Introduction to Graph Theory - Sheet 1

Problems marked with an asterisk will be worked out in class.

Elementary

1. * Draw all twenty non-identical graphs on four vertices and three edges. How many of these are non-isomorphic? In general, how many nonidentical graphs on n vertices and m edges are there? How many nonidentical graphs on n vertices are there?
2. * Let $\delta=\delta(G)$ and $\Delta=\Delta(G)$ denote, respectively, the minimum and the maximum degree in the graph G. Show that

$$
\delta \leq \frac{2 m}{n} \leq \Delta
$$

3. * Show that the degrees in a graph cannot all be distinct. (Remember that a graph, unless otherwise stated, has no loops or multiple edges.)
4. An isomorphism $\phi: V(G) \rightarrow V(G)$ is said to be an automorphism of G.
(a) Show that the set of automorphisms of G form a group under composition of functions. Denote this group by $\operatorname{Aut}(G)$.
(b) Show that $|\operatorname{Aut}(G)|$ divides n ! and is equal to n ! iff $G \simeq K_{n}$ or $G \simeq \overline{K_{n}}$.
(c) Find $\operatorname{Aut}(G)$ if G is a 6 -cycle.
(d) Consider the graph G in Figure 1. How many non-identical labellings of the vertices of G with the labels $\{1,2,3,4,5,6\}$ are there? What is $|\operatorname{Aut}(G)|$? What is the relationship between $6!$ and these two results?

Figure 1: How many distinct labellings does this graph have?
(e) In general, what is the relationship between $|\operatorname{Aut}(G)|, n$! (where n is the number of vertices of G), and the number of ways of labelling G with the labels $1,2, \ldots, n$?
5. * Show that if a graph G is self-complementary, that is, $G \simeq \bar{G}$, then $n=0 \bmod 4$ or $n=1 \bmod 4$. Find a self-complementary graph on five vertices.

Medium

1. Remember that the distance between two vertices u, v is denoted by $d(u, v)$ and it is equal to the minimum length of a path joining u and v. Also, δ denotes the minimum degree.
(a) Show that for any $u, v, w \in V$,

$$
d(u, w) \leq d(u, v)+d(v, w)
$$

(b) * Show that any two longest paths in a graph must have a common vertex.
(c) * Show that if G is simple then it must have a path of length k for every $k \leq \delta$
(d) * Show that if G is simple and $\delta>\lfloor n / 2\rfloor-1$, then G is connected. Find a disconnected $\frac{n}{2}-1$)-regular graph for even n.
2. * Show that if G is simple and bipartite then

$$
m \leq \frac{n^{2}}{4}
$$

3. Show that in a party of six or more people either there are three persons who know each other or there are three person who are mutual strangers. (Assume that if x knows y then y knows x.)
4. * Prove that if G is simple and $\delta \geq 2$ then it contains a cycle of length $\geq \delta+1$. [Hint: Take a longest path and consider the degree of an endvertex of this path.]
5. Show that if G is simple and connected but not complete then it contains three vertices u, v, w such that $u v, v w \in E(G)$ but $u w \notin E(G)$.
6. Let $c(G)$ denote the number of components of G.
(a) Show that

$$
c(G) \leq c(G-e) \leq c(G)+1
$$

for every edge e in $E(G)$.
(b) Suggest a similar inequality for $c(G-v)$ where v is a vertex in $V(G)$.
(c) * Show that if each degree in G is even and G is disconnected, then there exists no edge e in $E(G)$ such that $G-e$ is disconnected.
(d) Show that if G is connected and each degree is even, then

$$
c(G-v) \leq \frac{1}{2} \operatorname{deg}(v)
$$

for every vertex $v \in V(G)$.

Harder

1. The girth $\gamma=\gamma(G)$ of G is the length of a shortest cycle in G. If there are no cycles we let $\gamma=\infty$. Prove that
(a) If G is r-regular and $\gamma=4$ then $n \geq 2 r$ and there is exactly one such graph (up to isomorphism) on $2 r$ vertices.
(b) If G is r-regular and $\gamma=5$ then $n \geq r^{2}+1$. Find such a graph for $r=2,3$. [Note: It is known that such graphs can only exist if $r=2,3,7$ and possibly 57.]
2. Let G be simple nd let p be an integer such that $1<p<n-1$. Show that if $n \geq 4$ and all induced subgraphs of G on p vertices have the same number of edges, then either $G \simeq K_{n}$ or $G \simeq \overline{K_{n}}$.
3. Let A and B be, respectively, the adjacency matrix and the incidence matrix of a graph G. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of A.
(a) What is the value of every column sum of B ? And of A
(b) Show that the number of $\left[v_{i}, v_{j}\right]$-walks of length k in G is given by the i, j-entry of A^{k}.
(c) Show that if G is simple, then the entries on the diagonals of both $B B^{t}$ and A^{2} are the degrees of the vertices of G.
(d) Why is each eigenvalue of A real?
(e) Show that
i. $\sum \lambda_{i}=0$.
ii. $\sum \lambda_{i}^{2}=2 m$, where m is the number of edges of G.
iii. $\sum \lambda_{i}^{3}=6 t$, where t is the number of triangles of G.
iv. For each $\lambda_{i},\left|\lambda_{i}\right| \leq \sqrt{2 m(n-1) / n}$.
