Introduction to Graph Theory — Sheet 2

If time permits, all problems will be worked out in class. Those problems marked with a "-" are the easiest.

- 1. Prove that if T is a tree with maximum degree Δ then it contains at least Δ vertices of degree 1.
- 2. Give an example to show that if P is a [u, v]-path in a block (that is, a 2-connected graph), then the block does not necessarily contain another [u, v]-path internally disjoint from P.
- 3. Show that a graph all of whose degrees are even cannot have a cutedge.
- 4. Let G be a connected graph with $n \ge 3$ (n is the number of vertices of G). Show that if G has a cutedge then it has a cutvertex. Show by an example that the converse is false.
- 5. Recall that Theorem III.1 stated that

 $\kappa(G) \le \lambda(G) \le \delta(G)$

where κ , λ , δ are, respectively, the connectivity, edge-connectivity and minimum degree. Show, by an example, that these inequalities can be strict.

- 6. Let G be connected. How many components are obtained by removing a λ -set of separating edges? How many components can be obtained by removing a κ -set of separating vertices?
- 7. Let G be a simple graph with $\delta \ge n-2$. Prove that $\kappa(G) = \delta$. Give an example of a graph with $\delta = n-3$ and $\kappa < \delta$.
- 8. Show that
 - (a) If G is a k-regular bipartite graph with k > 0 and bipartition (X, Y), then |X| = |Y|.
 - (b) In a k-regular bipartite graph with $k \ge 2$ there can be no cutedge.
- 9. Show that in a simple graph if $\delta \ge n-2$ then $\kappa = \delta$. Find a simple graph with $\delta = n-3$ and $\kappa < \delta$.
- 10. Show that in a simple graph if $\delta \ge n/2$ then $\lambda = \delta$. Find a graph with $\delta = n/2 1$ and $\lambda < \delta$.