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1 Group Actions

Let X be a set (usually finite with |X| = n). The symmetric group is the group
consisting of all permutations on X, and it is denoted by SX . If |X| = n then
|SX | = n!. Let G be a group. An action of G on X is a homomorphism from G
to SX .

If φ : G → SX is an action, then φ(g) is often denoted by ĝ, and φ(G) by Ĝ.

Note that Ĝ ≤ SX , each ĝ is a bijection (permutation) on X and, since φ is a
homomorphism,

ĝh = ĝ ◦ ĥ.

If φ is injective then we say that the action is faithful.
Examples
1. Let G = {a, a2, a3, a4 = 1} be the cyclic group of order 4. Let X =

{1, 2, 3, 4} be the set of four vertices of a square (numbered in an anticlockwise
sense). Define the following action of G on X: ai 7→ rotπi/2, where rotπi/2 denotes
the permutation of the vertices induced by an anticlockwise rotation of the square
through an angle of πi/2. Therefore,

a 7→ (1234) (= â)

a2 7→ (13)(24) (= â2)

a3 7→ (1432) (= â3)

1 7→ id (= 1̂).

One should check (it is easy) that this does in fact define an action, that is, φ is
a homomorphism, meaning that φ(ai)φ(aj) = φ(aiaj). Notice how this homomor-
phism is bringing out the similarity between the algebraic significance of “cyclic” in
“cyclic group” and the geometric significance of the “cyclic” rotations carried out
on the square.

2. The group G is as above, but now X = {x, y} where x and y are the
two diagonals of the square. The action is now defined by mapping ai onto the
permutation induced on the diagonals by a rotation of the square through πi/2.

Therefore in this case, â = (xy), â2 = id, â3 = (xy) and â4 = 1̂ = id.
Note that in the first example the action is faithful but in the second it is not.

When the action is faithful, G and Ĝ (that is, φ(G)) are isomorphic. Therefore

G would be isomorphic to a subgroup (Ĝ) of SX . In this case we often do not

distinguish between G and Ĝ and we say that G is a subgroup of SX , and we
denote ĝ by g. Conversely, if G is a subgroup of SX , that is, G is a group of
permutations of the set X, then trivially there is an action of G on X — just take
φ : G → SX to be the identity. In fact, our definition of “action” is meant to
extend precisely this clear case of an action on X, that is when the group consists
of permutations of X.

3. Let G = {1, a, a−1, a2, a−2, . . . } be the infinite cyclic group, and let X = R,
the real line. For any real number i, let tri be a shift or translation of R through
i; that is, tri is a function on R defined by tri(x) = x + i. Clearly, each tri is a
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bijection on R. Define an action of G on R by ai 7→ tri. Check that this is, in fact,

an action (that is, âi ◦ âj = âiaj) and that it is faithful.
4. Let G and X be as in the previous example. Let rfi denote reflection of

R through the origin i times, in other words, rfi is a function on R defined by
rfi(x) = (−1)ix. The action is now defined by ai 7→ rfi. This therefore boils down
to the following: if i is even then ai is mapped onto the identity transformation on
R, while if i is odd then ai is mapped onto the function on R defined by x 7→ −x.
Again, check that this defines an action. Clearly it is not faithful.

5. Cayley’s Theorem
Let G be any group, and let X = G, that is, we are going to create an action

of G on itself. For any g ∈ G define the function fg : G → G by fg(x) = gx (this
will be called left translation). Then the proof of Cayley’s Theorem consists in the
following steps:

(i) Show that fg is a bijection on G, that is, fg ∈ SG. This shows that the
function φ defined by φ(g) = fg is a function from G to SG;
(ii) Show that φ is a homomorphism, that is, φ(g)φ(h) = φ(gh), that is, fg ◦ fh =
fgh — therefore (i) and (ii) give that φ is an action of G on G;
(iii) Show that φ is injective, that is, the action is faithful;
(iv) Conclude that G is isomorphic to φ(G), that is, to a subgroup of SG.

Exercise. Complete all the details of the proof of Cayley’s
Theorem.

2 The Orbit-Stabiliser Theorem

Consider an action of the group G on a set X. Let x ∈ X. The orbit of x,
denoted by G(x) is the set defined by

{y ∈ X : y = ĝ(x) for some g ∈ G}.

Note that this is a subset of X.
Exercise: Define a relation on X by: x ∼ y iff there is some g ∈ G

such that y = ĝ(x). Show that ∼ is an equivalence relation and that
the equivalence classes are precisely the orbits of the action of
G on X. Therefore the orbits form a partition of X, that is, any
two distinct orbits have no element in common, and each element
of X lies in exactly one orbit.

The stabiliser of x, denoted by Gx, is defined to be the set

{g ∈ G : ĝ(x) = x}.

Note that this is a subset of G. Our first lemma in fact says more.
Lemma 1. Gx ≤ G.
Proof. Let g, h ∈ Gx. Then ĝ(x) = ĥ(x) = x. Since ĝh = ĝĥ, ĝh(x) =

ĝ(ĥ(x)) = x. Therefore gh ∈ Gx (closure).

Also, since ĝ(x) = x then ĝ−1(x) = x. But ĝ−1 = ĝ−1 since g :7→ ĝ is a

homomorphism (an action), therefore ĝ−1(x) = x, that is, g−1 ∈ Gx.
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Therefore Gx ≤ G, as required.

Lemma 2. Let y ∈ G(x) and g, h ∈ G such that ĝ(x) = ĥ(x) = y. Then
the left cosets gGx and hGx are equal.

Proof. Let z ∈ gGx, that is, z = gk for some k ∈ Gx; therefore z =

hh−1gk = h(h−1gk). But ĥ−1gk = ĥ−1ĝk̂ and ĥ−1ĝk̂(x) = x, therefore h−1gk ∈
Gx. Hence, z ∈ hGx, that is, gGx ⊆ hGx.

Similarly, hGx ⊆ gGx.

Theorem 1. The Orbit-Stabiliser Theorem Let G be a finite group
acting on a finite set X, and let x ∈ X. Then

|Gx|.|G(x)| = |G|.

Proof. We shall prove that |G(x)| = |G|/|Gx| = [G : Gx], the index of Gx in
G, that is, the number of cosets of Gx in G.

Define the function f from G(x) into the set of left cosets of Gx as follows:
Let y ∈ G(x) and let y = ĝ(x) for some g ∈ G (such a ĝ must exist since
y ∈ G(x)). Then let f(y) = gGx. All we have to do is to show that f is a
bijection.

Note first the very important point that f is well-defined by virtue of Lemma
2 — that is, any choice of g would give the same coset gGx, provided y = ĝ(x).

Surjectivity follows practically from the definitions. Consider any gGx. Let
y = ĝ(x) ∈ G(x). Then clearly f(y) = gGx.

Now for injectivity. Let f(y) = f(z). Therefore gGx = hGx, where ĝ(x) = y

and ĥ(x) = z. Then g ∈ gGx = hGx, therefore g = hk, k ∈ Gx. Hence ĝ = ĥk,

therefore y = ĝ(x) = ĥk(x) = ĥ(k̂(x)) = ĥ(x) = z.

Example. Find the order of the group G of symmetries of a regular tetrahe-
dron.
Solution. Consider the action of the group on the vertices of the tetrahedron.
Clearly all the four vertices are in the same orbit because, given any two vertices,
there is some symmetry of the tetrahedron which moves one into the other. There-
fore, if x is any vertex, |G(x)|=4. Now consider Gx, the stabiliser of x. Fixing
a vertex allows three symmetries of the tetrahedron (do not forget to count the
identity). Therefore |Gx| = 3. Hence, |G| = |G(x)|.|Gx| = 12.

The next sections will contain deeper applications of the Orbit-Stabiliser Theo-
rem.

Problems.
1. Let G = GL(2, R), that is the group of all invertible 2×2 real

matrices, and let G act on the points of R2 by matrix multiplica-
tion. Consider the action of G on the straight lines in R2 through
the origin. If L is the line y = 2x, that is, L = {(x, 2x) : x ∈ R2}, find
G(L) and GL.

Now let H be the subgroup of G consisting of all matrices of
the form (

a 0
0 b

)
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and all matrices of the form
(

0 a
b 0

)
,

where a, b equal 1 or −1. (Therefore H contains 8 matrices.) Find
H(L) and HL.

*2. Let X = {1, 2, . . . , 7} and let G be the following group of
permutations of elements of X:

G = {id, (1234)(56), (13)(24), (1432)(56)}.

First of all check that G is in fact a group (closure)—it is in
fact isomorphic to the cyclic group of order 4. Then find G1, G5,
G7, G(1), G(5) and G(7).

*3. Let G be a group of order 55 acting on a set X of order
18. Show that this action must have at least two fixed points. (A
fixed point of the action is an element of X which is left fixed by
any ĝ, in other words, it is an element whose orbit consists only
of itself.)

*4. Suppose G is an abelian subgroup of SX , and suppose that
the action of G on X has only one orbit (that is, all of X). Show
that |G| = |X|.

3 Cauchy’s Theorem

In this section we shall see how a simple but powerful use of group actions can
give us a quick proof of a very important and nontrivial result.

Cauchy’s Theorem. Let G be a finite group and let p be a prime number
such that p

∣∣|G|. Then G contains an element of order p, that is, G contains an
element a 6= 1 such that ap = 1.

Proof. Let X be the set of all sequences a1, a2, . . . , ap of elements of G (not
necessarily distinct) such that

a1a2 . . . ap = 1.

We would like to show that there is such a sequence all of whose terms are
equal (and not equal to 1)—because in this case if all the terms are equal, say,
to a 6= 1, then we conclude that ap = 1, as required. We shall show the existence
of such a sequence by defining an appropriate group action on X.

But first let us determine |X|. Each of the first p−1 terms of any sequence in
X can be chosen in |G| different ways, that is, any element of G can be chosen.
But then, having determined the first p − 1 terms, the pth term can only be

(a1a2 . . . ap−1)
−1.

Therefore |X| = |G|p−1
. Hence (and this is the important conclusion for what

follows)
p divides |X|.
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We will define an action of Zp (the group of integers under addition modulo
p, that is, the cyclic group of order p) as follows. Given m ∈ Zp, let m̂ be
defined by the transformation

m̂ : (a1, a2, . . . , ap) 7→ (am+1, . . . , ap, a1, . . . , am)

that is, the element m in the cyclic group Zp is mapped onto the cyclic shift (to
the left) of the sequence through m steps.

It is an easy exercise to check that this is an action, that is, m̂ + n = m̂ ◦ n̂
(remember that addition is modulo p). Now, by the orbit stabiliser theorem,
the size of any orbit must divide the size of the acting group Zp, that is, the size
of any orbit must be either 1 or p. Let there be s orbits of size 1 and t orbits of
size p. Note that there surely exists one orbit of size 1, namely that consisting
of the sequence all of whose terms are equal to the identity of G. Let us, for the
moment, call this the trivial orbit.

Since the orbits form a partition of X, we have,

s + p.t = |X|.

But we have seen that p divides |X| therefore s must also be a multiple of p. By
the last observation in the previous paragraph, s must be at least 1. Therefore
s must be at least p. Hence, apart from the trivial orbit, there are at least p− 1
other orbits of size 1. Now consider such a nontrivial orbit. Its single element
is a sequence (a1, a2, . . . , ap) which remains unchanged under any cyclic shift.
Therefore all the terms of the sequence must be equal, say equal to a. Therefore
ap = 1, a 6= 1, as required.

Remark. Note that we have in fact proved that there are at least p − 1
elements a satisfying ap = 1, a 6= 1.

The above proof has introduced us to the very important idea of fixed points
of an action. More precisely, let the group G act on the set X. Then x ∈ X is
said to be a fixed point in this action if, for every g ∈ G, ĝ(x) = x. In other
words, x is a fixed point iff it is the only element in its orbit, that is, its orbit
has size 1. We shall have more to say about fixed points in what follows. (See
also Problem 3 of Section 2.)

Exercise. Without using Cauchy’s Theorem, prove the following
special case: If G is a group of even order, then it contains an
element a 6= 1 such that a2 = 1. [Hint: Removing the identity from
G leaves an odd number of elements. Now pair off inverses, that is,
pair off the elements of G−{1} as {x, x−1}. Since an odd number of
elements are being paired, some element must be its own inverse.]

4 Conjugacy

The single most important instance of a group acting on itself is the action of
conjugacy. Let G be a group and let the set X on which G will be acting be
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also G. For any g ∈ G let ĝ be the mapping on G defined by

ĝ(x) = gxg−1.

We first have to show that this does define an action. First of all, any ĝ
is injective since, if ĝ(x) = ĝ(y) then gxg−1 = gyg−1 and therefore x = y by
cancellation. Also, ĝ is surjective since, given y ∈ G, the element x = g−1yg
is in G and clearly ĝ(x) = y. Therefore ĝ is a permutation of G. Lastly, we

must show that φ : g 7→ ĝ is a homomorphism. But ĝh(x) = (gh)x(gh)
−1

=

ghxh−1g−1 = ĝ(ĥ(x)), that is, ĝh = ĝĥ, and hence φ is a homomorphism.
The action we have just defined is called conjugacy. Conjugacy is so impor-

tant that some special terminology has been developed in this case. For example,
ĝ(x) is often denoted by xg. If two elements x, y ∈ G are in the same orbit under
conjugacy, then we say that x and y are conjugate elements—therefore x, y ∈ G
are conjugate iff there is some element g ∈ G such that y = gxg−1. Conju-
gacy is therefore an equivalence relation and the orbits of the action—or, the
equivalence classes of the relation—are called conjugacy classes.

Notice that conjugacy is, in general, not a faithful action (that is, φ is not
injective, that is, different elements g, h ∈ G could correspond the same permu-
tation of G, that is ĝ and ĥ could be the same permutation even though g 6= h).
For example, if G is an abelian group, then ĝ(x) = gxg−1 = gg−1x = x, and
therefore every ĝ is the identity permutation. This is the extreme situation, and
it tells us that conjugacy is not interesting for abelian groups. In fact the sequel
will show us that conjugacy is, in some sense, a measure of how nonabelian the
group is.

Which are the fixed points of this action? An element x ∈ G is a fixed point
iff, for all g ∈ G, ĝ(x) = x. Hence, gxg−1 = x, that is, gx = xg. Therefore x
is a fixed point iff it commutes with all the elements of G. The set of all fixed
points is called the centre of G, and it is denoted by Z(G). That is,

Z(G) = {x ∈ G : gx = xg for all g ∈ G}.

Keep in mind that the centre consists of all those elements of G which commute
with every other element.

What about the stabiliser of x ∈ G? An element g ∈ G is in the stabiliser
Gx iff ĝ(x) = x, that is, gxg−1 = x, that is, gx = xg. The stabiliser of x is
therefore the set of all those elements in G which commute with x. This set
is given a special name, the centraliser of x, and it is denoted by C(x). We
therefore have

C(x) = {g ∈ G : gx = xg}.
Exercises.
In the following exercises, ĝ always denotes the permutation

ĝ : x 7→ gxg−1.
1. Let x and y be conjugates. Then the order of x is equal to

the order of y.
2. If g ∈ Z(G) then ĝ is the identity permutation.
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3. For any x ∈ G, C(x) ≤ G; C(x) = G iff x ∈ Z(G).
The centre Z(G) is a normal subgroup of G—in fact, if H is a sub-
group of G contained in Z(G) then H is a normal subgroup of G.
For any x ∈ G, C(x) contains Z(G).

4. Let N E G. Then N is equal to the union of conjugacy classes
of G.

5. The mapping ĝ is more than just a permutation (bijection) of
G—it is also a homomorphism, that is, ĝ is an automorphism (bijective
homomorphism) of G. Later on we shall study automorphisms and
we shall then look more closely at the role of ĝ as an automor-
phism of G.

All we have said above about conjugacy holds for infinite groups — we did
not need, nor did we assume, that G is finite. But now suppose |G| is finite.
Remember that the conjugacy classes partition G. Also, by the Orbit-Stabiliser
Theorem, the size of each conjugacy class divides |G|. This situation is similar to
the case of the cosets of a subgroup of G. But, unlike the situation with cosets,
the sizes of the conjugacy classes are, in general, not all equal. How many classes
have size 1? We have seen above that the answer is |Z(G)|. Suppose that there
are c other conjugacy classes (that is, of size greater than 1), and let their sizes
be n1, n2, . . . , nc. As we have said, each ni divides |G|. Note that we are not
assuming anything regarding whether or not some (or all) of the ni are equal.
Also, if G is abelian, that is, G = Z(G), then there are no conjugacy classes
apart from those of size 1, and therefore all these ni would be zero. Remember,
however, that |Z(G)| ≥ 1 because the centre certainly contains the identity
element.

Now, since the conjugacy classes partition G, adding all their sizes gives |G|,
that is,

|G| = |Z(G)| + n1 + n2 + · · · + nc.

This very important equation is called the class equation. This equation can be
written in another way. By the Orbit-Stabiliser Theorem, the size of the orbit
of x ∈ G is equal to |G|/|C(x)|. Therefore, summing the sizes of all the orbits
gives the class equation in the form

|G| =
∑

x

|G|
|C(x)| = |Z(G)| +

∑

y

|G|
|C(y)|

where the first summation runs over one element from each conjugacy class
whereas the second summation runs over one element from each conjugacy class
whose size is ≥ 2.

Applications to p-groups.
Let p be prime. A finite group |G| is said to be a p-group if |G| = pr, r ≥ 1.
Exercise. Show that G is a p-group iff the order of any element

of G is a power of p.
Theorem 1. Let G be a p-group. Then |Z(G)| ≥ p, and therefore the

centre of G contains at least one other element apart from the identity.
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Proof. By the class equation,

pr = |Z(G)| + n1 + · · · + nc

where (unless each ni equals zero) every ni > 1 and each divides |G|. Therefore
p divides each of the ni and so it divides |Z(G)|. But since |Z(G)| 6= 0, it follows
that |Z(G)| ≥ p.

Theorem 2. Let |G| = p2, p prime. Then G is abelian.
Proof. We have to prove that Z(G) = G. By Theorem 1, |Z(G)| > 1,

therefore by Lagrange’s Theorem, |Z(G)| must equal p or p2. If |Z(G)| = p2

then we are done.
So suppose that |Z(G)| = p and let x ∈ G, x 6∈ Z(G). Consider the

centraliser C(x) of x. Now recall that Z(G) ≤ C(x) ≤ G (see Exercise 3
above). Since x is in C(x) but x is not in Z(G), Z(G) 6= C(x). Therefore
p < |C(x)| ≤ p2, and by Lagrange’s Theorem C(x) must equal G. That is, ev-
ery element of G commutes with x, that is x ∈ Z(G), which is a contradiction.

Problems.
*1. Let G be a group of order p2, p prime. Prove that either G is

cyclic or else it is isomorphic to Zp ×Zp. [Hint: Suppose G contains
no element of order p2. Let x ∈ Z(G), x 6= 1 and let y 6∈< x >, y 6= 1.
Show that G '< x > × < y >.]

*2. Let p be an odd prime and let G be a group of order 2p.
Prove that G is either cyclic or dihedral. [Hint: Let x ∈ G have
order p, and let y ∈ G have order 2. Then < x > and its right coset
< x > y fills out the whole group; note that < x > is a normal
subgroup of G (Why?). Show that the order of xy equals 2 or 2p
(that is, cannot be p). Therefore either G is cyclic or yx−1 = x−1y.]
Deduce that a nonabelian group of order 2p must be isomorphic to
Dp.

*3. Prove that if G/Z(G) is cyclic then G is abelian. Deduce
Theorem 2.

*4. Find the conjugacy classes of the dihedral groups D5 and
D6. Repeat for Dn in general.

5 A Useful lemma

In the previous section we have seen the importance which fixed points of an
action can have in certain situations. The technique used in Theorem 1 for
showing that there are fixed points will be very useful when we come to proving
Sylow’s Theorems, so we here single it out for attention. (Remember that if
a, b, c are integers then a = b mod c means that a = b + kc for some integer k.

Lemma 1. Let G be a p-group acting on a set X. Let X1 be the set of
fixed points of this action. Then

|X1| = |X| mod p.
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Proof. Let there be ai orbits of size i > 1 (the number of orbits of size 1 is
|X1|). Of course, the only possible values of i are factors of |G| (for any other
i > 1, ai would be zero), that is, powers of p. Since the orbits form a partition
of X,

|X| = |X1| +
∑

i.ai.

Therefore |X1| = |X| mod p, as required.

Exercises.
1. Suppose a 5-group acts on a set of size 14. What are the

possibilities for the number of fixed points of the action.
2. Suppose that the order of a group G acting on a set X is pq,

both p and q prime, and suppose that there are no positive integers
a, b, c such that |X| = ap + bq + cpq. Show that the action must have
at least one fixed point.
Look back at Problem 3 from the first set of problems.

6 Strong form of Cayley’s Theorem

Let G be a group and H a subgroup of G. Let X be the set of all left cosets of
H in G. Then there is a natural action of G on X defined by

ĝ : xH 7→ gxH.

This does indeed define an action. First of all, ĝ is injective since, if ĝ(xH) =
ĝ(yH) then gxH = gyH, therefore (gx)−1gy ∈ H, therefore x−1y ∈ H, hence
xH = yH. Also, ĝ is surjective since, if xH ∈ X, then g−1xH is also in X and

ĝ(g−1xH) = xH. Finally, g 7→ ĝ is a homomorphism since ĝh(xH) = ghxH =

ĝ(hxH) = ĝ ◦ ĥ(xH).
The action we have just defined is a generalisation of that used in the proof of

Cayley’s Theorem. In fact, if we let H = {1}, then the cosets would be singleton
sets, and the above action reduces to left translation of the elements of G. The
advantage with this new action is that now, instead of a homomorphism to
SG, which contains |G|! elements, we have a homomorphism into SX which has
|X|! = (|G|/|H|)! elements.

However, this action now need not be faithful. Therefore we can naturally
ask what the kernel of this homomorphism is. (Remember, the homomorphism
is the function φ : g 7→ ĝ. Therefore the kernel is the set of elements g of G such
that ĝ is the identity permutation, that is ĝ(xH) = xH.) Let K be the kernel.
Therefore

K = {g ∈ G : gxH = xH for all x ∈ G}.
Remember that K is a normal subgroup of G. We now claim that K ⊆ H. For
suppose g ∈ K. Therefore ĝ(H) = H, that is, gH = H, and so g ∈ H. Also,
K is the largest normal subgroup of G which is contained in H in the sense
that if N E G,N ⊆ H, then N ⊆ K. For let N be a normal subgroup of G
contained in H. Let n ∈ N . Then, for any x ∈ G, x−1nx ∈ N ⊆ H, therefore

10



x−1nxH = H, therefore nxH = xH, that is, n̂(xH) = xH. Therefore n̂ is the
identity permutation on the cosets of H, that is n ∈ K, hence N ⊆ H.

We have therefore proved the following theorem.
Strong Form of Cayley’s Theorem. Let G be a group, H ≤ G and

X the set of left cosets of H in G. Then there is an action of G on X (left
translation on cosets) such that the kernel of the action is the largest normal
subgroup of G which is contained in H.

Any group G has trivially two normal subgroups, G itself and {1}. If these
are the only normal subgroups of G then G is called simple. Note that if G is
simple and H is a proper subgroup of G, then the action in the above theorem
must be faithful (trivial kernel), and therefore G would be isomorphic to a
subgroup of SX , quite an improvement on Cayley’s Theorem.

Example.
Let G be a group of order 36, and let H be a subgroup of G of order 9. Then H
must contain a nontrivial normal subgroup of G.
Solution. The number of left cosets of H is 36

9 = 4, that is, |X| = 4. But
|G| = 36 > 4! = |SX |. Therefore the above action, since it is a function from G to
SX , cannot be injective, and so it has a nontrivial kernel which is contained in H.

The technique in the above example can be generalised as follows.
Corollary 1. Let G be a finite group, H ≤ G,H 6= G, and let m = [G : H].

Suppose |G| does not divide m!. Then H must contain a nontrivial normal
subgroup of G. In particular, G cannot be simple.

Proof. If the action φ in the above theorem were faithful, then |φ(G)| = |G|.
But φ(G) ≤ SX , and |SX | = m!, giving that |G| divides m!. Therefore the action
cannot be injective, and so it has a nontrivial kernel which is a normal subgroup
of G contained in H.

Problem. * Let G be a group of order 28. Show that it contains
a normal subgroup of order 7. Deduce that if G also contains a
normal subgroup of order 4 then G must be abelian.

7 Burnside’s Counting Lemma

In this section we shall take some time off from applying the theory of group
actions to group theory itself, and we shall instead concentrate on an application
of groups actions to certain enumeration problems which have a more combina-
torial flavour. The work in this section will be extended in the Combinatorics
Elective Course where we shall be treating Pólya’s Theorem.

Suppose that we are given a wire made out in the form of a square and
that a bead is attached to each corner of the square. Suppose also that each of
the beads can be given any one of two colours, black or white. In home many
different ways can the beads be coloured?

The answer depends, of course, on what we mean by “different”. If, for ex-
ample, the square is fixed to a wall, then, since there are four beads and each can
be given any of two colours, then the total number of colourings possible would

11



be equal to 24 = 16. However, if we are free to move the square around (without
distorting its shape), then many of these colourings would be equivalent, that is,
one can be transformed into the other by a movement of the square. In this case,
how many non-equivalent colourings of the square are there, if all movements
which are symmetries of the square are allowed? It is easy to verify that out of
all the sixteen original colourings, only six are non-equivalent. (Check this!)

Clearly, this problem is intimately connected with the group of symmetries
of the square, which is the dihedral group D4. In fact, if we are not allowed to
“flip over” the square, that is, if only a cyclic subgroup of D4 were allowed as
the group of symmetries, then the number of non-equivalent colourings would
be different. (How many would there be in this case?)

How can we obtain a general way of solving this type of problem (enumer-
ating configurations which are in some sense non-equivalent under the action of
some group) in a way which will enable us to solve larger or more general prob-
lems than this simple one which can be solved by hand? For example, if we had
c colours instead of two, what would have been the number of non-equivalent
colourings of the square? And what would have been the solution if, instead of
a square, we had, say, n beads equally spaced along a circular wire?

To be able to solve these and similar problems we have to translate it into
the language of group actions. The group of symmetries acting on the vertices of
the square induces in a natural way an action on the sixteen possible colourings
of the square. Those colourings which happen to lie in the same orbit under
this action are, in fact, equivalent in the sense described above. They are, so
to speak, indistinguishable from each other. So, in order to exhibit a set of
non-equivalent colourings we need to take one representative from each orbit.
In other words, the number of non-equivalent colourings of the square is equal
to the number of orbits into which the sixteen colourings are partitioned by the
group action in question. (Verify this, that is, partition the sixteen colourings
of the square into the orbits resulting from the induced action of D4.)

In other words, the enumeration problem we are discussing here boils down
to this question. Suppose a group G is acting on a finite set X. Into how many

orbits is X partitioned by this action? Note that while the Orbit-Stabiliser
Theorem gives us information about the size of an orbit, the question here asks
how many orbits there are.

Before giving the theorem which answers our question we need one definition
and two very simple lemmas. Suppose G acts on a finite set X, let g ∈ G and
let ĝ be the corresponding permutation of X. The F (g) denotes the set of fixed
points of ĝ, that is, F (g) = {x ∈ X : ĝ(x) = x}.

Lemma 1. Let G act on a finite set X and suppose x, y ∈ X are in the
same orbit. Then |Gx| = |Gy|.

Proof. This is obvious by the Orbit-Stabiliser Theorem, since |Gx| =
|G|/|G(x)| = |G|/G(y) = |Gy|.

Lemma 2. Let G act on a finite set X, and let x, y ∈ X. Then
∑

y∈G(y)

|Gy| = |G|.

12



Proof. Let G(x) = {y1, y2, . . . , yr}. The the summation equals

|Gy1
| + . . . + |Gyr

|
= |Gx| + . . . + |Gx|
= |G(x)| · |Gx|
= |G|

by the Orbit-Stabiliser Theorem.

Burnside’s Counting Lemma.1 Let the finite group G act on the finite
set X. The the number of orbits in which X is partitioned by this action is
given by

1

|G|
∑

g∈G

|F (g)|.

Proof. We shall use a very powerful and frequent combinatorial trick. We
shall define a set of ordered pairs, and we shall count the number of elements
of the set in two ways. Thus, let E = {(g, x) : g ∈ G, x ∈ X, g(x) = x}. For a
given g ∈ G, the number of elements (g, x) in E is equal to |F (g)|. Therefore
the size of E is given by

|E| =
∑

g∈G

|F (g)|.

Now, for a given x ∈ X, the total number of elements (g, x) in E is equal to
|Gx|. Therefore

|E| =
∑

x∈X

|Gx|.

But let t be the number of orbits into which X is partitioned, and let they be
G(x1), . . . , G(xt). Counting the contribution given to the above summation by
the elements x of G(x1) gives, by Lemma 2, |G|. This is the same for all the
other orbits, therefore the above summation is equal to t · |G|. Equating the the
values of |E| gives that

t · |G| =
∑

g∈G

|F (g)|,

which is the required result.

Exercises.
1. Necklaces are manufactured by arranging thirteen white

beads and three black beads on a loop of string. How many neck-
laces can be produced this way?

*2. Find the number of distinct bracelets of five beads made
up of green, blue and red beads, assuming that (i) the bracelet
cannot be flipped over; (ii) it can be flipped over.

1It is now well-known that this result is due to Cauchy and Frobenius, but it is still often

quoted as Burnside’s Theorem.
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*3. Find the number of distinct necklaces which can be made
from six beads using any of the three colours red, green or blue
if (i) flipping over of the neclace is allowed; (ii) flipping over is
not allowed.

*4. It is straightforward to calculate directly the number of
distinct strings of length 3 made up of blue and red beads. Verify
Burnside’s Lemma in this case.

*5. Fermat’s Little Theorem. A necklace is to be made from p beads,
with p prime, and where each bead can be given any one of m dif-
ferent colours. How many distinct necklaces are there if flipping
over is not allowed? Deduce that

mp ≡ m mod p

and hence that, if p does not divide m, then

mp−1 ≡ 1 mod p.

6. Show that when n1 + n2 is an odd prime the number of neck-
laces which can be made with n1 black and n2 white beads is

1

2(n1 + n2)

(
n1 + n2

n1

)
+

1

2

( 1
2 (n1 + n2 − 1)

b 1
2n1c

)
.

*7. Identity cards are to be made as follows. An n × n grid
of equally spaced lines is drawn on both sides of a plastic square.
Then, two circular holes are punched into the square, one hole in
each of two of the n2 cells of the grid. How many distinct cards
can be made this way? What would the answer be if, instead of
punching holes, two cells are “blacked out” on one side only of
the square?

*8. By considering the symmetries of the cube, show that there
are 30 possible different dice.

8 Sylow’s Theorems

We now return to proving the main theorems of this course. These theorems,
partial converses of Lagrange’s Theorem, are the central theorems in group
theory and they are landmarks of mathematical beauty. The proofs presented
here, using the machinery of group actions, are due to Wielandt.

We first require a number-theoretic/combinatorial lemma. Recall the basic
fact that if a prime p divides a product abc . . . then it must divide at least one
of a, b, c, . . . and, in fact, any factor p of the product must arise from factors of
the respective terms; that is, if pk divides abc . . . , and if p divides a ea times, it
divides b eb times, etc, then ea + eb + . . . must be at least k.

Lemma 1. Let p,m be positive integers, p prime, such that p does not

divide m. Then p does not divide

(
pkm
pk

)
.

14



Proof. Note first that
(

pkm

pk

)
=

m(pkm − 1) . . . (pkm − i) . . . (pkm − pk + 1)

1 · 2 · · · · · i · · · · · (pk − 1)
.

By the previous comments, any factor p of the numerator arises from a factor
of mpk − i and similarly any factor p of the denominator arises from a factor of
i. We shall now show that these factors cancel out.

Consider the rational number (pkm − i)/i, 1 ≤ i < pk. Suppose first that pj

divides i. Then j < k and therefore pj divides pkm − i. Now suppose that pj

divides pkm− i, that is, pkm− i = qpj for some integer q. Note first that j < k,
otherwise i = pkm − qpj = pk(m − qpj−k) which is impossible since i < pk.
Therefore i = pj(pk−jm − q), that is, pj divides j.

Therefore, pairing off all terms pkm−i from the numerator with correspond-
ing terms i from the denominator for 1 ≤ i < pk, all powers of p cancel out.
The remaining term m is not a multiple of p, therefore p does not divide the
binomial coefficient.

Sylow Theorem 1. Let G be a group of order pkm, with p prime and such
that p does not divide m. Then G contains a subgroup of order pk.

Proof. Let X be the set of all pk-subsets of G (that is, subsets of size pk).

Therefore |X| =
(
pkm
pk

)
, and so p does not divide |X|. Define an action of G on

X by left translation, that is, for any g ∈ G,B ∈ X, ĝ(B) = gB = {gb : b ∈ B}.
(One can easily check that this is, in fact an action, that is, ĝ is a bijection on

X and ĝh = ĝĥ.)
Since p does not divide |X| there is some orbit whose size is not a multiple

of p. Let the set B be in this orbit, that is, p does not divide |G(B)|. Consider
the stabiliser GB of B (that is, the set of all those elements g ∈ G such that,
for any b ∈ B, gb ∈ B); remember that GB ≤ G.

Now, |GB | = |G|/|G(B)| = pkm/|G(B)|. But p does not divide |G(B)|
therefore |GB | = pkm′ with m′ a factor of m. Therefore |GB | ≥ pk.

Now let b be some element of B and consider the coset GBb. Since GB is
the stabiliser of B, GBb ⊆ B. Therefore |GBb| = |GB | ≤ |B| = pk. Hence
|GB | = pk, and this is therefore a subgroup of G of order pk.

Exercises.
1. Show that the ĝ in the above proof do define an action on

X.
2. Using Theorem 1 of Appendix 4 prove the following immediate

corollary of Sylow’s first theorem: If pk divides |G|, p prime, then,
for any 0 ≤ i ≤ k, G contains a subgroup of order pi.

We now proceed with the presentation of Sylow’s theorems. The first theo-
rem suggests the following definition. If G is a finite group and k is the highest
power of the prime p which divides |G| then any subgroup of G of order pk is
called a Sylow p-subgroup of G. The number of Sylow p-subgroups of G will be
denoted by np.
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We recall the following elementary facts about normal subgroups. You
should be able to prove them without any difficulty and we collect them here in
one place because they will be used very often.

1. Let H ≤ G and g ∈ G. Then gHg−1 = {ghg−1 : ∀h ∈ H} ≤ G and, if H
is finite, then |H| = |gHg−1|.

2. If H ≤ G, |H| = m and H is the only subgroup of G of order m then
H E G. If H has index 2 in G then H E G.

3. If H,K ≤ G and H = gKg−1 for some g ∈ G then H and K are said to
be conjugates. Conjugacy is an equivalence relation on the subgroups of G.

4. A subgroup H of G is normal in G iff it is its only conjugate.
Sylow Theorem 2. Let G be as in Sylow Theorem 1. Any two Sylow

p-subgroups of G are conjugate.
Proof. Let H,K be two Sylow p-subgroups of G. Let X be the set of left

cosets of H in G, and let K act on X by left translation, that is, for k ∈ K,
k̂ : xH 7→ kxH. Since |X| = pkm/pk = m is relatively prime to p and since
K is a p-group, by our Useful Lemma there is some x0H in X which is fixed
by the action, that is, kx0H = x0H for all k ∈ K. Therefore x0

−1kx0 ∈ H for
all k ∈ K [we are using the fact that if aH = bH then b−1a ∈ H]. Therefore
x0

−1Kx0 ⊆ H. But |x0
−1Kx0| = |K| = |H|, therefore x0

−1Kx0 = H, that is,
H and K are conjugates.

Exercise. A Sylow p-subgroup of G is normal in G iff it is the
only Sylow p-subgroup of G.

Sylow Theorem 3. Let G be as in Sylow Theorem 1. The number np of
Sylow p-subgroups of G is congruent to 1 mod p and is a factor of m.

Proof. Let t = np and let X = {H1, . . . , Ht} be the set of all distinct
Sylow p-subgroups of G. Let H1 act on X by conjugation, that is, for h ∈ H,
ĥ : Hi 7→ hHh−1. [Exercise: How do we know that hHh−1 is still in X?] We
claim that H1 is the only fixed point under this action.

First of all, note that H1 is fixed under the action is clear. Suppose then
that, for some i, hHih

−1 = Hi for all h ∈ H, that is Hi is a fixed point of the
action. Therefore for h ∈ H1 and hi ∈ Hi there is some h′

i ∈ Hi such that
hhi = h′

ih. Therefore the sets H1Hi (= {hhi : h ∈ H,hi ∈ Hi}) and HiH1

(= {hih : h ∈ H,hi ∈ Hi}) are equal. Let this set be S. Now, it is easy to check
that S ≤ G (checking closure is easy). Also, both H1 and Hi are subgroups
of S and, in fact, Hi is a normal subgroup of S. But H1 and Hi are Sylow
p-subgroups of S and so conjugate in S, and therefore, since Hi E S, Hi = H1.

It now follows from the Useful Lemma that |X| = 1 mod p, that is, np = t = 1
mod p, as required.

Now let G act on X by conjugation. Since all the Sylow subgroups are
conjugate in G, X forms one whole orbit under this action. Therefore |X|
divides |G| by the Orbit-Stabiliser Theorem, that is t divides pkm. But p does
not divide t, therefore t divides m, as required.

Sylow’s Theorems can have powerful applications in the study of the struc-
ture of finite groups. We give here a few examples.

Examples.
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1. A group G of order 42 cannot be simple.
Solution. The number n7 of Sylow 7-subgroups of G equals 1 mod 7, that is,

n7 = 1 + 7k. Since 42 = 7 · 6, n7 must divide 6. Therefore n7 = 1, that is the
group has a unique Sylow 7-subgroup, which is therefore normal in G. Hence G is
not simple.

2. Classify all groups of order pq, both p and q prime such that p < q and
q 6= 1 mod p.

Solution. Since nq divides p, nq can be either 1 or p, in any case, nq ≤ p.
But nq = 1 + kq, and q > p, therefore k = 0, that is, nq = 1. Hence G contains
a unique Sylow q-subgroup H which is therefore a normal subgroup of G. (H is a
cyclic group of order q.)

Also, np divides q (therefore np equals 1 or q) and np = 1 + hp. If np = q then
q = 1 mod p which is impossible. Therefore again np = 1, that is G has a normal
Sylow p-subgroup K. (K is a cyclic group of order p.)

Since H ∩ K = {1} (Why?), G = HK (Why?). Therefore G ' H × K
(Exercise 4 in Appendix 2). Therefore G is isomorphic to the cyclic group of order
pq (Exercise 2 in Appendix 2).

Problems.
*1. Let G be the following group of permutations of the set

{1, 2, 3, 4}:

{ id, (123), (132), (124), (142), (134), (143), (234),
(242), (12)(34), (13)(24), (14)(23)}.

(Verify that G is a group. It is, in fact, the alternating group A4

(see Appendix 6).) Show that G does not contain any subgroup of
order 6, and therefore that the converse of Lagrange’s Theorem
is false.

*2. Show that a group of order 56 cannot be simple.
*3. Let G be a group of order p2q, where p and q are primes such

that q < p and q does not divide p2 − 1. Prove that G is isomorphic
either to Zp2 × Zq or to Zp × Zp × Zq.

*4. Classify all groups of order 20, 449.
5. Let P be a p-subgroup of the finite group G. Then P is

contained in some Sylow p-subgroup of G.
6. The Frattini Argument. Let K be a finite normal subgroup of G

and let P be a Sylow p-subgroup subgroup of K. Then G = NG(P ).K.
[Recall that G = X.Y , for two subgroups X,Y of G, means that any
element g ∈ G can be written as g = xy for some x ∈ X and y ∈ Y .]

9 Classification of groups of small order (≤ 15)

We now have developed enough group theoretic machinery to classify all groups
of order at most 15. By classifying all groups of some particular order n we mean
obtaining a list of groups such that any group of order n must be isomorphic
to one of the groups in the list. Carrying out this classification for n ≤ 15 is
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not in itself such a big deal after all. But the exercise is worth doing because it
brings into play most of the results we have encountered up to now, including
the important types of group which were introduced in the problems in Section
4, and it gives a slight inkling of how difficult the general problem of classifying
all finite groups is (in fact, there is no complete solution to the general problem)
and an idea of the types of technique required.

Exercise. One might well ask whether or not the number of
groups of order n is finite. In fact, this is easily proved: Prove
that the number of groups of order n is at most nn2

.
We can immediately dispose of all groups of prime order: by Lagrange’s

Theorem these can have no nontrivial subgroups and are therefore cyclic (a
first-year result). This takes care of orders 2, 3, 5, 7, 11, 13.

Problem 1 of Section 4 takes care of the groups of order p2, p prime. Such a
group is either isomorphic to Zp2 or Zp ×Zp. This takes care of orders 4 and 9.
[The result for order 4 should already have been obtained by very elementary
first-year techniques. The group Z2 × Z2 is known as the Klein 4-group.]

Problem 2 of Section 4 classifies all groups of order 2p, p prime. Such a
group is either isomorphic to the cyclic group Z2p or the dihedral group Dp.
This disposes of orders 6, 10, 14.

Groups of order 15 are taken care of by Example 2 of the previous section,
since 15 = 3.5 and 5 6= 1 mod 3. Therefore a group of order 15 must be
isomorphic to the cyclic subgroup Z15.

This leaves groups of orders 8 and 12. It turns out that we cannot deal
with these two orders with a single blow as above. A more detailed case-by-case
analysis is required. This is, in fact, the rule rather than the exception when
trying to classify groups of some particular order. We shall consider the two
cases separately.

Notation. The order of an element g will be denoted by |g|.
Groups of order 8
It turns out that we can carry out the classification without the need for

Sylow’s Theorems. Let m be the maximal order of any element of G. Then m
can only be equal to 8, 4 or 2 (by Lagrange’s Theorem and since m cannot be
equal to 1, otherwise G would only contain the identity element.)

Case 1: m = 8
Clearly G is isomorphic to the cyclic group Z8.

Case 2: m = 4
Let x ∈ G, |x| = 4. Let H =< x > and let y ∈ G− < x >, y 6= 1. Therefore
|y| = 2 or 4. The index of H in G equals 2. Therefore H E G and the cosets H
and Hy give a partition of G, that is

G = {1, x, x2, x3, y, xy, x2y, x3y}
and so x and y generate G. Now, yxy−1 ∈ H. Since |yxy−1| = |x| (Easy
exercise!) yxy−1 can only be x or x3.

Now we consider the two cases |y| = 2 and |y| = 4.
Case 2.1: |y| = 2

Therefore y2 = 1. Consider separately yxy−1 = x and yxy−1 = x3.
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Case 2.1.1: yxy−1 = x
Therefore yx = xy, G is abelian, and it can be described as

G =< x, y|x4 = y2 = 1, xy = yx > .

It is easy to check that G ' Z4 × Z2, the isomorphism mapping x to (1, 0) and
y to (0, 1).

Case 2.1.2: yxy−1 = x3

Therefore yxy−1 = x−1, so that G can be described as

G =< x, y|x4 = y2 = 1, yxy−1 = x−1 >

and this is just the dihedral group D4.
Case 2.2: |y| = 4

Note first that y2 6∈ Hy, otherwise y would be in H. Therefore y2 ∈ H. Also,
y2 cannot be x or x3 or 1, since |y2| = 2. Therefore y2 = x2. Again we consider
the two subcases yxy−1 = x and yxy−1 = x3.

Case 2.2.1: yxy−1 = x

Therefore yx = xy, hence G is abelian. Since x2 = y2, (xy−1)
2

= 1, that
is |xy−1| = 2. The group G is generated by x and z = xy−1, and G can be
described as

G =< x, z|x4 = z2 = 1, xz = zx >

and again it is isomorphic to Z4 ×Z2, the isomorphism mapping x to (1, 0) and
z to (0, 1).

Case 2.2.2: yxy−1 = x3

The group G can therefore be described as

G =< x, y|x4 = y4 = 1, yxy−1 = x−1 >

and a little checking shows that G ' Q, the group of quaternions (Problem III
in Section 4), the isomorphism mapping x to i and y to j.

Case 3: m = 2
Therefore every nonidentity element of G has order 2 and hence G is abelian
(easy exercise). Choose x, y, z ∈ G − {1} such that xy 6= z (easy to see that
such elements can be found). Let H = {1, x, y, xy} ' Z2 × Z2, that is, H is
isomorphic to the Klein 4-group. Let K = {1, z} ' Z2. Then G = HK and
H ∩ K = {1}, therefore G ' H × K ' Z2 × Z2 × Z2.

Conclusion: A group of order eight is isomorphic to one of the following
groups

Z8, Z4 × Z2, Z2 × Z2 × Z2, D4, Q.

Groups of order 12
This is the case which requires most work. Let G be a group of order 12

and let n3 and n4 denote respectively the number of Sylow 3-subgroups and
4-subgroups of G. Then n3 = 1+3k and n3

∣∣4. Therefore n3 = 1 or 4. Similarly,
n4 = 1 or 3.

19



Case 1: n3 = 1
Let H be the Sylow 3-subgroup of G. Then H C G. Let H =< x >. Let K be
a Sylow 2-subgroup of G (therefore |K| = 4).

Case 1.1: K is cyclic
Let K =< y >. Since H ∩K = {1}, y 6∈ H, and so the cosets H,Hy,Hy2, Hy3

are distinct. These give a partition of G, therefore G = HK. Since H is normal,
yxy−1 ∈ H. The only possibilities are yxy−1 = x and yxy−1 = x2.

If yxy−1 = x, then G is abelian, and so G ' H × K ' Z3 × Z4 ' Z12.
If yxy−1 = x2, that is, yx = x2y, then G is the group

{1, x, x2, y, xy, xy2, y2, xy2, x2y2, y3, xy3, x2y3}

with product defined by

(xayb)(xcyd) = xa+2bcyb+d

where the power of x is computed modulo 3 and that of y modulo 4. Another
way of describing G is as

G =< x, y|x3 = y4 = 1, yx = x2y > .

This is an example of the class of groups called the dicyclic groups.
Case 1.2: K is not cyclic

Therefor K ' Z2 × Z2, the Klein 4-group. Let K = {1, u, v, w} with all non-
identity elements having order 2 and w = uv (remember also that K is abelian).

Now H C G, therefore uxu−1 = xa and vxv−1 = xb, where a, b = ±1. Note
that wxw−1 = ab.

If a = b = ab = 1 then G is abelian and G ' H×K ' Z3×Z2×Z2 ' Z6×Z2.
So suppose that two of a, b, ab equal −1 and the other equals 1. We can as-

sume, without loss of generality, that uxu−1 = x, vxv−1 = x−1 = x2 (therefore
vx = x2v) and wxw−1 = x−1 = x2. Let z = ux = xu. Then |z| = 6, z and v
generate G, and G can be described as

G =< v, z|z6 = v2 = 1, vz = z−1v >

(the last relation arises since vz = vux = uvx = ux2v = z−1v). But this means
that G is ismorphic to the dihedral group D6.

Case 2: n3 = 4
Any two of these four Sylow 3-subgroups intersect only in the identity (why?)
therefore between them they account for eight elements from G−{1}. Therefore
ther can be only one subgroup K of order 4, and so K C G. (Note also that G
cannot be abelian since it contains distinct subgroups which are conjugate.)

We note first that K cannot be cyclic — because let K =< y > and let
x ∈ G − K. Then xyx−1 ∈ K. But if xyx−1 = y, G would be abelian, which
is impossible; xyx−1 cannot be equal to y2 since |y| 6= |y2|; and if xyx−1 = y3

then y = x3yx−3 = y27 = y3, which is also impossible.
Therefore let K = {1, u, v, w} ' Z2 × Z2, with u, v, w as above. Let x ∈ G,

|x| = 3. Then K,Kx,Kx2 make up a partition of G. Therefore G is generated
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by u, v, x. Now, since K C G, conjugation by x permutes the elements u, v, w
between them. This permutation cannot be the identity on u, v, w, otherwise
G would be abelian. Also, since |x| = 3, the order of the permutation is 3,
that is, it is a 3-cycle (that is, it permutes u, v, w cyclically). Suppose, without
loss of generality, that xux−1 = v, xvx−1 = w, xwx−1 = u. Then G is isomor-
phic to the alternating group A4, the isomorphism mapping u into the element
(1, 2)(3, 4) of A4, v into (1, 3)(2, 4) and x into (2, 3, 4).

(The alternating groups are discussed in more detail in Appendix 6. At this
stage just note that the alternating group A4 is the group of permutations of
the set {1, 2, 3, 4} given in Problem 1 of Section 8. This group also arises as the
group of permutations on the vertices 1, 2, 3, 4 of a regular tetrahedron induced
by the symmetries of the tetrahedron.)

Conclusion: A group of order twelve is isomorphic to one of the following
groups

Z12, Z6 × Z2, D6, A4, dicyclic order 12 .

10 Finite abelian groups

Although it is not possible to give the classification of all groups of any finite
order, this classification is possible for finite abelian groups. Although we shall
not give the proof of the result, the student should stiil be familiar with what
it says.

Basically, any finite abelian group is isomorphic to the direct product of
cyclic groups. This decomposition as a direct product arises as follows. Let
G be an abelian group and let |G| = pe1

1 pe2

2 . . . per
r , where the pi are distinct

primes. Then G ' G1 ×G2 × · · · ×Gr, where each |Gi| = pei

i . Now, we have to
describe the structure of a typical Gi, that is, of an abelian p-group. So let H
be an abelian group of order pn. Then H is isomorphic to some direct product
K1×K2×· · ·×Kt where each Ki is a cyclic group of order pni , n1 ≥ n2 ≥ · · · ≥ nt

and of course n1 + n2 + · · · + nt = n. Moreover, this decomposition is unique.
Notation: Let n, n1, . . . , nt be natural numbers such that n = n1 + n2 +

· · · + nt. Then n1, n2, . . . , nt are said to give a partition of n. The number of
partitions of n is denoted by p(n). Note that, when counting partitions of n, two
partitions which differ only in the order of terms are considered to be the same
partition. Therefore we can consider any partition to be given in the standard
order n1 ≥ n2 ≥ · · · ≥ nt. In general, finding p(n) is not an easy task, and no
simple formula is known. However, for small values of n, p(n) can be found by
listing all posiibilities.

Example. Classify all abelian groups of order 23.52.76.
Solution. Let G be an abelian group of order 23.52.76. Then G ' G1×G2×G3

where |G1| = 23, |G2| = 52 and |G3| = 76.
Therefore G1 is isomorphic to Z23 or Z2×Z22 or Z2×Z2×Z2; G2 is isomorphic

to Z52 or Z5 ×Z5; and G3 is isomorphic to Z76 or Z7 ×Z75 or Z7 ×Z7 ×Z74 , etc.
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(There are eleven possibilities for G3, corresponding to the fact that p(6) = 11; you
are invited to list them all.)

All these decompositions give nonisomorphic groups (by the uniqueness in the
above result). Therefore the number of abelian groups of order 23.52.76 equals
p(3) × p(2) × p(6) = 3 × 2 × 11 = 66.

11 Automorphisms

We have seen various examples of bijections on a group G, for example, left
translation or conjugacy. We now focus our attention on those bijections which
preserve the algebraic structure of G, that is, which are homomorphisms. A
bijective homomorphism θ : G → G is said to be an automorphism of G. The
set of all automorphisms of G is denoted by AutG. As can be expected, AutG
is a group under composition of functions (Easy exercise!), that is AutG < SG.
It is called the automorphism group of G.

Recall the following elementary facts: (i) θ(a−1) = θ(a)
−1

; (ii) θ(1) = 1; (iii)
|θ(a)| = |a|; and, (iv) θ(a) is a generator of G iff a is a generator of G.

Examples
1. The function θ defined by θ(a) = a−1 is an automorphism of G iff G is

abelian.
Proof. If G is abelian then clearly θ is a homomorphism. For the converse, suppose
θ as given is an automorphism. Then

θ(ab) = (ab)
−1

= θ(a)θ(b) = a−1b−1

therefore ab = ba.
2. The automorphism group of the infinite cyclic group

We shall determine AutZ. Note that, for any automorphism θ of Z, θ(1) = ±1,
since a generator must be mapped into a generator.

But if θ(1) = 1 then θ(n) = θ(1 + 1 + · · ·+ 1) = θ(1) + θ(1) + · · ·+ θ(1) = n.
Therefore θ is just the identity. If θ(1) = −1 then, proceeding as above, θ(n) = −n.

Therefore there are only two possible automorphisms, that is, AutZ ' Z2.
3. The automorphism group of the cyclic group of order n

We shall determine AutZn. First of all we need to define a group under multipli-
cation modulo n. This is defined as the set Un of all nonzero positive integers less
than n and relatively prime to n. That Un is in fact a group under multiplication
modulo n is given as an exercise below.

As examples, note that, if n is prime, Un = {1, 2, . . . , n − 1}. Also, U15 =
{1, 2, 4, 7, 8, 11, 13, 14}. In general, |Un| is denoted by φ(n) (Euler’s φ-function).
We have just seen that, if n is prime, φ(n) = n − 1 and φ(15) = 8. A formula for
φ(n) has been derived in the discrete mathematics course.

Now back to AutZn. We use the fact that if θ is an automorphism then θ(1)
must be a generator of Zn and, conversely, if r = θ(1) is a generator of Zn then θ
can be extended to an automorphism of Zn by defining θ(s) = sr. But an element
a of Zn is a generator of Zn iff it is relatively prime to n (Exercise!), that is, iff
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a ∈ Un. Hence, the elements of AutZn are in one-one correspondence with those
of Un.

In fact, AutZn ' Un. For let θi ∈ AutZn, θi(1) = i ∈ Un. Define f : AutZn →
Un by f(θi) = i. Then

θi ◦ θj(1) = θi(j) = ij = θij(1)

where the product ij is computed modulo n. Therefore θi ◦ θj = θij and so
f(θi ◦ θj) = ij( mod )n = f(θi)f(θj).

Exercise. Prove that Un is a group under multiplication modulo
n.

Conjugation
Let g ∈ G, and let θg denote the permutation θg(x) = gxg−1, that is,

conjugation by g. We already know that θg is a permutation of G (we have
previously denoted θg by ĝ. In fact this mapping is an automorphism because

θg(xy) = gxyg−1 = gxg−1gyg−1 = θg(x)θg(y).

This automrphism is called an inner automorphism and the set of all inner
automorphisms is denoted by InnG.

In fact, InnG is a group, that is, InnG ≤ AutG, because let θg, θh ∈ InnG.
Then

θg ◦ θh(x) = ghxh−1g−1 = ghx(gh)
−1

= θgh(x)

that is, θg ◦ θh = θgh ∈ InnG, giving closure.
Also,

θg ◦ θg−1(x) = gg−1xxgg−1 = x

that is, θg ◦ θg−1 =id. Hence θg
−1 = θg−1 ∈ InnG.

If G is abelian, InnG is trivial (just the identity). The next theorem says
more.

Theorem 1. InnG ' G
Z(G) .

Proof. Define f : G → InnG by f(g) = θg. Note that f is a homomorphism
since f(gh) = θgh = θg ◦ θh = f(g) ◦ f(h). Also, f is surjective since, given
θg ∈ InnG there clearly exists g ∈ G such that f(g) = θg.

Now,

Ker f = {g ∈ G : θg = id}
= {g ∈ G : gxg−1 = x ∀x ∈ G}
= {g ∈ G : gx = xg ∀x ∈ G}
= Z(G).

Therefore, by the First Isomorphism Theroem, G
Z(G) ' InnG.

Problems
*1. Let θ be an automorphism of a finite group G which leaves

only the identity of G fixed, and let S = {x.θ(x−1) : x ∈ G}. Prove
that S = G. [Hint: Show that |S| = |G|.]
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Now let α be an automorphism of a finite group G which leaves
only the identity of G fixed, and let α2 =id. Prove that G is
abelian.

*2. Prove that if |G| > 2 then AutG is not trivial.
3. Prove that if H ≤ G, |G| > 4, then there is a nontrivial

automorphism θ of G such that θ(H) = H.
Semi-direct products: A very brief note
Let H E G, and let g ∈ G. Then θg is an automorphism of G which fixes

H setwise, that is, θg(H) = H. Restricted to H, θg is an automorphism of
H. With this is mind, let us look back at some of our earlier work on the
classification of small groups.

Recall that an important construction for describing a group in terms of
smaller groups was the direct product. We used the fact that, if H,K C G,H ∩
K = {1} and G = HK, then G was isomorphic to the direct product H × K.
The normality of H and K is needed so that that elements of H commute with
those of K, and therefore, if g1, g2 ∈ G, g1 = h1k1, g2 = h2k2, then

g1g2 = h1k1h2k2 = h1h2k1k2.

Hence multiplication in G is imitating multiplication in H × K.
Often however, we are not so fortunate as to have both H and K normal in G,

and this leads to groups which cannot be described in terms of direct products
of subgroups. Suppose only H is normal. Then every k ∈ K determines an
automorphism θk of H defined by θk(h) = khk−1. That is, kh = θk(h)k.
Therefore, although h and k might not commute, kh can be replaced by h′k
where h′ = θk(h) is at least in H even if it might not be equal to h. Therefore,
with g1, g2 as above,

g1g2 = h1k1h2k2 = h1θk1
(h2)k1k2

= h1h
′

2k1k2 ∈ HK

and this leads to what is called a semi-direct product of H and K.
We shall not go into any more details of what a semi-direct product is. We

shall limit ourselves to two examples from earlier work reviewed in the light
of the above discussion, and one other example which completes what we had
started about groups of order pq.

Examples
1. The dihedral groups

Let G =< r, s|rn = s2 = 1, srs−1 = r−1 = rn−1 >. Let H =< r > and
K =< s >. Clearly, H C G. The last relation above gives the result of conjugation
by s on H and it can be written as sr = r−1s. If it had been sr = rs instead, then
G would have been isomorphic to the direct product of H and K. As it is, we only
have a semi-direct product of H and K, because only one of H,K is normal in G.

2. The dicyclic group of order 12
Let G =< x, y|x3 = y4 = 1, yxy−1 = x2 >. Let H =< x > and K =< y >.
Again, the last relation above describes conjugation on H by y, and it can be written
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as yx = x2y — if it had been yx = xy, G would have been the direct product
of H and K. As it is, G is a semi-direct product. Note that G is made up of all
products xiyj (i mod 3 and j mod 4), making up twelve terms in all. Multiplication
is computed using the relation yx = x2y, for example,

xy3x2y2 = xy2x2yxy2 = xy2x4y3 = xy2xy3

= · · · = x2y.

All this works well because the mapping x 7→ x2 resulting from conjugation by y is
an automorphism of G. Note that if G had been the direct product of H and K
then xy3x2y2 would simply have been equal to x3y5 = y.

3. Groups of order pq, p < q, q = 1 mod p
(This completes the discussion started in Example 2 of Section 8.) Again we have
that, since nq divides p, nq = 1 + kp, and q > p, then nq = 1, and therefore G has
a unique (hence normal) subgroup H of order q.

But now consider np. We have that np divides q, therefore np = 1 or q. If
np = 1, then G has a normal subgroup K of order p and G would then be the
direct product of H and K, giving G ' Zpq, as in Example 2 which we have just
cited.

But the case under consideration, the possibility np = q is not excluded by
Sylow’s Theorems, because since q = 1 mod p, the condition np = 1 mod q
would be satisfied. Let us then consider this case in more detail: G would have
a Sylow p-subgroup K which would, however, not be normal in G. Therefore G
would not be the direct product of H and K. But H is a normal subgroup of
G. Therefore let K ∈ K, k 6= 1 (k generates K since |K| = p). The mapping
θk : h 7→ khk−1 (h any generator of H) defines an automorphism on H, by the
normality of H. We must have that khk−1 = hr, for some r. What values can r
take? If r = 1 we get kh = hk and we are back to the direct product of H and
K (because elements of H would commute with those of K). Therefore suppose

r 6= 1 mod q. Now, since θk(h) = hr then θj
k(h) = hrj

(use induction and the
fact that θk is a homomorphism). In particular, if j = p then θp

k(h) = hrp

. But
θp

k(h) = kphk−p = h. Therefore rp must equal 1 mod q. Therefore G can be
described as the group

< h, k|hq = kp = 1, kh = hrk >

with the condition that rp = 1 mod q. Note that, as in the previous two examples,
this description of G allows us to write any element of G in the form hikj ∈ HK,
even when r 6= 1 mod q (that is, kh 6= hk). Note also that a number r 6= 1 mod q
satisfying rp = 1 mod q can only be found because q = 1 mod p.

Finally, one might ask how many such groups are there? The answer would
seem to depend on how many different r we can find satisfying the above condition.
Certainly, if we take two values r1 = 1 and some r2 6= 1 mod q (but satisfying the
condition), then we would obtain nonisomorphic groups because r = r1 would give
Zpq and r = r2 would give a nonabelian group. However, with a little more work
it can be shown that any other appropriate value of r not equal to 1 mod q would
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give a group isomorphic to the one we would obtain with r2. Therefore there are
two groups of order pq (p < q prime, q = 1 mod p) and these are as described
above with r = 1 (the cyclic case) and any other value of r not equal to 1 mod q,
provided rp = 1 mod q.

Problem.
Consider groups of order 21 = 3.7. Find two values of r such

that r 6= 1 mod 7 and r3 = 1 mod 7, and show that these values of
r give isomorphic groups of order 21.

Appendix 1. Checklist of topics from first year

1. Axioms, elementary results, examples.
Cyclic groups, infinite and finite.
Order of an element.
Groups of order ≤ 5.
Permutations (bijections on a set) under the operation of composition of func-
tions; the group S3.

Exercise. Investigate the multiplication table of the group of
symmetries of each of the following three solids:

Figure 1: Three solid figures with the same number of symmetries

2. Subgroups, cosets, Lagrange’s Theorem, applications.
3. Normal subgroups, quotient groups.
4. Homomorphisms, kernels, isomorphisms, isomorphic groups, automor-

phisms.
Theorem. Let φ : G → H be a homomorphism with kernel K. Then K is

a normal subgroup of G.
Theorem. Let G be a group and let N E G. Then φ : G → G/N defined

by (g) = Ng is a homomorphism with kernel N .
5. The First Isomorphism Theorem. Let φ : G → H be a surjective

(onto) homomorphism with kernel K. Then G/K ' H.
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Exercise. Let |G| = 12 and |H| = 49. Prove that the only ho-
momorphism φ : G → H is the trivial homomorphism, that is, φ(g) =
1,∀g ∈ G, (where 1 is the identity element in H).

6. Permutations, cycle notation.
Theorem. Any permutation can be written as a product of disjoint cycles.

7. Cayley’s Theorem. Let G be a group. Then G is isomorphic to a
subgroup of SG.

Sketch of proof. For g ∈ G, define fg : G → G by fg(x) = gx. The set
G′ = {fg : g ∈ G} is a subgroup of SG. The function φ : G → G′ defined by
φ(g) = fg is a bijective homomorphism, that is, G ' G′.

Appendix 2. Direct products

Let G,H be two groups. Then G × H (the set of all ordered pairs (g, h), g ∈
G, h ∈ H) can be turned into a group by defining a product as follows:

(g1, h1).(g2, h2) = (g1g2, h1h2).

It is an easy exercise to show that, with the above operation, G × H is indeed
a group. This group is called the direct product or the external direct product
of G and H. Note that G×H contains two subgroups, the set of all pairs (g, 1)
and the set of all pairs (1, h), the first being isomorphic to G and the second
isomorphic to H. Note also that if G and H are abelian, then so is G × H.

Exercises.
*1. List the elements of Z2×Z3 and Z2×Z4. Show that the first

is isomorphic to Z6 but the second is not isomorphic to Z8.
*2. Show that Zm × Zn ' Zmn iff m and n are relatively prime.
*3. Let H,K ≤ G. Suppose that

(i) H ∩ K = {1};
(ii) Every element of H commutes with every element of K; and
(iii) G = HK (that is, every element g ∈ G can be written as a
product hk, h ∈ H, k ∈ K.

Prove that G is isomorphic to H × K. In this case we say that
G is the internal direct product of H and K, or, in view of the above
isomorphism, simply the direct product of H and K.

*4. Let H,K ≤ G. Suppose that
(i) H ∩ K = {1};
(ii) H,K E G; and
(iii) G = HK.

Prove that G is isomorphic to H × K.
*5. The following result is often helpful in proving that G =

HK in conjunction with H ∩ K = {1}.
Let H,K be two subgroups of a finite group G. Then

|HK| =
|H|.|K|
|H ∩ K| .
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6. Let G = S3. Let H be any subgroup of G of order 3; H
is normal in G. Let K be any subgroup of G of order 2. Then
H ∩ K = {1}, G = HK but G 6' H × K, since H × K ' Z6.

Appendix 3. Dihedral and quaternion groups

Consider a flat plate in the form of a regular hexagon. Let r denote a rotation
of the plate clockwise through π/3 about the axis of symmetry perpendicular
to the plate, and let s denote rotation through π about an axis of symmetry
which lies in the plane of the plate.

Exercises.
*1. Verify that the group of symmetries of the plate is the set

{1, r, r2, . . . , r5, s, rs, r2s, . . . , r5s}.

Verify also that r6 = 1 = s2 and sr = r5s = r−1s, that is, srs−1 = srs =
r−1. This group is called the dihedral group of order 12, denoted
by D6 (some books denote it by D12.)

*2. Let G be a group generated by two elements r, s, that is,
G consists of all possible products of r and s, for example, r2,
s3r5sr−7, etc. Now suppose r and s satisfy the following relations:
rn = 1 = s2 and sr = r−1s = rn−1s, n a positive integer. All this is
written, in short, as

G =< r, s|rn = s2 = 1, sr = r−1s > .

Show that |G| = 2n and that, in fact,

G = {1, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s}.

This group is called the dihedral group of order 2n, denoted by
Dn (in some texts D2n). This group is isomorphic to the group of
symmetries of a regular n-gon in view of the faithful action:

ri 7→ rot. about perp. axis through 2πi/n

s 7→ rot. about parallel axis through π.

3. Take n = 11 in the previous exercise. Obtain r3sr5s in the form
ris, 0 ≤ i ≤ 10.

4. Let
G =< t, s|s2 = 1, sr = r−1s > .

Show that

G = {1, t, t−1, t2, t−2, . . . , s, ts, t−1s, t2s, t−2s, . . . }.
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This is called the infinite dihedral group, denoted by D∞. It has the
following faithful action on the real line:

ti 7→ the translation mapping x into x + i

s 7→ the reflection mapping x into − x

The quaternion group
Consider the eight symbols i, j, k multiplied according to the rules i2 = j2 =

k2 = −1, ij = −ji = k. Then Q, the quaternion group, is the set of eight
symbols {±1,±i,±j,±k}.

Exercises.
*5. Draw up the multiplication table of Q. Note that Q is not

abelian, and therefore it is not isomorphic to any of Z8, Z4×Z2, Z2×
Z2 × Z2. Also, since only −1 has order 2, Q cannot be ismorphic to
D4 which has five elements of order 2.

6. A concrete example of Q is given by the following:- Let H
be the group (under matrix multiplication) generated by the two
matrices

A =

(
0 i
i 0

)
, B =

(
0 1
−1 0

)

where i =
√
−1 is the usual complex number. Then H ' Q, under

the isomorphism mapping A into i, B into j and the matrix
−i 0
0 i

into k.

Appendix 4. The Correspondence Lemma

We present here a result about normal subgroups. This lemma can be seen as
belonging to the same family of results as the First Isomorphism Theorem.

The Correspondence Lemma. Let K E G, and let G∗ = G/K. Let
S∗ ≤ G∗. Then,
(i) There is a subgroup S, K ≤ S ≤ G, such that S∗ = S/K;
(ii) If S∗ E G∗ then S E G;
(iii) If G is finite then [G∗ : S∗] = [G : S].

Proof. Let
S = {x ∈ G : xK ∈ S∗}.

(i) Let s1, s2 ∈ S. Therefore s1K, s2K ∈ S∗, therefore s1s2K ∈ S∗ (closure in
S∗), and so s1s2 ∈ S. Similarly, s1

−1 ∈ S, therefore S ≤ G. Also, K ⊆ S since
if k ∈ K then kK = K ∈ S∗ (the identity in S∗), therefore k ∈ S.

Now, let aK ∈ S/K. Then a ∈ S, therefore aK ∈ S∗, therefore S/K ⊆ S∗.
Let aK ∈ S∗. Then a ∈ S, therefore aK ∈ S/K, therefore S∗ ⊆ S/K. Therefore
S∗ = S/K.

(ii) If g ∈ G and s ∈ S (that is, sK ∈ S∗), then gsg−1K = gKsKg−1K ∈ S∗

(by the normality of S∗ in G∗), therefore gsg−1 ∈ S, that is, S E G.
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Figure 2: Illustrating the Correspondence Lemma

(iii)

[G∗ : S∗] =
|G∗|
|S∗| =

|G|
|K| .

|K|
|S| =

|G|
|S| = [G : S].

The Correspondence Lemma together with the fact that a p-group has a
nontrivial centre will now be used to show that the converse of Lagrange’s
Theorem holds for p-groups. Notice the simple but powerful use of normal
subgroups in order to obtain a group (the quotient group) of order less than |G|
so that induction can be applied.

Theorem 1. Let G be a group of order pn, p prime. Then for every
0 ≤ k ≤ n G contains a subgroup of order pk.

Proof. By induction on n, the result being clearly true for n = 1. Therefore
let n > 1. Since |Z(G)| > 1, |Z(G)| = pr for some r ≥ 1. Therefore, by Cauchy’s
Theorem, there is some element g ∈ Z(G) whose order is p.

Let K =< g >, the cyclic group generated by g. Since K ⊆ Z(G), it
follows that K E G. Let G∗ = G/K; |G∗| = pn−1, therefore by the induction
hypothesis, G∗ contains a subgroup S∗ of order pn−2. Therefore there exists S,
K ≤ S ≤ G, such that S∗ = S/K, and |S| = |S∗|.|K| = pn−1.

Therefore G certainly contains a subgroup S of order pn−1. Applying the
induction hypothesis again, this time on S, gives that S, and hence G, contains
subgroups of order pk for all 0 ≤ k ≤ n − 1.

Problem. Prove the converse of Lagrange’s Theorem for abelian
groups, that is, prove that if G is an abelian group and k divides
|G|, then G has a subgroup of order k. [Hint: Let m = |G|/k and
let p be a prime which divides m. Let K be a subgroup generated
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by an element of order p and apply the induction hypothesis on
G∗ = G/K. Then use the Correspondence Lemma.]

Appendix 5. Normalisers and centralisers

In the proof of Sylow Theorem 1 we saw an instance of an action defined not
on the elements of G but on all subsets of G of a certain size; that is, we
concentrated on how the subsets were permuted amongst each other rather
than on how the individual elements were permuted. In the above context, the
stabilser of a set B consisted of all those ĝ such that ĝ(B) = B, and this does
not mean that, for b ∈ B, ĝ(b) = b, but it means that ĝ(b) ∈ B. We sometimes
say that this is the setwise stabiliser of B. The set of all those ĝ such that, for
all b ∈ B, ĝ(b) = b would be called the pointwise stabilser of B.

These notions about pointwise and setwise stabilisers are particularly im-
portant when the action is conjugacy. Under conjugacy, a set B is mapped onto
the set ĝ(B) = gBg−1, and if B is finite, then |B| = |gBg−1| (prove this—it
is easy). Therefore under conjugacy we again have that certain sets of a fixed
size are permuted amongst each other. In this case, the setwise stabilser of B
is called the normaliser of B and it is denoted by NG(B) (or simply N(B)).
Therefore

NG(B) = {g ∈ G : gbg−1 ∈ B,∀b ∈ B}.
The pointwise stabiliser of B is called the centraliser of B and it is denoted by
CG(B) (or simply C(B)). Therefore

CG(B) = {g ∈ G : gbg−1 = b,∀b ∈ B}.

That is, the centraliser is the set of all those elements of G which commute with
each element in B. Note that if B contains only one element, then its centraliser
equals its normaliser and these definitions coincide with the definition of the
centraliser of an element given above in the section on conjugacy.

Exercise.
Prove the following elementary facts most of which follow

immediately from the definitions
(i) CG(B) ≤ NG(B);
(ii) if B ≤ G then B E NG(B) and B E G iff NG(B) = G;
(iii) by analogy with conjugate elements, if H,K ≤ G and there is
an element g ∈ G such that K = gHg−1, then H and K are said to be
conjugates. Show that H E G iff every conjugate of H is equal to
H. Show also that if |H| is finite then the order of any conjugate
of H is equal to |H|.

Appendix 6. Groups of permutation

The idea of an action has been central to our discussion, and an action essentially
means the representation of a group as a group of permutations on some set.
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It is therefore opportune to look in some more detail at groups whose elements
are permutations.

Let X = {1, 2, . . . , n}. The group of all permutations (bijections) on X is
denoted by SX . We know that |SX | = n!. This group is called the symmetric
group of degree n and it is often denoted by Sn because it is the number of
elements of X which gives Sn its properties and not the names we give these
elements.

One way to represent a permutation is by writing the elements of X in a row
and, underneath each one, its image under the given permutation, for example,

(
123456

532146

)
.

But another very important way to write a permutation is in terms of cycles.
For example, the above permutation can be written as

(154)(23)(6).

A cycle of length n is called an n-cycle. Often we omit cycles of length 1, so that
the above permutation can be written as (154)(23). It is easy to show that any
permutation can be written as a product of disjoint cycles. This representation
is essentially unique, that is, it is unique up to choice of initial element and
consequent cyclic shift within each cycle and up to order of cycles.

Example. If α = (127)(34)(5)(6) and β = (352)(7)(164), then αβ =
(16357)(24).

Exercise.
1. Let the permutation α consist of only one cycle, of length

l. Show that the order of α is l, that is, l is the least number
such that αl =id. Now suppose that α consists of cycles of length
l1, l2, . . . , lr, and let l be the least common multiple of l1, l2, . . . , lr.
Show that the order of α is l.

A 2-cycle is called a transposition. Any n-cycle can be written out as a
product of n − 1 transpositions (not disjoint):

(a1a2 . . . an) = (a1an)(a1an−1) . . . (a1a2).

Since every permutation can be written as a product of disjoint cycles it follows
that every permutation can be written as a product of transpositions. Note
however that this decomposition is not unique. In fact even the number of
transpositions is not unique.

Example. The permutation (136)(2457) is equal to (15)(35)(36)(57)(14)(27)(12)
and also to (16)(13)(27)(25)(24).

What is however unique in this decomposition of a permutation is whether
or not the number of transpositions is odd or even.

Theorem 1. Suppose the permutation α in Sn can be written as the product
of r transpositions and suppose that it can also be written as the product of r′

transpositions. Then r and r′ are either both odd or both even.
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Proof. Let c(α) denote the number of cycles of α when it is written as a
product of disjoint cycles (c(α) is invariant). Let β be any transposition. We
shall first determine c(βα) in terms of c(α).

Let β = (ab). Now, either (i) a, b are in the same cycle in α or (ii) they are
not.

(i) Suppose first that a, b are in the same cycle. Then α = (ax . . . yb . . . z) . . . ,
βα = (ax . . . y)(b . . . z) . . . , and therefore

c(βα) = c(α) + 1.

(ii) Suppose now that a, b are not in the same cycle of α. Let α = (ax . . . y)(b . . . z) . . . .
Therefore βα = (ax . . . yb . . . z) . . . . Hence

c(βα) = c(α) − 1.

Now let α = βrβr−1 . . . β1, where the βi are transpositions. Since β1 has one
2-cycle and n − 2 1-cycles, c(β1) = 1 + n − 2 = n − 1. When multiplying β by
β2, β3, . . . , the number of cycles changes each time by ±1. Suppose it increases
by 1 g times and it decreases by 1 h times. Then

c(α) = n − 1 + g − h.

But
g + h = r − 1

therefore

r = g + h + 1

= 1 + g + (n − 1 + g − c(α))

= n − c(α) + 2g.

Similarly, if α = γr′γr′−1 . . . γ1, then r′ = n − c(α) + 2g′. Therefore r − r′ =
2(g − g′), which is even. Hence, r and r′ are either both odd or both even.

Figure 3: Illustrating part of the proof of Theorem 1
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This result therefore makes it legitimate to define an even (odd) permutation
as one which can be written as a product of an even (odd) number of transpo-
sitions. The sign of a permutation α, denoted by sgn(α), is defined to be +1 if
α is even or −1 if α is odd. That is, sgn(α) = (−1)r where r is the number of
transpositions of α.

This notion of even and odd permutations leads to a very important sub-
group of Sn. Note first that if two permutations are both even then so is their
product. Therefore, if we define An to be the set of all even permutations in
Sn, we have closure in An. Therefore An ≤ Sn. This subgroup is called the
alternating group of degree n.

What is the order of An? Let H be the group {1,−1} under multiplication.
Define a function φ : Sn → H by φ(α) = sgn(α); φ is a homomorphism (this
is equivalent to saying that the product of two even permutations is an even
permutation and the product of an odd permutation with an even permutation
is an odd permutation). The kernel of φ consists of all those permutation in Sn

whose sign is 1; that is, the kernel is An. Therefore An C Sn and, by the First
Isomorphism Theorem, Sn/An ' H, that is, |An| = 1

2 |Sn| = 1
2n!.

Exercises.
*2. Look back at the last part of the classification of groups

of order 12 and verify that A4 is, in fact, as given there. Verify
also that A4 is the group of permutations on the four vertices of
a regular tetrahedron induced by the group of symmetries of the
tetrahedron.

*3. Show that A4 has no subgroup of order 6.
*4. Let G be the group Z2×Z2. By Cayley’s Theorem, G is isomor-

phic to the group of permutations on G induced by left transla-
tions (that is, every element g ∈ G corresponds to the permutation
ĝ ∈ SG where ĝ : x 7→ gx). Obtain a representation of G as a group
of permutations. [Represent the elements of G by 1, 2, 3, 4 and write
down in cycle notation what ĝ is for every g ∈ G.]

Do the same for the dihedral group Dn.
5. If a permutation α ∈ Sn has ti cycles of length i, 1 ≤ i ≤

n, then we say that α is of type [1t12t2 . . . ntn ]. For example, if
n = 8, the permutation (12734658) has type [81] and the permuta-
tion (12)(375)(4)(6)(8) has type [132131]. The type of a permutation is
also called its cycle structure.

Prove (or look it up in any text book) that two permutations
α, β ∈ Sn are of the same type iff there is a γ ∈ Sn such that α =
γβγ−1, that is, iff α and β are conjugates in Sn. Therefore the
conjugacy classes in Sn consist precisely of those permutations
which have the same type or cycle structure.

*6. Find the conjugacy classes of S4 and S3. Find the conjugacy
classes of A4. (Note that two permutations from A4 might be con-
jugate in S4 but not in A4.) Give a geometric interpretation of the
conjugacy classes of A4 considered as the group of permutations
of the vertices of a regular tetrahedron.
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6. Supplementary and Further Reading

The book Introduction to Group Theory, 2nd Ed by Lederman and Weir is an
excellent companion to this course and it treats the subject, in terms of actions,
in much the same way as we do in these notes.

The book Groups and Symmetry by M.A. Armstrong is also very good, and
also takes the point of view of actions. However, it is more expensive. Suggested
chapters from this book and the main things to pick out from them would be:
1) Symmetries of tetrahedron, 2) Axioms, 4) Dihedral group, 5) Subgroups and
generators, 10) Product, 11) Lagrange’s Theorem, 12) Partitions of a set, 17)
Actions, 13) Cauchy’s Theorem, 14) Conjugacy, 8) Cayley’s Theorem.

The chapters on permutations, groups and group actions in Bigg’s Discrete

Mathematics should all be consulted, especially by those students who will be
taking the Combinatorics elective when we shall work more on the applications
of group actions to enumeration (Burnside’s and Pólya’s Theorems).
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