Introduction to Graph Theory - Sheet 3

1. The line graph $L(G)$ of a graph G is a graph whose vertices are the edges of G and such that two vertices are adjacent in $L(G)$ iff the corresponding edges are $\mathrm{e}=$ adjacent in G. Show that
(a) Show that if G is Eulerian then its line graph $L(G)$ is Hamiltonian. *Give a counterexample to show that the converse is false.
(b) Show that if G is Hamiltonian then its line graph $L(G)$ is Hamiltonian. ${ }^{*}$ Give a counterexample to show that the converse is false.
2. This describes an application of Eulerian graphs. Do you recognise which real-life situation this refers to?
Suppose that W is a word composed from the alphabet $\{A, C, G, T\}$. Suppose that W contains fourteen letters. Yous are not given W but you are given instead all its subwords of length 3 . These subwords, given in an arbitrary order which need not be the order they appear in W are:

$$
\begin{aligned}
& A A A, A A C, A C A, A C G, A C T, C A A \\
& C A C, C G C, C T T, G C A, T A A, T T T .
\end{aligned}
$$

Can you determine W from these fragments? Is W the only word with these fragments?
Solve the problem by drawing an appropriate digraph D and finding an Eulerian directed trail in D. (You can find this problem and its solution in my Networks course notes.)
3. *Prove that if G is a Hamiltonian graph then, for every set of vertices S of G the number of components $c(G-S)$ of $G-S$ is at most $|S|$. Show by an example that this necessary result is not sufficient, that is, a graph could have the property that $c(G-S) \leq|S|$ for all sets of vertices but still fail to be Hamiltonian.
4. Two questions about Ore's Theorem
(a) *Give an example to show that Ore's Theorem is best possible in the sense that there could be a graph such that $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n-1$ for all non-adjacent vertices u, v which still fails to be Hamiltonian.
(b) *Show by an example that the sufficient condition of Ore's Theorem is not necessary, that is, there could be a a Hamiltonian graph for which it is not true that $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n$ for all non-adjacent vertices u, v.
5. *Prove that a Hamiltonian graph is 2-connected, but the converse does not hold.

