is, if g is
adjacent to h then h is adjacent to g;

3. Since S generates G, Γ is connected.

We can now state this theorem.

Theorem 18.6 Let Γ = Cay(G,S) be a Cayley graph of an abelian group G.
Then the rows of the character table of G are a complete set of eigenvectors
of the adjacency matrix A of Γ. That is, for each character, the n-tuple of
values of character on the elements of G form an eigenvector of A. The
eigenvector corresponding to the the character χ is given by

∑

s∈S

χ(s).

HW:

1. Without using its adjacency matrix, find the eigenvalues of Cn, the
cycle on n vertices.

2. Show that the graph in Figure 2 is a Cayley graph of an abelian group.
Hence find its eigenvalues without using its adjacency matrix.

19 Conclusion: What next?
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Figure 5: A Cayley graph of an abelian group
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